Chapter One

Introduction
1.1 The History of Cosmology

The history of cosmology starts from the beginning of human life on the earth.
People observe the sun moving and distributing light from the morning. At night
the moon appear on the sky as a golden hemisphere surrounded by glittery
beautiful objects some of them asks; what is the nature of these astronomical
objects? Why some of them move and look brighter than others [1, 2, and 3].

The accumulated know ledge these objects led scientists like kepler to formulate
some rules for some of the regular behaviors of these astronomical objects these
rules are concerned with the motion of planets around the sun [4, 5]. Later on Isaag
newton discovered that is called, the gravitational field is responsible for the
motion planets around the sun [6].

Gravitational field is used to explain the flounce that a massive body spreads in to
the space around it the so called a field, which produces a force on another massive
body. Thus gravitational field phenomena, and is measured in new ton per kg
(N/kg) [7, 8].

Newton Lows of gravitational succeeded in describing the motion of macroscopic
objects [9] until the beginning of twentieth century, where Michelso-Morely
experiment indicates the violation of the Newton Low of addition of velocity for
light [10, 11, and 12].

This experiment shows that the speed of light in vacuum is always constant and is

completely independent on the motion of the source or observer [13].
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But unfortunately Newton gravitational Low suffers from noticeable setbacks. For
instanle it fails to describe the preheating of mercury, beside the failure in
describing the behavior of quasi staller objects and black holes [14, 15].

In 1915, Albert Einstein developed his theory of general relativity, having earlier
shown that gravity dos influence light’s motion [16, 17].

Einstein’s theory of general relativity (GR) is one of the fundamental physical
theories at the present time; it describes a number of gravitational physical
phenomena, which agree with astronomical observations [18, 19].

Despite these successes GR suffers from being isolated from the main stream of
physics.

This is since the equation of motion and the energy momentum tensor conservation
Lows differs radically from that in other physical theories, which are derived from
the action principle. It also suffers from the lack of a full expression for the energy-
momentum tensor of the gravitational field [20, 21, 22,].

General Relativity Lows can’t easily explain the behavior of exotic astronomical
objects, like black holes, pulsars, quasars and neutron stars [23, 24, and 25].

For instance it is difficult to explain the large red shift of quasars within the frame
work of GR [26, 27, and 28].

The behavior of black holes is even more complex. A black holes is a place where
gravity is very strong that even light can’t get out. The gravity is so strong because
matter has been squeezed in to a tiny space this can happen when a star is dying.
Because not light can get out, people can’t see black holes. They are invisible,
space telescopes with special tools help find black holes. The special tools can see
how stars that are very close to black holes act differently than other stars [29, 30].
Black holes can be big or small. Scion tests think the smallest black holes are as

large mountain.
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Another kind of black holes is called staller its mass can be up to 20 times than the
mass of the sun. There may be many, many staller mass black holes in Earth’s
galaxy [31, 32].
Staller black holes are made when the center of Avery big star falls in upon itself, o
collapse. When this happens, it causes a super move. A super move is an exploding
star that blasts part of the star in to space [33].
All these gravitational pheromone seems to reed a full quantum gravitational
theory as pointed out by many anthers [33, 34, 35, 36, and 37].
1.2 Research Problem

Einstein general relativity GR is isolated in its geometrical content from the
main stream of physics. This is because there is no well-established quantum
gravitational theory. Thus the behavior of black holes and neutron stars can’t be
explained fully. More over the unification of gravity with other field is not yet
achieved.
1.3 Literature Review

Different attempts were made to find a full quantum gravitational theories [29,
30, 31, 32, 33, 34, 35].In same of them wheeler de Witt quantum wave function is
used to describe the universe evolution [36, 37, 38, 39, 40].In to the approaches
canonical quantization based on GR is also proposed [41, 42].A quantum model
based on quantized general relativity (GGR) is also proposed by some people [43].
The quantum models based on GR does not based on the Hamiltonian which is not
defined in GR. The ones based on GGR do not have a wave function and does not

dens be isolated bodies.
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1.4 Aim of the Work

Motivated by the successes of quantum semiclassical models [43], the aim of
this work is devoted to find quantum mode to quantized static field generated by
isolated stars.

This can describe the behavior of black holes and quasi-stellar and to remove
singularity.
1.5 Presentation of the thesis

A part from introduction, the thesis consists of 3 chapters. Chapter2 is
concerned with the theoretical black ground. Chaper3 is devoted for the literature

review, while the contribution is exhibited in chaper4.
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Chapter Two

The theory of General Relativity and Generalized General

Relativity

2.1 Introduction

This chapter is can corn with exhibiting boric principles of general relativity
(GR) including the mathematical structure and frame work of GR.
It also derives Einstein gravity equation. It is also concerns with the expression of
equation motion and the energy and momentum equation for generalized general
relativity (GGR).
2.2 Equivalence principle and Geometry

Consider anelevator in free space moving towards an object with acceleration g.
An observer in this elevator, observer this particle falling with acceleration g. This
situation can’t be distinguished from that observed by an observer existing in a
gravitational field, where observer particles falling with speed g. This the laws of
motion or the laws of nature takes the same from as in un accelerated in
accelerated frame in space frame in the presence of gravitation. This statement is
known as the principle of equivalence [0]; where or the laws of mechanics one
talks about Einstein equivalence principle and for the laws of nature one talks
about strong equivalence principle. This situation is deeply analogous to that where
curved space can be locally regarded as being flat [44].
In view of the above-stated analogy the laws of gravitation can be symbolized in
terms of curved Riemannian geometry and hence the relation between physics and
geometry can be manifested. In this concept gravitation can be described by a
curvature of space-time. The appropriate mathematical tool for implementing

Riemannian geometry, which is concerned with curved space time, in this respect

——
o1l
| S



Is tensor analysis. We shall review some useful tonsorial relation in the following
sections [45].
2.3 The Equation Of Motion of a Particle in Gravity Field
In order to see how physical events take place in a gravitational field, consider
the proper time interval dt between two world points of a 4-space (xg, X1, X2, x3)
of an inertial coordinate system i.e. [46].
dr? = d?xq — [d?x; + d?x, + d?x;] (23.2)
This is invariant under any transformation between inertial frames [6]. If we,
however, express the interval in an arbitrary (non-inertial) coordinate system then
its form would have a more general type of the coordinate differentials expressed
by
dt® = —g,,dx* (23.2)
uw,v=0123
Where g,,, is a function describing the space-time metric in for rectilinear motion
of special Relativity in the Lorentz-Minkowskian flat geometry, the proper time
interval becomes
dt? = —n,pdE*dEP (2.3.3)
Where n,gbeing a limiting value of g,,in Euclidian pace. The invariance of dr?

under transformations between these coordinates gives

ageh
—gudxtdx? = dr® = —ngpd®def = —11,5 "2 dxkdx” (2.3.4)
This yield
0&%9&h
Iuv = na[)’ W = 9vu (2-3-5)
Where g, is called metric tensor. The inverse form becomes
wr = s 20 (236)
T 5wk >
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These two forms with lower and upper indices are respectively called covariant
and contra variant tensor. There fore

1 v= /1} (2.3.7)

The motion of a particle moving freely under the influence of a gravitational field
can be described in a freely falling coordinate system&“. The equation of motion of
this particle this system reads
dZEa
dt?

=0 (2.3.8)

With dz the proper time. There fore

0= d <6€“dx“) _ag"“dzx“+ 0%2&% dxV dx* 239
= ai\oxt dr ) "ok oo @ @ 39
Multiplying by ax’l/agm and introducing the definition
L i 2310
KV ™ & gxHaxVY (23.10)
Yields
dzx’1+ N dx“dx"_O 9311
dr? Wodr dr (23.11)
Where we have used the identity
o0& ox*
The above structure of the metric tensor components and its first derivatives yield
axlguv = 1—‘ggpv + Fﬁgpu (2-3-13)

Hence

14
gvy(axlguv + augxlv - avgxlv) = {/1 M} (2-3-14)

N[ -

S —

——
~
| S



That is called the affine connection and occasionally Christoffel symbol, which

doesn’t transform as a tensor. It is obvious that in the absence of gravitation when

then metric tensor becomes constant and the affine connection Fgﬂvanishes.

2.4 General Covariance and the Curvature Tensor
It states that an equation of physics holds in a general gravitational filed if it
holds in the absence of gravitation and if it preserves its form under a general
coordinate transformation, that is, if it is generally covariant. By this, one may
learn that the principle of general covariance forms a mathematical description of
the equivalence principle. From this principle it also follows that the equations
which govern the gravitational field of arbitrary strength must be written in a
tensor form. It is therefore very essential to introduce different tensor quantities
built from the metric tensor and the relationships between them.
Useful expressions of tonsorial forms built from the metric tensor constitutes a
mixed tensor of fourth rank, like
o,T}, — oI}, + T Thy — T} T = R, (2.4.1)
This is called Riemann-Christoffel curvature tensor. It is the only tensor that can be
constructed from the metric tensor and its first derivatives and linearly from its
second derivatives. This tensor expresses the presence or the absence of the
gravitational field. Therefore if this tensor vanishes i.e.
RY, =0 (2.4.2)
The gravitational field disappears. The contraction of the curvature tensor by the

metric tensor yields the covariant fourth rank Riemann tensor

9aoRivic = Rapvc (24.3)

With the following properties
Rauvie = Rykay (24.4)
Rauvie = —Ruave = =Ry = Ruay (24.5)
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Rayvie + Racpv + Raviey = 0 (24.6)
And
9" Rayve = Rux = Rieug™ Raie = 0 (24.7)
R, is a symmetric tensor called Ricci tensor which by contraction gives the scalar
curvature
R = g" Ry = 9" 9™ Ry
v

g“"g
(akug/h/ - aklguv - av/lgxlk + av/lg;uc)

+ 9na(F%FM — I 0) (2.4.8)
Where

Further, since the ordinary derivatives of tensors are not tensors, we introduce the

following definitions of the covariant derivatives [8] for the first and the rank

tensor
Tya = 03T, — Ty T, (2.4.10)
Tyva = O Ty = 3Ty — T Top (2.4.11)
And
T4 = 0T+ +T5,T° (2.4.12)
TH" = 03TH + T4, TPV + I}, THP (2.4.13)
Hence
Tuew = Ty = i T (24.14)
T{w = Tiew = THRji (24.15)
And
Ty = Tt = T Rovic — To Rifuic (24.16)
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For the metric tensor
Guvr = 029w — TG0y = ThyGpu (24.17)
This by (2.3.13) vanishes as a manifestation of covariance principle. Similar results
hold for contra variant derivatives and we therefore have
Juwa =95 =0 (24.18)
For the covariant derivative of tensor of rank higher than 2 the number of terms
with T multiplied by I" will be equal to the number of indices. Such terms can be
set to vanish by adopting locally inertial coordinate system. Therefore for the

tensor we obtain

Ryuvin + Raunvie + Raenv =0 (24.19)
These are called Bianchi identities. By contracting (2.4.19) and due to (2.4.18) we
get
Ryscp = Rumye + Rppepy = 0 (2.4.20)
Further contraction yields
(Rt - %5;‘12) =0 (24.21)
Or equivalently
(RW - % g“VR) » (2.4.22)
Known as contracted Bianchi identities
And
hoo = —2¢ + conctant (2.4.23)
Further integration yields the Newtonian potential
¢ = —g (24.24)

At r - o,h=0,,0 =0, thus g,, = —1and hence the constant in (2.4.23) is

zero. Therefore goo = 1go + hoo = —1 — 2¢
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Or

1
¢ =-5(goo+1) (2.4.25)

2.5 The Equation of the Gravitational Field

Differently from the electromagnetic field which does not influence its source,
the charge, and which is determined by linear partial differential equations, the
gravitational field dose affect the mass producing it and therefore should be
described by non-linear equations.
To obtain these equations Einstein started from the belief that they must have a
generalized form of Newtonian gravitational equations where the scalar potential @
can be approximately expressed through the time component of the metric tensor
by [47].

