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Chapter One 
Introduction 

1.1 The History of Cosmology  
     The history of cosmology starts from the beginning of human life on the earth. 

People observe the sun moving and distributing light from the morning. At night 

the moon appear on the sky as a golden hemisphere surrounded by glittery 

beautiful objects some of them asks; what is the nature of these astronomical 

objects? Why some of them move and look brighter than others [1, 2, and 3]. 

The accumulated know ledge these objects led scientists like kepler to formulate 

some rules for some of the regular behaviors of these astronomical objects these 

rules are concerned with the motion of planets around the sun [4, 5]. Later on lsaag 

newton discovered that is called, the gravitational field is responsible for the 

motion planets around the sun [6]. 

Gravitational field is used to explain the flounce that a massive body spreads in to 

the space around it the so called a field, which produces a force on another massive 

body. Thus gravitational field phenomena, and is measured in new ton per kg 

(N/kg) [7, 8]. 

Newton Lows of gravitational succeeded in describing the motion of macroscopic 

objects [9] until the beginning of twentieth century, where Michelso-Morely 

experiment indicates the violation of the Newton Low of addition of velocity for 

light [10, 11, and 12]. 

This experiment shows that the speed of light in vacuum is always constant and is 

completely independent on the motion of the source or observer [13]. 
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But unfortunately Newton gravitational Low suffers from noticeable setbacks. For 

instanle it fails to describe the preheating of mercury, beside the failure in 

describing the behavior of quasi staller objects and black holes [14, 15]. 

In 1915, Albert Einstein developed his theory of general relativity, having earlier 

shown that gravity dos influence light’s motion [16, 17]. 

Einstein’s theory of general relativity (GR) is one of the fundamental physical 

theories at the present time; it describes a number of gravitational physical 

phenomena, which agree with astronomical observations [18, 19]. 

Despite these successes GR suffers from being isolated from the main stream of 

physics. 

This is since the equation of motion and the energy momentum tensor conservation 

Lows differs radically from that in other physical theories, which are derived from 

the action principle. It also suffers from the lack of a full expression for the energy-

momentum tensor of the gravitational field [20, 21, 22,]. 

General Relativity Lows can’t easily explain the behavior of exotic astronomical 

objects, like black holes, pulsars, quasars and neutron stars [23, 24, and 25]. 

For instance it is difficult to explain the large red shift of quasars within the frame 

work of GR [26, 27, and 28]. 

The behavior of black holes is even more complex. A black holes is a place where 

gravity is very strong that even light can’t get out. The gravity is so strong because 

matter has been squeezed in to a tiny space this can happen when a star is dying. 

Because not light can get out, people can’t see black holes. They are invisible, 

space telescopes with special tools help find black holes. The special tools can see 

how stars that are very close to black holes act differently than other stars [29, 30]. 

Black holes can be big or small. Scion tests think the smallest black holes are as 

large mountain. 
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Another kind of black holes is called staller its mass can be up to 20 times than the 

mass of the sun. There may be many, many staller mass black holes in Earth’s 

galaxy [31, 32]. 

Staller black holes are made when the center of Avery big star falls in upon itself, o 

collapse. When this happens, it causes a super move. A super move is an exploding 

star that blasts part of the star in to space [33]. 

All these gravitational pheromone seems to reed a full quantum gravitational 

theory as pointed out by many anthers [33, 34, 35, 36, and 37]. 

1.2 Research Problem 
     Einstein general relativity GR is isolated in its geometrical content from the 

main stream of physics. This is because there is no well-established quantum 

gravitational theory. Thus the behavior of black holes and neutron stars can’t be 

explained fully. More over the unification of gravity with other field is not yet 

achieved. 

1.3 Literature Review 
     Different attempts were made to find a full quantum gravitational theories [29, 

30, 31, 32, 33, 34, 35].In same of them wheeler de Witt quantum wave function is 

used to describe the universe evolution [36, 37, 38, 39, 40].In to the approaches 

canonical quantization based on GR is also proposed [41, 42].A quantum model 

based on quantized general relativity (GGR) is also proposed by some people [43]. 

The quantum models based on GR does not based on the Hamiltonian which is not 

defined in GR. The ones based on GGR do not have a wave function and does not 

dens be isolated bodies. 
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1.4 Aim of the Work 
      Motivated by the successes of quantum semiclassical models [43], the aim of 

this work is devoted to find quantum mode to quantized static field generated by 

isolated stars. 
This can describe the behavior of black holes and quasi-stellar and to remove 

singularity. 

1.5 Presentation of the thesis  
     A part from introduction, the thesis consists of 3 chapters. Chapter2 is 

concerned with the theoretical black ground. Chaper3 is devoted for the literature 

review, while the contribution is exhibited in chaper4.  
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Chapter Two 
The theory of General Relativity and Generalized General 

Relativity 
2.1 Introduction 
     This chapter is can corn with exhibiting boric principles of general relativity 

(GR) including the mathematical structure and frame work of GR. 

It also derives Einstein gravity equation. It is also concerns with the expression of 

equation motion and the energy and momentum equation for generalized general 

relativity (GGR). 

2.2 Equivalence principle and Geometry 
     Consider anelevator in free space moving towards an object with acceleration g. 

An observer in this elevator, observer this particle falling with acceleration g. This 

situation can’t be distinguished from that observed by an observer existing in a 

gravitational field, where observer particles falling with speed g. This the laws of 

motion or the laws of nature takes the same from as in un accelerated in 

accelerated frame in space frame in the presence of gravitation. This statement is 

known as the principle of equivalence [0]; where or the laws of mechanics one 

talks about Einstein equivalence principle and for the laws of nature one talks 

about strong equivalence principle. This situation is deeply analogous to that where 

curved space can be locally regarded as being flat [44]. 

In view of the above-stated analogy the laws of gravitation can be symbolized in 

terms of curved Riemannian geometry and hence the relation between physics and 

geometry can be manifested. In this concept gravitation can be described by a 

curvature of space-time. The appropriate mathematical tool for implementing 

Riemannian geometry, which is concerned with curved space time, in this respect 
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is tensor analysis. We shall review some useful tonsorial relation in the following 

sections [45]. 

2.3 The Equation Of Motion of a Particle in Gravity Field 
     In order to see how physical events take place in a gravitational field, consider 

the proper time interval ݀߬ between two world points of a 4-space (ݔ଴,ݔଵ,  (ଷݔ,ଶݔ

of an inertial coordinate system i.e. [46]. 

݀߬ଶ = ݀ଶݔ଴ − [݀ଶݔଵ + ݀ଶݔଶ + ݀ଶݔଷ]                   (2.3.2) 

This is invariant under any transformation between inertial frames [6]. If we, 

however, express the interval in an arbitrary (non-inertial) coordinate system then 

its form would have a more general type of the coordinate differentials expressed 

by 

݀߬ଶ = −݃ఓఔ݀ݔఓ                                             (2.3.2) 

,ߤ ߥ = 0,1,2,3 

Where ݃ఓఔ is a function describing the space-time metric in for rectilinear motion 

of special Relativity in the Lorentz-Minkowskian flat geometry, the proper time 

interval becomes 

݀߬ଶ =  ఉ                                     (2.3.3)ߦఈ݀ߦఈఉ݀ߟ−

Where ߟఈఉbeing a limiting value of ݃ఓఔin Euclidian pace. The invariance of ݀߬ଶ 

under transformations between these coordinates gives  

−݃ఓఔ݀ݔఓ݀ݔఔ = ݀߬ଶ = ఉߦఈ݀ߦఈఉ݀ߟ− = ఈఉߟ−
డకഀడకഁ

డ௫ഋడ௫ഌ
ఔݔఓ݀ݔ݀  (2.3.4)     

This yield 

݃ఓఔ = ఈఉߟ
ఉߦఈ߲ߦ߲

ఔߦఓ߲ߦ߲
= ݃ఔఓ                                 (2.3.5) 

Where ݃ఓఔis called metric tensor. The inverse form becomes 

݃ఓఔ = ఈఉߟ
ఔݔఓ߲ݔ߲

ఉߦఈ߲ߦ߲
                                           (2.3.6) 
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These two forms with lower and upper indices are respectively called covariant 

and contra variant tensor. There fore  

݃ఓఔ݃ఓఒ = ఔఒߜ = ቄ1      ߥ = ߣ
ߥ      0 ≠ ቅߣ                             (2.3.7) 

The motion of a particle moving freely under the influence of a gravitational field 

can be described in a freely falling coordinate systemߦఈ. The equation of motion of 

this particle this system reads  

݀ଶߦఈ

݀߬ଶ
= 0                                                       (2.3.8) 

With ݀߬ the proper time. There fore  

0 =
݀
݀߬
൬
ఈߦ߲

ఓݔ߲
ఓݔ݀

݀߬
൰ =

ఈߦ߲

ఓݔ߲
݀ଶݔఓ

݀߬ଶ
+

߲ଶߦఈ

ఓݔఔ߲ݔ߲
ఔݔ݀

݀߬
ఓݔ݀

݀߬
    (2.3.9) 

Multiplying by ߲ݔ
ఒ
ఈൗߦ߲  and introducing the definition 

Γఓఔఒ ≡
ఒݔ߲

ఈߦ߲
߲ଶߦఈ

ఔݔఓ߲ݔ߲
                                      (2.3.10) 

Yields 

݀ଶݔఒ

݀߬ଶ
+ Γఓఔఒ

ఓݔ݀

݀߬
ఔݔ݀

݀߬
= 0                            (2.3.11) 

Where we have used the identity  

ఈߦ߲

ఓݔ߲
ఒݔ߲

ఈߦ߲
≡ ఓఒߜ                                               (2.3.12) 

The above structure of the metric tensor components and its first derivatives yield 

ఒ߲݃ఓఔ = Γఒ
ఘ݃ఘఔ + Γఒ

ఘ݃ఘఓ                             (2.3.13) 

Hence 

Γఒఓ
γ ≡

1
2
݃ఔఊ൫ ఒ߲݃ఓఔ + ఓ߲݃ఒఔ − ߲ఔ݃ఒఔ൯ ≡ ቄ

ߛ
ቅߤ           ߣ    (2.3.14) 
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That is called the affine connection and occasionally Christoffel symbol, which 

doesn’t transform as a tensor. It is obvious that in the absence of gravitation when 

then metric tensor becomes constant and the affine connection Γఒఓ
ఊ vanishes. 

2.4 General Covariance and the Curvature Tensor 
     It states that an equation of physics holds in a general gravitational filed if it 

holds in the absence of gravitation and if it preserves its form under a general 

coordinate transformation, that is, if it is generally covariant. By this, one may 

learn that the principle of general covariance forms a mathematical description of 

the equivalence principle. From this principle it also follows that the equations 

which govern the gravitational field of arbitrary strength must be written in a 

tensor form. It is therefore very essential to introduce different tensor quantities 

built from the metric tensor and the relationships between them. 

Useful expressions of tonsorial forms built from the metric tensor constitutes a 

mixed tensor of fourth rank, like 

߲ఊΓఓఔఒ − ߲ఔΓఓఔఒ + Γఓఔ
ఎ Γఊఎఒ − Γఓఊ

ఎ Γఔఎఒ ≡ ܴఓఔఊఒ              (2.4.1) 

This is called Riemann-Christoffel curvature tensor. It is the only tensor that can be 

constructed from the metric tensor and its first derivatives and linearly from its 

second derivatives. This tensor expresses the presence or the absence of the 

gravitational field. Therefore if this tensor vanishes i.e. 

ܴఓఔఊఒ = 0                                                    (2.4.2) 

The gravitational field disappears. The contraction of the curvature tensor by the 

metric tensor yields the covariant fourth rank Riemann tensor 

݃ఒఙܴఓఔ఑ఙ = ܴఒఓఔ఑                                     (2.4.3) 

With the following properties 

ܴఒఓఔ఑ = ܴఔ఑ఒఓ                                         (2.4.4) 

ܴఒఓఔ఑ = −ܴఓఒఔ఑ = −ܴఒఓ఑ఔ = ܴఓఒ఑ఔ                    (2.4.5) 
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ܴఒఓఔ఑ + ܴఒ఑ఓఔ + ܴఒఔ఑ఓ = 0                                    (2.4.6) 

And 

݃ఒఔܴఒఓఔ఑ = ܴఓ఑ = ܴ఑ఓ݃ఒఓܴఒఓఔ఑ = 0                  (2.4.7) 

ܴ఑ఓis a symmetric tensor called Ricci tensor which by contraction gives the scalar 

curvature 

ܴ = ݃ఓ఑ܴఓ఑ = ݃ఓ఑݃ఒఔܴఒఓఔ఑

=
݃ఓ఑݃ఒఔ

2
൫߲఑ఓ݃ఒఔ − ߲఑ఒ݃ఓఔ − ߲ఔఒ݃ఒ఑ + ߲ఔఒ݃ఓ఑൯

+ ݃ఎఙ൫Γఔఒ
ఎ Γఔఒ

ఎ − Γఔఒ
ఎ Γఓఔఙ ൯                                                      (2.4.8) 

Where 

ఓ߲ఔ݃ఘఙ =
߲ଶ݃ఘఙ
ఔݔఓ߲ݔ߲

                                         (2.4.9) 

Further, since the ordinary derivatives of tensors are not tensors, we introduce the 

following definitions of the covariant derivatives [8] for the first and the rank 

tensor 

ఓܶ;ఒ = ఒ߲ ఓܶ − Γఓఒ
ఘ

ఘܶ                                (2.4.10) 

ఓܶఔ;ఒ = ఓ߲ఔ ఓܶఔ − Γఓఒ
ఘ

ఘܶఔ − Γఓఒ
ఘ

ఓܶఘ                    (2.4.11) 

And 

;ܶఒ
ఓ = ఒ߲ܶఓ + Γఒఘ

ఓ ܶఘ                                 (2.4.12) 

;ܶఒ
ఓఔ = ఒ߲ܶఓఔ + Γఒఘ

ఓ ܶఘఔ + Γఒఘ
ఔ ܶఓఘ                    (2.4.13) 

Hence 

ఓܶ;఑;ఔ − ఓܶ;ఔ;఑ = ܴఓఔ఑ఒ
ఒܶ                            (2.4.14) 

;ܶఔ;఑
ఒ − ;ܶ఑;ఔ

ఒ = ܶఓܴఓఔ఑ఒ                                (2.4.15) 

And 

ఓܶ;ఔ;఑
ఒ − ఓܶ;఑;ఔ

ఒ = ఓܶ
ఙܴఙఔ఑ఒ − ఙܶ

ఒܴఓఔ఑ఙ                  (2.4.16) 
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For the metric tensor 

݃ఓఔ;ఒ = ఒ߲݃ఓఔ − Γఒఓ
ఘ ݃ఘఔ − Γఒఔ

ఘ ݃ఘఓ                    (2.4.17) 

This by (2.3.13) vanishes as a manifestation of covariance principle. Similar results 

hold for contra variant derivatives and we therefore have 

݃ఓఔ;ఒ = ݃;ఒ
ఓఔ = 0                                   (2.4.18) 

For the covariant derivative of tensor of rank higher than 2 the number of terms 

with ܶ multiplied by Γ will be equal to the number of indices. Such terms can be 

set to vanish by adopting locally inertial coordinate system. Therefore for the 

tensor we obtain 

ܴఒఓఔ;ఎ + ܴఒఓఎఔ;఑ + ܴఒఓ఑ఎ;ఔ = 0                      (2.4.19) 

These are called Bianchi identities. By contracting (2.4.19) and due to (2.4.18) we 

get 

ܴఓ఑;ఎ − ܴఓఎ;఑ + ܴఓ఑ఎ;ఔ
ఔ = 0                         (2.4.20) 

Further contraction yields 

൬ܴఎ
ఓ −

1
2
ఎߜ
ఓܴ൰ ;ఓ = 0                               (2.4.21) 

Or equivalently 

൬ܴఓఔ −
1
2
݃ఓఔܴ൰ ;ఓ                                  (2.4.22) 

Known as contracted Bianchi identities 

And 

ℎ଴଴ = −2߶ +  (2.4.23)                             ݐ݊ܽݐܿ݊݋ܿ

Further integration yields the Newtonian potential 

߶ = −
ܯܩ
ݎ

                                         (2.4.24) 

At ݎ → ∞,ℎ = 0௢௢,∅ = 0, thus ݃௢௢ = −1and hence the constant in (2.4.23) is 

zero. Therefore ݃଴଴ = ଴଴ߟ + ℎ଴଴ = −1 − 2߶ 
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Or 

߶ = −
1
2

(݃଴଴ + 1)                                  (2.4.25) 

2.5 The Equation of the Gravitational Field 
     Differently from the electromagnetic field which does not influence its source, 

the charge, and which is determined by linear partial differential equations, the 

gravitational field dose affect the mass producing it and therefore should be 

described by non-linear equations. 

To obtain these equations Einstein started from the belief that they must have a 

generalized form of Newtonian gravitational equations where the scalar potential ∅ 

can be approximately expressed through the time component of the metric tensor 

by [47]. 

∅ ≈ −
1
2

(݃଴଴ + 1)                                    (2.5.1) 

The corresponding Poisson equation reads [10] 

∇ଶ∅ =  ఘ                                        (2.5.2)ܩߨ4

Where ߩthe non-relativistic mass density and ܩ the known gravitational constant. 

Thus by (2.5.1) we obtain 

∇ଶ݃଴଴ = ఘܩߨ8− = ܩߨ8− ଴ܶ଴                          (2.5.3) 

Where in this case the mass density equals the energy ଴ܶ଴ if we extend the right 

hand side of (2.5.3) so that ଴ܶ଴ → ఈܶఉ, then by tensor analysis the left hand side 

should be equal to some second rank spatial tensor ܩఈఉ.this means 

ఈఉܩ = ܩߨ8− ఈܶఉ                                           (2.5.4) 

ߚ,ߙ = 1,2,3 

Where ܩఈఉis a linear combination of݃ఈఉ and its and first and second derivatives. 

By the equivalence principle these equations can be further generalized to 
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ఓఔܩ = ܩߨ8− ఓܶఔ                                          (2.5.5) 

To obtain the equations that govern the behavior of the gravitational field we need 

to find the form of ܩఓఔ.We therefore set a number of requirements with regard to 

the properties of the gravitational field and which should be observed in 

constructing the sought equations. Thus the following requirements should be 

satisfied by ܩఓఔ; 

(I) By definition it is a tensor consisting of the metric and its derivatives. 

(II) This tenor should contain only terms that are either quadratic in the first 

derivatives of the metric tensor or linear in its second derivatives. 

(III) It should be symmetric as ఓܶఔ . 

(IV) Since ఓܶఔ is conserved it should be equally so and vice versa. 

(V) It should be reducible to the Newtonian limit. 

By the fulfillment of these requirements and employing certain properties of the 

curvature tensor and its contractions presented in the previous section it can be 

seen [11] that the right hand side of equation (2.5.5) should have the form  

ఓఔܩ = ܴఓఔ −
1
2
݃ఓఔܴ                                   (2.5.6)  

This expression is called Einstein tensor. Thus equation (2.5.5) becomes 

ܴఓఔ −
1
2
݃ఓఔܴ = ܩߨ8− ఓܶఔ                            (2.5.7) 

Contracting with ݃ఓఔ yields  

ܴ = ܩߨ8 ఒܶ
ఒ                                             (2.5.8) 

Hence 

ܴఓఔ = )ܩߨ8− ఓܶఔ −
1
2
݃ఓఔ ఒܶ

ఒ                          (2.5.9) 

Equation (2.5.7) and (2.5.9) are the Einstein Field equations that describe the 

gravitational field and summarize the theory of General Relativity (GR). These 
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equations can be alternatively derived by exploiting the variational action 

principle. 

2.6 The Action Principle  
     The Principle of least action variations states that the action being a functional 

of the dynamical variables is stationary with respect to small variations of these 

variables. If the action is subjected to such a variation one can directly discover the 

connection between symmetry principles and conservation laws. Due to the 

symmetry of the action imposed by general covariance, the energy momentum 

tensor con be generally defined as a functional derivative of the action for any 

material system. Thus this tensor is certainly conserved. The total action ܫof a 

gravitational system which consists of a field and its source is given by. 

ܫ = ெܫ +  (2.6.1)                                                 ீܫ

Where ܫெ is the matter action and ீܫ is the gravitational one. The energy-

momentum tensor of matter is defined as the functional derivatives ofܫெ whose 

variation with respect to infinitesimal variation of ݃ఓఔ yields [48].  

