

I

 الاستهلال

 بسم الله الرحمن الرحيم

 ذعالى : قال

ن نَّشَاءُ ۗ ﴿ ﴾ وَفىَْقَ كُلِّ ذِي عِلْمٍ عَلِيم نرَْفعَُ دَرَجَاتٍ مَّ

(67)اٌَح -سٌرج ٌٌسف

II

DEDICATION

We are very grateful to Almighty Allah for helping us through this long

journey, May He continues to bless, help and guide us to the right path.

We dedicate this project to all those that helped us toward this success,

specially our parents, our families, our teachers and our colleagues.

And do not forget also those who departed from our world Of teachers,

Dr Abdul Rasool Al-Zubaidi , Abdul Rahman Al-Taj And our colleague

Anas Fathi

Thank you all…

III

ACKNOWLEDGEMENTS

We would like to express our gratitude and appreciation to all those

who gave us the possibility to complete this project. A special thanks to our

final year project supervisor Dr. Ala Eldin Abdullah Awouda, who help

us, stimulating suggestions and encouragement, help gratitude to coordinate

our project and writing this report.

IV

ABSTRACT

An application for face recognition and tracking system on video

streams from surveillance cameras in public or commercial places is

discussed in this thesis. Human surveillance through the fixed camera is

useless and not suitable for security , to resolve this problem was suggested

design face recognition and tracking system associated with database to

track and monitor user face to improve security method and reduce security

errors and facilitate monitoring. This research is divided to two parts:

software implementation use matlab to capture the image from webcam and

in hardware implementation webcam moves with the direction of the facial

movement detected by servo motor. A successful simulation as well. The

problem that is encountered is after start of tracking code after recognition,

any face inside the video is tracked.

V

 المستخلص

الفٍ يٌٌ ه ك م اهٍزاخ عل ى فف ًذرثعي او لرعزف على الٌج نظام ا صوٍنذ الثحث ذنفً ىذه

. الوزاقث ح الثر زٌح ه ك لل الر اهٍزا ال اتر ح ى ً اً غٍزى ا الأهامك العاهح أً الرجارٌ ح الوزاقثح فً

 ًذرثعي االرع زف عل ى الٌج و نظ ام ذ ن اقر زا عيٌوح الفائيج ًغٍز هناسثح للأهك، لحل ىذه الور رلح

لرحسٍك طزٌقح الأهك ًالحي هك الأ طاء الأهنٍح الناس ،قاعيج الثٍاناخ لررثع ًرصي ًجو ت الوزذثطح

واذلب لالرق اط تزناهج الاسرخيام ٌرن الثزهجٍاخ فًٌك: أثحث إلى جزًٌنقسن ىذا ال. ًذسيٍل الزصي

 الوررر فذرح زا الر اهٍزا ه ع اذج اه جزم ح الٌج و العر افًف ً ذنفٍ ذ "م اهٍزا ًٌ ة"ص ٌرج ه ك ال

الوررلح الرً ذود هٌاجيريا ىً تعي ًلرك ذن اجزاء هحاماج ناجحح ، .سٍزفٌ هٌذٌر تٌاسطح أجيزج