0~ 5 (gon+ 1) (25)
The corresponding Poisson equation reads [10]
V:p = 4nG, (25.2)
Where pthe non-relativistic mass density and G the known gravitational constant.
Thus by (2.5.1) we obtain
V2goo = —81G, = —8mG Ty (2.5.3)
Where in this case the mass density equals the energy T,, if we extend the right
hand side of (2.5.3) so that Ty = Tgp, then by tensor analysis the left hand side
should be equal to some second rank spatial tensor G, p.this means
Gop = —81GTyp (2.5.4)
a,p =123
Where G,pis a linear combination ofg,z and its and first and second derivatives.

By the equivalence principle these equations can be further generalized to
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Gy = —8nGT,, (25.5)
To obtain the equations that govern the behavior of the gravitational field we need
to find the form of G,, . We therefore set a number of requirements with regard to
the properties of the gravitational field and which should be observed in
constructing the sought equations. Thus the following requirements should be
satisfied by G,,;
(I) By definition it is a tensor consisting of the metric and its derivatives.
(I1) This tenor should contain only terms that are either quadratic in the first
derivatives of the metric tensor or linear in its second derivatives.
(111) It should be symmetric as T}, .
(1V) Since T, is conserved it should be equally so and vice versa.
(V) It should be reducible to the Newtonian limit.
By the fulfillment of these requirements and employing certain properties of the
curvature tensor and its contractions presented in the previous section it can be
seen [11] that the right hand side of equation (2.5.5) should have the form

1
Guy = Ryy — ngR (2.5.6)
This expression is called Einstein tensor. Thus equation (2.5.5) becomes
1
Ruv =5 GuwR = —8mGTyy (2.5.7)
Contracting with g, yields
R = 8nGT} (2.5.8)
Hence
1 yl
Ry = —8nG(TW - ngTA (25.9)

Equation (2.5.7) and (2.5.9) are the Einstein Field equations that describe the

gravitational field and summarize the theory of General Relativity (GR). These
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equations can be alternatively derived by exploiting the variational action
principle.
2.6 The Action Principle

The Principle of least action variations states that the action being a functional
of the dynamical variables is stationary with respect to small variations of these
variables. If the action is subjected to such a variation one can directly discover the
connection between symmetry principles and conservation laws. Due to the
symmetry of the action imposed by general covariance, the energy momentum
tensor con be generally defined as a functional derivative of the action for any
material system. Thus this tensor is certainly conserved. The total action /of a
gravitational system which consists of a field and its source is given by.

[=1y,+1, (2.6.1)

Where I, is the matter action and I;is the gravitational one. The energy-
momentum tensor of matter is defined as the functional derivatives ofl,, whose

variation with respect to infinitesimal variation of g,,,, yields [48].

1
5ty = [ 43 VGG (590 ) (262)
Where
g = —Detgy, (2.6.3)

l.e. —g is the determinant of the metric tensor. The coefficient T#V(x) is defined to

be the energy-momentum tensor of this system. The gravitational action is defined
by
lo =~ o [ VIR (26.4)

Where the coefficient 1/167G is introduced to satisfy the Newtonian limit. The

gravitational action is defined by
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1
_ —_——_— 4
Sl ToC f 8 JgRd*x (2.6.5)

Can be carried out by utilizing the following relations

5(v/9R) = 86(J99""Ruw)

= R6.[g +\[gR6g"" + [gg" SR, (2.6.6)
With
1 vV
5\/5 = E\/Egu 5guv (2.6.7)
And
69" ==9""9"°89p0 (26.8)
And also
1
R(S\/_ = E\/Eg‘“’R(SgW (2.6.9)
Hence
\/ERuv5guv = _\/EgungGRuv5gpa = _\/5de5ng
= —\/ERP“’(SgW (2.6.10)
Further the variation of the Ricci tensor (2.4.7) yields the following relations [13]
SR = (6T}2) — (5%); R (2.6.11)

Substituting this in the last term of (2.6.6) gives
J99"8Rw = g |(g"6Th),, — (¢"'8T}),|  (26.12)
Since | can be shown that [14]

JaTh = 3,(/3T) (2613)

Then we get

9 9
Jag" Ry, = p (Jgg*sTsy) — F (Jgg*sTs,) (26.14)
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Owing to Gauss theorem this term vanishes when integrated over all space. Using

the above given relations, the variation of the action I;will be

5l = — f Ja (RW 1 g“VR) S5gmd*x  (2.6.15)
16nG 2
The variation of the action can be obtained from equation (2.6.1)
81 =61y + 81, (2.6.16)
If the total action is stationary with respect to an arbitrary variation ing,,,, then
equations (2.6.2), (2.6.5) and (2.6.15), yield

1
R¥ — > g*"R = —8nG T+ (2.6.17)

This is nothing but Einstein’s field equations (2.5.9)
2.7 Einstein Equation In static Field
Stars, planets and any astronomical object produce static field around it. The
field generated by there objects described by static isotropic metric. The interval
for the static isotropic metric takes the form
dt? = B(r)dt? — A(r)dr? — r?(d6? + sin?06d¢?) (2.7.1)
The metric has the no vanishing components
g =A@) goo =77 gy =72sin?0 g, =-B@r)  (272)
With functions A(r) and B(r) that are to be determined by solving the field
equations. Since g, is easy to write down all the non vanishing components of
its inverse:
gT=A"1() g% =r=?2 g¥? =r~2(sinf) % gt* = -B~1(r)(2.7.3)

Furthermore, the determinant of the metric tensor is — g where

g =1r*A(r)B(r)sin?6 (2.7.4)

So the invariant volume element is
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Jgdrdode = r2/A(r)B(r)sindrdfde (2.75)

The affine connection can be computed from usual formula

w =59 dxvV  OxH  OxP

Its only non vanishing components are

ra 1 Ap <agpu + 09pv _ agw)

_ A dA(r) r
" — A FGG = T 77~
2A dr A(r)
o rsin?6 = 1 dB(r)
a4 A(r) T 24(r) dr
1
O =rf = - I.5, = —sind cosf
¢ _ rp _ 1 I"(P — I"(P — 0
r(pT_T(p_; <p0_0<p_COt
1 dB(r)

We also need the Ricci tensor. It is given by (6.2.4) and (6.1.5) as

ark ark
__u pa Uy n i
Ruk ~ 9xk - O x 2 + I—;Mrkn - I—;Ik[/'ln (2.7.7)

(Note that despite its appearance, the first term is symmetric in ¢ andk, because

4.7.6). gives I’ equal to 29 Ini.lnserting in (2.7.7) the components of the
ua 2 dxH

affine connection given by (2.7.6), we find
. B'(r) 1(B(r)\/A(r) N B\ 1/4(@)
™ 2B(r) Z(B(r)) <A(r) B(r)) - ?(W)

P 14 T _A'(r)+B'(r) L1t
06 — 24(r)\ A()  BG)/)  A®)
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R(p(p - Sin29R99

B'(r)1/B()\[(A(@) B'() B'(r)
24(r) 4 <B(r)> <A(r) B(r)) <A( )) (2.7.8)

Ry, =0 foru+#v

Ry = —

2.8 The Schwarzschild Solution of Einstein Equation
The interval for the general static isotropic metric is given by
dt? = B(r)dt? — A(r)dr? — r? — d6? + sin*0dp?(2.8.1)
The field equations for empty space are
R, =0 (2.82)

The components the Ricci tensor are given by (2.7.8) thus

R, Ry 1 /A B

— t—=——|—+—= 2.8.

A B TA\A B (283)
Thus equation (2.8.3) requires

B’ A

7= —Z,orA(r)B(r) = constant (2.8.4)

The boundary condition that for — oo ) requires the metric tensor approaching the
Minkowski tensor in spherical coordinates, that is,
limA(@) =IlimB(r) =1 (2.8.5)
T —00 T —00
From (2.8.4) and (2.8.5) one has

A(r) = (2.8.6)

Since (2.8.3) now vanishes, it remains to make R,.- and RggVvavish using (2.8.6) in
(2.7.8) yieios

Rgg = =1+ B'(r)r + B(r) (2.8.7)
B (r) B" Ry
2B(r) rB(r) 2rB(r)

So it is sufficient to set Rggequal it zero, that is

Ry = (2.8.8)

(17 )



%(rB(r)) =rB(@r)+B() =1

The solution is

rB(r) = r + constant (2.8.9)
To fix the constant of integration we recall that at great distances from a central
massM, the component g, = —B must approach —1 —2¢ where ¢, is the

Newtonian potentialgp — g Hence the constant of integration is —2MG, and our

final solution is

B(r) = [1 _ ZIZG] (2.8.10)
A(r) = [1 _ 276]_1 (28.11)

The full metric in equation (2.8.1) is given by

dt? = |1

122 ge2 - [1 229 gz — 2 — o
+ sin%0dgp? (2.8.12)
2.9 Equation of Motion of freely falling particles
Consider the motion of a freely falling material particle or photon in a static
isotropic gravitational field. The interval is given by
dt? = B(r)dt? — A(r)dr? —r? — d6? + sin?0d¢?(2.9.1)
The equations of free fall are
d?xH . dx"d_x’1 “o
dp? YA dp dp

Where p is parameter describing the trajectory. In general dzis proportional to dp,

(2.9.2)

so for a material particle we could normalize p = t. However, for a photon the

proportionality constant Z—; vanishes, and since we wish to treat photons as well as
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massive particles, we shall find it convenient to reserve the right to fix the
normalization of p independently from that ofz.

Using the non vanishing components of the affine connection equation (2.9.2)

reads
0
_dPr N A®r) (dr)2 r (d@)z sin?6 (d(p)z
~dp?  24(r) \dp A(r) \dp rA(r) dp
LA (dt)z 293
2A(r) \dp (29.3)
d26 L 2d0dr 9 cost <d<p)2 204
_dpz r dp dp sinf cos 7 (29.4)
d?e 2d(p dr do do
= +———+ —— 2.9,
0= dpz rdp dp 2cot dp dp (295)
d’t B'(r)dtdr
0= (2.9.6)

4 _
dp? B(r)dpdp
For isotropic field consider the orbit of a particle to be confined to the equatorial

plane, i.e.

g="1 (2.9.7)

Dividing (2.9.5) and (2.9.6) by Z—‘Sandj—;, respectively it follows that

¢ 2}:
dp{ln 3t =0 (2.9.8)
d {l a B} 0 299
dp ndp " (299)

The solution of (2.9.9)
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dt 1
dp  B(r)
Since B(r) is close to unity, p is equal tot. The other constant is obtained from

(2.9.10)

(2.9.8) and plays the role of an angular momentum per unit mass

r? o _ ] = constant (2.9.11)
dp o
Inserting (2.9.7), (2.9.10) and (2.9.11) in (2.9.3) gives
2 ! 2 2 ]
d’r A() (ﬁ) S, _BW (2.9.12)
dp? 2A(r) \dp r3A4(r) 2A4(@r)B2(r)

Multiplying this equation with 2A(r) ﬂ one finds

{(r)< ) Z B(lr)}:O

dry? _ J? 1 —E
A(r) (%) " 12 B(r)  constant (2.9.13)

The proper timer may now be determined from (2.9.1), (2.9.7), (2.9.10), (2.9.11)
and (2.9.12) to get

dr? = Edp? (29.14)
E Must take the values

E > 0 for material particles
E =9 for photons (29.15)
Since A(r) is always positive, so (2.9.13) tells us that a particle can reach radius
ronly if
]2
—+E<
r2 E= B(r)
The parameter pmay be eliminated everywhere by using (2.9.10) in (2.9.11),

(2.9.13) and (2.9.14) to have

(2.9.16)
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%
2_T —
2o =JB()

A(r) (dr)2 +]2 1

. Z__ = — 29.17
B?(r) \dp r2  B(r) E (29.17)
dt? = EB?(r)dt? (2.9.18)
. . . . J? dr\2
For a slowly moving particle in a weak field = (d—p) ,A—1and

B —1=2¢Will all be small, and to first order in these quantities the above

equations of motion become

do
27 ~
r I ] (2.9.19)
1dr2+]2+ 1-E 2620
E(E) ozt =5 (2.920)

Particle in a circular orbit at R.since % vanishes, equation.(2.9.19) became

/- 1 +E=0 29.21
RZ B(R) (29.21)
Also, for equilibrium at this radius, the derivative at R of the left-hand side must

also vanish, so

2] B'(R)
— + = .
?7 T B2 (2.9.22)
If one regard a circle as the limit of an ellipse with perihelia R — 6 and aphelia R +
&, then (2.9.19) shows that i—z— % + E must vanish at r = R = §, and this gives

(2.9.21) and (2.9.22) in the limit § — 0). From (2. 9.21) and (2.9.22) we find

= RE'(F) 29.23
E_m<l_ZB(R)> (2:9:23)
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_ B'(R)R?