ெܫߜ =
1
2
න݀ସݔ ඥ݃(ݔ)ܶఓఔ(ݔ)݃ߜఓఔ(ݔ)                        (2.6.2) 

Where  

݃ = ఓఔ݃ݐ݁ܦ−                                                (2.6.3) 

I.e. −݃ is the determinant of the metric tensor. The coefficient ܶఓఔ(ݔ) is defined to 

be the energy-momentum tensor of this system. The gravitational action is defined 

by  

ீܫ = −
1

ܩߨ16
නඥ݃(ݔ)ܴ(ݔ)݀ସݔ                           (2.6.4) 

Where the coefficient 1 ⁄ܩߨ16  is introduced to satisfy the Newtonian limit. The 

gravitational action is defined by 
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ீܫߜ = −
1

ܩߨ16
නߜ ඥܴ݃݀ସ(2.6.5)                                ݔ 

Can be carried out by utilizing the following relations 

൫ඥܴ݃൯ߜ = ൫ඥ݃݃ఓఔܴఓఔ൯ߜ

= ඥ݃ߜܴ + ඥܴ݃ఓఔ݃ߜఓఔ + ඥ݃݃ఓఔܴߜఓఔ                             (2.6.6) 

With 

ඥ݃ߜ =
1
2ඥ

݃݃ఓఔ݃ߜఓఔ                                        (2.6.7) 

And  

ఓఔ݃ߜ = −݃ఓఘ݃ఔఙ݃ߜఘఙ                                    (2.6.8) 

And also 

ඥ݃ߜܴ =
1
2ඥ

݃݃ఓఔܴ݃ߜఓఔ                                  (2.6.9) 

Hence 

ඥܴ݃ఓఔ݃ߜఓఔ = −ඥ݃݃ఓఘ݃ఔఙܴఓఔ݃ߜఘఙ = −ඥܴ݃ఘఙ݃ߜఘఙ

= −ඥܴ݃ఓఔ݃ߜఓఔ                                                                     (2.6.10) 

Further the variation of the Ricci tensor (2.4.7) yields the following relations [13] 

ܴߜ = Γఓఒߜ)
ఒ );ఔ − ൫ߜΓఓఔఒ ൯;ఒ

                             (2.6.11) 

Substituting this in the last term of (2.6.6) gives 

ඥ݃݃ఓνܴߜఓఔ = ඥ݃ ቂ൫݃ఓఔߜΓఓఒ
ఒ ൯

;ఔ
− ൫݃ఓఔߜΓఓఔఒ ൯;ఒ

ቃ       (2.6.12) 

Since I can be shown that [14] 

ඥ݃ ;ܶఓ
ఓ = ఓ߲൫ඥ݃ܶఓ൯                                 (2.6.13) 

Then we get 

ඥ݃݃ఓఔܴߜఓఔ =
߲
ఔݔ߲

൫ඥ݃݃ఓఔߜΓఓఒ
ఒ ൯ −

߲
ఒݔ߲

൫ඥ݃݃ఓఔߜΓఓఔఒ ൯  (2.6.14) 
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Owing to Gauss theorem this term vanishes when integrated over all space. Using 

the above given relations, the variation of the action ீܫwill be 

ீܫߜ =
1

ܩߨ16
නඥ݃ ൬ܴఓఔ −

1
2
݃ఓఔܴ൰݃ߜఓఔ݀ସݔ         (2.6.15) 

The variation of the action can be obtained from equation (2.6.1) 

ܫߜ = ெܫߜ +  (2.6.16)                                         ீܫߜ

If the total action is stationary with respect to an arbitrary variation in݃ఓఔ, then 

equations (2.6.2), (2.6.5) and (2.6.15), yield 

ܴఓఔ −
1
2
݃ఓఔܴ = ఓఔܶܩߨ8−                               (2.6.17) 

This is nothing but Einstein’s field equations (2.5.9) 

2.7 Einstein Equation In static Field  
     Stars, planets and any astronomical object produce static field around it. The 

field generated by there objects described by static isotropic metric. The interval 

for the static isotropic metric takes the form 

݀߬ଶ = ଶݐ݀(ݎ)ܤ − ଶݎ݀(ݎ)ܣ − ଶߠ݀)ଶݎ +  ଶ)              (2.7.1)߮݀ߠଶ݊݅ݏ

The metric has the no vanishing components  

݃௥௥ = ఏఏ݃   (ݎ)ܣ = ଶ       ݃ఝఝݎ = ௧௧݃      ߠଶ݊݅ݏଶݎ =  (2.7.2)          (ݎ)ܤ−

With functions (ݎ)ܣ and  (ݎ)ܤ that are to be determined by solving the field 

equations. Since    ݃ఓ௩ is easy to write down all the non vanishing components of 

its inverse: 

݃௥௥ = ఏఏ݃   (ݎ)ଵିܣ = ଶ   ݃ఝఝିݎ = ଶ ݃௧௧ି(ߠ݊݅ݏ)ଶିݎ =  (2.7.3)(ݎ)ଵିܤ−

Furthermore, the determinant of the metric tensor is –݃ where 

 

݃ =  (2.7.4)                                               ߠଶ݊݅ݏ(ݎ)ܤ(ݎ)ܣସݎ

So the invariant volume element is  
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ඥ݃݀߮݀ߠ݀ݎ =  (2.7.5)                     ߮݀ߠ݀ݎ݀ߠ݊݅ݏ(ݎ)ܤ(ݎ)ܣଶඥݎ

The affine connection can be computed from usual formula  

 

ఓఔఒ߁ =
1
2
݃ఒఘ ቆ

߲݃ఘఓ
ఔݔ߲

+
߲݃ఘఔ
ఓݔ߲

−
߲݃ఓఔ
ఘݔ߲

ቇ 

Its only non vanishing components are  

 

௥௥௥߁ =
ܣ̇

ܣ2
(ݎ)ܣ݀
ݎ݀

ఏఏ߁          
௥ = −

ݎ
(ݎ)ܣ

 

 

ఝఝ௥߁ = −
 ߠଶ݊݅ݏݎ
(ݎ)ܣ

௧௧௥߁             =
1

(ݎ)ܣ2
(ݎ)ܤ݀
ݎ݀

 

௥ఏ߁ 
ఏ = ఏ௥߁

ఏ =
1
ݎ

ఝఝఏ߁                 =  ߠݏ݋ܿ ߠ݊݅ݏ−

ఝ௥߁
ఝ = ௥ఝ߁

ఝ =
1
ݎ

ఝఏ߁                
ఝ = ఏఝ߁

ఝ =  ߠݐ݋ܿ

௧௥௧߁ = ௥௧௧߁ =  
1

(ݎ)ܤ2
(ݎ)ܤ݀
ݎ݀

                                            (2.7.6) 

We also need the Ricci tensor. It is given by (6.2.4) and (6.1.5) as 

ܴఓ௞ =
ఓఒ߁߲

ఒ

௞ݔ߲
−
ఓఒ߁߲

ఒ

ఒݔ߲
+ ఓఒ߁

ఎ ௞ఎఒ߁ − ఎ௞߁
ఎ ఒఎ߁

ఒ                        (2.7.7) 

(Note that despite its appearance, the first term is symmetric in ߤ and݇, because 

(4.7.6). gives ߁ఓఒ
ఒ  equal to ଵ

ଶ
    ߲ ln ௚

డ௫ഋ
.Inserting in (2.7.7) the components of the 

affine connection given by (2.7.6), we find 

ܴ௥௥ =
(ݎ)′′ܤ
(ݎ)ܤ2

−
1
4
ቆ
(ݎ)′ܤ
ቇቆ(ݎ)ܤ

(ݎ)′ܣ
(ݎ)ܣ +

(ݎ)′ܤ
ቇ(ݎ)ܤ −

1
ݎ
ቆ
(ݎ)′ܣ
 ቇ(ݎ)ܣ

ܴఏఏ = −1 +
ݎ

(ݎ)ܣ2 ቆ−
(ݎ)′ܣ
(ݎ)ܣ +

(ݎ)′ܤ
ቇ(ݎ)ܤ +

1
(ݎ)ܣ
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ܴఝఝ =  ఏఏܴߠଶ݊݅ݏ

ܴ௧௧ = −
(ݎ)′′ܤ
(ݎ)ܣ2

1
4
ቆ
(ݎ)′ܤ
ቇቆ(ݎ)ܤ

(ݎ)′ܣ
(ݎ)ܣ +

(ݎ)′ܤ
ቇ(ݎ)ܤ −

1
ݎ
ቆ
(ݎ)′ܤ
ቇ(ݎ)ܣ (2.7.8) 

ܴఓ௩ = ߤ ݎ݋݂      0 ≠  ߥ

2.8 The Schwarzschild Solution of Einstein Equation 
     The interval for the general static isotropic metric is given by 

݀߬ଶ = ଶݐ݀(ݎ)ܤ − ଶݎ݀(ݎ)ܣ − ଶݎ − ଶߠ݀ +  ଶ(2.8.1)߮݀ߠଶ݊݅ݏ

The field equations for empty space are 

ܴఓ௩ = 0                                                      (2.8.2) 

The components the Ricci tensor are given by (2.7.8) thus  

ܴ௥௥
ܣ

+
ܴ௧௧
ܤ

= −
1
ܣݎ

ቆ
′ܣ

ܣ
+
′ܤ

ܤ
ቇ                               (2.8.3) 

Thus equation (2.8.3) requires 

′ܤ

ܤ
= −

′ܣ

ܣ
(ݎ)ܤ(ݎ)ܣݎ݋, =   (2.8.4)              ݐ݊ܽݐݏ݊݋ܿ

The boundary condition that for → ∞ ) requires the metric tensor approaching the 

Minkowski tensor in spherical coordinates, that is, 

lim
௥→∞

(ݎ)ܣ = lim
௥→∞

(ݎ)ܤ = 1                                 (2.8.5) 

From (2.8.4) and (2.8.5) one has  

(ݎ)ܣ =
1

 (2.8.6)                                             (ݎ)ܤ

Since (2.8.3) now vanishes, it remains to make ܴ௥௥  ܽ݊݀ ܴఏఏvavish using (2.8.6) in 

(2.7.8) yieios  

ܴఏఏ = −1 + ݎ(ݎ)′ܤ +  (2.8.7)                                 (ݎ)ܤ

ܴ௥௥ =
(ݎ)′′ܤ
(ݎ)ܤ2

+
′ܤ

(ݎ)ܤݎ
=

ܴఏఏ
′

 (2.8.8)                          (ݎ)ܤݎ2

So it is sufficient to set ܴఏఏequal it zero, that is 
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݀
ݎ݀
൫(ݎ)ܤݎ൯ = (ݎ)′ܤݎ + (ݎ)ܤ = 1 

The solution is  

(ݎ)ܤݎ = ݎ +  (2.8.9)                                             ݐ݊ܽݐݏ݊݋ܿ

To fix the constant of integration we recall that at great distances from a central 

massܯ, the component ݃௧௧ ≡ must approach −1 ܤ− − 2߶   where ߶, is the 

Newtonian potential߶ − ெீ
௥

. Hence the constant of integration is −2ܩܯ, and our 

final solution is 

(ݎ)ܤ = ൤1 −
ܩܯ2
ݎ

൨                                        (2.8.10) 

(ݎ)ܣ = ൤1 −
ܩܯ2
ݎ

൨
ିଵ

                                  (2.8.11) 

The full metric in equation (2.8.1) is given by  

݀߬ଶ = ൤1 −
ܩܯ2
ݎ

൨݀ݐଶ − ൤1 −
ܩܯ2
ݎ

൨
ିଵ

ଶݎ݀ − ଶݎ − ଶߠ݀

+  ଶ                                                                             (2.8.12)߮݀ߠଶ݊݅ݏ

2.9 Equation of Motion of freely falling particles 
     Consider the motion of a freely falling material particle or photon in a static 

isotropic gravitational field. The interval is given by 

 ݀߬ଶ = ଶݐ݀(ݎ)ܤ − ଶݎ݀(ݎ)ܣ − ଶݎ − ଶߠ݀ +  ଶ(2.9.1)߮݀ߠଶ݊݅ݏ

The equations of free fall are 

݀ଶݔఓ

ଶ݌݀
+ ௩ఒ߁

ఓ ௩ݔ݀

݌݀
ఒݔ݀

݌݀
= 0                                (2.9.2) 

Where ݌ is parameter describing the trajectory. In general ݀߬is proportional to ݀݌, 

so for a material particle we could normalize ݌ = ߬. However, for a photon the 

proportionality constant ௗఛ
ௗ௣

 vanishes, and since we wish to treat photons as well as 
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massive particles, we shall find it convenient to reserve the right to fix the 

normalization of ݌ independently from that of߬. 

Using the non vanishing components of the affine connection equation (2.9.2) 

reads 

0

=
݀ଶݎ
ଶ݌݀

+
(ݎ)′ܣ
(ݎ)ܣ2 ൬

ݎ݀
݌݀
൰
ଶ

−
ݎ

(ݎ)ܣ
൬
ߠ݀
݌݀
൰
ଶ

− ݎ
ߠଶ݊݅ݏ
(ݎ)ܣ

൬
݀߮
݌݀
൰
ଶ

+
(ݎ)′ܤ
(ݎ)ܣ2 ൬

ݐ݀
݌݀
൰
ଶ

                                                                                                (2.9.3) 

 

0 =
݀ଶߠ
ଶ݌݀

+
2
ݎ
ߠ݀
݌݀

ݎ݀
݌݀

− ߠݏ݋ܿ ߠ݊݅ݏ ൬
݀߮
݌݀
൰
ଶ

               (2.9.4) 

 

0 =
݀ଶ߮
ଶ݌݀

+
2
ݎ
݀߮
݌݀

ݎ݀
݌݀

+ ݐ݋2ܿ
݀߮
݌݀

ߠ݀
݌݀

                     (2.9.5) 

0 =
݀ଶݐ
ଶ݌݀

+
(ݎ)′ܤ
(ݎ)ܤ

ݐ݀
݌݀

ݎ݀
݌݀

                                        (2.9.6) 

For isotropic field consider the orbit of a particle to be confined to the equatorial 

plane, i.e. 

ߠ =
ߨ
2

                                                          (2.9.7) 

Dividing (2.9.5) and (2.9.6) by ௗఝ
ௗ௣

andௗ௧
ௗ௣

, respectively it follows that  

݀
݌݀

൜ln
݀߮
݌݀

+ ln ଶൠݎ = 0                                  (2.9.8) 

݀
݌݀

൜ln
ݐ݀
݌݀

+ lnܤൠ = 0                                   (2.9.9) 

The solution of (2.9.9) 
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ݐ݀
݌݀

=
1

 (2.9.10)                                         (ݎ)ܤ

Since (ݎ)ܤ is close to unity, ݌ is equal toݐ. The other constant is obtained from 

(2.9.8) and plays the role of an angular momentum per unit mass 

ଶݎ
݀߮
݌݀

= ܬ =  (2.9.11)                             ݐ݊ܽݐݏ݊݋ܿ

Inserting (2.9.7), (2.9.10) and (2.9.11) in (2.9.3) gives 

݀ଶݎ
ଶ݌݀

+
(ݎ)ᇱܣ
(ݎ)ܣ2 ൬

ݎ݀
݌݀
൰
ଶ

−
ଶܬ

(ݎ)ܣଷݎ +
(ݎ)ᇱܤ

 (2.9.12)               (ݎ)ଶܤ(ݎ)ܣ2

Multiplying this equation with 2(ݎ)ܣ ௗ௥
ௗ௣

 one finds 

݀
݌݀

ቊ(ݎ)ܣ ൬
ݎ݀
݌݀
൰
ଶ

+
ଶܬ

ଶݎ
−

1
ቋ(ݎ)ܤ = 0 

(ݎ)ܣ ൬
ݎ݀
݌݀
൰
ଶ

=
ଶܬ

ଶݎ
−

1
(ݎ)ܤ = ܧ−

 (2.9.13)                           ݐ݊ܽݐݏ݊݋ܿ

The proper time߬ may now be determined from (2.9.1), (2.9.7), (2.9.10), (2.9.11) 

and (2.9.12) to get  

݀߬ଶ =  ଶ                                             (2.9.14)݌݀ܧ

 Must take the values ܧ

ܧ > ݏ݈݁ܿ݅ݐݎܽ݌ ݈ܽ݅ݎ݁ݐܽ݉ ݎ݋݂ 0
ܧ = ݏ݊݋ݐ݋ℎ݌ ݎ݋݂ 9                                   (2.9.15) 

Since (ݎ)ܣ is always positive, so (2.9.13) tells us that a particle can reach radius 

 only ifݎ

ଶܬ

ଶݎ
+ ܧ ≤

1
(ݎ)ܤ                                        (2.9.16) 

The parameter ݌may be eliminated everywhere by using (2.9.10) in (2.9.11), 

(2.9.13) and (2.9.14) to have 
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ଶݎ
݀߮
݌݀

=  (ݎ)ܤܬ

(ݎ)ܣ
(ݎ)ଶܤ ൬

ݎ݀
݌݀
൰
ଶ

+
ଶܬ

ଶݎ
−

1
(ݎ)ܤ =  (2.9.17)                              ܧ−

 

݀߬ଶ =  ଶ                                         (2.9.18)ݐ݀(ݎ)ଶܤܧ

For a slowly moving particle in a weak field ௃
మ

௥మ
 , ቀௗ௥

ௗ௣
ቁ
ଶ

ܣ, − 1,ܽ݊݀  

ܤ − 1 ≃ 2߶Will all be small, and to first order in these quantities the above 

equations of motion become 

ଶݎ
݀߮
݌݀

≃  (2.9.19)                                                    ܬ

1
2
൬
ݎ݀
ݐ݀
൰
ଶ

+
ଶܬ

ଶݎ2
+ ߶ ≃

1 − ܧ
2

                                 (2.9.20) 

Particle in a circular orbit at ܴ.since ௗ௥
ௗ௧

 vanishes, equation.(2.9.19) became 

ଶܬ

ܴଶ
−

1
(ܴ)ܤ + ܧ = 0                                        (2.9.21) 

Also, for equilibrium at this radius, the derivative at ܴ of the left-hand side must 

also vanish, so 

 

−
ଶܬ2

ܴଷ
+
(ܴ)ᇱܤ
(ܴ)ଶܤ = 0                                      (2.9.22) 

If one regard a circle as the limit of an ellipse with perihelia ܴ − ܴ and aphelia ߜ +

then (2.9.19) shows that ௃ ,ߜ
మ

௥మ
− ଵ

஻(௥) + ݎ must vanish at ܧ = ܴ ±  and this gives ,ߜ

(2.9.21) and (2.9.22) in the limit ߜ → 0). From (2. 9.21) and (2.9.22) we find 

ܧ =
1

(ܴ)ܤ ቆ1 −
(ܴ)ᇱܤܴ
(ܴ)ܤ2 ቇ                                      (2.9.23) 
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ଶܬ =
ᇱ(ܴ)ܴଷܤ

(ܴ)ଶܤ2                                                   (2.9.24) 

Thus equation (2.9.24) and (2.9.18) gives the rate of revolution as 

݀߮
݌݀

= ቆ
(ܴ)ᇱܤ

2ܴ
ቇ

భ
మ

                                              (2.9.25) 

Whereas (2.9.23) and (2.9.2) give the proper time as  

݀߬
ݐ݀

= ඨܤ(ܴ) −
1
2
 ᇱ(ܴ)                            (2.9.26)ܤܴ

By using the Robertson expansion one gets  

݀߮
݌݀

= ൬
ܩܯ
ܴଷ

൰
భ
మ
ቈ1 −

ߚ) − ܩܯ(ߛ
ܴ

+ ⋯቉                   (2.9.27) 

݀߬
ݐ݀

= ൤1 −
ܩܯ3
ܴ

+ ⋯൨                                             (2.9.28) 

In most applications the shape of the orbits is needed, that is ݎ as a function of߮. 

The orbit shape can be obtained directly by eliminating ݀݌from (2.9.11) and 

(2.9.13); this gives 

(ݎ)ܣ
ଶݎ

൬
ݎ݀
݀߮

൰
ଶ

+
1
ଶݎ
−

1
(ݎ)ܤଶܬ =

ܧ
ଶܬ

                           (2.9.29) 

The solution is thus gives by  

߮ = ±න
ܣ
భ
మ(ݎ) ݀ݎ

ଶݎ ቀ ଵ
௃మ஻(௥) −

ா
௃మ
− ଵ

௥మ
ቁ
భ
మ

                             (2.9.30) 

2.10 Deflection of light by the sun 
     Consider a photon approaching the sun from very great distances. At infinity 

the metric becomes Minkowskian, that is, ܣ(∞) = (∞)ܤ = 1, The motion ∞ on a 

straight line at constant velocity ܸ, that is. 
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ܾ ≃ ߮)݊݅ݏݎ − ߮ஶ) ≃ ߮)ݎ − ߮ஶ) 

−ܸ ≃
݀
ݐ݀

߮)ݏ݋ܿݎ) − ߮ஶ) ≃
ݎ݀
ݐ݀

 

Where ܾ is “impact parameter” and ߮ஶ is the incident direction. Inserting these in 

(2.9.18) and (2.9.19) it is clear that they do satisfy the equations of motion at 

infinity whereܣ = ܤ = 1, and that the constants of the motion are 

ܬ = ܾܸଶ                                            (2.10.1) 

ܧ = 1 − ܸଶ                                       (2.10.2) 

One can express ܬ in terms of the distance ݎ° of closest approach to the sun rather 

than the impact parameterܾ. At ݎ°,
ௗ௥
ௗఝ

 vanishes, so (2.9.29) and (2.10.2) 

ܬ = °ݎ ൬
1

(°ݎ)ܤ
− 1 − ܸଶ൰

భ
మ

                                  (2.10.3) 

The orbit is described by (2.9.30), that is. 

