الاستهلال

قال تعالى

(وَمِن آياتِهِ أَن يُرسِلَ الرِّياحَ مُبَشِّراتٍ وَلِيُذيقَكُم مِن رَحمَتِهِ وَلِتَجرِيَ الفُلكُ بِأَمرِهِ وَلِتَبتَغوا مِن فَضلِهِ وَلَعَلَّكُم تَشكُرونَ)

مري رائي رايش

(الروم : ٢٦)

DEDICATION

We dedicate this project to our mothers, who gave us kindness and love . And our fathers, who gave us affection and ambitions . All our families , and everyone who became a bright light to illuminate the way in front of us . To them, we say: Thanks for all your support and patience .

ACKNOWLEDGEMENT

We would like to express our appreciation to our supervisor **Dr. ABU AGLA BABEKER**, Who has cheerfully answered all our queries and assisted us in a myriad way with the writing and helpfully commented on this project. You really supported us throughout the production of this project. We can hardly express our gratitude.

ABSTRACT

Lack of space availability has always been a problem in urban areas and major cities and to add to it there are cars parked callously on the streets that further limit the space. In order to handle the issue of parking in busy places various types of vehicle parking systems are used worldwide namely Multi-level Automated Car Parking, Automated Car Parking System and many more. The present project work is an amalgamation of the already developed parking systems with the added advantage of reduced space occupancy by the design of a simpler and compact parking system that is rotary and occupies vertical parking space. The platform is fabricated to suit the working model. The procurement and manufactured items are in hand and are ready to be assembled with the structure. This model is further useful for various branches of engineering in order to develop different types of automations like PLC, micro controller and computerization. By testing and analyzing the working model we can definitely get the view to develop the parking lots at difficult and busy commercial places. Finally after implementing all development proposals, we get an automated parking system which stores car and retrieves them automatically, need a small area to park number of cars and easy to find parking slots.

المستخلص

لما كان نقص توافر المساحة دائما مشكلة في المناطق الحضرية والمدن الكبرى، وإضافة إلى ذلك هناك سيارات متوقفة بشكل خاطئ في الشوارع و التي تحد من الفضاء من أجل التعامل مع مسألة وقوف السيارات في الأماكن المزدحمة واستخدام أنواع مختلفة من أنظمة مواقف السيارات في جميع أنحاء العالم وهي متعددة المستويات مثل مواقف السيارات الآلية أنظمة وقوف السيارات الآلية وغير ها الكثير عمل المشروع الحالي هو دمج انظمة وقوف السيارات المتقدمة بالفعل مع ميزة إضافية من انخفاض شغل الفضاء من خلال تصميم نظام أكثر بساطة و أقل حجما يجعل وقوف السيارات دائريا ويحتل مساحة وقوف عمودية .تصميم يتناسب مع نموذج العمل . المشتريات والمواد المصنعة هي في متناول اليد وهي جاهزة ليتم تجميعها مع هيكل .هذا النموذج هو أكثر فائدة لمختلف فروع الهندسة من أجل تطوير أنواع مختلفة من الأتمتة مثل التحكم الجزئي والحوسبة .كذلك من خلال اختبار وتحليل نموذج العمل يمكننا بالتأكيد الحصول على وجهة نظر والحوسبة .كذلك من خلال اختبار وتحليل نموذج العمل يمكننا بالتأكيد الحصول على وجهة نظر التطوير مواقف السيارات في أماكن تجارية صعبة ومشغولة. أخيرا و بعد تنفيذ جميع مقترحات التطوير نحصل على نظام موقف سيارات آلي يقوم بتخزين و استرجاع السيارات آليا، يحتاج مساحة صغيرة لتخزين عدد من السيارات مع سهولة ايجاد فتحات المواقف.

LIST OF CONTENTS

الاستهلال	I
Dedication	II
Acknowledgement	III
Abstract	IV
المستخلص	V
Table of Contents	V
List of Figures	IX
List of Abbreviations	X
Chapter one: Introduction	1
1.1 Preface	2
1.2 Problem Statement	3
1.3 Aims and Objectives	4
1.4 Proposed Solution	4
1.5 State Of The Arts	4
1.6 Methodology	5
1.7 Thesis Layout	6
Chapter two: literature review	7
2.1 Introduction	8
2.2 Automated Parking	8
2.3 Modular Automated Parking System(MAPS)	8
2.3.1 Model RPS 1000	9

2.3.1 Model RPS 100	10	
2.3.1 Model RPS 20W and Model RPS 20L	10	
2.4 Hoboken Garage		
2.4.1 Motion Control System and Robot	11	
2.4.2 CIMPLICITY Software	11	
2.4.3 Parking and Retrieval Process	12	
2.4.4 A Secure and Intelligent Parking System Using NOTICE		
2.4.5 Smart Parking Systems and Sensors	14	
2.4.6 Smart Parking Service based on Wireless Sensor	14	
2.4.7 An intelligent driver location system for smart parking	16	
2.4.8 A Reservation-based Smart Parking System	17	
2.4.9 An Automated Parking Management System	19	
2.4.10 Social Network for Optimized Mobility	21	
2.5 Summary	23	
Chapter three: System Design and Implementation		
3.1 Introduction		
3.2 System architecture	25	
3.3 Block Diagram	27	
3.4 Tools and Components	30	
3.4.1ArduinoUNO	30	
3.4.2 Stepper motor	30	
3 4 3 IR Sensors	31	

3.4.4 Bearing	32	
3.4.5Gears	33	
3.4.6 LEDs	33	
3.4.7 LCD	34	
3.4.8 Keypad	34	
3.4.9 Pillars	35	
3.4.10 Easy Driver	35	
3.5 Simulation	36	
Chapter four :Discussion and Results		
4.1 Results	40	
4.1.1SimulationResults	40	
4.2 Discussion Points	45	
4.2.1 Research time	45	
4.2.2Cost	45	
4.2.3SystemSpace	45	
4.2.4Safety	46	
Chapter five : Conclusion and Recommendation		
5.1Conclusions	48	
5.2 Recommendations	48	
References		
Appendix		

LIST OF FIGURES

FIGURE N	TITLE	PAGE	
3.1	Overview about the automated parking system	25	
3.2	Block Diagram of proposed System	27	
3.3	Arduino MEGA	29	
3.4	Stepper Motor	30	
3.5	IR Sensor	31	
3.6	Bearings	31	
3.7	Gears	32	
3.8	LEDs	33	
3.9	LCD	33	
3.10	Keypad	34	
3.11	Pillar	35	
3.12	Simulation Design.	36	
4.1	First Screen	37	
4.2	Password Requiring	38	
4.3	Car Parking	38	
4.4	Retrieve Password	39	
4.5	Valid Password	39	
4.6	Password Correction	40	
4.7	Thankful Message	40	
4.8	Ready Car	41	

4.9	Wrong Password	41
4.10	Wrong Car Position	42
4.11	Used Password	42

LIST OF ABBRIVIATIONS

APS Automated Parking System

IOT Internet Of Things

MAPS Modular Automated Parking System

RPS Rotary Parking System

HMI Human Machine

CBD Central Business District

WSN Wireless Sensor Network

GPS Global Positioning System

CPS Cyber Physical System

RSPS Reservation-based Smart Parking System

IR Infrared Sensor