2 - 7
2BZ(R) (2.9.24)
Thus equation (2.9.24) and (2.9.18) gives the rate of revolution as
de _ (B'(R)\?
. —< R ) (2.9.25)
Whereas (2.9.23) and (2.9.2) give the proper time as
I bRy - LrB(R 2.9.26
By using the Robertson expansion one gets
dp  (MG\z[ (B —y)MG
= (%) [1 Tk (29.27)
dT—[l MG ] 2.9.28
dt R (29.28)

In most applications the shape of the orbits is needed, that is r as a function ofgp.
The orbit shape can be obtained directly by eliminating dpfrom (2.9.11) and
(2.9.13); this gives

A(r) (ﬂ)z 1 1 E

77 \ag) TG T (2929)
The solution is thus gives by
A%(r) dr
Q= ij I (2.9.30)

2.10 Deflection of light by the sun
Consider a photon approaching the sun from very great distances. At infinity
the metric becomes Minkowskian, that is, A(c0) = B(o0) = 1, The motion oo on a

straight line at constant velocity V, that is.
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b =rsin(Qp — @) =7(Q — Ps)

v d dr
~ — (rcos(p — pen) =

dt

Where b is “impact parameter” and ¢, is the incident direction. Inserting these in
(2.9.18) and (2.9.19) it is clear that they do satisfy the equations of motion at
infinity whereA = B = 1, and that the constants of the motion are

] = bV? (210.1)

E=1-V? (2.10.2)
One can express J in terms of the distance r- of closest approach to the sun rather
than the impact parameterb. At r-, Z—; vanishes, so (2.9.29) and (2.10.2)

1

1 2
=17 —1—=V?2
J=r (B -1V ) (2.10.3)
The orbit is described by (2.9.30), that is.

@ A% r) dr

(1) = ¢ +f (r) -(2.10.4)

Y (N i SRR | EE AR 2‘1_1)5
r ((ro) B(r) 1-V ] B(1°) 1-V ] T2

The total change in ¢ as r decreases from infinity to its minimum value r- and then
increases again to infinity is just twice its change from oo to r-, that is, 2|¢@(r-) —
Y| . If the trajectory were a straight line, this would equal just m; hence the
deflection of the orbit from a straight line is

A,=2]p(r) — @o| — (2.10.5)
If this is positive, then the angle ¢ changes by more that 180°, that is the trajectory
is bent toured the sun; if A, is negative then the trajectory is bent away from the
sun.

For photon V2 = 1 and, (2.104) gives
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Y 2 (B(r) E dr
o) — P —fr Az(r) [(;) <B(r)>—1] — (2.10.6)

By using the values of A(r) and B(r) gives by the Schwarzschild solution then one

would obtain ¢(r) and Ay, as elliptic integrals which can be evaluated numerically
by expanding in the small parameters g andg. It is easier to expand before

integrating, using for A(r) and B(r) the Robertson expansions

MG
A(T‘) =1+ 2)/74'

MG
B(r) = 1—274'

Thus

So (2.10.6) gives

°° dr yMGr MGr
(p(r)_(poo:j 1[1+ +
. 2 > r ro(r + 1)
r [(;) - 1]
The integral thus gives
(P(T') — P
=it (O)+ 2 gy -y - (B - (D)
= sin (r)+ 7o (1+Y 14 1 (r) r+ 10
+ ... (2.10.7)

Hence to first order in%, the deflection (2.10.5) is
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_AMG <1+y)

e (2.10.8)

For a light ray deflected by the sun%M = Mg =197 x 1033g, that is, MG =

MgG = 1475 km, and the minimum value of r is Rg = 6.95 x 10°km, so
(2.10.8) gives

Ro
Where
_4M@G 1+y _ N 1+y
9 = (=5 )_1.75 (=5 ) (2.10.10)

Furthermore, general relativity givesy = 1, so deflection toward the sun, with6 =
1.75".
(Six month earlier) from ¢ (eclipse) then, in principle, should give A ,. However
there is an unavoidable change in the scale of the photographs over a six-month
interval, owing partly to small changes in the temperature and in the mechanical
configuration of the telescope and camera over so long a time. A change in the
scale of the photograph would give an apparent deflection of any star toward or
away from the sun by an angle proportional to the distance r- at which its light
passes the sun; hence what is done in practice is to compare observations with a
theoretical curve

A= 66 (R—@) +s <L> (2.10.11)

To Rg

Where S is the unknown scale constant (often calleda) and 6 is an angle to be
compared with the theoretical valuel.75”. There are other effects that could
contribute toA ,, such as refraction of the starlight in the solar corona or as it enters
the colder air in the moon’s shadow, but none of these is believed to play an

important role.
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Observations cannot be carried closer to the sun’s disk thenr- ~ 2R, but they
can still be used to determine by fitting the observed A, values to the
theoretical curve (2.10.11). The difficulty with this program is just that A , is very
difficult to measure accurately in the brief time available during an eclipse. In 1919
eclipse expeditions were sent to two small islands, sobral, off the northeast coast of
Brazil, and Principe, in the gulf of guinea. About a dozen stars in all were studied,
and yielded values? 1.98 +0.12"and1.61 +0.0.31", in substantial agreement
with Einstein’s predictionf, = 1.75". it was perhaps this dramatic result more
than any other success that brought general relativity to the attention of the general
public in the 1920°s.

Since 1919 there have been measurements on about 380 stars observed during
the eclipses of 1922, 1929, 1936, 1947, and 1952, which we summarize in table 8.1
(taken from the summary of vonKluber?®). The values obtained for 6gvary
form1.3""t02.7", but mostly lie between 1.7 and2'. The most recent of these
results isA ,= 1.70 = 0.10", in very good agreement with Einstein’s prediction,
but it is not clear that the systematic error here is really smaller than for previous
observations. From all this we can conclude that there definitely is a deflection of
light greater than the value 65 = 0.875". That would be predicted for y = 0(i.e,
A(r) =1), but as to its precise value we can say little more then that 6yis
somewhere between 1.6 and 2.2";that is y is between about 0.9 and 1.3. it may
become possible to improve the accuracy of this determination in the near future
by using photoelectric techniques to monitor star positions without waiting for an
eclipse.

Recent developments in radio astronomy* have made it possible to measure
the deflection of radio signals by the sun with potentially for greater accuracy than

Is possible in optical astronomy. The angular accuracy of optical observations is
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limited by in homogeneities in the earth’s atmosphere to about0.1"". Whereas a
radio interferometer with wavelength Aand baseline D can in principle measure.
2.11 The Cosmological General Relatwistic Model

The modern cosmological theory is built on the cosmological principle, which
treat the universe an spatially homogeneous and isotropic. The space-time metric

of such a universe is given by the Robertson-Walker metric.

dr?

dr? = dt? — a?(t) T2

+7r2d0? + risin?0d¢?| (2.11.1)

Where a(t)an unknown function of time is called the cosmic scale factor and k is a
constant known as the spatial curvature, which by a suitable choice of units for r
can be set to take only three values 1,0, or — 1 for a closed, spatially flat and open
universes respectively. The spatial polar coordinates r, 8 and ¢ form a co-moving
system in the sense that typical galaxies have constant spatial coordinates r, 8 , ¢.

The energy momentum tensor that describes the cosmic matter is the same form as

for a perfect fluid.

Ty = (p +p)U U, + PGy (211.2)
Where for commoving coordinates
Ut =1 Ui =0

Tee = p(6), Ty = 0,and, Ty = gyjp (2.11.3)
With
I,j=1,0,¢

p is the proper pressure, p is the proper total energy density, and U, is the velocity
four-vector satisfying the relation

gu,u, = -1 (211.4)
The conservation of the energy momentum tensor is given by.

T"W:;v=0 (211.5)
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This equation is trivially satisfied for u = r. 8, ¢ while for u = t it reads:

dp(t) d
a*(t) = —(@*®)[p(t) +p(®O]) (211.6)
dt dt
If the pressure of the cosmic matter is negligible then equation (2.11.6) reduces to

p(t)a3(t) = constant (2.11.7)
The proper distance between galaxies, one at the origin and the other ry,6,, ¢, is

given by [7[:

L6 L6 d
dyrop(t) = fo JGr dr = a(t) fo ﬁ (2.11.8)

Therefore galaxies move apart when a(t) increases or become closet when a(t)
decreases.

Information about a(t) comes from the observation of shifts in frequency of light
emitted by distant sources. To find such frequency shifts, consider an
electromagnetic wave travelling towards us along—r direction with 8 and¢ fixed.
The equation of motion of a given wave crest is then.

dr?
1— kr?
Hence if the wave leaves a typical galaxy, located at ry, 8, ¢, at t,then it will reach

0 =dtr? =dt? — a%(t) (2.11.9)

us at a time t,, given by:

to dt
jt FroRiie (211.10)
Where:
r gy sin™'r, k=1
fov= | e O M

If the next wave crest leaves r; at timet, + §t,, it will arrive to us at timet, + 6t,,

which is again by
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f YA (211.12)
t,+6t, a(t)

Noting that a(t) does not change much during the periods 6t, and §t;we obtain
6ty 6ty
a(to) a(ty)

If 6tyand &t,are periodic times then the emitted frequency v, and the observed

(2.11.13)

frequency v, are given by:
v _ 0t _ alty)
vty a(tp)

The red shift parameter z which is defined as the fractional increase in the wave

(2.11.14)

length A is given by:
/10_/11:@_ :a(to)_
a(ty) £ a(t,)

Red shifts are observed when A, > A;and hencez > 1, while blue shifts are

1 (2.11.15)

observed when 1, < A;and hencez < 1. If the universe is expanding then a(t,) >
a(t,)and as a result red shift should be observed. Such a frequency shift might be
due to a Doppler Effect which results from the relative motion of the source and
the observer. If it happens that two relatively close galaxies move away from or
towards the Milky Way, then the radial velocity v,.is given from equation (2.11.8)
by:

d

d n
=20 L0 j dr = r, a(t) (2.11.16)
dt PP T qt o 1

Ur

With the dot meaning time differentiation. For r;, = O,t; — t, the frequency shift
z is given by:

_ a(ty) —a(ty) a(to)(to — t1)
a(t,) a(to)
On the other hand by (2.11.9) fork - 0

(2.11.17)
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" dr " to dt 1 "
j ——f j dr =j ~ j dt
oV 1- kT‘Z 0 ty a(t) a(to) 0

= (to — t1)
! a(to)
z =~ a(ty)r; = v, (211.18)

In 1922 Vesto Melvin Slipher gave data for 41 spiral nebulae, of which 36 had a
absorption lines shifted to the red by amounts up to z = 0.006. these frequency
shifts were interpreted as due to the Doppler effect. The observation of red shifts in
all parts of the sky suggests that it is due a general recession of galaxies. In a series
of papers Wirt and K. Lundmark showed that Slipper’s red shifts could most easily
be understood in terms of a general recession of distant galaxies. In 1929 Edwin
Hubble showed that the speed of distant galaxies increases linearly with their
distance from us. The relation between the radial distance r of a given star and its

red shift AA known as Huddle”s Law is given by:

A/1_/1 =7 = %(to —t,) = Hor (211.19)
= Zgz; (2.11.20)

H,is called Hubble’s constant.
To describe the universe one use standard big bang (SBB) model. This model is
based on the cosmological principle and Einstein’s filed equations. According to
the cosmological principle the energy-momentum tensor in the field equation is
that of a perfect fluid, while the space time metric is given by the Robertson-
Walker metric. The Robertson-Walker metric components given by:
gee = —1, 9ie =0, i=710,¢
grr =@ (OA —kr?),  ggg = a*(t)r,
9pp = a*(t)r?sin?6 (211.21)
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The only non vanishing components of the affine connection for this metric are

l"t — gl]l"l — _6l

Where according to

ri = l il [aglj + 991k _ aglk]

Jk 9 oxk  0xJ  Ox!