 ٌرن ذرثع أي ًجو فا ل الفٍيٌٌ.، ى الٌجولرعزف علالررثع تعي ا مٌفتيء

VI

TABLE OF CONTENTS

 I ... الاستهلال

DEDICATION ... II

ACKNOWLEDGEMENTS .. III

ABSTRACT .. IV

 V .. المستخلص

TABLE OF CONTENTS .. VI

LIST OF FIGURES ... IX

LIST OF SYMBOLS ... XI

ABBREVIATIONS .. XII

Chapter One

Introduction .. 2

1.1PREFACE .. 3

1.2 PROBLEM STATEMENT .. 4

1.3 PROPOSED SOLUTION .. 4

1.4 AIM AND OBJECTIVES .. 4

1.5 RESEARCH SCOPE .. 4

1.6 THESIS ORGANIZATION ... 5

Chapter Two

Literature Review ... 7

2.1 OVERVIEW .. 8

VII

2.2 RELATED WORKS .. 8

2.3 DIGITAL IMAGE PROCESSING (DIP) .. 9

2.4 FACE RECOGNITION ALGORITHM ... 12

2.4.1 local binary pattern (lbp) .. 12

2.4.2 facial treat code (ftc) ... 13

2.4.3 eigenface ... 14

2.5 FACE DETECTION AND TRACKING ALGORITHM 19

2.5.1 adaboost algorithm.. 19

2.5.2 smqt features and snow classifier ... 20

2.5.3 viola jones algorithm .. 20

2.6 SOFTWARE ENVIRONMENT .. 28

2.6.1 matlab environment .. 28

2.6.2 arduino ide .. 29

2.7 CONTROL UNIT .. 31

2.7.1 microcontroller ... 32

2.7.2 raspberry pi ... 33

2.7.3 arduino .. 34

2.8 MOTORS .. 41

2.8.1 dc motor .. 41

2.8.2 ac motor .. 42

2.8.3 stepper motor .. 43

2.8.4 servo motor ... 44

2.9 WEBCAM ... 45

Chapter Three

Methodology .. 48

3.1 OVERVIEW .. 49

VIII

3.2 CIRCUIT DIAGRAM .. 49

3.3 PRINCIPLE OF OPERATION ... 50

3.3.1 database generation ... 51

3.3.2 face recognition .. 52

3.3.3 object tracking .. 54

3.4 ARDUINO CONNECTION ... 56

Chapter Four

Result And Discussion ... 59

4.1 OVERVIEW .. 60

4.2 RESULT OF GENERATE DATABASE ... 60

4.3 RESULT OF FACE RECOGNITION ... 61

4.4 RESULT OF FACE TRACKING .. 64

4.5 RESULT OF SIMULATION .. 65

Chapter Five

Conclusion And Recommendation .. 68

5.1 CONCLUSION .. 69

5.2 RECOMMENDATION .. 69

REFERENCES ... 72

APPENDIXES

Appendix A Matlab Code

Appendix B Arduino Code

IX

LIST OF FIGURES

Figure No Title page

2-1 Depiction of a digital image 11

2-2 FTC working flow charts 13

2-3 Rectangular features 21

2-4 A Cascade of Classifiers 27

2-5 Matlab environment 29

2-6 Arduino IDE Software 31

2-7 Raspberry Pi 33

2-8 Arduino Uno 35

2-9 LilyPad Arduino 39

2-10 RedBoard Arduino 39

2-11 Arduino Mega 40

2-12 Arduino Leonardo 41

2-13 DC Motor 42

2-14 AC Motor 43

2-15 Stepper Motor 44

2-16 Servo Motor 45

2-17 Webcam 46

3-1 System Block diagram 49

3-2 Face recognition and tracking component block diagram 50

3-3 System Option 50

3-4 Flow chart for generating database 51

3-5 Flow chart for recognition process 52

X

3-6 Train set preparation 53

3-7 Face recognition stage 54

3-8 Flow chart for tracking process 55

3-9 Servo motor connecting with arduino 57

4-1 Training set 60

4-2 Mean image 61

4-3 Eigen faces 62

4-4 Input image 62

4-5 Recognition result 63

4-6 Input image 63

4-7 Recognition result 64

4-8 Face Tracking 64

4-9 Virtual Serial Ports Emulator 65

4-10 System simulation 66

XI

LIST OF SYMBOLS

Ti - The training set of face images

Ψ - Average face of the set

 - difference with the average

λk - Vector

un - Vector

ωk - weight of the kth

Ω
T - Weights form a vector

Θ - threshold

XII

ABBREVIATIONS

AC Alternating current

AREF Analog reference

ATM Automated teller machine

AVR Automatic control to regulate the voltage

BV Brightness Value

CNC Computer Numerical Control

CV Computer vision

DC Direct current

DIP Digital Image Processing

DN Digital Number

FTC Facial Treat Code

FTDI Future Technology Devices International

GND Ground

GPIO General - Purpose Input/Output

GUI Graphical User Interface

IC Integrated Circuit

IDE Integrated Development Environment

IP Internet protocol

LBP Local binary patterns

LCD Liquid crystal display

LDA Local Density Approximation

LED Light Emitting Diode

LTE Long Term Evolution

Matlab Matrix Laboratory

OS Operating system

XIII

PC Personal computer

PCA Principal Component Analysis

PM Permanent magnet

PTZ Pan -Tilt- Zoom Cameras

PWM Pulse width modulation

RAM Random access memory

Rx Receiver

SD Secure Digital

SMQT Successive Mean Quantization Transform

SNOW Sparse Network of Winnows

SVM Support vector machines

Tx Transmitter

USB Universal Serial Bus

VR Variable reluctance

Webcam Web camera

Wi-Fi Wireless fidelity

https://en.wikipedia.org/wiki/Permanent_magnet
https://en.wikipedia.org/w/index.php?title=Variable_reluctance&action=edit&redlink=1

CHAPTER ONE

INTRODUCTION

2

Chapter One

Introduction

1.1 Preface

1.2 Problem Statement

1.3 Proposed Solution

1.4 Aim and Objectives

1.5 Research scope

1.6 Thesis organization

3

1.1 Preface

A Face recognition and tracking system is a Technique capable of

identifying or verifying a person from a digital image or a video frame

from a video source And follow it. One of the ways to do this is by

comparing selected facial features from the image and a face database. It

is typically used in security systems and can be compared to other

biometrics such as finger print or eye iris recognition systems. Recently,

it has also become popular as a commercial identification and marketing

tool.