(ݎ)߮ = ߮ஶ + න
ܣ
భ
మ(ݎ) ݀ݎ

ଶݎ ൬ ଵ
(௥°) ቂ

ଵ
஻(௥) − 1 − ܸଶቃ ቂ ଵ

஻(௥°) − 1 − ܸଶቃ
ିଵ
− ଵ

௥మ
൰
భ
మ

(2.10.4)
ஶ

௥
 

The total change in ߮ as ݎ decreases from infinity to its minimum value ݎ° and then 

increases again to infinity is just twice its change from ∞ to ݎ°, that is, 2|߮(ݎ°)−

߮ஶ| . if the trajectory were a straight line, this would equal just ߨ; hence the 

deflection of the orbit from a straight line is 

∆ ఝ= (°ݎ)߮|2 − ߮ஶ| −  (2.10.5)                              ߨ

If this is positive, then the angle ߮ changes by more that 180°, that is the trajectory 

is bent toured the sun; if ∆ ఝ is negative then the trajectory is bent away from the 

sun. 

For photon ܸଶ = 1 and, (2.104) gives 
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(ݎ)߮ − ߮ஶ = න ܣ
భ
మ(ݎ) ቈ൬

ݎ
°ݎ
൰
ଶ
ቆ
(°ݎ)ܤ
ቇ(ݎ)ܤ − 1቉

ିభమ
 
ݎ݀
ݎ

              (2.10.6)
ஶ

௥
 

By using the values of (ݎ)ܣ and (ݎ)ܤ gives by the Schwarzschild solution then one 

would obtain ߮(ݎ) and ∆ ఝ as elliptic integrals which can be evaluated numerically 

by expanding in the small parameters ெீ
௥°

 andெீ
௥

. It is easier to expand before 

integrating, using for (ݎ)ܣ and (ݎ)ܤ the Robertson expansions     

(ݎ)ܣ = 1 + ߛ2
ܩܯ
ݎ

+ ⋯ 

(ݎ)ܤ = 1 − 2
ܩܯ
ݎ

+ ⋯ 

Thus 

ቈ൬
ݎ
°ݎ
൰
ଶ
ቆ
(°ݎ)ܤ
ቇ(ݎ)ܤ − 1቉ = ൬

ݎ
°ݎ
൰
ଶ
൤1 + ܩܯ ൬

1
ݎ
−
ݎ
°ݎ
൰ + ⋯൨ − 1

= ቈ൬
ݎ
°ݎ
൰
ଶ
− 1቉ ൤1 −

ݎܩܯ2
ݎ)°ݎ + (°ݎ

+ ⋯൨ 

So (2.10.6) gives 

(ݎ)߮ − ߮ஶ = න
ݎ݀

ݎ ൤ቀ௥
௥°
ቁ
ଶ
− 1൨

భ
మ

 ൤1 +
ݎܩܯߛ
ݎ

+
ݎܩܯ

ݎ)°ݎ + (°ݎ
… ൨ 

ஶ

௥
 

The integral thus gives 

(ݎ)߮ − ߮ஶ

= ଵି݊݅ݏ ቀ
°ݎ

ݎ
ቁ +

ܩܯ
°ݎ

(1 + ߛ − ඨ1ߛ − ቀ
°ݎ

ݎ
ቁ
ଶ
−ඨ൬

ݎ − °ݎ

ݎ + °ݎ
൰

+ ⋯                                                                                                         (2.10.7) 

Hence to first order inெீ
௥°

, the deflection (2.10.5) is 
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∆ ఝ=
ܩܯ4
°ݎ

൬
1 + ߛ

2
൰                                     (2.10.8) 

For a light ray deflected by the sunெீ
௥°
ܯ = ⊙ܯ = 1.97 × 10ଷଷ݃, that is, ܩܯ =

ܩ⊙ܯ = 1.475 ݇݉ , and the minimum value of ݎ° is ܴ⊙ = 6.95 × 10ହ݇݉, so 

(2.10.8) gives 

∆ ఝ= ൬
ܴ⊙
°ݎ
൰  (2.10.9)                                           ⊙ߠ

Where 

⊙ߠ =
ܩ⊙ܯ4
ܴ⊙

൬
1 + ߛ

2
൰ = 1.75ᇱᇱ ൬

1 + ߛ
2

൰                 (2.10.10) 

Furthermore, general relativity givesߛ = 1, so deflection toward the sun, withߠ⊙ =

1.75ᇱᇱ. 

(Six month earlier) from ߮ (eclipse) then, in principle, should give ∆ ఝ. However 

there is an unavoidable change in the scale of the photographs over a six-month 

interval, owing partly to small changes in the temperature and in the mechanical 

configuration of the telescope and camera over so long a time. A change in the 

scale of the photograph would give an apparent deflection of any star toward or 

away from the sun by an angle proportional to the distance ݎ° at which its light 

passes the sun; hence what is done in practice is to compare observations with a 

theoretical curve 

∆ ఝ= ⊙ߠ ൬
ܴ⊙
°ݎ
൰ + ݏ ቆ

°ݎ

ܴ⊙
ቇ                             (2.10.11) 

Where ܵ is the unknown scale constant (often calledߙ) and ߠ is an angle to be 

compared with the theoretical value1.75ᇱᇱ. There are other effects that could 

contribute to∆ ఝ, such as refraction of the starlight in the solar corona or as it enters 

the colder air in the moon’s shadow, but none of these is believed to play an 

important role. 
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     Observations cannot be carried closer to the sun’s disk thenݎ° ≈ 2ܴ⊙, but they 

can still be used to determine ⊙ by fitting the observed ∆ ఝ values to the 

theoretical curve (2.10.11). The difficulty with this program is just that ∆ ఝ is very 

difficult to measure accurately in the brief time available during an eclipse. In 1919 

eclipse expeditions were sent to two small islands, sobral, off the northeast coast of 

Brazil, and Principe, in the gulf of guinea. About a dozen stars in all were studied, 

and yielded ݏ݁ݑ݈ܽݒଶ 1.98 ± 0.12ᇱᇱand1.61 ± 0.0.31ᇱᇱ, in substantial agreement 

with Einstein’s predictionߠ⊙ = 1.75ᇱᇱ. it was perhaps this dramatic result more 

than any other success that brought general relativity to the attention of the general 

public in the 1920’s. 

     Since 1919 there have been measurements on about 380 stars observed during 

the eclipses of 1922, 1929, 1936, 1947, and 1952, which we summarize in table 8.1 

(taken from the summary of vonݎܾ݁ݑ݈ܭଷ). The values obtained for ߠ⊙vary 

form1.3ᇱᇱ2.7݋ݐᇱᇱ, but mostly lie between 1.7 and2ᇱᇱ. The most recent of these 

results is∆ ఝ= 1.70 ± 0.10ᇱᇱ, in very good agreement with Einstein’s prediction, 

but it is not clear that the systematic error here is really smaller than for previous 

observations. From all this we can conclude that there definitely is a deflection of 

light greater than the value ߠ⊙ = 0.875ᇱᇱ. That would be predicted for ߛ = 0(i.e, 

A(r) =1), but as to its precise value we can say little more then that ߠ⊙is 

somewhere between 1.6 and 2.2ᇱᇱ;that is ߛ is between about 0.9 and 1.3. it may 

become possible to improve the accuracy of this determination in the near future 

by using photoelectric techniques to monitor star positions without waiting for an 

eclipse. 

     Recent developments in radio ܽݕ݉݋݊݋ݎݐݏସ have made it possible to measure 

the deflection of radio signals by the sun with potentially for greater accuracy than 

is possible in optical astronomy. The angular accuracy of optical observations is 
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limited by in homogeneities in the earth’s atmosphere to about0.1ᇱᇱ. Whereas a 

radio interferometer with wavelength ߣand baseline D can in principle measure. 

2.11 The Cosmological General Relatwistic Model 
     The modern cosmological theory is built on the cosmological principle, which 

treat the universe an spatially homogeneous and isotropic. The space-time metric 

of such a universe is given by the Robertson-Walker metric. 

݀߬ଶ = ଶݐ݀ − ܽଶ(ݐ) ቈ
ଶݎ݀

1 − ଶݎ݇
+ ଶߠଶ݀ݎ + ଶ቉߶݀ߠଶ݊݅ݏଶݎ   (2.11.1) 

Where ܽ(ݐ)an unknown function of time is called the cosmic scale factor and ݇ is a 

constant known as the spatial curvature, which by a suitable choice of units for ݎ 

can be set to take only three values 1,0, ݎ݋ − 1 for a closed, spatially flat and open 

universes respectively. The spatial polar coordinates ݎ,  form a co-moving ߶ ݀݊ܽ ߠ

system in the sense that typical galaxies have constant spatial coordinates ݎ,  .߶, ߠ

The energy momentum tensor that describes the cosmic matter is the same form as 

for a perfect fluid. 

ఓܶఔ = ߩ) + (݌ ௩ܷ ఓܷ + ఓఔ݃݌                           (2.11.2) 

Where for commoving coordinates 

௧ܷ = 1  ௜ܷ = 0 

௧ܶ௧ = ,(ݐ)ߩ ௜ܶ௧ = 0, ܽ݊݀, ௜ܶ௝ =  ௜݃௝(2.11.3)        ݌ 

With 

݅, ݆ = ,ݎ  ߶,ߠ

 is the proper total energy density, and ఓܷ is the velocity ߩ ,is the proper pressure ݌

four-vector satisfying the relation 

݃ఓఔ ఓܷ ௩ܷ = −1                                        (2.11.4) 

The conservation of the energy momentum tensor is given by. 

ܶఓఔ; ݒ = 0                                                (2.11.5) 
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This equation is trivially satisfied for ߤ = ߤ while for ߶,ߠ.ݎ =  :it reads ݐ

ܽଷ(ݐ)
(ݐ)݌݀
ݐ݀

=
݀
ݐ݀

(ܽଷ(ݐ)[(ݐ)ߩ +  (2.11.6)                                 ([(ݐ)݌

If the pressure of the cosmic matter is negligible then equation (2.11.6) reduces to 

(ݐ)ଷܽ(ݐ)ߩ =  (2.11.7)                                  ݐ݊ܽݐݏ݊݋ܿ

The proper distance between galaxies, one at the origin and the other ݎଵ,  ଵ,߶ଵ isߠ

given by [7[: 

݀௣௥௢௣(ݐ) = න ඥ݃௥௥
௥భ

଴
ݎ݀ = න(ݐ)ܽ

ݎ݀
√1 − ଶݎ݇

௥భ

଴
                 (2.11.8) 

Therefore galaxies move apart when ܽ(ݐ) increases or become closet when ܽ(ݐ) 

decreases. 

Information about ܽ(ݐ) comes from the observation of shifts in frequency of light 

emitted by distant sources. To find such frequency shifts, consider an 

electromagnetic wave travelling towards us along−ݎ direction with ߠ ܽ݊݀߶ fixed. 

The equation of motion of a given wave crest is then. 

0 = ݀߬ଶ = ଶݐ݀ − ܽଶ(ݐ)
ଶݎ݀

1 − ଶݎ݇
                           (2.11.9) 

Hence if the wave leaves a typical galaxy, located at ݎଵ,ߠଵ,߶ଵat ݐଵthen it will reach 

us at a time ݐ଴ given by: 

න
ݐ݀
(ݐ)ܽ

= ݂(
௧బ

௧భ
 ଵ)                                  (2.11.10)ݎ

Where: 

(ଵݎ)݂ = න
ݎ݀

√1 − ଶݎ݇

௥భ

଴
= ቐ

ଵݎଵି݊݅ݏ ݇ = 1
ଵݎ ݇ = 0

ଵݎℎିଵ݊݅ݏ ݇ = −1
ቑ    (2.11.11) 

If the next wave crest leaves ݎଵ at timeݐଵ + ଴ݐଵ, it will arrive to us at timeݐߜ +  ,଴ݐߜ

which is again by 
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න
ݐ݀
(ݐ)ܽ

= ݂(
௧బାఋ௧బ

௧భାఋ௧భ
 ଵ)                                 (2.11.12)ݎ

Noting that ܽ(ݐ) does not change much during the periods ݐߜ଴ and ݐߜଵwe obtain 

଴ݐߜ
(଴ݐ)ܽ

=
ଵݐߜ
 (2.11.13)                                           (ଵݐ)ܽ

If ݐߜ଴and ݐߜଵare periodic times then the emitted frequency ݒଵ and the observed 

frequency ݒ଴ are given by: 

଴ݒ
ଵݒ

=
ଵݐߜ
଴ݐ

=
(ଵݐ)ܽ
 (2.11.14)                                         (଴ݐ)ܽ

The red shift parameter ݖ which is defined as the fractional increase in the wave 

length ߣ is given by: 

଴ߣ − ଵߣ
(ଵݐ)ܽ =

଴ݒ
ଵݒ
− 1 =

(଴ݐ)ܽ
(ଵݐ)ܽ − 1                             (2.11.15) 

Red shifts are observed when ߣ଴ > ݖଵand henceߣ > 1, while blue shifts are 

observed when ߣ଴ < ݖଵand henceߣ < 1. If the universe is expanding then ܽ(ݐ଴) >

 and as a result red shift should be observed. Such a frequency shift might be(ଵݐ)ܽ

due to a Doppler Effect which results from the relative motion of the source and 

the observer. If it happens that two relatively close galaxies move away from or 

towards the Milky Way, then the radial velocity ݒ௥is given from equation (2.11.8) 

by: 

௥ݒ =
݀
ݐ݀
݀௣௥௢௣ ≈

݀
ݐ݀
න(ݐ)ܽ ݎ݀ = ଵݎ

௥భ

଴
 (2.11.16)                       (ݐ)ܽ

With the dot meaning time differentiation. For ݎଵ → 0, ଵݐ →  ଴ the frequency shiftݐ

 :is given by ݖ

ݖ =
(଴ݐ)ܽ − (ଵݐ)ܽ

(ଵݐ)ܽ ≈
଴ݐ)(଴ݐ)̇ܽ − (ଵݐ

(଴ݐ)ܽ                             (2.11.17) 

On the other hand by (2.11.9) for݇ → 0 
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න
ݎ݀

√1 − ଶݎ݇

௥భ

଴
≈ න ݎ݀ =

௥భ

଴
න

ݐ݀
(ݐ)ܽ

௧బ

௧భ
≈

1
න(଴ݐ)ܽ ݐ݀

௥భ

଴
 

ଵݎ =
଴ݐ) − (ଵݐ
(଴ݐ)ܽ  

ݖ ≈ ଵݎ(଴ݐ)ܽ =  ௥                                       (2.11.18)ݒ

In 1922 Vesto Melvin Slipher gave data for 41 spiral nebulae, of which 36 had a 

absorption lines shifted to the red by amounts up to ݖ ≈ 0.006. these frequency 

shifts were interpreted as due to the Doppler effect. The observation of red shifts in 

all parts of the sky suggests that it is due a general recession of galaxies. In a series 

of papers Wirt and K. Lundmark showed that Slipper’s red shifts could most easily 

be understood in terms of a general recession of distant galaxies. In 1929 Edwin 

Hubble showed that the speed of distant galaxies increases linearly with their 

distance from us. The relation between the radial distance ݎ of a given star and its 

red shift ∆ߣ known as Huddle”s Law is given by: 

ߣ∆
ߣ

= ݖ =
(଴ݐ)̇ܽ
(଴ݐ)ܽ

଴ݐ) − (ଵݐ =  (2.11.19)                ݎ଴ܪ

଴ܪ =
(଴ݐ)̇ܽ
 (2.11.20)                                             (଴ݐ)ܽ

 .଴is called Hubble’s constantܪ

To describe the universe one use standard big bang (SBB) model. This model is 

based on the cosmological principle and Einstein’s filed equations. According to 

the cosmological principle the energy-momentum tensor in the field equation is 

that of a perfect fluid, while the space time metric is given by the Robertson-

Walker metric. The Robertson-Walker metric components given by: 

݃௧௧ = −1, ௜݃௧ = 0,   ݅ = ,ݎ    ߶,ߠ

݃௥௥ = ܽଶ(ݐ)(1 − ,(ଶݎ݇ ݃ఏఏ = ܽଶ(ݐ)ݎ,

݃థథ = ܽଶ(ݐ)ݎଶ݊݅ݏଶ(2.11.21)                                                   ߠ 
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The only non vanishing components of the affine connection for this metric are 

Γ௜௝௧ =
ܽ̇
ܽ ௜݃௝Γ௜௝௜ =

ܽ̇
ܽ
 ௝௜ߜ

Where according to  

Γ௝௞௜ =
1
2
݃௜௟ ቈ

߲ ௟݃௝

௞ݔ߲
+
߲ ௟݃௞

௝ݔ߲
−
߲ ௟݃௞

௟ݔ߲
቉                              (2.11.22) 

The Ricci tensor components are shown to be 

ܴ௧௧ = 3
ܽ̈
ܽ

,ܴ௧௜ = 0,ܴ௜௝ = −ቆ
ܽ̈
ܽ

+ 2
ܽ̇ଶ

ܽଶ
+

2݇
ܽଶ
ቇ ௜݃௝                    (2.11.23) 

݅ = ,ݎ  ߶,ߠ

The curvature scalar is then given by: 

ܴ = ݃௧௧ܴ௧௧ + ݃௜௜ܴ௜௜ 

= −6ቆ
ܽ̈
ܽ

+
ܽ̇ଶ

ܽଶ
+
݇
ܽଶ
ቇ                                        (2.11.24) 

Using Einstein’s field equation 

ܴఓఔ −
1
2
݃ఓఔܴ = ܩߨ8− ఓܶఔ 

The time-time component rears  

ܴ௧௧ −
1
2
݃௧௧ܴ = ܩߨ8− ௧ܶ௧ 

Then by (2.11.23),(2.11.24),(22.11.22) and (2.11.3) 

ܽ̇ଶ + ݇ =
ܩߨ8

3
 ଶܽߩ

ߩ − ௖ߩ =
3

ܩߨ8
݇
ܽଶ

                                          (2.11.25) 

௖ߩ =
3ܽ̇ଶ

ଶܽܩߨ8
                                                  (2.11.26) 

Is called the critical density. The space-space components are given by: 
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ܴ௜௜ −
1
2 ௜݃௜ܴ = ܩߨ8− ௜ܶ௜ 

2ܽ̈ܽ + ܽ̇ଶ + ݇ =  ଶ                          (22.11.27)ܽ݌ܩߨ8−

The term ܽ̇ଶ can be eliminated by subtracting equation (2.11.25) from equation 

(2.11.27) to get 

3ܽ̈ = ߩ)ܩߨ4− +  (2.11.28)                                    ܽ(݌3

Multiplying equation (2.11.25) by 3 and adding equation (2.11.27) yields 

ܽ̈ܽ + 2ܽ̇ଶ + 2݇ = ߩ)ܩߨ4 +  ଶ              (2.11.29)ܽ(݌

Beside the field equations we have the equation (2.11.6) of energy conservation 

ଷܽ̇݌ =
݀
ݐ݀

[ܽଷ(ߩ +  [(݌

ߩ̇ + 3
ܽ̇
ܽ

ߩ) + (݌ = 0                                           (2.11.30) 

The energy conservation equation can be used to find the density ߩas a function 

ofܽ(ݐ). In a radiation dominated era, where the energy density is dominated by 

ultra-relativistic particles, the equation of state is given by. 

݌ ≈
ߩ
3

                                                  (2.11.31) 

Hence equation (2.11.30) yields 

ߩ̇ + 4
ܽ̇
ܽ
ߩ = 0 

This is satisfied by 

ߩ = ܿଵܽିସ                                          (2.11.32) 

In a matter dominated era where non relativistic matter with negligible pressure is 

present݌ ≪ ݌,ߩ ≈ 0, the energy equation yields 

 

ߩ̇ + 3
ܽ̇
ܽ
ߩ = 0 

And this is satisfied by 
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ߩ = ܿଶܽିଷ                                              (2.11.33) 

Where ܿଶ is a constant. It is possible to extract some information about the past and 

future of the universe from the field equation [13]. At present we know thatܽ(ݐ) >

0. According to equation (2.11.28) ܽ̈ is negative as long as ߩ +  remains ݌3

positive. Since we observe red shifts it follows thatܽ̇ > 0. This means that the 

curve of ܽ(ݐ) versus ݐ must be concave downward, and should have reached 

(ݐ)ܽ = 0 at some finite time in the past. Let us set this time at ݐ = 0 so that 

ܽ(0) = 0                                                (2.11.34) 

This equation states that the universe has started with a sin gularity of infinite 

density as shown by using equation (2.11.34) in (2.11.32) and (2.11.33) where 

ݐ)ܽ = 0) = ߩ      ,0 = ∞                           (2.11.35) 

The future of the universe depends on its curvature. From equations (2.11.32) and 

(2.11.33), we see that the density ߩ must decrease with increasing ܽ(ݐ), at least as 

fast as ܽିଷ, so that for ܽ(ݐ) → ∞, the right hand side of equation (2.11.25) 

vanishes at least as fast as ܽିଵ݂ݎ݋ ݇ = −1 

ܽ̇ଶ = −݇ = 1 

i.e. 

(ݐ)ܽ = (ݐ)ܽ ℎ݁݊ܿ݁          .ݐ → ݐ ݏܽ,∞ → ∞ 

 

(ݐ)ܽ = ,ݐ ݐ → ∞, ݇ = −1 

i.e. ܽ(ݐ) goes on increasing forever. For ݇ = 0 

ܽ̇ଶ =
ܩߨ8

3
 ଶܽߩ

Hence ܽ̇ଶ remains positive, so ܽ(ݐ) goes on increasing, more slowly thanݐ. 

For݇ = +1. 