The Ricci tensor components are shown to be

i i _a® 2k
i=r1,0,¢
The curvature scalar is then given by:

R = g" Ry + g" Ry

_ (% a’ Lk
B a a?> a?
Using Einstein’s field equation

1
Ruv =5 9uvR = —8GTy,

The time-time component rears
1
Ree — EgttR = —8nG Ty

Then by (2.11.23),(2.11.24),(22.11.22) and (2.11.3)

a’+k Z&T—Gpa
3
3 k
871G a?
3a?
8nGa?

2

p—pc=

Pc =

Is called the critical density. The space-space components are given by:

(2.11.22)

(2.11.23)

(2.11.24)

(2.11.25)

(2.11.26)
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1
Ry — EgiiR = —8nGTy

2da + a’ + k = —8nGpa® (22.11.27)
The term a2 can be eliminated by subtracting equation (2.11.25) from equation
(2.11.27) to get

3d = —4nG(p + 3p)a (2.11.28)
Multiplying equation (2.11.25) by 3 and adding equation (2.11.27) yields
da + 2a% + 2k = 4nG(p + p)a? (2.11.29)

Beside the field equations we have the equation (2.11.6) of energy conservation
d
a3 = —[a3 +
pa® =—-la*(p+p)]

a
p+3-(p+p)=0 (2.11.30)

The energy conservation equation can be used to find the density pas a function
ofa(t). In a radiation dominated era, where the energy density is dominated by

ultra-relativistic particles, the equation of state is given by.

P~ g (2.11.31)
Hence equation (2.11.30) yields
) a
p+ 4ap =0
This is satisfied by
p=ca* (2.11.32)

In a matter dominated era where non relativistic matter with negligible pressure is

presentp «< p,p = 0, the energy equation yields

s +3%,20
p+3-p=

And this is satisfied by
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p=cya3 (2.11.33)
Where c, is a constant. It is possible to extract some information about the past and
future of the universe from the field equation [13]. At present we know thata(t) >
0. According to equation (2.11.28) d is negative as long as p + 3p remains
positive. Since we observe red shifts it follows thata > 0. This means that the
curve of a(t) versus t must be concave downward, and should have reached
a(t) = 0 at some finite time in the past. Let us set this time at ¢t = 0 so that
a(0) =0 (211.34)
This equation states that the universe has started with a sin gularity of infinite
density as shown by using equation (2.11.34) in (2.11.32) and (2.11.33) where
a(t=0)=0, p=o (2.11.35)
The future of the universe depends on its curvature. From equations (2.11.32) and
(2.11.33), we see that the density p must decrease with increasing a(t), at least as
fast as a~3, so that for a(t) — oo, the right hand side of equation (2.11.25)

vanishes at least as fastas a™ ' for k = —1

a(t) =t hence a(t) » o,ast —» o

a(t) =t, t > o0 k=-1
i.e. a(t) goes on increasing forever. For k = 0

8nG
aZ — _paZ

3
Hence a? remains positive, so a(t) goes on increasing, more slowly thant.
Fork = +1.

8nG
a?=-1+ Tpaz
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a?Will reach zero when pa? drops to the valuegﬂiG. Since according to (2.11.28) a

Is negative it follows that a will be negative and as a result a(t) will begin to
decrease again until it reaches the initial value a = 0 at some finite time in the
future. Hence the cosmic history of the universe depends on the sign of the spatial
curvature k and the relation between the actual density p and the critical density
p(see equation (2.11.26)). Ifk = -1,p <p.ork =0,p =p.,, p > p., then the
expansion will eventually cease and will be followed by a contraction back to a
singular state with a(t) = 0 [4].

The dynamical equation of the universe can be also derived by determining the
total energy of a co-moving sphere. We can think of the universe as consisting as
consisting of a Newtonian gas in a state of an everywhere-uniform expansion. Any

given gas particle will have a trajectory

a(t)

a(to)

The gravitational potential energy V/, of such a particle gust arises from the matter

X(t) = X(to) =

within a sphere of radius | X (t)| and centre at the origin, reads

4 G __4 2
V(t) — _?ﬂlx(t)l?)p(t) |;,zt)| = —?ﬂmGlx(to)h Z((ti)))z

Where mthe particle is mass and p(t) is the mass density. The kinetic energy of

this is

a® 1 1 , a*(t)
a(to) - zmlx(t)l - zmlx(tO)l az(to)
The total energy of the particle is then given by:

|2 (¢0) |2

a?(to)

E=T@)+V(t) = %m <a2(t) — 87TTG/o(t)az(t)> (2.11.36)

Using equation (2.11.25) yields
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F= _£m|x(to)|2
2 0%(ty)

Fork = —1, E is positive and the gas will expand for ever. For k = 0, E vanishes

(2.11.37)

and the gas is just barely able to expand indefinitely. For k = +1 Eis negative and
the expansion will cease and be followed by a collapse.
2.12 Matter-Dominated Era in This era

The density of radiation is much less than the density of matter-hence we are
now in a matter dominated era. Using equation (2.11.25) and (2.11.20) the present

density p,is given by [15].

_ 3 k+H2 2121
p0_87TG a% 0 ( )

The present pressurep, can also be obtained in terms of the deceleration parameter

qowhich is defined as

_da_al 9195
qo = a? aH? (2122)
Combining equation (2.12.1) and (2.12.2) yields
k
Po = — + H§ (1 — 2q,) (2.12.3)

~8nG |2
Where a, is the present value of the cosmic scale factor, and Hyand g, are the
Hubble constant and the deceleration parameter at present. According to equation
(2.12.1) the sign of the spatial curvature depends on whetherp, is greater or less
than a critical density

_3HZ (1.1)107%%g

Pe = 8nG ~ cm3 (2124)
Where H,is estimated to satisfy H; 1 = 13 x 10%years. then by (2.11.25)
3 k
Po — Pc 871G @2 (2125)
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In a matter dominated erap, = 0 < p,. In this case, equation (2.12.3) yields

k
2 (2qo — 1H§ (212.6)

Using equations (2.12.4), (2.12.5) and (2.12.6) yields

Po — 24, (2.12.7)

c

Hence if q, >% then p, > p. andp .k = +1, while if g, < %,po < p. andp .k =
—1. Wheng, = % then p, = p. andp.k = 0.

To obtain the functional form of the cosmic scale factor a(t) in a matter dominated
era the equation of state is substituted in the field equation. Thus we can write

equation (2.11.25) in the form

2mG 1
a= i(T — k)2

Where in view of (2.11.33)

_4r . 4m
m = ?a p = ?cz (2.12.8)
Hence
do = +—_meda (2.12.9)
av2mGa — ka?

On the other hand since p =0 in a matter era, hence by (2.11.33) equation
(2.11.28) becomes.
da  4nGpa  mG

dt ~ 3 a?
By using equation (2.12.9) we get,
_ mG mGda
da=—-—dt=
a av2mGa — ka?
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mGda
t = j (2.12.10)

av2mGa — ka?
If k = O this equation gives
1
2 5 OmGy /3 ,
=+ f2q=— /3
t== 9mGa a ( > ) t (2.12.11)
In this era the universe expands forever.
If k = +1then equation (2.12.10) yields
t=mG\/L(1—L — sin~1 (1—L) (2.12.12)
2maG 2mG 2mG o

And this indicates that the expansion will eventually cease and be followed by

contraction. While if k = —1

a a
) -
t= mG\/L (1+—y+ —In| et NE) (212.13)
2mG 2mG’ 2 14+9 )4 [ '
\/( ZmG) ZmGJ

And the universe will expand forever.
2.13 Radiation Dominated Era
A weak cosmic microwave radiation background signal was observed in 1965
[17]. In the early universe when the temperature was very high matter and
radiation were in thermal equilibrium. The radiation would dominate and is called
black-body spectrum throughout the early universe. The radiation has a black body
spectrum, thus energy density is given by:
p=oT* (213.1)
Where o is a constant. During the ear when the temperature was bounded by
102K and10°K radiation energy dominated and it follows that the equation

describing this state is given by:

(2.13.2)

<
I
wiv
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As a result, the energy density is thus given by equation (2.11.32)
p=ca* (2.13.3)
Using equation (2.13.1) and equation (2.13.3) the relation between the cosmic

scale factor and the temperature is given by:
T(t) = ——— (2.13.4)

At present the temperature of the cosmic microwave background radiation isT, =

2.7°K. if there had been no scattering of the background radiation since the

recombination of hydrogen at about T = 4000°K, then the time t5 corresponding

to a red shift zzshould be given by:

_ap _T(tg) 400
a(tg) T, 2.7

In the early universe, and in view of (2.13.1) and (2.13.3), the right hand side of

1+ zp ~ 1500 (2.13.5)

the equation just before (2.11.25) 8wGpa? varies as 12~T2, hence it was large in
a

the early universe. On the other hand according to the same equation a is also large
in the early universe, hence the curvature term can be dropped from equation
(2.11.25) which becomes

. 8nGca®
a?=——— (2.13.6)
3
In view of equation (2.3.13) one gets
8nGc
G2 = ”3 g2
Thus
1/
321G /2 ?
a— ( 3 ) t+ C3
But at

t=0 a=0 c3=0
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1
/
0= (327‘[66'1) 4 tl/z (2.13.7)
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Chapter Three

Generalized General relativity

3.1 Introduction

The afore noted reducibility of the GFE to Einstein’s gravitational equation
implies that they allow not only Schwarz child’s but other possible solutions. Of
cosmological significance. We restrict ourselves to solutions with a globally
constant scalar curvature to investigate these possibilities.
3.2 Generalized General Relativistic Gravitational Equation

Using the general action pineapple in a general Lagrangian a fourth-order
equation field the metric tensor, which is treated as field variables, was obtained by
Ali-Eltahir[49 ].
This equation was obtained Later also by Lahzcos but the field variables are not
selected puberty [50].
The generalized general relativity [GGR] is expressed in terms of a general
Lagranigian in the form

L"(RuRy = 99 RpRs) + L (Ryy — guO°R) + L'Ryy

1
- zguvL (321)

The Lagranigianl here is dependent on the scalar curvature R which in term
dependent on the metric tensor; i.e.
L =L(R) (32.2)
R = R(9yuv Guviy: Guviy k) (323)
This situation conforms to the electro nag retie and other fields in the selection of
field variables.
It is very interesting to note that when this Lagrangian is Linear, it reduces to (GR),