Some face recognition algorithms identify facial features by

extracting landmarks, or features, from an image of the subject's face.

For example, an algorithm may analyze the relative position, size, and/or

shape of the eyes, nose, cheekbones, and jaw. These features are then

used to search for other images with matching features. it focuses on the

same identifier that humans use primarily to distinguish one person from

another: their “faces”. One of its main goals is the understanding of the

complex human visual system and the knowledge of how humans

represent faces in order to discriminate different identities with high

accuracy. Among the different biometric techniques, it does not require

the cooperation of the test subject to work. Properly designed systems

installed in airports, multiplexes, and other public places can identify

individuals among the crowd, without passers-by even being aware of

the system. Other biometrics like fingerprints, iris scans, and speech

recognition cannot perform this kind of mass identification.[1].

4

1.2 Problem Statement

Human surveillance through the fixed camera is useless and not

suitable for security, especially in crowded and public area and cannot

distinguish all faces accurately.

1.3 Proposed Solution

Design face recognition and tracking system associated with

database to track and monitor user face.

1.4 Aim and Objectives

The aim of this project is to design Face Recognition and Tracking

system using matlab code and arduino.

The objectives are:

 To improve security method by using face recognition and

tracking system and reduce security errors and facilitate

monitoring.

 To design and implement the software and hardware of the

proposed system.

1.5 Research scope

This Thesis focuses on recognition and tracking face of human in

a continuous video transfer. This system used in security. It can be

applied to Airports, borders, customs, elections, conferences, Automated

teller machines "ATM" and others.

5

1.6 Thesis organization

Chapter Two is a theoretical background and related works in face

recognition and tracking.

Chapter Three describes steps of hardware design the tracking process

and view face recognition in a software platform.

Chapter Four discusses the results of simulation and implementation for

the project.

Chapter Five explain the conclusion and the future ideas that can be

performed.

CHAPTER TWO

LITERATURE REVIEW

7

Chapter Two

Literature Review

2.1 Overview

2.2 Related works

2.3 Digital Image Processing (DIP)

2.4 Face Recognition Algorithm

2.5 Face Detection and Tracking Algorithm

2.6 Software Environment

2.7 Control Unit

2.8 Motors

2.9 Webcam

8

2.1 Overview

This Chapter is about different hardware and software that are

used in this system. It also describes the algorithms that are used in

recognizing and tracking the face, and contains a number of studies have

been conducted on this technique in the past. In this section, a number of

these studies are reviewed.

2.2 Related works

 Baykara and Das have proposed a biometric system for human

face detection and recognition is put into practice. This system works

real time and successfully carries out face recognition, detection and

tracking. In this way, the system has the feature of being integrated into

different practices. Face detection and tracking system, is put into

practice in a personal automation. Here, the aim is to carry out

personnel‟s entry and exit automatically and safely. In this system

practiced basing on Principal Component Analysis "PCA", in the future

studies, various optimization algorithms can be used in order to increase

system performance [2].

 Park and others have proposed a novel Coaxial-Concentric

camera system that can capture and track high resolution face images at

any distance in the range of 6 to 12 meters for face recognition. The

Coaxial-Concentric camera configuration provides a large operating

distance to track moving persons and recognize them with high accuracy.

We have introduced a linear prediction model and a pan and tilt motion

velocity control method for robust tracking. The face recognition results

show the effectiveness of the proposed system for fully automatic

subject tracking and identification at a distance of up to 12 meters. They

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Muhammet%20Baykara.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Resul%20Das.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Unsang%20Park.QT.&newsearch=true

9

plan to extend the operating distance beyond 12 meters by using either a

high definition static camera or multiple Pan-Tilt-Zoom Cameras "PTZ"

cameras to employ multistage zooming process [3].

Cai and others have proposed in which an off-line face detector,

an online tracker and an online recognizer are efficiently combined.

Boosting is applied as the classifier in detector and tracker, and the

features are Local binary patterns "LBP" and Haar respectively.

Considering the good performance of Canonical Correlation Analysis in

pose-invariant face recognition, we incorporate it into our online

recognizer, combined with an online classifier LASVM. The superior

performance in challenging sequences proves the robustness of our

framework [4].

Viraktamath and others have proposed Prototype system for

automatic face detection and tracking. The test results show that the

detection method used in the paper can accurately detect and trace

human face in real time. in paper shows the intersection of Image

processing and embedded systems, by using open CV " Computer

vision" and Arduino real time implementation is possible. Future Work:

Along with face detection, face recognition may also be implemented

[5].