ܽ̇ଶ = −1 +
ܩߨ8

3
 ଶܽߩ
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ܽ̇ଶWill reach zero when ܽߩଶ drops to the value ଷ
଼గீ

. Since according to (2.11.28) ܽ̇ 

is negative it follows that ܽ̇ will be negative and as a result ܽ(ݐ) will begin to 

decrease again until it reaches the initial value ܽ = 0 at some finite time in the 

future. Hence the cosmic history of the universe depends on the sign of the spatial 

curvature ݇ and the relation between the actual density ߩ and the critical density 

௖(see equation (2.11.26)). If݇ߩ = ߩ,1− < ݇ ݎ݋ ௖ߩ = 0, ߩ = ௖ߩ ߩ    , >  ௖, then theߩ

expansion will eventually cease and will be followed by a contraction back to a 

singular state with ܽ(ݐ) = 0 [4]. 

The dynamical equation of the universe can be also derived by determining the 

total energy of a co-moving sphere. We can think of the universe as consisting as 

consisting of a Newtonian gas in a state of an everywhere-uniform expansion. Any 

given gas particle will have a trajectory 

(ݐ)ܺ = (଴ݐ)ܺ =
(ݐ)ܽ
 (଴ݐ)ܽ

The gravitational potential energy ܸ, of such a particle gust arises from the matter 

within a sphere of radius |ܺ(ݐ)| and centre at the origin, reads 

(ݐ)ܸ = −
ߨ4
3

(ݐ)ߩଷ|(ݐ)ݔ|
ܩ݉

|(ݐ)ݔ| = −
ߨ4
3
ଶ|(଴ݐ)ݔ|ܩ݉

ଶ(ݐ)ܽ

 ଶ(଴ݐ)ܽ

Where ݉the particle is mass and (ݐ)ߩ is the mass density. The kinetic energy of 

this is  

(ݐ)ܽ
(଴ݐ)ܽ =

1
2
ଶ|(ݐ)ݔ̇|݉ =

1
2
ଶ|(଴ݐ)ݔ|݉

ܽ̇ଶ(ݐ)
ܽଶ(ݐ଴) 

The total energy of the particle is then given by: 

ܧ = (ݐ)ܶ + (ݐ)ܸ =
1
2
݉

ଶ|(଴ݐ)ݔ|

ܽଶ(ݐ଴) ቆܽ̇ଶ(ݐ) −
ܩߨ8

3
ቇ(ݐ)ଶܽ(ݐ)ߩ   (2.11.36) 

Using equation (2.11.25) yields 
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ܧ = −
1
2
݉

ଶ|(଴ݐ)ݔ|

�ଶ(ݐ଴)
݇                                   (2.11.37) 

For݇ = ݇ is positive and the gas will expand for ever. For ܧ ,1− =  vanishes ܧ,0

and the gas is just barely able to expand indefinitely. For ݇ =  is negative andܧ 1+

the expansion will cease and be followed by a collapse. 

2.12 Matter-Dominated Era in This era 
     The density of radiation is much less than the density of matter-hence we are 

now in a matter dominated era. Using equation (2.11.25) and (2.11.20) the present 

density ߩ଴is given by [15]. 

଴ߩ =
3

ܩߨ8
ቆ
݇
ܽ଴ଶ

+ ଴ଶቇܪ                                           (2.12.1) 

The present pressure݌଴  can also be obtained in terms of the deceleration parameter 

 ଴which is defined asݍ

଴ݍ = −
ܽ̈ܽ
ܽ̇ଶ

= −
ܽ̈
ܽ

1
ଶܪ                                           (2.12.2) 

Combining equation (2.12.1) and (2.12.2) yields 

଴݌ = −
1

ܩߨ8
ቈ
݇
ܽ଴ଶ

+ ଴ଶ(1ܪ − ଴)቉ݍ2                  (2.12.3) 

Where ܽ଴ is the present value of the cosmic scale factor, and ܪ଴and ݍ଴ are the 

Hubble constant and the deceleration parameter at present. According to equation 

(2.12.1) the sign of the spatial curvature depends on whetherߩ଴ is greater or less 

than a critical density 

௖ߩ =
଴ଶܪ3

ܩߨ8
=

(1.1)10ିଶଽ݃
ܿ݉ଷ                                 (2.12.4) 

Where ܪ଴is estimated to satisfy ܪ଴ିଵ = 13 × 10ଽݏݎܽ݁ݕ. then by (2.11.25) 

଴ߩ − ௖ߩ
3

ܩߨ8
݇
ܽ଴ଶ

                                                  (2.12.5) 
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In a matter dominated era݌଴ ≈ 0 ≪  ଴. In this case, equation (2.12.3) yieldsߩ

݇
ܽ଴ଶ

= ଴ݍ2) −  ଴ଶ                                           (2.12.6)ܪ(1

Using equations (2.12.4), (2.12.5) and (2.12.6) yields 
଴ߩ
௖ߩ

=  ଴                                                           (2.12.7)ݍ2

Hence if ݍ଴ > ଵ
ଶ

଴ߩ ℎ݁݊ݐ  > ௖݇ߩ௖ andߩ = +1, while if ݍ଴ < ଵ
ଶ

, ଴ߩ < ௖݇ߩ௖ andߩ =

−1. Whenݍ଴ = ଵ
ଶ

଴ߩ ℎ݁݊ݐ  = ௖݇ߩ௖ andߩ = 0. 

To obtain the functional form of the cosmic scale factor ܽ(ݐ) in a matter dominated 

era the equation of state is substituted in the field equation. Thus we can write 

equation (2.11.25) in the form 

ܽ̇ = ±(
ܩ2݉
ܽ

− ݇)
భ
మ 

Where in view of (2.11.33) 

݉ =
ߨ4
3
ܽଷߩ =

ߨ4
3
ܿଶ                                  (2.12.8) 

Hence 

݀ܽ̇ = ±
ܽ݀ܩ݉

ܽܩ2݉√ܽ − ݇ܽଶ
                           (2.12.9) 

On the other hand since ݌ = 0 in a matter era, hence by (2.11.33) equation 

(2.11.28) becomes. 

݀ܽ̇
ݐ݀

= −
ܽߩܩߨ4

3
= −

ܩ݉
ܽଶ

 

By using equation (2.12.9) we get, 

݀ܽ̇ = −
ܩ݉
ܽଶ

ݐ݀ =
ܽ݀ܩ݉

ܽܩ2݉√ܽ − ݇ܽଶ
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ݐ = න
ܽ݀ܩ݉

ܽܩ2݉√ܽ − ݇ܽଶ
                                       (2.12.10) 

If ݇ = 0 this equation gives 

ݐ = ±ඨ
2

ܩ9݉
ܽଷ ଶൗ  ܽ = ൬

ܩ9݉
2

൰
ଵ
ଷൗ

ଶݐ ଷൗ                     (2.12.11) 

In this era the universe expands forever. 

If ݇ = +1then equation (2.12.10) yields 

ݐ = ටܩ݉
ܽ

ܩ2݉
(1 −

ܽ
ܩ2݉

) − ଵି݊݅ݏ ቀ1 −
ܽ

ܩ2݉
ቁ                   (2.12.12) 

And this indicates that the expansion will eventually cease and be followed by 

contraction. While if ݇ = −1 

ݐ = ටܩ݉
ܽ

ܩ2݉
(1 +

ܽ
ܩ2݉

) +
1
2

ln

⎣
⎢
⎢
⎢
⎡ටቀ1 + ௔

ଶ௠ீ
ቁ − ට ௔

ଶ௠ீ

ටቀ1 + ௔
ଶ௠ீ

ቁ + ට ௔
ଶ௠ீ⎦

⎥
⎥
⎥
⎤

  (212.13) 

And the universe will expand forever. 

2.13 Radiation Dominated Era 
     A weak cosmic microwave radiation background signal was observed in 1965 

[17]. In the early universe when the temperature was very high matter and 

radiation were in thermal equilibrium. The radiation would dominate and is called 

black-body spectrum throughout the early universe. The radiation has a black body 

spectrum, thus energy density is given by: 

ߩ =  ସ                                                         (2.13.1)ܶߪ

Where ߪ is a constant. During the ear when the temperature was bounded by 

10ଵଶ10݀݊ܽ ܭଽܭ radiation energy dominated and it follows that the equation 

describing this state is given by: 

݌ =
ߩ
3

                                                        (2.13.2) 
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As a result, the energy density is thus given by equation (2.11.32) 

ߩ = ܿଵܽିସ                                                (2.13.3) 

Using equation (2.13.1) and equation (2.13.3) the relation between the cosmic 

scale factor and the temperature is given by: 

(ݐ)ܶ =
ܿଵ
ߪ

1
(ݐ)ܽ

                                          (2.13.4) 

At present the temperature of the cosmic microwave background radiation is ଴ܶ =

2.7଴ܭ. if there had been no scattering of the background radiation since the 

recombination of hydrogen at  about ܶ = 4000଴ܭ, then the time ݐோ corresponding 

to a red shift ݖோshould be given by: 

1 + ோݖ =
ܽ଴

(ோݐ)ܽ
=
(ோݐ)ܶ

଴ܶ
=

400
2.7

≈ 1500            (2.13.5) 

In the early universe, and in view of (2.13.1) and (2.13.3), the right hand side of 

the equation just before (2.11.25) 8ܽߩܩߨଶ varies as ଵ
௔మ

~ܶଶ, hence it was large in 

the early universe. On the other hand according to the same equation ܽ̇ is also large 

in the early universe, hence the curvature term can be dropped from equation 

(2.11.25) which becomes 

ܽ̇ଶ =
ଵܽଶܿܩߨ8

3
                                                   (2.13.6) 

In view of equation (2.3.13) one gets  

ܽ̇ଶ =
ଵܿܩߨ8

3
ܽିଶ 

Thus  

ܽ = ൥൬
ଵܿܩߨ32

3
൰
ଵ
ଶൗ

ݐ + ܿଷ൩

ଵ
ଶൗ

 

But at 

ݐ = 0     ܽ = 0    ܿଷ = 0 
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ܽ = ൬
ଵܿܩߨ32

3
൰
ଵ
ସൗ

ଵݐ ଶൗ                                            (2.13.7) 
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Chapter Three 
Generalized General relativity 

3.1 Introduction 
     The afore noted reducibility of the GFE to Einstein’s gravitational equation 

implies that they allow not only Schwarz child’s but other possible solutions. Of 

cosmological significance. We restrict ourselves to solutions with a globally 

constant scalar curvature to investigate these possibilities. 

3.2 Generalized General Relativistic Gravitational Equation 
     Using the general action pineapple in a general Lagrangian a fourth-order 

equation field the metric tensor, which is treated as field variables, was obtained by 

Ali-Eltahir[49 ]. 

This equation was obtained Later also by Lahzcos but the field variables are not 

selected puberty [50]. 

The generalized general relativity [GGR] is expressed in terms of a general 

Lagranigian in the form 

ℒᇱᇱᇱ൫ܴ;ఓܴ;ఔ − ݃ఓఔ݃ఘఙܴ;ఘܴ;ఙ൯ + ℒᇱᇱᇱ൫ܴ;ఓ;ఔ − ݃ఓ□ଶܴ൯ + ℒᇱܴఓఔ

−
1
2
݃ఓఔℒ                                                                                                            (3.2.1) 

The Lagranigianl here is dependent on the scalar curvature ܴ which in term 

dependent on the metric tensor; i.e.  

ℒ = ℒ(ܴ)                                                  (3.2.2) 

ܴ = ܴ൫݃ఓఔ ,݃ఓఔ;ఊ,݃ఓఔ;ఊ,௞൯                              (3.2.3) 

This situation conforms to the electro nag retie and other fields in the selection of 

field variables. 

It is very interesting to note that when this Lagrangian is Linear, it reduces to (GR), 

i.e. when 
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ℒ = ܴߚ +  (3.2.4)                                                     ߛ

It follows that 

ℒᇱ = ℒᇱᇱ          ߚ = 0    ℒᇱᇱᇱ = 0                         (3.2.5) 

Thus equation (3.2.1) becomes  

ఓఔܴ ߚ −
1
2
ఓఔܴ݃ߚ =

1
2
݃ఓఔ                                (3.2.6) 

By salting 

ߚ =
1

ܩߨ16
 

1
2
݃ఓߛ = − ఓܶఔ                                                     (3.2.7) 

ܴఓఔ −
1
2
݃ఓఔܴ = ܩߨ8− ఓܶఔ                                    (3.2.8) 

Which is the ordinary GR equation (2.5.7).    
3.3 A Static Isotropic Lagrangian-Dependent Metric 
     In reference [6] the GFE have been applied to the case of a static isotropic 

metric given by [51] 

݃௥௥ = A(r),݃ఏ = ଶsinଶθ,݃௧௧ݎ∅∅݃,ଶݎ  = −B(r)               (3.31) 

Where the proper time interval is given by  

ଶݏ݀ = = ଶݎ݀  − ݃ఓఔ݀ݔఓ݀ݔఔ                           (3.3.2) 

 

ଶݎ݀ = ଶݐ݀(ݎ)ܤ − ଶݎ݀(ݎ)ܣ − ଶߠଶ݀ݎ −  ଶ      (3.3.3)∅݀ߠଶ݊݅ݏଶݎ

This metric describes the behavior of the gravitational field assumed to be 

generated by a single star. The non-vanishing components of the affine 

connections are given by [1], 

௥௥௥߁ =
ܣ̇

ܣ2
ఏఏ߁,

௥ = −
ݎ
ܣ

∅∅߁, 
௥ = −

 ߠଶ݊݅ݏݎ
ܣ

                       (3.3.4) 
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௧௧௥߁ =
ܤ̇

ܣ2
௥ఏ߁, 

ఏ = ఏ௥߁
ఏ =

1
ݎ

∅∅߁, 
ఏ =  (3.3.5)               ߠ݊݋ܿߠ݊݅ݏ−

௥∅߁ 
∅ = ∅௥߁

∅ =
1
ݎ

                                                   (3.3.6) 

ఏ∅߁
∅ = ∅ఏ߁

∅ =  (3.3.7)                                             ߠݐ݋ܿ

௧௥௧߁ = ௥௧௧߁ =  
ܤ̇

ܤ2
                                                 (3.3.8) 

And where  

ܣ̇ =
(ݎ)ܣ݀
ݎ݀

ܤ̇ =
(ݎ)ܤ݀
ݎ݀

                                    (3.3.9) 

The components of the Ricci tensor are given by 

ܴ௥௥ =
ܤ̈

ܤ2
−
ܤ̇

ܤ4
ቆ
ܣ̇
ܣ

+
ܤ̇
ܤ
ቇ −

1
ܴ
ܣ̇
ܣ

                       (3.3.10)  

ܴఏఏ = −1 +
ݎ

ܣ2
ቆ−

ܣ̇
ܣ

+
ܤ̇
ܤ
ቇ +

1
ܣ

                       (3.3.11) 

ܴ∅∅ =  ఏఏ                                         (3.3.12)ܴߠଶ݊݅ݏ

And 

ܴ௧௧ =
ܤ̈

ܣ2
+
ܤ̇

ܣ4
ቆ
ܣ̇
ܣ

+
ܤ̇
ܤ
ቇ −

ܤ̇
ܣݎ

                            (3.3.13) 

ܴఓఔ = ߤ ݎ݋݂,0 ≠  (3.3.14)                                     ߥ

And the covariant derivatives of ܴ are then given by 

ܴ;ఓ = ఓ߲ܴ,ܴ;ఓ;ఔ = ߲ఔܴ;ఓ − ఓఔఒ߁ ;ఒ                            (3.3.15) 

ܴ;௥ = ܴ̇,ܴ;ఏ = ܴ;థ = ܴ;௧ = 0                                  (3.3.16) 

ܴ;௥;௥ = ܴ̈ −
ܣ̇

ܣ2
ܴ̇,ܴ;ఏ;ఏ =

ݎ
ܣ
ܴ̇ =

ܴ;థ;థ

ߠଶ݊݅ݏ
                (3.3.17) 

ܴ;௧;௧ = −
ܤ̇

ܣ2
ܴ̇,ܽ݊݀ ܴ;ఓ;ఔ = 0, ߤ ݎ݋݂ ≠  (3.3.18)              ߥ

By using the above relation and denoting the L.H.S of by ܪఓఔ we get [2] 
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௥௥ܪ = −ℒᇱᇱܴ̇ ቆ
ܤ̇

ܤ2
+

2
ݎ
ቇ + ℒᇱܴ௥௥ −

ܣ
2
ℒ = 0          (3.3.19) 

ఏఏܪ = −ℒᇱᇱᇱ
ܴ̇ଶݎଶ

ܣ
−
ℒᇱᇱݎଶ

ܣ
ቈܴ̈ − ܴ̇ ቆ

ܣ̇
ܣ2

−
ܤ̇

ܤ2
−

1
ݎ
ቇ቉ + ℒᇱܴఏఏ −

ଶݎ

2
ℒ

= 0                                                                                             (3.3.20) 

థథܪ = ఏఏܪߠଶ݊݅ݏ = 0                                    (3.3.21) 

௧௧ܪ = ℒᇱᇱᇱ
ܤ
ܣ
ܴ̇ଶ + ℒᇱᇱ

ܤ
ܣ
ቈܴ̈ − ܴ̇ ቆ

ܣ̇
ܣ2

−
2
ݎ
ቇ቉ + ℒᇱܴ௧௧ +

ܤ
2
ℒ

= 0                                                                                                                     (3.3.22) 

ܪ = −3
ℒᇱᇱᇱܴ̇ଶ

ܣ
− 3

ℒᇱᇱ

ܣ
ቈܴ̈ − ܴ̇ ቆ

ܣ̇
ܣ2

−
ܤ̇

ܤ2
−

2
ݎ
ቇ቉ + ℒᇱܴ − 2ℒ

= 0                                                                                                         (3.3.23) 

௧௧ܪ +
ܤ
ଶݎ
ఏఏܪ =

ℒᇱᇱܴ̇ܤ
ܣ2

ቆ
2
ݎ
−
ܤ̇
ܤ
ቇ + ℒᇱ ൬ܴ௧௧ +

ܤ
ଶݎ
ܴఏఏ൰

= 0                                                                                            (3.3.24) 

And 

௥௥ܪ +
ܣ
ܤ
௧௧ܪ  

= ℒᇱᇱᇱܴ̇ଶ + ℒᇱᇱܴ̈ −
ℒᇱᇱܴ̇

2
ቆ
ܣ̇
ܣ

+
ܤ̇
ܤ
ቇ

+ ℒᇱ ൬ܴ௥௥ +
ܣ
ܤ
൰ܴ௧௧                                                                          (3.3.25) 

The following relation can also be obtained from equations (3.3.14), (3.3.23), and 

(3.3.25). 

ℒᇱᇱᇱܴ̇ଶ + ℒᇱᇱܴ̈ − ቈ
ℒᇱᇱܴ̇

2
+
ℒᇱ

ݎ
቉ ቈ
ܣ̇
ܣ

+
ܤ̇
ܤ
቉ = 0                   (3.3.26) 

And 
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ܣ̇
ܣ
−
ܤ̇
ܤ

=
2ℒᇱᇱᇱܴ̇
ℒᇱᇱ

+ 2
ܴ̈
ܴ̇

+
4
ݎ

+
ܣ2

3ܴ̇ℒᇱᇱ
(2ℒ − ܴℒᇱ)           (3.3.27) 

By substituting ܴ̈ from (3.3.26) in (3.3.27) one gets 

ܣ̇
ܣ

= −
ܤ̇
ܤ
−
ℒᇱᇱܴ̇
ℒᇱ

ቆ
ݎܤ̇
ܤ

+ 2ቇ +
ܣ

3ℒ ᇱ
(ܴℒᇱ − 2ℒ)                 (3.3.28) 

Moreover using the relation (3.3.25), with the help of (3.3.14) will lead to 

ܴܣ =
ℒᇱᇱܴ̇
2ℒᇱ

ቆ
2
ݎ
−
ܤ̇
ܤ
ቇ +

3
ଶݎ
ఏఏܴܣ + ܴ௥௥                                (3.3.29) 

ܣ ൬
ݎܴ
4

+
1
ݎ
൰ =

ℒᇱᇱܴ̇ݎ
4ℒᇱ

ቈ
2
ݎ
−
ܤ̇
ܤ
቉ +

1
ݎ
−

ܣ3̇
ܣ4

+
ܤ̇

ܤ4
                    (3.3.30) 

Further multiplying ܪఏఏ by ିଷ
௥మ

 in equation (3.3.22) then by using (3.3.23) we get  

ܴ̇ݎ2
ܣ

+  
2ℒᇱܴఏఏ
ℒᇱᇱ

−
ଶℒݎ
ℒᇱᇱ

+  
ݎ2

3ℒ ᇱᇱ
(2ℒ − ℒᇱܴ) = 0                (3.3.31) 

Multiplying ܪ௧௧ by ଷ
஻ 

 in (3.3.22) and using (3.3.23) we will have  

−
ܴ̇ݎ2
ܣ

+
ℒᇱܴ௧௧ݎ4
ℒ ᇱᇱ̇ܤ

+
ܤℒݎ2
ℒ ᇱᇱ̇ܤ

−
ܤݎ4

ℒᇱᇱܤ3̇
(2ℒ − ℒᇱܴ) = 0             (3.3.32) 

Now adding (3.3.30) and (3.3.32) and using (3.3.13) we obtain 

1
ܣ
ቈ−̈ܤ +

ଶܤ̇

ܤ
−
ܤ̇
ݎ
቉ −

ܤ̇
ܴ

+ ൫2ܤ − ൯ܤ̇ݎ ൬
ܴ
3
−

ℒ
6ℒᇱ

൰ = 0        (3.3.33) 

These yields 

݀
ݎ݀

ቈ
ݎ̇ܤ
ܤ
቉ +

ܣ
ݎ
ቈ
ݎ̇ܤ
ܤ
− ଶݎ ቆ2 −

ݎ̇ܤ
ܤ
ቇ ቉ߦ = 0                          (3.3.34) 

Where 

ߦ = (ܴ)ߦ =
1
3
൬ܴ −

ℒ
2ℒᇱ

൰                                (3.3.35) 

Finally by using equation (3.3.34) the metric coefficient a can then be written as 
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(ݎ)ܣ =
ݎ− ௗ

ௗ௥
[஻௥̇
஻

]
஻௥̇
஻
− ଶ[2ݎ − ஻௥̇

஻
(ܴ)ߦ[

=
− ௗ

ௗ௥
ln ஻௥̇

஻

ଵ
௥

+ ݎ ቈ1 − ଶ
ಳ̇
ಳ௥
቉ ߦ

               (3.3.36) 

When we use equation (3.3.22) and (3.3.23) we get 

ఏఏܪ −
ܪଶݎ

3
= 0                                       (3.3.37) 

And by the use of (3.3.14) we get 

ܣ̇
ܣ

=
ܤ̇
ܤ

+
2
ݎ
−

ܣ2
ݎ
−

ܴݎܣ2
3

+
ℒݎܣ
3ℒ ᇱ

+
2ℒᇱᇱܴ̇
ℒᇱ

           (3.3.38) 

Also equation (3.3.28) together with (3.3.30) led to 

ܣ̇
ܣ

=
1
ܴ
−
ܣ
ݎ
−
ݎܴܣ

4
−
ℒᇱᇱܴ̇ܤ̇ݎ
2ℒᇱܤ

+
ݎܣ
12

(ܴℒᇱ − 2ℒ)   (3.3.39) 

I.e. 