I.e. when
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L=BR+Yy (3.2.4)

It follows that

L'=p L'=0 L£'"=0 (3.25)
Thus equation (3.2.1) becomes
1 1
B Ruv - EﬁguvR — Eguv (326)
By salting
1
B= 16nG
1
S9uY = —Tuy (3.2.7)
1
Ruv =5 GuwR = —8mGTyy (3.2.8)

Which is the ordinary GR equation (2.5.7).
3.3 A Static Isotropic Lagrangian-Dependent Metric

In reference [6] the GFE have been applied to the case of a static isotropic

metric given by [51]

grr = A(r), go =12, ggor?sin?e, g, = —B(r) (3.31)
Where the proper time interval is given by
ds? = dr? = — g, dx*dx"” (332

dr? = B(r)dt? — A(r)dr? — r?2d6? — r?sin?6dp? (3.3.3)
This metric describes the behavior of the gravitational field assumed to be
generated by a single star. The non-vanishing components of the affine

connections are given by [1],

Ly =57 150 :_Z’ro%:— ) (3.34)




I —E I"‘g—l"‘g—1 .2 = —sinBcond
tt_ZA’rG_ Gr_r’ o0 —
1
O — 0 _
F(Z)r_[;‘(b_;

1}5:1}225

And where

. dA(r) . dB(r)
A= B =
dr dr
The components of the Ricci tensor are given by

. _ B B A+B 14
™ 2B 4B\A B) RA
i 1+r A+B +1
66 — 24\ A B/ A4
R(Z)(Z) — Sin29R99
And

o B N B (A N B\ B
24 4A\A B) 1A
Ry =0 foru#v
And the covariant derivatives of R are then given by

—_— —_ /1'

R, =RRg=Ry=R;=0

Ry = R — 2k Ry = i = K0
e 24700 T AT T sin%e

B .
R.,¢= —ﬂR,and R,y =0 foru+v

By using the above relation and denoting the L.H.S of by H,,,, we get [2]

(3.3.5)

(3.3.6)

(3.3.7)

(3.3.8)

(3.3.9)

(3.3.10)

(3.3.11)

(3.3.12)

(3.3.13)

(3.3.14)

(3.3.15)
(3.3.16)

(3.3.17)

(3.3.18)
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L (B 2 , A
Hrr_—LR E"‘; +£Rrr—§L:O (3319)
[ R%r%2 [y (A B 1 . IR r2 r
66 — A A 24 2B r 96— 5
=0 (3.3.20)
H¢¢ — SinZQHQQ — O (3321)
H —L”’BR2+L”B R—R A _2 + L'R +BL
== 2 A 24 r te "2
=0 (3.3.22)
H= 3L”’R2 3L” R—R A_B 2 +L'R—2L
B A 24 2B r
=0 (3.3.23)
B L"RB (2 B , B
Hewt oo = =55 (7= 5 )+ £ (Ree 2 Roo)
=0 (3.3.24)
And
A
Hy + EHtt
_LIIIRZ +LIIR‘ L”R A +B
B 2 \A4 B
A
yy (Rrr + E) R, (3.3.25)

The following relation can also be obtained from equations (3.3.14), (3.3.23), and
(3.3.25).

5 LIIR LI
LRZ+ LR — (3.3.26)

And
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A B 2R R 4
- +2—+—-+ :
A B L" R r 3RL"

By substituting R from (3.3.26) in (3.3.27) one gets

(2L — RL") (3.3.27)

—2L) (3.3.28)

Moreover using the relation (3.3.25), with the help of (3.3.14) will lead to

£” 2 B 3
2[:’ ; — E + r_zARGG + Rrr (3329)

4 7

ar |r Bl rTaa”t (33:30)

ARr 1 _L”Rr2 Bl 1 34 B
( ) r 4A 4B

Further multiplying Hgg by ;—f in equation (3.3.22) then by using (3.3.23) we get

2rR N 2L Rgg rzL
A LII LII SLII
Multiplying Hy; by% in (3.3.22) and using (3.3.23) we will have

" (2L-L'R) = (3.3.31)

2rR N ArL'Ry, N 2rLB  4rB
A L'B  L"B  3BL"
Now adding (3.3.30) and (3.3.32) and using (3.3.13) we obtain

(2L —L'R) = (3.3.32)

N
1[-B+B__§]_§+(zg_r3)( ~)=0 (3339

A B r 3 6L
These yields
Br Br
] = ——r <2_F>€] =0 (3.3.34)
Where
1 L
§=¢(R) = 3 (R ~5 L,) (3.3.35)

Finally by using equation (3.3.34) the metric coefficient a can then be written as
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d Br d Br

—r—[—] ——In—
Alr) = ar = = dr B (3.3.36)
Br _ 2o _ 5T
22 - Te(R) ;H[l_g_r ¢
When we use equation (3.3.22) and (3.3.23) we get
r?H
Hgg - T =0 (3337)

And by the use of (3.3.14) we get
A B 2 24 2ArR ArL N 2L"R

ATB 7 T3 3 r
Also equation (3.3.28) together with (3.3.30) led to
A 1 A ARr L'RrB Ar

S = — S+ (RU —2L) (3339)

(3.3.38)

d (Z)=1+ " 3R+ 2c — Rer) + RETBT
dr\A/ 7 12 2AL'B

If we add and subtract (3.3.28) and (3.3.28) with each other the resulting equation

(3.3.40)

takes the form

A 1 A Ar L\ L"RBr
( )— (33.41)

L) 2L'B
To find the functional dependence of the metric A on the scalar curvature the term
L' RBr

AL'B

Is eliminated from equation (3.3.28) and (3.3.30) to get

= 4 -

2B 24 r L' 12L'

4 r

Rr 1 B A 1 'R Ar
A(— ) (RL' —2L) (3.342)

To eliminate A/A and B/B and equation (3.3.27) is utilized to get

i ! > rIny—1
12-In[£'(rRL") "]

A(r) = (3.3.43)

{3rR+1r—2—(RL’—(RL’—2L)[ h ]}

RL"—Z—,
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A useful expression for B can be obtained from equation (3.3.27) to be

i c |A
R = r—z\/;l/)(r) (3.3.44)
With
A(L'R — 2L
Y(r) = (L") Texp U ( 3L )dr (3.2.45)
And

B(r) = ﬁexp E j ACL'R - 2£) (RL"™) dr] (3.3.46)
Where can arbitrary constant is these equations express the metric components in
terms of r, R(r), £ and their derivatives.
3.4 Solution with a Globally Constant Scalar Curvature
When the scalar curvature is constant i.e. R=R,, then equation (3.3.38) and
(3.2.39) yield [52].

2 2rRy, rL
Bo—B(Ro)_ U( = — O>Aod7”] (34.1)
And
Ao = A(Rg) = [1 + kor™' + v (Ro)r?] ™ (34.2)
Substituting equation (3.4.2) in (3.4.1) one gets
B, = 0 f 2+ 20" | (343
0 _rz(1+K0r—1+y0rz)9Xp Ko + 1 +yor3 r (343)
Where cyand xyare some constants and
1
Yo =Y(Ro) = 36 (BRy +2L — RyL}) (3.4.4)
With
Ly = L(Ry) (3.4.5)
And
{46 )




Ao = A(Ry) = %[ZRO — Lo(£6™Y)] (3.4.6)
It is interesting to note that for static and stationary universe equation (3.4.2) serves
as a good solution where y will represent the cosmological constant which turns
out to be Lagrangian-dependent. Also if we set x,=0 and yoz-g in equation (3.4.1)

and (3.4.2) we have the de sitter universe

1
e = Grr =1—ZAr* (3.4.7)
For L,=R, in virtue of (3.4.6) equation (3.4.2) and (3.4.1) reduce to
Ay = (A +Kor 2)71 (34.8)
And
R, [r?
By = Aytexp (? 3 " kor* k2 In(r + Kky) + const|)  (3.4.9)

And if we set R, = O this reduces to Schwarzschild metric with singularities at
r=-1,=2MG and r=0 [4].
3.5 The Generalized Field Equation in Static Spherically Symmetric
Field

The GFE (lanczos, 1932; Ali, 1987), which is a fourth order equation, takes the

form
1
L”,[R;MR;V - guvgde;pR;a] + L”[R;u;v - guvsz] + LRy — ngﬁ
=0 (35.1)
Contracting this equation yields
L'R—-2L L
L L
Assuming the field of a star to be static, the metric then given by

V'R = g”°R s = 9°’R, R,  (35.2)

Grr = A(r) . gos =%, gop = r’sin®6, g, = —B(r) (35.3)
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Where the proper time interval is given by
ds? = B(r)dt? — A(r)dr? — r?d6? — r?sin®6d@?* (3.5.4)

Substituting equation (3.5.4) in (3.5.1) we get the following relations (Ali, 1992)

2
B(r) = ﬁexp[ jA(L R-2L)(RL") 'dr] (35.5)

12 In[’ (rRL") ™

A(r) = (3.5.6)

{3rR + 172 — (RL' — 2L) [RL,, L }

Al A(L'R — 2L)
T‘Z EF j SRL” dr (357)

Where c is an arbitrary constant. These equations express the metric components in

And

terms of r, R(r), £ and their derivatives. Since the GFE is very complex and highly
non-linear, it is difficult to obtain exact solution. For the sake of simplicity, let us

take the non-linear lageangiag.

L=—-xR?+BR+Yy (3.5.8)
In this case the contracted equation (3.5.2) reduces to
1[/. . A LY I %
2p — - D___ - - s 2 _ -
V'R A KR R 2A 2B )] 30: (V 60:) K 3a
(35.9)

Where y is assumed to represent the source term. A further simplification can be
achieved by assuming the space to be nearly flat, i.e.

A-1 ,B-1 (35.10)

Equation (3.5.9) thus becomes

pvlp=Lpil (35.11)
T 6a 3a
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If we are outside the source y = 0, and by setting £ = 0 then equation (3.5.12)

reduces to
dR + 2 R=0 3512
dr r (3512)
Therefore
dR 2
— =—dr (35.13)
R r
Integrating both sides yields
. C
And hence
C
R = - +cq (3.5.15)

When we are for away from the source the space is flat, i.e. R— 0 as r— oo and as

result c; = 0. the scalar curvature is thus given by
C

Using equation (3.5.13), (3.5.8) and the expression for A in a weak field, i.e.

2MGy\ !
A= (1— - ) (35.17)
In equation (3.5.5) yields
_ A B o B P s
B= 2250 [GaMGj R dr] = 2q2°F [180(MGT ]
=1+20 (3.5.18)

This expression indicates the existence of a short range gravitational field. If we

consider a field near the surface of small radius super massive star then r— 0, and
B=— (35.19)

The red shift then becomes
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OMGA:
) _1 (3.5.20)

1
Z:B'5—1:2a<1——
r
Since (Weinberg, 1972)% < g and if « = 6. Therefore, for the maximum value of

this ratio Z is given by

Z =2a (%) _1=3 (3521)

An alternative approach can also lead to the same result by seeking a general

solution for equation (3.5.11). For mstances, let

c
R = ?1expc2r + R, (35.22)

A direct substitution in equation (3.5.11) yields
13 Cyr = Ry + 2 expCyr + 3.5.23
» expl,r = Ky 6arexP 2T 3 (35.23)

_ /,8 _ Y 5 _ G B |4
c, = =% G—a,RO——S—a,R—?exp— 6_0!r_3_0! (3524)

To relate the potential to R, we suppose the metric to be close to Minkowskian

metric i.e.
guv — nuv + huv (3-5-25)

Where we raise and lower indices using n*¥ as long as we restrict ourselves to first
order in h, therefore (Carmela, 1982)

R = QMKQMRAWK = 99" Rioio (3.5.26)

g -0 g% =n"n%ge =-(1+20)  (3527)

1
Rioio - Evzgoo - _47TGp (3528)
R = 8nG,g + 411G, (3.5.29)

Comparing equation (3.5.22) and (3.5.25) yields

——
| S

50



exp — ﬁr (3.5.30)

14
L = G, 0=
7Gp. 0 6a

€1

3a 8nG,,

This indicates again the existence of a short range force or a possible link with
strong nuclear force. If we set

C, = 8nG, (35.31)

Then the red shift becomes

1

B 1= 2 B\ 1
Z=(B)z2—-1=( +;exp — 6—ar —
~ (g)E exp l%\/?%r‘ —1 (35.32)

When we are just outside the star p = 0 and one of the possible ways to do this is
to set% — 0 and for r=32 (Weinberg, 1972)
Z =3 (35.33)

Thus the origin of a large red shift of quasars can be explained.
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Chapter Fore

Literature Review

4.1 Introduction
This Chapter is concerned with the attempts made to construct new
Hamiltonians the different from that of GR. Many attempts were done [53, 54, 55,
and 56].
The attempts made to quantize GR are also presented.
4.2 Energy Momentum Tensor Based on General Gerval Relativity
The energy momentum tensor expression can be simplified by using the
contracted form of (GGR) [57].