݀
ݎ݀

ቀ
ݎ
ܣ
ቁ = 1 +

ଶݎ

12
(3ܴ + 2ℒ − ܴℒᇱ) +

ܴ̇ℒᇱᇱ̇ݎܤଶ

ℒܣ2 ᇱܤ
     (3.3.40) 

If we add and subtract (3.3.28) and (3.3.28) with each other the resulting equation 

takes the form 

ܣ̇
ܣ

=
1
ݎ
−
ܣ
ܴ
−
ݎܣ
6
൬ܴ +

ℒ
ℒᇱ
൰ −

ℒᇱᇱܴ̇̇ݎܤ
2ℒᇱܤ

                  (3.3.41) 

To find the functional dependence of the metric A on the scalar curvature the term 
ℒᇲᇲோ̇஻̇௥
ସℒᇲ஻

 is eliminated from equation (3.3.28) and (3.3.30) to get 

ܣ ൬
ݎܴ
4

+
1
ݎ
൰ =

ܤ̇
ܤ2

−
ܣ̇

ܣ2
+

1
ݎ

+
ℒᇱᇱܴ̇
ℒᇱ

−
ݎܣ

12ℒ ᇱ
(ܴℒᇱ − 2ℒ)    (3.3.42) 

To eliminate ̇ܣ ൗܣ  and ̇ܤ ൗܤ  and equation (3.3.27) is utilized to get 

(ݎ)ܣ =
12 ௗ

ௗ௥
ln[ℒᇱ(ܴ̇ݎℒᇱᇱ)ିଵ]

൜3ܴݎ + ଵଶ
௥
− (ܴℒᇱ − (ܴℒ ᇱ − 2ℒ) ൤ ସ

ோℒᇲᇲି ೝ
ℒᇲ
൨ൠ

     (3.3.43) 
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A useful expression for B can be obtained from equation (3.3.27) to be 

ܴ̇ =
ܿ
ଶݎ
ඨܣ
ܤ
 (3.3.44)                                      (ݎ)߰

With 

(ݎ)߰ = (ℒᇱᇱ)ିଵ exp ቈන
ℒᇱܴ)ܣ − 2ℒ)

3ܴ̇ℒᇱᇱ
቉ݎ݀                   (3.2.45) 

And 

(ݎ)ܤ =
ܿଶ

ସܴ̇ଶℒᇱᇱଶݎ
exp ൤

2
3
නܣ(ℒᇱܴ − 2ℒ) ቀܴ̇ℒᇱᇱିଵቁ ൨ݎ݀  (3.3.46) 

Where ܿan arbitrary constant is these equations express the metric components in 

terms of r, R(r), ℒ and their derivatives. 

3.4 Solution with a Globally Constant Scalar Curvature 
     When the scalar curvature is constant i.e. R=ܴ଴, then equation (3.3.38) and 

(3.2.39) yield [52]. 

଴ܤ = (଴ܴ)ܤ =
ܿ଴ܣ଴
ଶݎ

exp ቈන(
2
ݎ

+
଴ܴݎ2

3
−
ℒ଴ݎ
3ℒ଴ᇱ

ቇܣ଴ ݀(3.4.1)  [ݎ 

And 

଴ܣ = (଴ܴ)ܣ = [1 + ଵିݎ଴ߢ +  ଶ]ିଵ                        (3.4.2)ݎ଴(ܴ଴)ߛ

Substituting equation (3.4.2) in (3.4.1) one gets 

଴ܤ =
ܿ଴

ଶ(1ݎ + ଵିݎ଴ߢ + (ଶݎ଴ߛ exp ቈන
2 + ଶݎ଴ߣ

଴ߢ + ݎ + ଷݎ଴ߛ
቉  (3.4.3)   ݎ݀

Where ܿ଴and ߢ଴are some constants and 

଴ߛ = (଴ܴ)ߛ =
1

36
(3ܴ଴ + 2ℒ − ܴ଴ℒ଴ᇱ )                    (3.4.4) 

With 

ℒ଴ = ℒ(ܴ଴)                                                  (3.4.5) 

And 
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଴ߣ = (଴ܴ)ߣ =
1
3
ൣ2ܴ଴ − ℒ଴൫ℒ଴ᇱ

ିଵ൯൧                   (3.4.6) 

It is interesting to note that for static and stationary universe equation (3.4.2) serves 

as a good solution where ߛ  will represent the cosmological constant which turns 

out to be Lagrangian-dependent. Also if we set ߢ଴=0 and ߛ଴=-஺
ଷ
 in equation (3.4.1) 

and (3.4.2) we have the de sitter universe 

݃௧௧ = ݃௥௥ିଵ = 1 −
1
3
 ଶ                                     (3.4.7)ݎܣ

For ℒ଴=ܴ଴ in virtue of (3.4.6) equation (3.4.2) and (3.4.1) reduce to 

଴ܣ = (1 +  ଶ)ିଵ                                     (3.4.8)ିݎ଴ߢ

And 

଴ܤ = ଴ିଵܣ exp (
ܴ଴ 

3
ቈ
ଶݎ

3
− ݎ଴ߢ + ଴ଶߢ ln(ݎ + (଴ߢ +  ቉)       (3.4.9)ݐݏ݊݋ܿ

And if we set ܴ଴ = 0 this reduces to Schwarzschild metric with singularities at   

r=-ߢ଴=2MG and r=0 [4]. 

3.5 The Generalized Field Equation in Static Spherically Symmetric 

Field  
    The GFE (lanczos, 1932; Ali, 1987), which is a fourth order equation, takes the 

form 

ℒᇱᇱᇱൣܴ;ఓܴ;ఔ − ݃ఓఔ݃ఘఙܴ;ఘܴ;ఙ൧ + ℒᇱᇱൣܴ;ఓ;ఔ − ݃ఓఔ∇ଶܴ൧ + ℒᇱܴఓఔ −
1
2
݃ఓఔℒ

= 0                                                                                              (3.5.1) 

Contracting this equation yields 

∇ଶܴ = ݃ఘఙܴ;ఘ;ఙ =
ℒᇱܴ − 2ℒ

3ℒᇱᇱ
−
ℒᇱᇱᇱ

ℒ ᇱᇱ
݃ఘఙܴ;ఘܴ;ఙ       (3.5.2) 

Assuming the field of a star to be static, the metric then given by 

݃௥௥ = ఏఏ݃, (ݎ)ܣ = ∅∅݃,ଶݎ = ௧௧݃,ߠଶ݊݅ݏଶݎ =  (3.5.3)    (ݎ)ܤ−



 
48 

Where the proper time interval is given by 

ଶݏ݀ = ଶݐ݀(ݎ)ܤ − ଶݎ݀(ݎ)ܣ − ଶߠଶ݀ݎ −  ଶ    (3.5.4)∅݀ߠଶ݊݅ݏଶݎ

Substituting equation (3.5.4) in (3.5.1) we get the following relations (Ali, 1992) 

(ݎ)ܤ =
ܿଶܣ

ସܴ̇ଶℒᇱᇱଶݎ
exp [

2
3
නܣ(ℒᇱܴ − 2ℒ)൫ܴ̇ℒᇱᇱ൯

ିଵ
 (3.5.5) [ݎ݀

(ݎ)ܣ =
12 ௗ

ௗ௥
ln[ℒᇱ൫ܴ̇ݎℒᇱᇱ൯

ିଵ

ቄ3ܴݎ + ଵଶ
௥
− (ܴℒ ᇱ − 2ℒ) ቂ ସ

ோ̇ℒᇲᇲ
− ௥

ℒᇲ
ቃቅ

         (3.5.6) 

And 

ܴ̇ =
ܿ
ଶݎ
ඨܣ
ܤ

1
ℒ ᇱᇱ

exp ቈන
ℒᇱܴ)ܣ − 2ℒ)

3ܴ̇ℒ ᇱᇱ
቉ݎ݀               (3.5.7) 

Where ܿ is an arbitrary constant. These equations express the metric components in 

terms of r, R(r), ℒ and their derivatives. Since the GFE is very complex and highly 

non-linear, it is difficult to obtain exact solution. For the sake of simplicity, let us 

take the non-linear lageangiag. 

ℒ = −∝ ܴଶ + ܴߚ +  (3.5.8)                                        ߛ

In this case the contracted equation (3.5.2) reduces to 

∇ଶܴ =
1
ܣ
ቈቆܴ̈ − ܴ̇ −

ܣ̇
ܣ2

−
ܤ̇

ܤ2
−

2
ݎ
ቇ቉ =

ߚ
ߙ6

ܴ +
ߛ

ߙ3
൬∇ଶ −

ߚ
ߙ6
൰ܴ =

ߛ
ߙ3

 

  (3.5.9) 

Where ߛ is assumed to represent the source term. A further simplification can be 

achieved by assuming the space to be nearly flat, i.e. 

ܣ → ܤ  ,     1 → 1                                        (3.5.10) 

Equation (3.5.9) thus becomes 

ܴ̈ +
2
ݎ
ܴ̇ =

ߚ
ߙ6

ܴ +
ߛ

ߙ3
                                    (3.5.11) 



 
49 

If we are outside the source ߛ = 0, and by setting ߚ = 0 then equation (3.5.12) 

reduces to 

ܴ݀̇
ݎ݀

+
2
ݎ
ܴ̇ = 0                                             (3.5.12) 

Therefore 

ܴ݀̇
ܴ̇

=
2
ݎ
 (3.5.13)                                                 ݎ݀

Integrating both sides yields 

ܴ̇ =
ܿ
ଶݎ

                                                     (3.5.14) 

And hence 

ܴ =
ܿ
ݎ

+ ܿଵ                                                 (3.5.15) 

When we are for away from the source the space is flat, i.e. R→ 0 as r→ ∞ and as 

result ܿଵ = 0. the scalar curvature is thus given by 

ܴ =
ܿ
ݎ

                                                       (3.5.16) 

Using equation (3.5.13), (3.5.8) and the expression for A in a weak field, i.e. 

ܣ = ൬1 −
ܩܯ2
ݎ

൰
ିଵ

                                       (3.5.17) 

In equation (3.5.5) yields 

ܤ =
ܣ

ଶߙ4
exp ൤

ߚ
ܩܯߙ6

නܴଶ݀ݎ൨ =
ܣ

ଶߙ4
exp ൤

ߚ
ܩܯߙ18

ଷ൨ݎ

= 1 + 2∅                                                                              (3.5.18) 

This expression indicates the existence of a short range gravitational field. If we 

consider a field near the surface of small radius super massive star then r→ 0, and  

ܤ =
ܣ

ଶߙ4
                                                         (3.5.19) 

The red shift then becomes 
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ࣴ = ିܤ
భ
మ − 1 = ߙ2 ൬1 −

ܩܯ2
ݎ

൰
భ
మ
− 1              (3.5.20) 

 Since (Weinberg, 1972)ெீ
ோ

< ସ
௚
 and if ߙ = 6. Therefore, for the maximum value of 

this ratio ࣴ is given by 

ࣴ = ߙ2 ൬
1
3
൰ − 1 = 3                                      (3.5.21) 

An alternative approach can also lead to the same result by seeking a general 

solution for equation (3.5.11). For mstances, let 

ܴ =
ܿଵ
ݎ
ݎଶܿ݌ݔ݁ + ܴ଴                                      (3.5.22) 

A direct substitution in equation (3.5.11) yields 

ܿଵܿଶଶ

ݎ
ݎଶܥ݌ݔ݁ = ܴ଴ +

ଵܿܤ
ݎߙ6

ݎଶܥ݌ݔ݁ +
ߛ

ߙ3
             (3.5.23) 

ܿଶ = ±ඨ
ߚ

ߙ6
 ,ܴ଴ = −

ߛ
ߙ3

,ܴ =
ܿଵ
ݎ
݌ݔ݁ − ඨ ߚ

ߙ6
ݎ −

ߛ
ߙ3

        (3.5.24) 

To relate the potential to R, we suppose the metric to be close to Minkowskian 

metric i.e. 

݃ఓజ = ఓఔߟ + ℎఓఔ                                          (3.5.25) 

Where we raise and lower indices using ߟఓఔ as long as we restrict ourselves to first 

order in ℎ, therefore (Carmela, 1982) 

ܴ = ݃ఓ఑݃ఒఔܴఒఓఔ఑ = ݃଴଴݃௜௜ܴ௜଴௜଴                   (3.5.26) 

݃௜௜ → ௜௜,݃଴଴ߟ = ଴଴݃଴଴ߟ଴଴ߟ = −(1 + 2∅)          (3.5.27) 

ܴ௜଴௜଴ =
1
2
∇ଶ݃଴଴ =  ఘ                            (3.5.28)ܩߨ4−

ܴ = ∅ఘܩߨ8 +  ఘ                                         (3.5.29)ܩߨ4

Comparing equation (3.5.22) and (3.5.25) yields 
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ߛ
ߙ3

= ∅,ఘܩߨ4− =
ܿଵ

ఘ௥ܩߨ8
݌ݔ݁ − ඨ ߚ

ߙ6
 (3.5.30)                   ݎ

This indicates again the existence of a short range force or a possible link with 

strong nuclear force. If we set 

ଵܥ =  ఘ                                                (3.5.31)ܩߨ8

Then the red shift becomes 

ࣴ = ି(ܤ)
భ
మ − 1 = (1 +

2
ݎ

expቌ−ඨ
ߚ

ߙ6
ቍݎ

ିభమ

− 1

≈ ቀ
ݎ
2
ቁ
భ
మ

exp ቎
1
2
ඨ ߚ

ߙ6
቏ݎ − 1                                                    (3.5.32) 

When we are just outside the star ߩ = 0 and one of the possible ways to do this is 

to set ଵ
ఈ
→ 0 and for r=32 (Weinberg, 1972) 

ࣴ ≈ 3                                                      (3.5.33) 

Thus the origin of a large red shift of quasars can be explained. 
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Chapter Fore 

Literature Review 
4.1 Introduction 
     This Chapter is concerned with the attempts made to construct new 

Hamiltonians the different from that of GR. Many attempts were done [53, 54, 55, 

and 56].  

The attempts made to quantize GR are also presented. 

4.2 Energy Momentum Tensor Based on General Gerval Relativity 
     The energy momentum tensor expression can be simplified by using the 

contracted form of (GGR) [57]. 

Thus the energy momentum tensor is given by 

ఓܶఔ = 2ℒᇱ ൤
1
2
݃ఓఔܴ − ܴఓఔ൨ + ℒᇱᇱൣ݃ఓఔ∇ଶܴ − ܴ;ఓ;ఔ൧

+ ℒᇱᇱᇱ൫݃ఓఔܴ;ఙܴ;ఘ − ܴ;ఓܴ;ఔ൯                                                    (4.2.1) 

The Hamiltonians for Gravitational field to see what the expression for the energy 

momentum tensor represents. It’s Hamiltonian is compared with that of the 

electromagnetic field substituting ܮ = ଶܴܪ ଶ in the field equation yieldsܴߙ =  ݋

Hence equation becomes  

ఓܶఔ = ఓఔܴଶ݃ߙ− − ఓఔܴߙ2                                (4.2.2) 

The Hamiltonian is thus given by 

ܪ = − ଴ܶ
଴ = ଶܴߙ −  ଴଴ܴ଴଴                              (4.2.3)݃ߙ2

On the other hand the field equation and The Hamiltonian of the electromagnetic 

field are given by equation 

∇ଶܧ = 0                                                     (4.2.4) 

ܪ =
߳
2
 ଶ                                                     (4.2.5)ܧ
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Comparing the field equation and Hamiltonian it is found that Hamiltonian in 

equation represents the gravitational energy. 
4.3 Gravitational Self Energy Mass 
     In the work done by (M. Dirar) [58]. The gravitational constant is quantized by 

using the GGR equation of motion (3.4.1) 

For the Lagrangian 

ܮ = ଶܴߙ − ܴߚ +  (4.3.1)                                          ߛ

Equation becomes  

ܴ =
ܴߚ
ߙ6

+
ߛ

ߙ3
                                                  (4.3.2) 

By setting 

ܴ = ,ݎ)ܴ ௥௥݃(ݐ = ,ݎ)ܣ ௧௧݃(ݐ = ,ݎ)ܤ  (4.3.3)                     (ݐ

And 

ݔ݀ = ,ݎ݀ܣ√ ݀߬ =  (4.3.4)                              ݐ݀ܤ√

And gets 

߲௫௫ܴ + ߲௜௜ܴ =
ܴߚ
ߙ6

+
ߛ

ߙ3
                                 (4.3.5) 

Using the method of separation of variable now let ܴ to be a product of two 

functionsܶ which depends on timeݐ, beside ܺ which depends on ݔ. 

ܴ = ܶ(×)                                                  (4.3.6) 

Inserting (4.3.6) in(4.3.5) one gets 

߲ܶ௫௫ܺ +
1
ܶ
߲௜௜ܶ =

ܤ
ߙ6

                                   (4.3.7) 

Dividing both sides by ܶܺ yields 
1
ܺ
߲௫௫ܺ +

1
ܶ
߲௜௜ܶ =

ܤ
ߙ6

ܶ                                 (4.3.8) 

This means that the first term and the second term (4.3.5) is constants. Set the time 

dependent part to be 
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1
ܶ
߲௜௜ܶ =  ଶ                                               (4.3.9)ߤ−

To solve this equation 

ܶ =  ଵ݁௜ఠ௧                                                  (4.3.10)ܥ

Whereas 

−߱ଶ = ଶ  ܽ݊݀ ߱ଶߤ− =  ଶߤ

 
1
ܺ
߲௫௫ܺ =

ܤ
ߙ6

=  ଶ                                        (4.3.11)ߤ

ܺ =  (4.3.12)                                           ݔ݇݊݅ݏଶܥ

ܭ = ඨ
1

3√3√6
−  ଶ                                       (4.3.13)ߤ

ݔ݀ =  , ݎ݀ܣ√

 ݂ =
ݕ2
ߚ

                                                    (4.3.14) 

To take ܻ in consideration ߚ insert (4.3.13) and (4.3.14) 

߲௫௫f + ߲௜௜f =
ߚ

ߙ6
f                                       (4.3.15) 

By setting 

݂ =  (4.3.16)                                                 ܶߪ

After comparing (4.3.16) with (4.4.7) to get 

ܶ =  (4.3.17)                                  ݔ݇݊݅ݏସܥߪ   ,ଷ݁௜ఠ௧ܥ

 

ܭ = ඨ
1

3√3√6
−߱ଶ                                       (4.3.18) 

Hence (4.3.15) 
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݂ = ܴ +
ߛ2
ߚ

= ܶߪ =  ସ݁௜ఠ௧                           (4.3.19)ܥଷܥ

ܴ = ݔ݇݊݅ݏସ݁௜ఠ௧ܥଷܥ −
ߛ2
ߚ

                                 (4.3.20) 

 Is real whenܭ,ܴ
1

3√3√6
> ߱ଶ                                              (4.3.21) 

One can quantize the gravitational field know that outside of universe both gravity 

ܴ and matter ܻ 

Vanishes outside the unit near bound dries i.e. 

ܴ = 0  ܻ = ݔ ݐܽ  0 =  ଴                             (4.3.22)ݔ

Then 

0 = ଴ݔ݇݊݅ݏସ݁௜ఠ௧ܥଷܥ = 0                             (4.3.23) 

This can be satisfied if 

଴ݔܭ =  (4.3.24)                                               ߨ݊

 

݊ = 0,1,2,3, …. 

−݇ଶ =
ߚ

ߙ6
+ ଶߤ = ඨ−ߚ

ߙ6
− ߱ଶ                         (4.3.25) 

The term ߙ found negative strictly by work of Dirar[   ]ߙ was found to be 

ߙ =
−ඥߚ
√24

=
−ඥߚ
2√6

 ,
ߚ−
ߙ6

=
ඥ6√ߚ

3
                          (4.3.26) 

√6
3

×
1

6√ߨ3√6√
=

1
3√36

                                 (3.4.26) 

Hence 

ܭ =
ߨ݊
ݔ
ඨ

1
3√3√6

− ߱ଶ =
ߨ݊
଴ݔ

                             (4.3.27) 
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1
3√3√6

=
݊ଶߨଶ

଴ଶݔ
+ ߱ଶ                                  (4.3.28) 

ߪ =
1

ቀ௡
మగమ

௫బమ
+ ߱ଶቁ

ଶ                                           (4.3.29) 

Gravitational coupling is constant quantized at the early universe ݔ଴ thus quantized 

takes place. 

Haw ever at present ݔ଴ → ∞ hence  

ߪ =
1

27߱ସ                                                        (4.3.30) 

Thus on quantized is observes. 

4.4 Quantum Model for Oscillating Field Based on Generalized 

General 
     Recently Ibrahim. H. Hassan quantized time and space by using GGR [59]. 

And 

ܮ = ଶܴߙ− + ܴߚ + ఔߛ                                             (4.4.1) 

Where ߙ and ߚ constant parameters and ߛఔ  is the vacuum energy. 

According to static metric the equation takes the form [60] 

ܴ̈ +
2
ݎ
ܴ̇ =

ߚ
ߙ6

R +
ఔߛ
ߙ3

                                         (4.4.2) 

The solution of this equation is  

ܴ =
ଵܥ
ݎ
݁[ିቀഁഀቁ

భ
మೝ] −

ఔߛ
ߙ3

                                        (4.4.3) 

For Euclidian space ߛఔ = 0 so equation becomes: 

߲௫ଶܴ −
߲௫ଶ

ଵܥ
ܴ =

ߚ
ߙ6

ܴ                                           (4.4.4) 

Solution is [55] 
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ܴ = ܴ଴ sin(߱ݐ −  (4.4.5)                                       (ݔ݇

If Ris only function of ݐas expected for cosmological model thus 

ܴ = ܴ଴ sin߱ݐ                                                      (4.4.6) 

Since at ݎ → ∞   ܴ =0 

ݐ߱ =  (4.4.7)                                                          ߨ݊

݊ = 0, ±1 ± 2 ± ⋯ 

ݎ = ݐܿ =
ߨ݊
߱

= )ߨ݊
ߙ12
ߚ

)
భ
మ                                      (4.4.8) 

Thus time and space are quantized. 

4.5 Quantum Correction Hawking Radiation Spectrum 
     It is very well-known that a black hole must emit particles; the radiation 

spectrum must follow the Plank radiation spectrum. However, strictly speaking, 

this may not be the case, as Hawking’s calculation was semi-classical rather than 

full-quantum. Perhaps, from these considerations. Bekenstein and Mukhanov 

showed that the Hawking radiation spectrum would be discrete if the allowed area 

is the integer multiples of unit area. In this work, by closely reviewing how 

Planck’s black body radiation formula is derived, the Hawking radiation is shown 

to be discrete contrary to what Barreira, Carfora and Rovelli argued, and kerasnov 

argued even in the case that the allowed area is not simply the integer multiples of 

unit area, as long as the area spectrum is quantized as loop quantum gravity 

predicts. [61] 

The black hole has the following area eigenvalues (i.e. the unit areas): 

௨௡௜௧ܣ = ଺ܣ,ହܣ,ସܣ,ଷܣ,ଶܣ,ଵܣ …                      (4.5.1) 

Then, the black hole area ܣ must be given by the following formula. 

ܣ = ෍ܰ௝ܣ௝
௝

                                                     (4.5.2) 
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Where ܰ௝s are non-negative integers. One can consider black having holes as 

partitions, each of which has ܣ௨௡௜௧(i.e. the unit areas) as its area. Change of area 

krasnov argues. The following: 

ܣ∆ = ௝ܣ −  ௜                                                      (4.5.3)ܣ

For some ܣ௜ bigger thanܣ௝. In other words, the partition with the area ܣ௝on the 

black. A black hole of mass ܯand radius ݎ, having temperature ܶ satisfies  

ݎ =  ܯ2

ܣ = ଶݎߨ4 =  ଶܯߨ16

ܶܭ =
1

ܯߨ8
                                                    (4.5.4) 

As a photon is emitted, the black hole loses energy, and thus its area decreases by a 

certain amount. From this consideration, we. The energy of the emitted photonܧ௣is 

related to the mass of the black hple which decrease by an amount  

ܯ∆ =  ௣௛௢௧௢௡ܧ−

Thus the area of the black hole decreases as follows 

ܣ∆ = ܯ∆ܯߨ32 = ௣௛௢௧௢௡ܧܯߨ32− = −
௣௛௢௧௢௡ܧ4
ܶܭ

=  ௨௡௜௧(4.5.5)ܣ−

Where ܣ௨௡௜௧ is the unit area. The fact that the black hole area must be decreased by 

 ௨௡௜௧the unit area is predicted by loop quantum gravity. Thereforeܣ

௣௛௢௧௢௡ܧ =
௨௡௜௧ܣ

4
 (4.5.6)                                     ܶܭ

In case of isolated horizon, the minimum area is given by 4ߨඥ3ߛ where ߛ is the 

Immirzi parameter. Therefore, the minimum energy of emitted photon is given by 

௠௜௡ܧ ≈  (4.5.7)                                            ܶܭ1.49

In case of Tanaka-Tamaki scenario the minimum area is given by4ߛߨ where ߛ is 

the Lmmirzi parameter. This given the minimum energy of emitted photon to be 

௠௜௡ܧ ≈  (4.5.8)                                           ܶܭ2.462
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In case of Kong-Yoon scenario the minimum area is given by42√ߨ. In this case, 

one has 

௠௜௡ܧ ≈  (4.5.9)                                               ܶܭ4.44

Therefore, the Hawking radiation is truncated below this energy. An other simple 

derivation can be made by using the entropy. Heat relation 

∆ܳ = ܶ∆ܵ                                                      (4.5.10) 

Using the followings, relations  

∆ܳ =  ௣௛௢௧௢௡                                             (4.5.11)ܧ−

∆ܵ = −
௨௡௜௧ܣܭ

4
                                             (4.5.12) 

One gets 

௣௛௢௧௢௡ܧ =
௨௡௜௧ܣܭ

4
                                               (4.5.13) 

In his famous textbook, Griffiths considers a statistical mechanics problem where 

he considers an arbitrary potential, for which the one-particle energies 

areܧଵ,ܧଶܧଷ, …, with degeneracies ݀ଵ, ݀ଶ, ݀ଷ, …Suppose one put ܰ particles, for 

which there are ଵܰparticles with energy ܧଵ, ଶܰparticles with energy ܧଶand so on. 

Then he shows the following in case of bosons. 

ܳ = ෑ
( ௡ܰ + ݀௡ − 1)!

௡ܰ! (݀௡ − 1)!

ஶ

௡ୀଵ

                                         (4.5.14) 

With the following two conditions: 

෍ ௡ܰ = ܰ,
ஶ

௡ୀଵ

       ෍ ௡ܰܧ௡ = ܧ
ஶ

௡ୀଵ

                                   (4.5.15) 

The first condition shows that the total number of particles isܰ. The second 

condition shows that the total energy isܧ. 

Then, to find the most probable configuration ( ଵܰ, ଶܰ , ଷܰ , … ), he maximizes in ܳ 

as follows: 
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ܩ ≡ lnܳ + ߙ ൥ܰ −෍ ௡ܰ

ஶ

௡ୀଵ

൩ + ߚ ൥ܧ −෍ ௡ܰܧ௡

ஶ

௡ୀଵ

൩          (4.5.16) 

Where ܩ is to be maximized and ߚ ݀݊ܽ ߙ are Lagrange multipliers. Thus one has 

௡ܰ =
݀௡

݁ఈାఉா೙ − 1
                                        (4.5.17) 

Of course, in case photon, the number isn’t conserved, which implies that we can 

setߙ = 0. There fore 

௡ܰ =
݀௡

݁
ಶ೙

(಼೅) − 1
                                                         (4.5.18) 

Using another standard method, we blackbody radiation spectrum for a photon 

with frequency ݂is given by 

௙ܰ =
ଶ݂݂݀ߨ8

݁
೓೑
಼೅ − 1

                                                       (4.5.19) 

Comparing equations (18) and (19) yields 

ℎ݂ =  ௡                                                               (4.5.20)ܧ

Recalling that the black hole (or any black body) loses ℎ݂upon emission of a 

photon with frequency݂, one can thus get  

ܧ∆ = −ℎ݂                                                           (4.5.21) 

Plugging (23) to the above equation, we conclude: 

ܧ∆ =  ௡                                                             (4.5.22)ܧ

Now, suppose a hypothetical case in which the area deduction is given by ∆ܣ =

௝ܣ −  ௜as Krasnov argued, and see why that doesn’t make any sense. In such aܣ

case, we would have ∆ܧ = ௝ܧ −  ௜which implies energy of emitted photon is givenܧ

byℎ݂ = ௜ܧ −  ௝. Given this, let’s compare the black body radiation formula in thisܧ

hypothetical case with (18). Denominator doesn’t match as (18)’s denominator 

is݁
ಶ೙

(಼೅) − 1 while Krasnov’s hypothetical one would be ݁
(ಶ೔షಶೕ)

(಼೅) − 1.they are clearly 
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different. Furthermore, the numerator doesn’t match at all either. In the case of 

(18), we have the degeneracy of nth quanta, given as݀௡. In Krasnov’s hypothetical 

case one never knows whether it should be݀௜ݎ݋ ௝݀݋ ݀௜ ௝݀. Perhaps, there is no 

consistent way to assign a value to the numerator in such a way that it reduces 

to݀௡in the case thatܧ௜ = ௝ܧ௡andܧ = 0, but still different from݀௡when ܧ௜ =

௝ܧ௡butܧ ≠ 0, in conclusion, Kresnov’s area deduction condition is wrong as it 

cannot reproduce (18).      
4.6 Scalar Particles Tunneling and Effect of Quantum Gravity 
    Recently, the quantum gravity theory came into a period of rapid development 

the best application model of the quantum gravity is black hole model. More and 

more evidences imply that the generalized uncertainty principle (GUP) can be 

modified by the modified fundamental commutation relation; therefore the 

momentum operator will be corrected with it. Finally, the dynamics equation of 

particles in black hole can be modified by the quantum gravity, and the Hawking 

radiation is method and the GUP, the tunneling behavior of the scalar particle of 

Schwarzschild black hole has been studied by K Nozari. And many other studies. 

The aim of this work is to study the tunneling radiation of scalar particles in the 

Gibbons-Maeda-Dilation black hole with the Klein-Gordon equation near the 

horizon. The generalized uncertainty principle (GUP) can describe the minimum 

measurable length. Based on the modified fundamental commutation relation [62]  

௜ݔൣ , ௝൧݌ = ݅ℏߜ௜௝[1 +  ଶ]                                       (4.6.1)݌ߚ

ΔݔΔ݌ ≥
ℏ
2

[1 +  ଶ]                                        (4.6.2)(݌∆)ߚ

Where ܯ௣is the Planck mass, ߚ = ఉబ
ெ೛
మ,  ߚ଴ 

Is a dimensionless parameter and ߚ଴ ≤ 10ଷସ, ௜ݔ ௜݌݀݊ܽ   can be found in the 

reference [17]. 
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௜ݔ = ଴௜ݔ ௜݌, = ଴௜(1݌ +  ଶ)                                           (4.6.3)݌ߚ

The canonical commutation relation express as ൣݔ଴ఓ , ଴ఔ൧݌ = ݅ℏߜఓఔshould be 

satisfied the Klein-Gordon equation without the electromagnetic field is given by 

− ఓܲܲఓ = ݉ଶ                                                          (4.6.4) 

To study the effect which the quantum gravity has on the Klein-Gordon equation, 

we expand the Klein-Gordon equation as two parts. Thus the generalized 

expression of energy is given by 

തܧ = 1]ܧ − ଶ݌)ߚ + ݉ଶ)]                                           (4.6.5) 

Therefore, the modified Klein-Gordon equation takes the form 

−(݅ℏ)ଶ߲௧߲௧߰ = ൣ(−݅ℏ)ଶ߲௜߲௜ + ݉ଶ൧൛1 − ଶ߲௜߲௜(ℏ݅−)ൣߚ2 + ݉ଶ൧ൟ߰(4.6.6) 

The modified Klein-Gordon equation tells us that the quantum gravity has an 

important influence on the dynamic equation of scalar particles. One can use 

equation (6) to study tunneling radiation of scalar particles of the Gibbons-Maeda-

Dilaton black hole by. 
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Chapter Five 
Quantum Static Gravity Model 

5.1 Introduction 
     This Chapter is concerned with constructing equation gravity model based on 

GGR in static. It aims to equalize the gravitational field. 

5.2 Radial Quantum Gravity Energy 
    The quantum equations in the Schrodinger picture are based on the fact that free 

particles can be soared as a wave having displacement  

߰ = ݁ܣ
೔
ℏ(௣௫ିா௧)                                                  (5.2.1) 

Differentiating ݓ. .ݎ  time displacement yields ݐ

݅ℏ డట
డ௧

=∈ ߰ ℏ
௜
డట
డ௫

=    (5.2.2)                                         ߰݌

Where panda ܧ are the momentum and energy respectively beside the wave 

equation the quantum equation of the static field, which takes the form  

ܧ = ܪ = ଶܴߙ + ௧௧ܴ;௧;௧݃ߙ2 = ଶܴߙ +
ܤ̇ߙ
ܤܣ

ܴ̇               (5.2.3) 

The redial momentum is given by 

௥ߏ = ௥௥ߏ = − ௥ܶ
௥ = ଶܴߙ + ௥௥ܴ;௥;௥݃ߙ2 = ଶܴߙ +

ߙ2
ܣ
ቈܴ̈ −

ܣ̇
ܣ2

ܴ̇቉

= ଶܴߙ +
ܴ̈ߙ2
ܣ

−
ܣ̇ߙ
ଶܣ

ܴ̇                                                              (5.2.4) 

ܧ = ௥ߏ̇ − 2
ܴ̈ߙ
ܣ

+
ܣ̇
ଶܣ

ܴ̇ +
ܤ̇ߙ
ܤܣ

ܴ̇                               (5.2.5) 

This can be written in the form yields  

ܧ = ௥ߏ +  (5.3.6)                                               (ݔ)݂

Where 
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(ݎ)݂ = −2
ܴ̈ߙ
ܣ

+
ܣ̇
ଶܣ

ܴ̇ +
ܤ̇ߙ
ܤܣ

ܴ̇                                (5.2.7) 

To find the gravity quantum equation the GGR energy expression can multiplied 

by ߰ to get  

߰ܧ = ߰ߏ +  (5.2.8)                                           ߰(ݎ)݂

Substituting equation (5.2.2) in equation (5.2.8) 

݅ℏ
߲߰
ݐ߲

=
ℎ
݅
߲߰
߲߰

+  (5.2.9)                                        ߰(ݎ)݂

This equation holds for the system of units in which 

ܿ = 1                                                             (5.2.10) 

But in the ordinary system of units equation can be written in the form 

ܧ = ௥ߏܿ +  (5.2.11)                                               (ݎ)݂

Using equation (5.2.2) in r-direction one gets  

߰ܧ = ݅ℏ
߲߰
ݐ߲

                                                     (5.2.12) 

߰ߏ =
ℏ
݅
߲߰
ݐ߲

                                                       (5.2.13) 

To derive the equation of quantum mechanics of static field multiply (5.2.11) by ߰ 

to get  

߰ܧ = ௥߰ߏܥ +  (5.2.14)                                       ߰(ݎ)݂

Substituting (5.2.12) and (5.2.13) and (5.2.14) yields  

݅ℏ
߲߰
ݐ߲

=
ܿℏ
݅
߲߰
ݎ߲

+  (5.2.15)                                   ߰(ݎ)݂

This equation can be simplified by separating variables, where  

,ݎ)߰ (ݐ =∪  (5.2.16)                                            (ݐ)ࣰ (ݎ)

Inserting (5.2.16) in (5.2.15) yields (5.2.16) 

݅ℏ = ੥
߲੦
ݐ߲

=
ܿℏ
݅
੦(ݐ)

߲੥
ݎ߲

(ݎ) +  (5.2.17)            (ݐ)੦ (ݎ)੥(ݎ)݂
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Dividing both sides by ৽৾ yields  

݅ℏ
੦
߲੦
ݐ߲

=
ܿℏ
݅੥

߲
ݎ߲
੥(ݎ) + (ݎ)݂ = ܧ =  (5.2.18)     ݐ݊ܽݐݏ݊݋ܿ

The time dependent part can thus be given by 

݅ℏ
੦
߲੦
ݐ߲

= ℏ݅ܧ
߲੦
ݐ߲

=  ੦                                        (5.2.19)ܧ

While the spatial dependent pates given by  

ܿℏ
݅੥
߲੥
ݎ߲

+ (ݎ)݂ =  ܧ

ܿℏ
݅
݀੥
ݎ݀

+ (ݎ)݂ =  ੥                                        (5.2.20)ܧ

The solution for equation (5.2.19) can be obtained by direct integration where  

݅ℏ =
߲੦
ݐ߲

=  ੦ܧ

݅ℏ න
݀੦
੦

= ݐන݀ܧ +  ଴ܥ

݅ℏ ln ݒ = ݐܧ +  ଴ܥ

ln ݒ =
ܧ
݅ℏ
ݐ + ଵܥ ݒ   = ଴݁ݒ

ಶ
೔೓௧                                 (5.2.21) 

Where 

଴ݒ = ݁஼భ  

Consider now the behavior of any particle, free Euclidian space, where on gravity 

exists. For such space, accruing to equations.  

ܤ = ܣ,  1 = 1  ,ܴ = ܴ଴ =     (5.2.22)                 ݐݏ݊݋ܿ

Thus in view of equation (5.2.5) 

(ݎ)݂ = 0                                                       (5.2.23) 

Substituting equation (4.2.23) in equation (4.2.20) yields  

ݑ݀
ݑ

=
݅
ܿℏ
 (5.2.25)                                                ݎ݀ܧ
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ܿℏ
݅
ݑ݀
ݎ݀

=  ੥                                                  (5.2.24)ܧ

A direct integration given  

 

න
ݑ݀
ݑ

=
ܧ݅
ܿℏ
න݀ݎ +  ଶܥ

lnݑ =
ܧ݅
ܿℏ
ݎ +  ଶܥ

ݑ = ݁
೔ಶ
೎ℏ௥ା஼మ 

ݑ = ݁஼మ ݁௜
ಶ
಴ℏ௥ 

଴ݑ = ݁௜
ಶ
಴ℏ௥                                                      (5.2.25) 

With  

଴ݑ = ݁஼మ  

For relativistic particle with negligible mass. 

ܧ =  (5.2.26)                                                          ܥߏ

ܷ = ଴ܷ݁
೔ಶ
಴ℏ௥ = ଴ܷ݁

೔೶
ℏ ௥                                    (5.2.27) 

Thus in flat free space the particle propagate as a pure wave which conforms with 

that predicted by ordinary Schrodinger equation   

Form (5.2.20) in r- dimension 

ℏܥ
݅
ݑ݀
ݎ݀

+ ݑ(ݎ) ݂ =  ߰ܧ

Hence  

ܿℏ
݅
ݑ݀
ݎ݀

= ܧ] −   ݑ[(ݎ)݂

ݑ݀
ݑ

= ܧ]݅ − [(ݎ)݂
ݔ݀
ܿℏ

=
݅
ܿℏ

ܧ] −   ݔ݀[(ݎ)݂

Thus  



 
67 

න
ݑ݀
ݑ

=
݅
ܿℏ
න[ܧ − ݎ݀[(ݎ)݂ + ଶනܥ

ݑ݀
ݑ

=
݅
ܿℏ
න[ܧ − ݎ݀[(ݎ)݂

+ ଷܥ                                                                                (5.2.28) 

Where ܥଷ is the constant of Integration. 

Integration both sides yields  

lnݑ =
݅
ܿℏ
න[ܧ − ݎ݀[(ݎ)݂ +  ଶܥ

For constantܧ 

ܷ = ݁஼బ݁
೔
೎ℏ ∫[ாି௙(௥)]ௗ௥ା஼మ = ଴ܷ݁

೔
೎ℏ[ா௥ି∫௙(௥)ௗ௥] = ଴ܷ݁

೔
ℏ௿௥   (5.2.29) 

A gain this equation indicates that the particle behave like a wave with momentum 

and wave number  

ߏ = ℏ݇ =
ܧ
ܿ
−
ݎ݀(ݎ)݂∫

ݎܿ
 

݇ =
ܧ
ܿℏ

−
ݎ݀(ݎ)݂∫
ܿℏݎ

                                           (5.2.30) 

The momentum is no Longer a constant but depends on ݎ. 

5.3 The ࣂ Dependent Part  
     The Hamiltonian that depends on the angular part θ of the momentum takes the 

form. 