Thus the energy momentum tensor is given by
! 1 " 2
Ty =2L [EgWR — Ry |+ L"[9,nV*R — R ., ]

+L""(guRioRp — RyuRyy) (42.1)
The Hamiltonians for Gravitational field to see what the expression for the energy
momentum tensor represents. It’s Hamiltonian is compared with that of the
electromagnetic field substituting L = aR? in the field equation yields HR? = o
Hence equation becomes
Ty = —ag, R* — 2aR,, (4.2.2)
The Hamiltonian is thus given by
H=-T? = aR? - 2ag"°R,, (4.2.3)
On the other hand the field equation and The Hamiltonian of the electromagnetic
field are given by equation
VZE=0 (4.2.4)

€
H= zE2 (4.25)
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Comparing the field equation and Hamiltonian it is found that Hamiltonian in
equation represents the gravitational energy.
4.3 Gravitational Self Energy Mass

In the work done by (M. Dirar) [58]. The gravitational constant is quantized by
using the GGR equation of motion (3.4.1)

For the Lagrangian

L=aR?>—-BR+y (43.1)
Equation becomes
_BR v
k= 6a N 3a (432)
By setting
R - R(T‘, t)gTT - A(T‘, t)gtt - B(T‘, t) (433)
And
dx =Adr, dt=+Bdt (4.3.4)
And gets
BR v
axxR + aiiR - 6_a + 3—a (435)

Using the method of separation of variable now let R to be a product of two

functionsT which depends on timet, beside X which depends on x.

R =T(x%) (4.3.6)
Inserting (4.3.6) in(4.3.5) one gets
T0,, X + 1aiiT = B 4.3.7)
T 6a
Dividing both sides by TX yields
1 1 B
¥ Oyxc X + T 0;T = 6_aT (4.3.8)

This means that the first term and the second term (4.3.5) is constants. Set the time

dependent part to be
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To solve this equation

Whereas

T = Ce't

—w? = —u? and w? = p?

1 B,
)_(axxXZG_a:M

X = C,sinkx

K= |—=
REEC

dx = VAdr,

_2y
f=%

To take Y in consideration g insert (4.3.13) and (4.3.14)

By setting

B
axxf + aiif — 6_a{f

f =0T

After comparing (4.3.16) with (4.4.7) to get

Hence (4.3.15)

T = C3e'“t, oC,sinkx

K= |2 o
IREEC
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(4.3.9)

(4.3.10)

(4.3.11)

(4.3.12)

(4.3.13)

(4.3.14)

(4.3.15)

(4.3.16)

(4.3.17)

(4.3.18)
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2y .
f=R+ ? = oT = C3C,e'" (4.3.19)

. 2y
R = C3C,e*tsinkx — A (4.3.20)
R, Kls real when
! > @2 (4.3.21)
w O,
3V3V6

One can quantize the gravitational field know that outside of universe both gravity
R and matter Y

Vanishes outside the unit near bound dries i.e.

R=0Y=0 atx = xq (4.3.22)
Then
0 = C3Ce™tsinkx, =0 (43.23)
This can be satisfied if
Kxo, = nm (4.3.24)
n=0123,...
B —p
— o2 = — 4+ 2 = —_— 2
k il ca ¢ (4.3.25)

The term «a found negative strictly by work of Dirar[ ]Ja was found to be

_—JB_—JB —B _BV6
“F 3T 2vE Ba 3 (43.26)
V6 1 1
3 Jovave  3v3%6 (3:4.26)
Hence
k="" 2 2= T (4327)
x |3V3V/6 X0 o




1 n2m?

= + w2 4.3.28
3V3V6  x} ( )
! (4.3.29)
0=— > 3.
(7 +«?)
X0

Gravitational coupling is constant quantized at the early universe x, thus quantized
takes place.

Haw ever at present x, — oo hence
1

- 27 w*

(4.3.30)

o

Thus on quantized is observes.

4.4 Quantum Model for Oscillating Field Based on Generalized

General
Recently Ibrahim. H. Hassan quantized time and space by using GGR [59].
And
L=—aR?>+ SR+, (44.1)
Where « and 8 constant parameters and y,, is the vacuum energy.

According to static metric the equation takes the form [60]

. 2. B Yy
+—R=—R+— 44.2
K r K 6a 3a ( )
The solution of this equation is
Cy [_(E)ﬁ] Yv
=—e" \aJ ' —— 4.4,
R e 3 (4.4.3)

For Euclidian space y,, = 0 so equation becomes:

02 B
2R ——R=—R 444
X Cl 6“ ( )

Solution is [55]
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R = R, sin(wt — kx) (44.5)
If Ris only function of tas expected for cosmological model thus

R = R,sinwt (4.4.6)
Sinceatr - o R =0

wt =nm (4.4.7)

r=ct=— =nm(
w

)2 (4.48)

Thus time and space are quantized.
4.5 Quantum Correction Hawking Radiation Spectrum

It is very well-known that a black hole must emit particles; the radiation
spectrum must follow the Plank radiation spectrum. However, strictly speaking,
this may not be the case, as Hawking’s calculation was semi-classical rather than
full-quantum. Perhaps, from these considerations. Bekenstein and Mukhanov
showed that the Hawking radiation spectrum would be discrete if the allowed area
Is the integer multiples of unit area. In this work, by closely reviewing how
Planck’s black body radiation formula is derived, the Hawking radiation is shown
to be discrete contrary to what Barreira, Carfora and Rovelli argued, and kerasnov
argued even in the case that the allowed area is not simply the integer multiples of
unit area, as long as the area spectrum is quantized as loop quantum gravity
predicts. [61]
The black hole has the following area eigenvalues (i.e. the unit areas):

Aynit = A1, A3, 43,44, 45, 46 .. (451)

Then, the black hole area A must be given by the following formula.

A= z NI, (45.2)
7
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Where N’s are non-negative integers. One can consider black having holes as
partitions, each of which has A,,,;.(i.e. the unit areas) as its area. Change of area
krasnov argues. The following:

AA = A; — A (4.5.3)
For some A; bigger thanA;. In other words, the partition with the area Ajon the

black. A black hole of mass Mand radius r, having temperature T satisfies

r=2M
A = Anr? = 16mM?
KT = ! 454
~ 8ntM (4.5.4)

As a photon is emitted, the black hole loses energy, and thus its area decreases by a
certain amount. From this consideration, we. The energy of the emitted photonE)is

related to the mass of the black hple which decrease by an amount

AM = _Ephoton
Thus the area of the black hole decreases as follows
AE
AA = 32TMAM = —327M Epporon = —% = —A,,.;;(455)

Where A,,,;¢ 1S the unit area. The fact that the black hole area must be decreased by
A, qirthe unit area is predicted by loop quantum gravity. Therefore

A -
Ephoton — Z—thT (4-5-6)

In case of isolated horizon, the minimum area is given by 4n\/3_y where y is the
Immirzi parameter. Therefore, the minimum energy of emitted photon is given by
Epmin = LA9KT (45.7)
In case of Tanaka-Tamaki scenario the minimum area is given by4my where y is
the Lmmirzi parameter. This given the minimum energy of emitted photon to be
Epmin = 2462KT (45.8)
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In case of Kong-Yoon scenario the minimum area is given by4mv2. In this case,
one has

Epin = 444KT (45.9)
Therefore, the Hawking radiation is truncated below this energy. An other simple

derivation can be made by using the entropy. Heat relation

AQ = TAS (4.5.10)
Using the followings, relations
AQ = —Epnoton (4511)
AS = — KAZ”” (45.12)
One gets
Ephoton = % (45.13)

In his famous textbook, Griffiths considers a statistical mechanics problem where
he considers an arbitrary potential, for which the one-particle energies
areE,, E,E5, ..., with degeneracies d,,d,,ds,...Suppose one put N particles, for
which there are N, particles with energy E;, N, particles with energy E,and so on.

Then he shows the following in case of bosons.

= (N, +d,, — 1)!
= 45.14
¢ nNn!(dn—l)! (4514)
n=1
With the following two conditions:
N, =N, z N.E, =E (4.5.15)
n=1 n=1

The first condition shows that the total number of particles isN. The second
condition shows that the total energy isE.
Then, to find the most probable configuration (N;, N,, N3, ... ), he maximizes in Q

as follows:
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G=InQ +« + (45.16)

N—ZNn
1

n=

E- z N,.E,
n=1

Where G is to be maximized and a and [ are Lagrange multipliers. Thus one has

dn
e@+BEn — 1

N, = (45.17)

Of course, in case photon, the number isn’t conserved, which implies that we can
seta = 0. There fore
dn
e®T) — 1

Using another standard method, we blackbody radiation spectrum for a photon

with frequency fis given by
8mfd
Ny = % (4.5.19)
ekt — 1
Comparing equations (18) and (19) yields
hf = E, (4.5.20)

Recalling that the black hole (or any black body) loses hfupon emission of a

photon with frequencyf, one can thus get

AE = —hf (45.21)
Plugging (23) to the above equation, we conclude:
AE = E, (45.22)

Now, suppose a hypothetical case in which the area deduction is given by AA =
Aj — A;as Krasnov argued, and see why that doesn’t make any sense. In such a
case, we would have AE = E; — E;which implies energy of emitted photon is given
byhf = E; — E;. Given this, let’s compare the black body radiation formula in this

hypothetical case with (18). Denominator doesn’t match as (18)’s denominator

En_ EitEp
iIse®T) — 1 while Krasnov’s hypothetical one would be e &7 — 1.they are clearly
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different. Furthermore, the numerator doesn’t match at all either. In the case of
(18), we have the degeneracy of nth quanta, given asd,,. In Krasnov’s hypothetical
case one never knows whether it should bed;ordjo d;d;. Perhaps, there is no
consistent way to assign a value to the numerator in such a way that it reduces
tod,in the case thatE; = EpandE; =0, but still different fromd,when E; =
EnbutE; # 0, in conclusion, Kresnov’s area deduction condition is wrong as it
cannot reproduce (18).
4.6 Scalar Particles Tunneling and Effect of Quantum Gravity
Recently, the quantum gravity theory came into a period of rapid development
the best application model of the quantum gravity is black hole model. More and
more evidences imply that the generalized uncertainty principle (GUP) can be
modified by the modified fundamental commutation relation; therefore the
momentum operator will be corrected with it. Finally, the dynamics equation of
particles in black hole can be modified by the quantum gravity, and the Hawking
radiation is method and the GUP, the tunneling behavior of the scalar particle of
Schwarzschild black hole has been studied by K Nozari. And many other studies.
The aim of this work is to study the tunneling radiation of scalar particles in the
Gibbons-Maeda-Dilation black hole with the Klein-Gordon equation near the
horizon. The generalized uncertainty principle (GUP) can describe the minimum

measurable length. Based on the modified fundamental commutation relation [62]

[x;, p;] = ih6;;[1 + Bp?] (46.1)
h
AxAp 2 [1+ B(Ap)?] (46.2)
Where M,,is the Planck mass, g = % Bo
p

Is a dimensionless parameter and S, < 1034 x; andp; can be found in the

reference [17].
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X; = %o 0 = Poi (1 + Bp?) (4.6.3)
The canonical commutation relation express as [xo,,Poy] = i, should be
satisfied the Klein-Gordon equation without the electromagnetic field is given by
—P,P* = m? (4.6.4)
To study the effect which the quantum gravity has on the Klein-Gordon equation,
we expand the Klein-Gordon equation as two parts. Thus the generalized
expression of energy is given by
E =E[1-B(p?+m?)] (4.6.5)
Therefore, the modified Klein-Gordon equation takes the form
—(ih)20' 8, = [(—ih)?8'0; + m?|{1 — 2B[(—ir)?0'9; + m?]}1(4.6.6)
The modified Klein-Gordon equation tells us that the quantum gravity has an
important influence on the dynamic equation of scalar particles. One can use
equation (6) to study tunneling radiation of scalar particles of the Gibbons-Maeda-
Dilaton black hole by.
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Chapter Five
Quantum Static Gravity Model

5.1 Introduction

This Chapter is concerned with constructing equation gravity model based on
GGR in static. It aims to equalize the gravitational field.
5.2 Radial Quantum Gravity Energy

The quantum equations in the Schrodinger picture are based on the fact that free

particles can be soared as a wave having displacement

b = Aer®*ED (5.2.1)

Differentiating w.r.t time displacement yields

haw
i 0x

in%¥ =e 228 = py (522)
Where panda E are the momentum and energy respectively beside the wave

equation the quantum equation of the static field, which takes the form

aB .
E=H=aR*+2ag" R, = aR*+ ER (5.2.3)
The redial momentum is given by
B =P’ = -T! = aR* + 2ag""R.., = aR? + 2 —AR
T T T rr A 2A
_pta 2aR  ad E24
a 1T (5.24)
E=p 2R AL 0By 525
T A A27  AB (5.25)
This can be written in the form yields
E=DB+f(x) (5.3.6)

Where
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(r) = ZaR+AR+aBR 5.2.7
flr)=-2—+5mR+7% (5.2.7)

To find the gravity quantum equation the GGR energy expression can multiplied
by ¥ to get

Ep = Py + f(r)y (5.2.8)
Substituting equation (5.2.2) in equation (5.2.8)
ih%—lf = ?g—z + f(r)y (5.29)
This equation holds for the system of units in which
c=1 (5.2.10)
But in the ordinary system of units equation can be written in the form
E=cP +f(r) (5.2.11)
Using equation (5.2.2) in r-direction one gets
Ey = iha—lp (56.2.12)
ot
hao
= 76_15 (5.2.13)
To derive the equation of quantum mechanics of static field multiply (5.2.11) by
to get
Ep = CRY + f(r)p (5.2.14)
Substituting (5.2.12) and (5.2.13) and (5.2.14) yields
ih%—lf = ?Z—lf + f(r)y (5.2.15)
This equation can be simplified by separating variables, where
Y(r,t) =u (r) V(t) (5.2.16)
Inserting (5.2.16) in (5.2.15) yields (5.2.16)
ih = u% = ?v(t) % )+ f(r)ul) v(t) (56.2.17)
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Dividing both sides by uv yields

ihdv ch 0
5w u(r) + f(r) = E = constant (5.2.18)
The time dependent part can thus be given by
ih dv _odv
T Elha =Ev (5.2.19)
While the spatial dependent pates given by
chodu
=3 f(r)=E
chdu
7 + f(r) = Eu (5.2.20)
The solution for equation (5.2.19) can be obtained by direct integration where
h=2 =gy

ot
dv

ihlnv:Et+Co

E E,
Inv = Et + C; v =vyeir (56.2.21)

Where
v, = e
Consider now the behavior of any particle, free Euclidian space, where on gravity
exists. For such space, accruing to equations.
B=1 ,6A=1 R=R,=const (56.2.22)

Thus in view of equation (5.2.5)

f(r)=0 (56.2.23)
Substituting equation (4.2.23) in equation (4.2.20) yields

d—u = L.Edr (56.2.25)

u ch
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Eu (56.2.24)

A direct integration given

iE
u= e&T""CZ

£
u= eCZ elchr

E

Uy = e'cn” (5.2.25)
With
Uy = e
For relativistic particle with negligible mass.

E=PC (5.2.26)

U= eré_b;tr = er%)r (5.2.27)
Thus in flat free space the particle propagate as a pure wave which conforms with
that predicted by ordinary Schrodinger equation
Form (5.2.20) in r- dimension
Chdu

TE“Lf(T)u = Ey

Hence
chdu
~ =[E - f(r)]u
du ) dx _ [
—= i[E — f(r)]c—h = c_h[E — f(r)]dx
Thus
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d ] d
= - renar e, [

u

i
= j [E - f(r)]dr

+ (5 (5.2.28)
Where C; is the constant of Integration.

Integration both sides yields

i
Inu=—|1|E — dr +C
u=— [l - e )dr+,
For constantE
U = eCopai E-far+c, _ ergm-f f(ryar] _ erépr (5.2.29)

A gain this equation indicates that the particle behave like a wave with momentum

and wave number

Cc cr

_E [f@)dr
k= (5.2.30)

The momentum is no Longer a constant but depends on r.
5.3 The 8 Dependent Part

The Hamiltonian that depends on the angular part 6 of the momentum takes the

form.
H = aR? + B R (5.31)
- a aAB ..
The momentum is given by
P§ =Tf = aR? + 2ag% Ry (53.2)
According to equation one gets
P9=aR2+£ (5.3.3)
rA o




Thus

aR? = Pf — il (5.3.4)
rA

Hence the Hamiltonian is given by in the ordinary system of unites by multiplying

ploys to get
H=cCP§ - ri +——R (5.3.5)
To obtain quantum equation one multiplies makes the replacement
H-H P§=p§ (4.3.6)

l.e. the Hamiltonian and the momentum are replaced by their corresponding

operator in (5.3.5) to get

o R aB .
HY = cPgy — El/) + ERI/) (6.3.7)
o R aBR
A = P ——p+——1 (5.38)
But the operators of hand Hamiltonian and momentumare given by
A= ihiﬁg hilo (5.3.9)
adt " iradt

Inserting equation (5.3.9) in (5.3.8) yields

_ha¢_chla R +a§ 5310
o= Trac?Y At ag? (5:3.10)

The compact form of (5.3.10)

52y =R ) 53.11
latlp_irat gy (5.3.11)
Where
(r) = R+“BR 5.3.12
I\ =" AT 4B (5.3.12)

To solve equation (5.3.11) one makes the separation of the wave function in the

form
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Y(r,0,t) =u(r,0)v(t) = uv
Substituting (4.3.13) in (4.3.11) yields

L udv _ch v du

th 9t i rsinfad +g(ru
Divide both sides by uv to get
hdv chll
a T Tru I =6=E
Thus the time part is given by
dv
ihE = (C3v =Ev

To solve (5.3.16) divide both sides by v
dv E
v l
Hence
Inv = £ dt +C, = £ t+C
nv = E,f t 4 = E 4

Therefore one gets

Et Et Et
v=ceih + (4 = eCein = Ve in

The spatial part is given according to (5.3.15) by
hldu

-+ = =
Cird@ g(r)u =Csu =EU

In free space and for cans tan scalar curvature in general
R=RR=0 R=0
Thus equation (5.3.12) and (5.3.19) given
g(r) =0
Inserting equation (5.3.20) in equation (5.3.18) yield

hldu_

———=F
Cirdt u
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(5.3.13)

(5.3.14)

(5.3.15)

(5.3.16)

(5.3.16)

(5.3.18)

(5.3.19)

(5.3.20)

(5.3.21)
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Rearranging (5.3.21) to separate u from r vyield

du _E jd@ +C
u chr 3
Thus
InU iE 0+C
nU=—
chr 4
U= eC4ei_ir9 = eri—ire
Then

Erg
U(r,0) = Uyean”

(5.3.22)

Expression (5.3.22) indicates that the particle behaves as a pure wave in the

6 direction.
5.4 The ¢ Dependent Part

If Pgis the only momentum component, the Hamiltonian and quantum

equations become different from the previous ones

The component Pg Is given according to equation.

¢ _ 2
Py = 2ag¢¢R;¢;¢ + aR

Using equation one gets
R
¢ _ 2
P? = aR? +—
¢ — ¢ rd
But the Hamiltonian is given according to equation by

aB .
H =aR?*+—R

AB
In view of (5.4.2) one gets
R
R2 =Py - —
* ¢ rA

(5.4.1)

(5.4.2)

(5.4.3)

(5.4.4)

Thus in view of equations (5.4.4) and (5.4.3) one gets the Hamiltonian in the from
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pen=cpt R B, (5.45)
— T TIAT 4B -

Multiply both sides by vy to get

aB

_ oo R 3
Ep = cPp ——p+-— Ry (5.4.6)

To obtain the quantum equation one replaces the physical quantities, like energy

and momentum by their corresponding operators to get

Ay = PPy BF (5.4.7)
v=chv oY T ag? a
To obtain the quantum equation the energy and momentum operates takes the

differential form

A=inlpr=t_1 9 5438
_lat‘l’_irsineaq’) (548)

Inserting (5.4.8) in (5.4.7) yields
_ha¢_ch 1 0 R +a'BR 49
ar T rsineatlp rRl/) AB v (54.9)

In free space, where no field exists, and for constant (Scalar curvature) in general
R=R,=constant R=0 (5.4.10)
Thus
o h 1 oy

ih% ~ i rsing 9t (5411)
Again by setting
Y =v() u(r06, o) (54.12)
One gets
" udv _ @ 1 Va_u
at [ rsin@ 0¢
Thus dividing by uv
ihdov ch 1 du
— = (5.4.13)

v ot Trsin@u@ -

(71 )



Here

L 5414
ih— = (5.4.14)

Thus the time dependent part is given according to equation (5.4.13) by

dv
S
v

thnU:Et+CS

| E i vhe
nv=—
V= 6

E

v = vyein’ (5.4.15)
Similarly the spatial part can be obtained from equation (5.4.13) to be
chdu
—— = Ersinfd¢
L u
h du h (du
cj—_—ZJErsianqb =>—_j—:Erjsin9dqb
L u l u

h i
?Inu = Erjsin@dq.’) = Inu ZEErjsianq.’)