ܪ = ଶܴߙ + ߙ
ܤ̈
ܤܣ

ܴ̇                                               (5.3.1) 

The momentum is given by 

ఏߏ
ఏ = ఏܶ

ఏ = ଶܴߙ +  ఏఏܴ;ఏ;ఏ                           (5.3.2)݃ߙ2

According to equation one gets  

ఏߏ
ఏ = ଶܴߙ +

ܴ̇
ܣݎ

                                                    (5.3.3) 
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Thus  

ଶܴߙ = ఏߏ
ఏ −

ܴ̇
ܣݎ

                                                     (5.3.4) 

Hence the Hamiltonian is given by in the ordinary system of unites by multiplying 

ploys to get 

ܪ = ఏߏܥ
ఏ −

ܴ̇
ܣݎ

+
ܤ̇ߙ
ܤܣ

ܴ̇                                         (5.3.5) 

To obtain quantum equation one multiplies makes the replacement  

ܪ → ఏߏ   ෡ܪ
ఏ = ෠ఏߏ

ఏ                                               (4.3.6) 

I.e. the Hamiltonian and the momentum are replaced by their corresponding 

operator in (5.3.5) to get 

߰ܪ = ఏߏܿ
ఏ߰ −

ܴ̇
ܣݎ

߰ +
ܤ̇ߙ
ܤܣ

ܴ̇߰                             (5.3.7) 

෡߰ܪ = ෠ఏߏܿ
ఏ߰ −

ܴ̇
ܣݎ

߰ +
ܴ̇ܤ̇ߙ
ܤܣ

߰                             (5.3.8) 

But the operators of hand Hamiltonian ܽ݊݀ ݉݉ݑݐ݊݁݉݋are given by  

෡ܪ = ݅ℏ
߲
ݐ߲
෠ఏߏ
ఏ ℏ
݅

1
ݎ
߲
ݐ߲

                                              (5.3.9) 

 Inserting equation (5.3.9) in (5.3.8) yields  

݅ℏ
߲߰
ݐ߲

=
ܿℏ
݅

1
ݎ
߲
ݐ߲
߰ −

ܴ̇
ܣݎ

߰ +
ܤ̈ߙ
ܤܣ

߰                   (5.3.10) 

The compact form of (5.3.10) 

݅ℏ
߲
ݐ߲
߰ =

ܿℏ
݅

1
ݎ
߲߰
ݐ߲

+  (5.3.11)                                 ߰(ݎ)݃

Where  

(ݎ)݃ = −
ܴ̇
ܣݎ

+
ܤ̇ߙ
ܤܣ

ܴ̇                                             (5.3.12) 

To solve equation (5.3.11) one makes the separation of the wave function in the 

form  
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,ݎ)߰ ,ߠ (ݐ = (ݐ)ݒ(ߠ,ݎ)ݑ =  (5.3.13)                                ݒݑ

Substituting (4.3.13) in (4.3.11) yields 

݅ℏ
ݒ݀ݑ
ݐ߲

=
ܿℏ
݅

ݒ
ߠ݊݅ݏݎ

ݑ߲
ߠ߲

+  (5.3.14)                               ݒݑ(ݎ)݃

Divide both sides by ݒݑ to get  

݅
ℏ
ݒ
ݒ݀
ݐ݀

=
ܿℏ
݅

1
ݎ

1
ݑ

+ (ݎ)݃ = ଷܥ =  (5.3.15)                       ܧ

Thus the time part is given by 

݅ℏ
ݒ݀
ݐ݀

= ݒଷܥ =    (5.3.16)                                           ݒܧ

To solve (5.3.16) divide both sides by ݒ 

න
ݒ݀
ݒ

=
ܧ
݅
න݀ݐ +  ସܥ

Hence  

ln ݒ =
ܧ
݅ℏ
න݀ݐ + ସܥ =

ܧ
݅ℏ
ݐ +  ସܥ

Therefore one gets  

ݒ = ݁
ಶ೟
೔ℏ + ସܥ = ݁஼య݁

ಶ೟
೔ℏ = ଴݁ݒ

ಶ೟
೔ℏ                                     (5.3.16) 

The spatial part is given according to (5.3.15) by  

ܿ
ℏ
݅

1
ݎ
ݑ݀
ߠ݀

+ ݑ(ݎ)݃ = ݑଷܥ =  (5.3.18)                                   ܷܧ

In free space and for cans tan scalar curvature in general 

ܴ = ܴ଴ܴ̇ = 0      ܴ̈ = 0                                          (5.3.19) 

Thus equation (5.3.12) and (5.3.19) given  

(ݎ)݃ = 0                                                        (5.3.20) 

Inserting equation (5.3.20) in equation (5.3.18) yield  

ܿ
ℏ
݅

1
ݎ
ݑ݀
ݐ݀

=  ੥                                                (5.3.21)ܧ
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Rearranging (5.3.21) to separate ੥ from ݎ  yield  

න
ݑ݀
ݑ

=
ܧ݅
ܿℏ
ߠන݀ݎ +  ଷܥ

Thus  

lnܷ =
ܧ݅
ܿℏ
ߠݎ +  ସܥ

ܷ = ݁஼ర݁
೔ಶ
೎ℏ௥ఏ = ଴ܷ݁

೔ಶ
೎ℏ௥ఏ  

Then  

(ߠ,ݎ)ܷ = ଴ܷ݁
೔ಶ
೎ℏ௥ఏ                                                (5.3.22) 

Expression (5.3.22) indicates that the particle behaves as a pure wave in the 

 .direction ߠ

5.4 The ࣘ Dependent Part   

     If ߏఏ
ఏis the only momentum component, the Hamiltonian and quantum 

equations become different from the previous ones 

The component ߏఏ
ఏ  is given according to equation. 

థߏ
థ = థథܴ;థ;థ݃ߙ2 +  ଶ                                 (5.4.1)ܴߙ

Using equation one gets  

థߏ
థ = ଶܴߙ +

ܴ̇
ܣݎ

                                                   (5.4.2) 

But the Hamiltonian is given according to equation by  

ܪ = ଶܴߙ +
ܤ̇ߙ
ܤܣ

ܴ̇                                                    (5.4.3) 

In view of (5.4.2) one gets  

ଶܴߙ = థߏ
థ −

ܴ̇
ܣݎ

                                                    (5.4.4) 

Thus in view of equations (5.4.4) and (5.4.3) one gets the Hamiltonian in the from  
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ܧ = ܪ = థߏܿ
థ −

ܴ̇
ܣݎ

+
ܤ̇ߙ
ܤܣ

ܴ̇                                           (5.4.5) 

Multiply both sides by ߰ to get  

߰ܧ = థߏܿ
థ߰ −

ܴ̇
ܣݎ

߰ +
ܤ̇ߙ
ܤܣ

ܴ̇߰                                 (5.4.6) 

To obtain the quantum equation one replaces the physical quantities, like energy 

and momentum by their corresponding operators to get 

෡߰ܪ = ෠థߏܿ
థ߰ −

ܴ̇
ܤܣ

߰ +
ܴ̇ܤ̇
ܤܣ

߰                                  (5.4.7) 

To obtain the quantum equation the energy and momentum operates takes the 

differential form  

෡ܪ = ݅ℏ
߲
ݐ߲
෠థߏ
థ =

ℏ
݅

1
ߠ݊݅ݏݎ

߲
߲߶

                                       (5.4.8) 

Inserting (5.4.8) in (5.4.7) yields 

݅ℏ
߲߰
ݐ߲

=
ܿℏ
݅

1
ߠ݊݅ݏݎ

߲
ݐ߲
߰ −

ܴ̇
ܴݎ

߰ +
ܤ̇ߙ
ܤܣ

ܴ̇߰                       (5.4.9) 

In free space, where no field exists, and for constant (Scalar curvature) in general  

ܴ = ܴ଴ = ܴ̇        ݐ݊ܽݐݏ݊݋ܿ = 0                         (5.4.10) 

Thus  

݅ℏ
߲߰
ݐ߲

= ܿ
ℏ
݅

1
ߠ݊݅ݏݎ

߲߰
ݐ߲

                                         (5.4.11) 

Again by setting 

߰ = ,ݎ)ݑ     (ݐ)ݒ  (5.4.12)                                        (߶,ߠ

One gets  

݅ℏ
ݒ݀ݑ
ݐ߲

=
ܿℏ
݅

1
ߠ݊݅ݏݎ

ߥ
ݑ߲
߲߶

 

Thus dividing by ݒݑ 

݅ℏ
ݒ
ݒ߲
ݐ߲

=
ܿℏ
݅

1
ݑߠ݊݅ݏݎ

ݑ݀
݀߶

=  (5.4.13)                                  ܧ
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Here 

݅ℏ
ݒ݀
ݐ߲

=  (5.4.14)                                                      ݐ݀ܧ

Thus the time dependent part is given according to equation (5.4.13) by  

݅ℏ න
ݒ݀
ݒ

= නݐ݀ܧ 

݅ℏ ln ݒ = ݐܧ +  ହܥ

ln ݒ =
ܧ
݅ℏ
ݐ + ℏܥ଺  

ݒ = ଴݁ݒ
ಶ
೔ℏ௧                                                        (5.4.15) 

Similarly the spatial part can be obtained from equation (5.4.13) to be  

ܿℏ
݅
ݑ݀
ݑ

=  ߶݀ߠ݊݅ݏݎܧ

ܿ න
ℎ
݅
ݑ݀
ݑ

= න݀ߠ݊݅ݏ ݎܧ߶ ⇒
ℎ
݅
න
ݑ݀
ݑ

= නݎܧ  ߶݀ߠ݊݅ݏ

ℎ
݅

lnݑ = නݎܧ ߶݀ߠ݊݅ݏ ⇒  ln ݑ =
݅
ℏ
ݎܧ න݀ߠ݊݅ݏ߶ 

ܷ = ଴ܷ݁
೔
ℏா௥ ∫௦௜௡ఏௗథ 

Thus  

ܷ = ଴ܷ݁
ି೔
ℏா(௥௦௜௡ఏ)థ                                           (5.4.16) 

5.5 The Full Spherical Quantum Gravity Equation 
     In the system of units where ܿ ≠ 1 the (quantum general equation) becomes  

෠߰ܧ = ෠߰ߏܿ +  (5.5.1)                                                  ߰(ݎ)݂

This equation can be rewritten by taking in to account the fact that in (classical 

mechanic), the energy is given by: 

ܧ = නܨ. ݎ݀ = න݉
ݒ݀
ݐ݀

. ݎ݀ = ݉න݀ݒ.
ݎ݀
ݐ݀
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ܧ = ݉නݒ ݒ݀. =
ଶݒ݉

2
                                             (5.5.2) 

But if the system is oscillating the velocity can thus give by  

(ݐ)ݒ =  (5.5.3)                                                       ݐ߱݊݅ݏ௠ݒ

Where the effective velocity is given by: 

ݒ =
௠௔௫ݒ
√2

=
௠ݒ
√2

  ,   ܸଶ =
௠ଶݒ

2
                                           (5.5.4) 

If one rewrite (5.5.2) to be  

ܧ =
௠ଶݒ݉

2
                                                            (5.5.5) 

It follows that  

ܧ =  ଶ                                                                (5.5.6)ݒ݉

Alternatively for harmonic oscillator  

ܧ =
1
2
݉߱ଶܣଶ =

1
2
௠ଶݒ݉ = ݉( ௠ܸ

√2
)ଶ = ௘ଶݒ݉ =  ଶ      (5.5.7)ݒ݉

Thus  

ܧ = ଶݒ݉ = .(ݒ݉) ݒ = .ߏ  (5.5.8)                                  ݒ

ܧ = ௫ߏ ௫ܸ + ௬ߏ ௬ܸ + ௭ߏ ௭ܸ                                           (5.5.9) 

For light 

௫ܸ = ௬ܸ = ௭ܸ = ܿ                                                    (5.5.10) 

Thus  

ܧ = ௫ߏܿ + ௬ߏܿ + ௭ߏܿ                                               (5.5.11) 

In spherical coordinate  

ܧ = ௥ߏܿ + ఏߏܿ + థߏܿ                                               (5.5.12) 

In view of (5.5.12) equation (5.5.1) can be written as  

ܧ = ௥ߏܿ + ఏߏܿ + థߏܿ +  (5.5.13)                                   (ݎ)݂

Multiply both sides by ߰ to ܧ get 



 
74 

߰ܧ = ௥߰ߏܿ + ఏ߰ߏܿ + థ߰ߏܿ +  (5.5.14)                    ߰(ݎ)݂

Replacing ߏ ݀݊ܽ ܧ by their corresponding operates one gets 

෠߰ܧ = ෠௥߰ߏܿ + ෠ఏ߰ߏܿ + ෠థ߰ߏܿ +  (5.5.15)                         (ݎ)݂

But the energy and momentum operators take the form 

෠ܧ = ݅
߲
ݐ߲

 

෠௥ߏ =
ℏ
݅
߲
ݐ߲

 

෠ఏߏ = −
ℏ
ݎ݅

߲
ߠ߲

෠థߏ =
ℏ
݅

1
ߠ݊݅ݏݎ

߲
߲߶

                                (5.5.16) 

Thus the full quantum equation becomes  

ℏ
߲߰
ݐ߲

=
ℏ
݅
൤ܿ
߲߰
ݎ߲

+
ܿ
ݎ
߲߰
ߠ߲

+
ܿ

ߠ݊݅ݏݎ
߲߰
߲߶

+  ൨߰(ݎ)݂

݅ℏ
߲߰
ݐ߲

=
ℏ
݅
൤ܿ
߲߰
ݎ߲

+
ܿ
ݎ
߲߰
ߠ߲

+
ܿ

ߠ݊݅ݏݎ
߲߰
߲߶

+ ൨߰(ݎ)݂                 (5.5.17) 

 Using separation of variables 

,ݎ)߰ ,߶,ߠ (ݐ = ෨ܴ(ݎ) +  (5.5.18)                            (ݐ)ݒ (߶)Φߠ

Equation (5.5.17) becomes 

ܴ݅ɸΘ
ݒ݀
ݐ݀

=
ℏܿ
݅ × ݅

ɸ߆ܪݒ
߲ܴ̈
ݎ߲

+
ℏܿ
݅ × ݅

ݒ ෨ܴɸ
߆߲
ߠ߲

+
ܿℏ

ߠ݊݅ݏݎ݅
෨ܴ߆

߲ɸ
߲߶

+  ݒɸ߆ܴ(ݎ)݂

Divide by ܴ ߆ɸݒ 

݅ℏ
ݒ
ݒ݀
ݐ߲

=
ܿℏ
݅

1
෨ܴ
߲ ෨ܴ
ݎ߲

+
ܿℏ
݅

1
߆ݎ

߆߲
ߠ߲

+ (ݎ)݂ +
ܿℏ
݅

1
ߠ݊݅ݏ߶ݎ

߲ɸ
߲߶

= ଴ܥ =  ܧ

Thus  

݅ℏ
ݒ
ݒ߲
ݐ߲

=  (5.5.19)                                                             ܧ

(ݎ)݂ +
ܿℏ
݅

1
෨ܴ
݀ ෨ܴ
ݎ߲

+
ܿℎ
݅

1
߆ݎ

߆߲
ߠ߲

+
ܿℎ

(ߠ݊݅ݏݎܿ)߶݅
߲ɸ
߲߶

=  ܧ
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Multiply by ݎ 

ܿℏ
݅
݀ ෨ܴ
ݎ݀

+ ݎ(ݎ)݂ +
ܿℏ
߆݅
߆݀
ߠ݀

+
ܿℎ

(ߠ݊݅ݏ݅)߶
݀ɸ
݀߶

=  ݎܧ

ܿℏ
݅
ݎ
෨ܴ + (ݎ)݂) − ݎ(ܧ =

ܿℎ
݅
߆݀
ߠ݀

+
ܿℎ
ɸ݅

1
ߠ݊݅ݏ

݀ɸ
݀߶

=  ଵܥ

Thus  

ܿℎ
݅
ݎ
෨ܴ
݀ ෨ܴ
ݎ݀

+ (ݎ)݂] − ݎ[ܧ =  ଵ                                (5.5.20)ܥ

ܿℏ
߆݅
߆݀
ߠ݀

+
ܿℎ
ɸ݅

1
ߠ݊݅ݏ

݀ɸ
݀߶

=  ଵ                                      (5.5.21)ܥ

Multiply by (ߠ݊݅ݏ) 
ܿℏ
݅
ߠ݊݅ݏ
߆

߆݀
ߠ݀

+
ܿℎ
ɸ݅

݀ɸ
݀߶

=  (5.5.22)                          ߠ݊݅ݏଵܥ

ܿℏ
ߠ݊݅ݏ
߆݅

߆݀
ߠ݀

− ߠ݊݅ݏଵܥ = −
ܿℎ
ɸ݅
݀ɸ
݀߶

=  ଵ                   (5.5.23)ܥ

Thus  

ܿℏ
݅
ߠ݊݅ݏ
߆

߆݀
ߠ݀

− ߠ݊݅ݏଵܥ =  ଶ                                      (5.5.24)ܥ

The function ݂(ݎ)can be found from equations (5.2.3), (5.2.4), (5.3.3) and (4.4.1), 

where the GGR Hamiltonian is given by  

ܪ = ଶܴߙ + ߙ
ܤ̇
ܤܣ

ܴ̇ =
1
3
ଶܴߙ +

1
3
ଶܴߙ +

1
3
ଶܴߙ + ߙ

ܤ̇
ܤܣ

ܴ̇      (5.5.25) 

The corresponding momentum components in spherical coordinates is given by  

1
3
௥ߏ =

1
3
ଶܴߙ +

2
3
ܴ̈ߙ
ܣ
−
ߙ
3
ܴ̇ܣ̇
ܴଶ

 

1
3
ఏߏ =

1
3
ଶܴߙ +

ܴ̇
ܣݎ3

1
3
థߏ =

1
3
ଶܴߙ +

ܴ̇
ܣݎ3

                 (5.5.26) 

Thus inserting equation (5.5.26) in equation (5.5.25) yields  
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ܪ =
1
3
௥ߏൣ + ఏߏ + థ൧ߏ −

2
3
ܴ̈ߙ
ܣ

+
ߙ
3
ܣ̇
ଶܣ

ܴ̇ −
2
3
ܴ̇
ܣݎ

+
ܤ̇ߙ
ܤܣ

ܴ̇ (5.5.27)  

In the system of units where ܿ ≠ 1 

The Hamiltonian becomes  

ܪ =
ܿ
3
௥ߏൣ + ఏߏ + థ൧ߏ +  (5.5.28)                                  (ݎ)݂

Or by following Dirac relativistic quantum equation approach 

ܪ = ௥ߏ௥ߙܿ + ఏߏఏߙ + థߏథߙ +  (5.5.29)                               (ݎ)݂

Where  

(ݎ)݂ = −
2
3
ܴ̈ߙ
ܣ

+
ߙ
3
ܣ̇
ଶܣ

ܴ̇ −
2
3
ܴ̇
ܣݎ

+
ܤ̇ߙ
ܤܣ

ܴ̇ 

(ݎ)݂ = −
2
3
ܴ̈ߙ
ܣ

+
ߙ
3
ܣ̇
ଶܣ

ܴ̇ −
2
3
ܴ̇
ܣݎ

+
ܤ̇ߙ
ܤܣ

ܴ̇                       (5.5.30) 

5.6 Solution of the Radial Part  
     Since most of astronomical objects have spherical shape. Therefore it is 

suitable to use spherical coordinates. 

In view of equation (4.5.20) the radial part is given by  

ܿℏ
݅
ݎ
ܴ
݀ ෨ܴ
ݎ݀

+ (ݎ)݂] − ݎ[ܧ =  ଵ                                            (5.6.1)ܥ

Thus, separation of ܴ and ݎ dependent parts yield  

න
݀ ෨ܴ
෨ܴ =

ଵܥ݅
ܿℏ

න
ݎ݀
ݎ

+ න
݅
ܿℏ
൫ܧ − ݎ൯݀(ݎ)݂ +  ସܥ

ln ෨ܴ =
ଵܥ݅
ܿℏ

ln ݎ +
݅
ܿℏ
൤ݎܧ − න݂(ݎ)݀ݎ൨ + ସܥ ln ෨ܴ − ln ௜௖యݎ

=
݅
ܿℏ
൤ݎܧ − න݂(ݎ)݀ݎ൨ +  ସܥ

෨ܴ = ௜௖య݁ݎହܥ
೔
೎ℏ

[ா௥ି∫௙(௥)ௗ௥]                                           (5.6.2) 

Where  
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ଷܥ =
ଵܥ
ܿℏ
ହܥ = ݁௖ర                                                     (5.6.3) 

The radial wave function can be rewritten in the form 

෨ܴ = ݁௜௖య ୪୬ ௥݁
೔
ℏ

[ா௥ି∫௙(௥)ௗ௥]                                      (5.6.4) 

Equation (5.2.3) shows that the gravity energy density is constant when  

ܴ = ܴ଴ =  (5.6.5)                                             ݐ݊ܽݐݏ݊݋ܿ

Where 

ܪ = ଴ଶܴߙ =  (5.6.6)                                          ݐ݊ܽݐݏ݊݋ܿ

But since the energy density is equation to graviton energy multiplied by the 

number of them, therefore  

ܪ = ℏ߱|߰|ଶ = ℏ߱ห ෨ܴห
ଶ

=  (5.6.7)                              ݐ݊ܽݐݏ݊݋ܿ

Therefore the probability or the number of gravitons is also constant, I.e.  