U=U e%Erfsianqb
— Y0

Thus

U = Uye i sind)o (5.4.16)
5.5 The Full Spherical Quantum Gravity Equation
In the system of units where ¢ # 1 the (quantum general equation) becomes
Eyp =cPy+f(r)y (551)
This equation can be rewritten by taking in to account the fact that in (classical

mechanic), the energy is given by:

E=[Far=[m® ar=m[av?
_j'r_jmdt'—r_m LT

C——'

12

——



muv?2

2
But if the system is oscillating the velocity can thus give by

E=mjg.d2=

v(t) = v, sinwt

Where the effective velocity is given by:

v:vmax:v_m V2 _Um
V2. V2 2
If one rewrite (5.5.2) to be
5 mv2,
2
It follows that
E = mv?
Alternatively for harmonic oscillator
E = %mszz = %mv,zn = m(%)2 = mv2 = mv?
Thus
E=mv?=(mv).v=P.v
E = PV, + PV, + RV,
For light
=V =V=c
Thus

E =cP, +cPh, + P,
In spherical coordinate
E =ch +cPg+cPy
In view of (5.5.12) equation (5.5.1) can be written as
E =cP. +cPy+cPy + f(r)
Multiply both sides by ¥ to E get
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(5.5.2)

(5.5.3)

(5.5.4)

(5.5.5)

(5.5.6)

(5.5.7)

(5.5.8)
(5.5.9)

(5.5.10)

(5.5.11)

(5.5.12)

(5.5.13)
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EYp = cRy + cPop + cPypip + f(r)y (5.5.14)
Replacing E and P by their corresponding operates one gets

By = cPop + chayp + cPyp + £(r)

(55.15)
But the energy and momentum operators take the form

9
‘ot
R
"ot

N h o . fl 1 0

Po = _;%P(p i rsinf ¢ (5516)

Thus the full quantum equation becomes

ha_l/) h 61/) ca¢ c 0y

dt ar r69 rsineﬂ_i-f(r)lp]
ha_lp ﬁ oy calp c Y

ot ar r a6 rsin@% N f(r)t/)] (5517)
Using separation of variables

£ =

W(r,0,0,t) = R(r) + 60(¢) v(t)

(5.5.18)
Equation (5.5.17) becomes

- @dv_ hc o 6R+ hc P 00 ch 56 6cl)+ (")RO
(R dt_iXiv Cbar iXLv ‘bae irsin6 do J(r)ROGY
Divide by R Odv

ihdv_chlaﬁ ch 1 00

1 6(1)
- 4 —
v ot i Ror i O 06 fr)+

[ rqbsm@ aqb =G =k
Thus
hov _ 5.5.19
v ot (55.19)
ch1dR ch 1 6@ ch 2o
F) + =2+ =

i R ar [ 70 00 qu(crsine) d¢ -E
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Multiply by r

chdR ch d@ ch do
TE O+ e et smeyas L
chd0 ch 1 d¢
TR + U =B =225 * pismpdp
Thus
chrdR
TR dr +[f(r) —Elr=C; (5.5.20)
rdo ch 1 db_ ss2
i0do Pisinfdgp
Multiply by (sin8)
251’119 do ch dp = C,5ind (55.22)
i 0 db c])L do
p 5040 g = AP (5.5.23)
0 do didp
Thus
chsimbdo - ino =c, (5.5.24)
i 6 do

The function f(r)can be found from equations (5.2.3), (5.2.4), (5.3.3) and (4.4.1),

where the GGR Hamiltonian is given by

H = aR?+ aiR = 10:R2 +£01R2 +£01R2 + aiR (5.5.25)
AB 3 3 3 AB
The corresponding momentum components in spherical coordinates is given by
1 1  2aR aAR
37 T3 T3 TR
11 R 1 I R
§P9 —§0.’R +31‘_A§P¢ —§0.’R +3T‘_A (5526)

Thus inserting equation (5.5.26) in equation (5.5.25) yields
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2aR aA . 2R
3 A 3 AZ 3rA A

1 aB
H=§[Pr+P9+P¢]—— +——R-—=—+ BR(5527)

In the system of units where ¢ # 1

The Hamiltonian becomes
C
H =§[Pr + Py + Py + f(r)

Or by following Dirac relativistic quantum equation approach
H = ca,P. + agPy + ayPy + f(r)
Where
) = 2aR+aAR 2 R a'BR
IO =37 3R 372" 15
) = 2 aR aAR 2R+a'BR
I =37 3R 372" 15

5.6 Solution of the Radial Part

(5.5.28)

(5.5.29)

(5.5.30)

Since most of astronomical objects have spherical shape. Therefore it is

suitable to use spherical coordinates.

In view of equation (4.5.20) the radial part is given by

chrdR
TEE+ [f(r) —Elr=C,
Thus, separation of R and r dependent parts yield
dR iC dr
i — j (E—f(r))dr+C,
I
InR = C—hlnr +—[Er —jf(r)dr + C,INR — Inric

[
= c_h[Er - jf(r)dr + C,
R = Coricsgatfr=J rar]

Where
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C3=—=Cg=e% (5.6.3)

The radial wave function can be rewritten in the form

B = picsInr pilEr—J F(r)dr] (5.6.4)
Equation (5.2.3) shows that the gravity energy density is constant when
R = R, = constant (5.6.5)
Where
H = aR? = constant (5.6.6)

But since the energy density is equation to graviton energy multiplied by the

number of them, therefore

H = hol|p|? = hw|§|2 = constant (5.6.7)
Therefore the probability or the number of gravitons is also constant, I.e.
|§|2 = C, R = C, = constant (5.6.8)
For simplicity let
c,=0 C;=0 (5.6.9)
But since R is constant, thus according to equation (5.5.30)
fr)=0 (5.6.10)
In view of equation (5.6.4) and (5.6.8)
earTo = cy (5.6.11)

But, since the number of gravitons are constant, and from (5.6.6) which hews that

Ris real as for as the Hamiltonian (energy) is real thus

R — Er0+'_ Ery Ery . Ero_o 5.6.12
—cosch 1S|nch—c7,cosch— c7smch— (5.6.12)

Hence
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7 2nmt , E " (5.6.13)
nch

E=—— (5.6.14)
To

According to Bohr model the minimum Bohr radian corresponds to

27‘[1‘0 =1
Thus
_ nch(2m)
E = —
E =2nnrf (5.6.15)

5.7 Solution of Constant Scalar Curvature
There are many useful solutions which can be found when the mass density is
constant. According to GR it implies constant R.using equation (5.5.30)
2 R ad. aB. 2R
f(r):—§a2+ﬁR +ER_§H (5.7.1)
For constant R
R=R, R=0 R=0 (5.7.2)
Thus (5.7.1) given (5.7.2)
f(r) =Zero
Substituting in (5.5.17) and consider y to depend on r only for afield generated by
a spherical body.

Y =9() (5.7.3)
oy oy
30 Zero % = Zero (56.7.4)
Then
0 ho
ih = _1/) = C——lp + Zero + Zero
ot i oOr

——
| S

78



% _ chav

= =T ar (5.73)
Substituting
Y = Asin(kr — wt) (5.7.6)
d d
—1/) = —wA cos(kr — wt) —1/) = kA cos((kr — wt) (5.7.7)
dt or
Substituting in
L 0Y  hcoy

hc
—ihwA cos((kr — wt) ’TkA cos((kr — wt)

h
—ihw = ck T

Multiply by i and divide by A
W = CK (5.7.9)
This indicates that the solution is consistent with the ordinary relation between
angular frequency and wave number. Thus
Y = Asin((kr — wt) (5.7.10)
Is a solution which indicates that gravitons are travelling waves moving with speed
of light.
Using the relation
cos? +sin®> =1
The probability of existence of particles is
[¥|?A%cos?6 (5.7.11)
But

c0s 260 = cos?0 — sin*0 = —2cos?6 — 1

1
cos?’6 = > [cos26 + 1]
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AZ
h = |y|? ?[1 + c0s20 (kr — wt)] (5.7.12)
This means that a gravitational wave can be propagated with wave function
Y = Acos(kr — wt) (5.7.13)

The intensity of waves is

AZ
n= ?[1 + cos 2(kr — w)]

AZ
n=ny+ - Cos 2(kr — wt) (5.7.14)
Where
AZ

The constant form nycan be considered as. a back ground constituting vacuum
energy.
5.8 Gravitational Field Quantization

The gravitational field for spherically symmetric body satisfies the equation

0y hcoy
Lha =73 (56.8.1)
Separating the variables in to time and radial function
Y =uv =u(t)v(r) (5.8.2)
Thus
_vou hcudv
LEW =75 (5.8.3)
Dividing both sides by uv yield
ihdu hclov
ot ivar 0 F (84
Thus
ou
ihE = Eu (5.8.5)




Which is the energy Eigen function consider now the solution of equation in the

form
u = e-lat
Substituting equation in equation yield
—i’hau = Eu
Thus
E = ha
The periodicity condition requires
u(t+T) =u(t)

e —ia(t+T) — elat

e~T = cosal —isinal =1

Thus
cosal =1 sinaT =0
Hence
aT = 2nm
a= Zn_n =2nnf = nw
T
In view of equations the energy is thus given by
E = ha = nhw

This means that the energy of gravity field is quantized.

5.9 Angular momentum Quantization
Equation (5.5.23) can be used to find the relation

chd
_chdd_

i @

hdd  C,

c @ Cc

Zz(l):l'z
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(5.8.6)

(5.8.7)

(5.8.8)

(5.8.9)
(5.8.10)
(5.8.11)

(5.8.12)

(5.8.13)

(5.8.14)

(5.8.15)

(5.9.1)

(5.9.2)

(5.9.3)
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Where the L, operator is given by

[,=-"2 5.9.4
dd i Cy
T=__2|d 9.
¢ hc j v (5.9:9)
iC, _
INGg = ——=—iCyp + C3 (5.9.6)
ch
b = ese™ %P = Pp,e o (5.9.7)
(e + 2m) = d(p) (5.9.8)
e~ to(@+2m) — pice (599)
e~ 2%t = cos 2mcy + iSin 2mcy = 1 (5.9.10)
Thus
cos2mcy =1 sin2mcy, =0 (56.9.11)
2nCy = 2nm (56.9.12)
n=o0,123, .. ...
CO —n
C, hc
Lz — ? — ?CO = hn (5913)

5.10 Discussion

The Gravity quantum relativistic equation is found by relating GGR
Hamiltonian to the momentum as shawnn by equations (5.2.11). Then this
expression is multiplied byy. The energy and momentum terms in equation
(5.2.140), is replaced by the corresponding energy and momentum operators in
equation (5.2.12) and (5.2.13). Thus the full quantum’s GGR equation for radical
part is obtained as shown by equation (5.2.12). using the separation of variables
time and radial equations were found [see equations (5.2.19) and (5.2.20)]. The

solution of the radial port for constant scalar curvature predicts travelling wave

——
| S

82



solution (5.3.37). This equation shows the existence of gravitational waves, with
quantum energy typical to that of plank as shown by equation (5.2.40). The
graviton moves with the speed of light. The prediction of graviton agrees with that
concerning the behavior of binary pulsars which are assumed to emit gravitational
waves. Using the periodicity condition for graviton or particles moving in a
circular orbit, the energy is shown to be quantized [see equation (5.2.45)]. This
guantization rests on the solution (5.2.28). using the same procedures as in section
(2), the GGR quantum equation for the angular part 6 is also obtained as shown by
equation(5.3.10), (5.3.16) and (5.3.18). For constant scalar curvature, one obtains
standing wave solution (5.3.22). The uniqueness of the wave function to have the
same value at specific point is used as a physical constraint. This constraint shows
that the energy of particles moving in a circular orbit or in a closed loop is
quantized, as equation (5.3.25) indicates.

A full GGR quantum equation for spherically symmetric motion is obtained in
equation (5.5.17). The separation of variables (5.5.18) leads to 4 independent
(r,0,¢,t) equations. The time dependent and radial parts [see equation (5.7.5)]
predict again the existence of gravitational wave. Applying time periodicity of this
wave on equation (5.8.15). Again this energy is no thing but quantum plank
ordinary energy. The angular.

The equation of ¢ part of Schrédinger equation is given by equation (5.9.1). Its
solution is given by equation (5.9.7). using the fact that the wave function has only
one unique value, the angular momentum component L, is shown to be quantized.

5.11 Conclusion

The quantum model based on GGR appears to be Succeful. This is since it
predicts energy and angular momentum quantization. It also predicts existence of

gravitational wave and gravitons.
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5.12 Recommendation for Future Work

1. The GGR quantum model needs to be used for black hole and quasars.
2. The Classical GGR can be solved for strong gravity to obtain potential which
can be used in GGR quantum equation.

3. The super nova and stars evolution can also be described by GGRQ model.
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