ห ෨ܴห
ଶ

= ଺                   ෨ܴܥ = ଻ܥ =  (5.6.8)                                ݐ݊ܽݐݏ݊݋ܿ

For simplicity let 

ଵܥ = ଷܥ                      0 = 0                                         (5.6.9) 

But since ܴ is constant, thus according to equation (5.5.30) 

(ݎ)݂ = 0                                                         (5.6.10) 

In view of equation (5.6.4) and (5.6.8) 

݁
೔
೎ℏா௥బ = ܿ଻                                                       (5.6.11) 

But, since the number of gravitons are constant, and from (5.6.6) which hews that 

ܴis real as for as the Hamiltonian (energy) is real thus 

 

R = cos
଴ݎܧ
ܿℏ

+ ड़sin
଴ݎܧ
ܿℏ

= ܿ଻ , cos
଴ݎܧ
ܿℏ

=   ܿ଻  sin
଴ݎܧ
ܿℏ

= 0     (5.6.12) 

Hence  
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଴ݎܧ
ܿℏ

= ܧ    ,  ߨ2݊ =
ℏܿߨ2݊
଴ݎ

                                    (5.6.13) 

ܧ =
݊ܿℏ
଴ݎ

                                                       (5.6.14) 

According to Bohr model the minimum Bohr radian corresponds to  

଴ݎߨ2 =  ߣ

Thus  

ܧ =
݊ܿℏ(2ߨ)

ߣ
 

ܧ =  (5.6.15)                                                     ݂ݎ݊ߨ2

5.7 Solution of Constant Scalar Curvature 
     There are many useful solutions which can be found when the mass density is 

constant. According to GR it implies constant ܴ.using equation (5.5.30)  

(ݎ)݂ = −
2
3
ߙ
ܴ̈
ܣ

+
ܣ̇ߙ
ଶܣ3

ܴ̇ +
ܤ̇ߙ
ܤܣ

ܴ̇ −
2
3
ܴ̇
ܣݎ

                 (5.7.1) 

For constant ܴ 

ܴ = ܴ଴         ܴ̇ = 0     ܴ̈ = 0                            (5.7.2) 

Thus (5.7.1) given (5.7.2) 

(ݎ)݂ =   ݋ݎܼ݁

Substituting in (5.5.17) and consider ψ to depend on ݎ only for afield generated by 

a spherical body. 

߰ =  (5.7.3)                                                            (ݎ)߰

߲߰
ߠ߲

=                   ݋ݎܼ݁
߲߰
߲߶

=  (5.7.4)                                ݋ݎܼ݁

Then  

݅ℏ =
߲߰
ݐ߲

=
ܿℏ
݅
߲߰
ݎ߲

+ ݋ݎܼ݁ +  ݋ݎܼ݁
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݅ℏ =
߲߰
ݐ߲

=
ܿℏ
݅
߲߰
ݎ߲

                                                     (5.7.5) 

Substituting 

߰ = ܣ sin(݇ݎ −  (5.7.6)                                          (ݐ߱
߲߰
ݐ߲

= ܣ߱− cos(݇ݎ − (ݐ߱
߲߰
ݎ߲

= ܣ݇ cos((݇ݎ − (ݐ߱     (5.7.7) 

Substituting in 

݅ℏ
߲߰
ݐ߲

=
ℎܿ
݅
߲߰
ݎ߲

                                                 (5.7.8) 

−݅ℏ߱ܣ cos((݇ݎ − , (ݐ߱
ℎܿ
݅
ܣ݇ cos((݇ݎ −  (ݐ߱

−݅ℏ߱ = ܿ݇
ℏ
݅
 

Multiply by ݅ and divide by ℏ 

ܹ =  (5.7.9)                                                         ܭܥ

This indicates that the solution is consistent with the ordinary relation between 

angular frequency and wave number. Thus  

߰ = ܣ sin((݇ݎ − (ݐ߱                                           (5.7.10) 

Is a solution which indicates that gravitons are travelling waves moving with speed 

of light. 

Using the relation  

ଶݏ݋ܿ + ଶ݊݅ݏ = 1 

The probability of existence of particles is 

|߰|ଶܣଶܿݏ݋ଶ(5.7.11)                                                    ߠ 

But 

cos ߠ2 = ߠଶݏ݋ܿ − ߠଶ݊݅ݏ = ߠଶݏ݋2ܿ− − 1 

ߠଶݏ݋ܿ =
1
2

ߠ2ݏ݋ܿ] + 1] 
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ℎ = |߰|ଶ
ଶܣ

2
[1 + ݎ݇)ߠ2ݏ݋ܿ −  (5.7.12)                          [(ݐ߱

This means that a gravitational wave can be propagated with wave function 

߰ = ݎ݇)ݏ݋ܿܣ −  (5.7.13)                                           (ݐ߱

The intensity of waves is 

݊ =
ଶܣ

2
[1 + cos ݎ݇)2 − ߱)] 

݊ = ݊଴ +
ଶܣ

2
cos ݎ݇)2 − (ݐ߱                                   (5.7.14) 

Where 

݊଴ =
ଶܣ

2
                                                           (5.7.15) 

The constant form ݊଴can be considered as. a back ground constituting vacuum 

energy. 

5.8 Gravitational Field Quantization  
      The gravitational field for spherically symmetric body satisfies the equation 

݅ℏ
߲߰
ݐ߲

=
ℏܿ
݅
߲߰
ݎ߲

                                                      (5.8.1) 

Separating the variables in to time and radial function  

߰ = ݒݑ =  (5.8.2)                                                (ݎ)ݒ(ݐ)ݑ

Thus  

݅ℏ
ݑ߲ݒ
ݐ߲

=
ℏܿ
݅
ݒ߲ݑ
ݎ߲

                                                 (5.8.3) 

Dividing both sides by ݒݑ yield  

݅ℏ
ݑ
ݑ߲
ݐ߲

=
ℏܿ
݅

1
ݒ
ݒ߲
ݎ߲

= ଴ܥ =  (5.8.4)                                     ܧ

Thus  

݅ℏ
ݑ߲
ݐ߲

=  (5.8.5)                                                           ݑܧ
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Which is the energy Eigen function consider now the solution of equation in the 

form 

ݑ = ݁ି௜ఈ௧                                                                 (5.8.6) 

Substituting equation  in equation  yield  

−݅ଶℏݑߙ =  (5.8.7)                                                              ݑܧ

Thus  

ܧ = ℏ(5.8.8)                                                                    ߙ 

The periodicity condition requires  

ݐ)ݑ + ܶ) =  (5.8.9)                                                         (ݐ)ݑ

݁ି௜ఈ(௧ା்) = ݁௜ఈ௧                                                     (5.8.10) 

݁ି௜ఈ் = cosܶߙ − ݅ sin ܶߙ = 1                                    (5.8.11) 

Thus 

cosܶߙ = 1        sin ܶߙ = 0                                          (5.8.12) 

Hence  

ܶߙ =  (5.8.13)                                                          ߨ2݊

ߙ =
ߨ2݊
ܶ

= ݂ߨ2݊ = ݊߱                                     (5.8.14) 

In view of equations the energy is thus given by  

ܧ = ℏߙ = ݊ℏ߱                                             (5.8.15) 

This means that the energy of gravity field is quantized. 

5.9 Angular momentum Quantization  
     Equation (5.5.23) can be used to find the relation  

−
ܿℏ
݅ɸ
݀ɸ
߮

=  ଶ                                                           (5.9.1)ܥ

−
ℏ
ܿ
݀ɸ
߮

=
ଶܥ
ܿ
ɸ                                                      (5.9.2) 

෠௭ɸܮ =  ௭                                                               (5.9.3)ܮ
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Where the ܮ௭ operator is given by 

෠௭ܮ = −
ℏ
݅
߲
߲߮

                                                          (5.9.4) 

න
݀ɸ
ɸ

= −
݅
ℏ
ଶܥ
ܿ
න݀߮                                               (5.9.5) 

lnɸ = −
ଶܥ݅
ܿℏ

= ଴߮ܥ݅− +  ଷ                                   (5.9.6)ܥ

ɸ = ݁௖య݁ି௜௖బఝ = ɸ଴݁ି௜௖బ                                      (5.9.7) 

ɸ(߮ + (ߨ2 = ɸ(߮)                                           (5.9.8) 

݁ି௜௖బ(ఝାଶగ) = ݁௜௖బఝ                                             (5.9.9) 

݁ିଶగ௖బ௜ = cos ଴ܿߨ2 + ݅ sin ଴ܿߨ2 = 1                        (5.9.10) 

Thus  

cos ଴ܿߨ2 = 1                sin ଴ܿߨ2 = 0                             (5.9.11) 

଴ܥߨ2 =  (5.9.12)                                                 ߨ2݊

݊ = ,݋ 1,2,3, … …. 

଴ܥ = ݊ 

௭ܮ =
ଶܥ
ܿ

=
ℏܿ
ܿ
଴ܥ = ℏ݊                                   (5.9.13) 

5.10 Discussion 
     The Gravity quantum relativistic equation is found by relating GGR 

Hamiltonian to the momentum as shawnn by equations (5.2.11). Then this 

expression is multiplied by߰. The energy and momentum terms in equation 

(5.2.140), is replaced by the corresponding energy and momentum operators in 

equation (5.2.12) and (5.2.13). Thus the full quantum’s GGR equation for radical 

part is obtained as shown by equation (5.2.12). using the separation of variables 

time and radial equations were found [see equations (5.2.19) and (5.2.20)]. The 

solution of the radial port for constant scalar curvature predicts travelling wave 
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solution (5.3.37). This equation shows the existence of gravitational waves, with 

quantum energy typical to that of plank as shown by equation (5.2.40). The 

graviton moves with the speed of light. The prediction of graviton agrees with that 

concerning the behavior of binary pulsars which are assumed to emit gravitational 

waves. Using the periodicity condition for graviton or particles moving in a 

circular orbit, the energy is shown to be quantized [see equation (5.2.45)]. This 

quantization rests on the solution (5.2.28). using the same procedures as in section 

(2), the GGR quantum equation for the angular part ߠ is also obtained as shown by 

equation(5.3.10), (5.3.16) and (5.3.18). For constant scalar curvature, one obtains 

standing wave solution (5.3.22). The uniqueness of the wave function to have the 

same value at specific point is used as a physical constraint. This constraint shows 

that the energy of particles moving in a circular orbit or in a closed loop is 

quantized, as equation (5.3.25) indicates. 

     A full GGR quantum equation for spherically symmetric motion is obtained in 

equation (5.5.17). The separation of variables (5.5.18) leads to 4 independent 

,ݎ) ,߶,ߠ  equations. The time dependent and radial parts [see equation (5.7.5)] (ݐ

predict again the existence of gravitational wave. Applying time periodicity of this 

wave on equation (5.8.15). Again this energy is no thing but quantum plank 

ordinary energy. The angular. 

     The equation of ߶ part of Schrödinger equation is given by equation (5.9.1). Its 

solution is given by equation (5.9.7). using the fact that the wave function has only 

one unique value, the angular momentum component ܮ௭ is shown to be quantized. 

5.11 Conclusion  
     The quantum model based on GGR appears to be Succeful. This is since it 

predicts energy and angular momentum quantization. It also predicts existence of 

gravitational wave and gravitons. 
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5.12 Recommendation for Future Work    
     1. The GGR quantum model needs to be used for black hole and quasars. 

2. The Classical GGR can be solved for strong gravity to obtain potential which 

can be used in GGR quantum equation. 

3. The super nova and stars evolution can also be described by GGRQ model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
85 

REfreences: 
[1] S.weinberg, Gravitation and C0smology (Jhon wiley and sons, New 

York,1972) chap1. 

[2] P.G.Bermann, Introduction to the theory of Relativity (Prentice Hall, 

Englewood cliff, 1942) chap1. 

[3] R.Adler, M.Basinand M-Schiffer, Introduction to General Relativity (Mc.Graw 

Hill, Tokyo, 1975). 

[4] R.Dominguez and M.Quiro’s, cosmology and particle physics (world scientific, 

sing apore, 1984) ch.1 

[5] M.ELhussain, Introduction to A stronomy (Africa press, Khartoum, 2014) ch.1. 

[6] M.H.sinada etal, phsics for third year secondary school (Eductation press, 

Khartoum, 2001) ch1. 

[7] M.Dirar etal, physics for second year second any school (Education press, 

Khartoum, 2001) ch.2. 

[8] Page, L.williams, Dipper Full of stars (Follet pub.co, Chicago, 1961) ch.1. 

[9]  Baker,Fredic Astronmy-10(D.ra Nstrand, New York, 1976) ch.1.  

[10] M.Dirar, Modern Physics (GTown, Khartoum,2010) ch.2 

[11] Ibrehim Galal,Albert Einstein (Taiba, Cairo, 2014) 

[12] A.Eeiser, Concept of Modern Physics (MC Graw Hill Company, New York, 

2000) Ch.1 

[13] H.Gasmalla, Ph.D thesis, Sudan Univ of Sci. and Tech, Kartoum, 2013. 

[14] M.Dirar, Ph.D thesis, University of Khartoum, Khartoum, 1998 

[15]M.Dirar etal, Mod.Phy.Lett.A, V13, N.37 (1998) 

[16] C.W Misner, K.S Thorne and J.A, Wheeler, Gravitation and Cosmology (W, 

H.Freeman and Company, San Francisco, 1973) chp.21  

[17]J.L Anderson, Principles of Relativity Physics (Academic Press, New 

York.1967).chp10. 



 
86 

[18] W.H. Jefferys and R.R. Robbins, Discovering Astronomy (John Wiley and 

Sons, New York, 1981) chp24. 

[19] L. Janossy, Theory RelativityBased on Physical Reality (A Kademiai Kiado, 

Budapest, 1971) chp.11. 

[20] M.Dirar etal, The Generalized Gravitational Energy Momentum Tensor, 

Global.J of Eng. Sci. and Researches,Abd-Alla 2(3):Marech2015. 

[21] M.Dirar, A.ELtahir, The generalized gravitational energy momentum tensor 

and its conservation, J.sc.techvol12 (6) (2000). 

[22] M.Dirar, A.ELtahir,Anew derivation of the generalized field equation with a 

source term, J.sc.Tech. vol2(1),(2000).  

[23] N. Arkani-Hamed, L. MOTL, A. Nicolis, and C. Vafa, “The string landscape, 

black holes and gravity as the weakest force,” JHEP 06 (2007) 060, arXiv:hep-

th/0601001 [hep-th]. 

[24] Ali El-Tahir, A Generalised Metric of Gravitation. Int.J. of Mod Physics A.vol 

7 No.13 (1992). 

[25] Ali El-Tahir, Lgrangian-Dependent Metric SJBS. Series No. (2002). 

[26] C.Misner, Thorne,K.S, and J.Wheeler, Gravitation (W.H. Freeman and 

Company, 1970). 

[27] E. W. Kolb, M.S. Turner, The Early Universe (Addison-Wesley publishing 

Company, New York. 1990) chp.8. 

[28] A. D, Linde, Particle physics and Inflationary Cosmology (Harwood 

Academic Publishers, New York (1990). 

[29]Al Arbab, Quantization of Gravitational system and its Cosmological 

Comsequences, gr.q/0309040v2 (2007). 

[30] Z. Bern, C. Cheung, H-H. Chi, S. Davies, L. Dixon, and J. Nohle, 

“Evanescent Effects Can Alter Ultraviolet in Quantum Gravity without Physical 

Consequences,” arXiv: 1507.06118[hep-th]. 



 
87 

[31] S.Sarkar and A.C. Wall, “Second law violations in Lovelock gravity for black 

hole mergers,” Phs. Rev.D83 (2011) 124048, arXiv: 1011.4988[gr-qc]. 

[32] A.de la F uente, P. Saraswat, and R. Sundrum, “Natural Inflation and 

Quantum Gravity,” Phys. Rev. Lett 114 no. 15, (2015) 151303, arXiv: 1412.3457 

[hep-th]. 

[33] J. Brown, W. Cottrell, . Shiu, and P. Soler, “Fencing in the Swampland: 

Quantum Gravity Constraints on Large Field Inflation,” arXiv: 1503.04783[hep-

th]. 

[34] Thiemann, T.1998 Quantum spin dynamics (QSD. Classical Quantum Gravity 

15, 839-873. (doi:10.1088/0264-9381/15/4/011). 

[35] Rovelli, C. and Smohin, L. 1995 Spin networks and quantum gravity. Phys. 

RRev.D52, 5743-5759 (doi: 10.1103/Phys Rev D.52.5743). 

[36] Rovelli, C. & Smohin, L. 1988 Knot theory and quantum gravity. Phys.Rev. 

Lett.61, 1155-1158 (doi: 101103/Phys Rev Lett.61.1155). 

[37] Rovelli, C.2004 Quantum Gravity.Cambridge,UK:Cambridge University 

Press. 

[38] Immirzi, G.1997 Real and complex connections for canonical gravity. 

Classical Quantum Gravity 14, L177-L181.(doi:10.1088/0264-9381/14/10/002). 

[39] De Witt, B.S.1967 Quantum theory of gravity I. The canonical theory. 

Phys.Rev.160, 1113-1834. (doi:10.1103/Phys Rev. 160.1113). 

[40] Ashtekar, A. & Lewndowski, J.2004 Background independent quantum 

gravity: a status report. Classical Quantum Gravity 21, R53-

R152.(doi:10.1088/0264-9381/21/15/R01).  

[41] Thiemann, T.2006 Modern canonical quantum general relativity. Cambridge, 

UK: Cambridge University Press. Preprint, arXiv: gr-qc/0110034. 



 
88 

[42] Wang,C.H-T. 2005a conformal geometrodynamics: true degrees of freedom in 

a truly canonical structure. Phys. Rev. D71, 124026. (doi:10.1103/Phys Rev 

D.71.124026). 

[43] M.Y. Shirgawi, Ph.D thesis, Sudan Univ. of SCi. and Tech, Khartoum, 2012. 

[44] B.G Levich. Teoretical Physics 1, part II. Theory of Relativity (North-Holland 

Publishing CO. Amsterdam.London,1970). 

[45] C,W. Misner, K.S. Thorne and J.A. Wheeler, Grevitation (W.H Freeman and 

Company. San-Francisco,1973). 

[46] Byryce S. Dewitt and Raymond Stara, Relativity Groupa and Topology (North 

Holland Physics Publishing, Amsterdam,1984). 

[47] P.G Bergmann, Introduction to the Theory of Relativity (Prentic-Hall, 

Englewood Cliffs, 1942),chap10. 

[48] G, Hooft, Introduction to general Relativity, prince tonplein 5.358CC trecht, 

The Netherlands(2002). 

[49] Ali El-Tahir, PhD thesis (City University. London) (1982). 

[50] Ali El-Tahir an ܴଶ-Model of strong Gravity.J. of physics A. vol.6 NO 

19.(1991).p.3489&3497. 

[51] C.Misner, Thorne,K.S, and J.Wheeler, Gravitation (W.H. Freeman and 

Company, 1970). 

[52] M.Dirar,A.Eltahir,M.Shaddad, The short-range gravitational field cosmology, 

mod.Phys Let.a, vol3. NO.37 (1998). 

[53]Wang,C.H-T 2009b, Conformal decomposition in canonical general relativity, 

Preprint,arXiv:gr-qc/0603062. 

[54]Thiemann, T.1990 Anomaly-free formulion of non-pertyrbative, four-

dimensional Lorentzian quantum gravity. Phys. Lett.B380,257-264. 

(doi:10.1016/0370-2693(96)00532-1). 



 
89 

[55] Ashtekar, A.1986 New variables for classical and quantum gravity. Phys.Rev. 

Lett.57,2244-2247. Introduction to current research (ed.L. Witten). New York, 

NY:Wiley. 

[56] Dirac, P.A.M.1964 Lectures on quantum mechanics. New York, NY: Yeshiva 

University. 

[57] M.Dirar,etal, Jounal of sc.Tecj, v2(1),2000. 

[58] M.Dirar, etal, Int.of Astronomy and astro Physics3, Ju(2013).   

[59] I.H.Hassan,M.Dirar,J.Sci.Tech.(NMS),SUST,Vol.4,NO.1,44-53,(2010). 

[60] I.H.Hassan,Ph.D thesis,sud-un.of Sci and Tech, Khartoum,(2007). 

[61] Yongsub Yoon,arXiv:1210.8355V5{gr-qc],7oct2015. 

[62] Guoping Li,Xiataozu,J.of Applied.Math and Phy.,3,2015,134-139. 

[63] M.Dirar,etal,Int.J.of Astron.and Astro Phy,3,June(2013). 

[64] I.H.Hussan,Ph.D thesis,sud.Uof sci and Tech., Khartoum,(2007). 

[65] I.H.Hussan,etal,J.sci.Tech.susT,V.12,N.2,(20011) 

[66] Nassim Haramein,Phy.Rev.4Res.Intern.,3(4),270-292,(2013) 

[67] Nontas Farmer,The Winnower, Octob 16,2015. 

[68] Charles H.T.wang,Phcl. Trans.R.Soc.A,364(2006). 

 

 

 
 

 

 

 

 



 
90 

 

 

 

 

 

 

 

 

 