2.3 Digital Image Processing (DIP)

Digital image processing is the use of computer algorithms to

perform image processing on digital images. As a subcategory or field

of digital signal processing, digital image processing has many

advantages over analog image processing. It allows a much wider range

of algorithms to be applied to the input data and can avoid problems such

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Image_processing
https://en.wikipedia.org/wiki/Digital_image
https://en.wikipedia.org/wiki/Digital_signal_processing
https://en.wikipedia.org/wiki/Analog_image_processing

10

as the build-up of noise and signal distortion during processing. Since

images are defined over two dimensions (perhaps more) digital image

processing may be modeled in the form of multidimensional systems.

The influence and impact of digital images on modern society is

tremendous, and image processing is now a critical component in

science and technology. The rapid progress in computerized medical

image reconstruction, and the associated developments in analysis

methods and computer-aided diagnosis, has propelled medical imaging

into one of the most important sub-fields in scientific imaging [6].

Digital image processing deals with manipulation of digital

images through a digital computer. It is a subfield of signals and systems

but focus particularly on images. DIP focuses on developing a computer

system that is able to perform processing on an image. The input of that

system is a digital image and the system process that image using

efficient algorithms, and gives an image as an output. The most common

example is Adobe Photoshop. It is one of the widely used application for

processing digital images.

A digital remotely sensed image is typically composed of picture

elements (pixels) located at the intersection of each row i and column j

in each K bands of imagery. Associated with each pixel is a number

known as Digital Number (DN) or Brightness Value (BV), which depicts

the average radiance of a relatively small area within a scene. A smaller

number indicates low average radiance from the area and the high

number is an indicator of high radiant properties of the area.

The field of digital image processing refers to processing digital

images by means of a digital computer, the depiction of a digital image

presented in figure 2-1. Once computer has visual information in

https://en.wikipedia.org/wiki/Multidimensional_systems

11

appropriate format, computer can analyze it, which is called image

analysis [7].

Figure 2-1: Depiction of a digital image.

Digital image processing allows the use of much more complex

algorithms, and hence, can offer both more sophisticated performance at

simple tasks, and the implementation of methods which would be

impossible by analog means. In particular, digital image processing is

the only practical technology for:

 Classification

 Feature extraction

 Multi-scale signal analysis

 recognition

 Projection

Some techniques which are used in digital image processing include:

 Anisotropic diffusion

 Hidden Markov models

 Image editing

 Image restoration

 Independent component analysis

 Linear filtering

 Neural networks

https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Feature_extraction
https://en.wikipedia.org/wiki/Multi-scale_signal_analysis
https://en.wikipedia.org/wiki/Pattern_recognition
https://en.wikipedia.org/wiki/Graphical_projection
https://en.wikipedia.org/wiki/Anisotropic_diffusion
https://en.wikipedia.org/wiki/Hidden_Markov_model
https://en.wikipedia.org/wiki/Image_editing
https://en.wikipedia.org/wiki/Image_restoration
https://en.wikipedia.org/wiki/Independent_component_analysis
https://en.wikipedia.org/wiki/Linear_filter
https://en.wikipedia.org/wiki/Artificial_neural_networks

12

 Partial differential equations

 Pixilation

 Principal components analysis

 Self-organizing maps

 Wavelets

2.4 Face Recognition Algorithm

Face recognition is the process of identifying or verifying a person

from a digital image or a video frame from a video source.

There are many algorithms used in face recognition such as:

 Local binary pattern

 Facial treat code

 Eigenface

2.4.1 Local Binary Pattern (LBP)

His relative new approach was introduced in 1996 by Ojala et al.

[8]. With LBP it is possible to describe the texture and shape of a digital

image. This is done by dividing an image into several small regions from

which the features are extracted. These features consist of binary patterns

that describe the surroundings of pixels in the regions. The obtained

features from the regions are concatenated into a single feature

histogram, which forms a representation of the image. Images can then

be compared by measuring the similarity (distance) between their

histograms. According to several studies [9], [10], face recognition using

the LBP method provides very good results, both in terms of speed and

discrimination performance. Because of the way the texture and shape of

images is described, the method seems to be quite robust against face

https://en.wikipedia.org/wiki/Partial_differential_equations
https://en.wikipedia.org/wiki/Pixelation
https://en.wikipedia.org/wiki/Principal_components_analysis
https://en.wikipedia.org/wiki/Self-organizing_map
https://en.wikipedia.org/wiki/Wavelet

13

images with different facial expressions, different lightening conditions,

image rotation and aging of persons [11].

2.4.2 Facial Treat Code (FTC)

Facial Trait Code is used to represent a face image. it was

proposed by Lee et al. in 2008 [12]. The idea is to mark a local patch

from face image to several classes, and use different coded local patches

to represent a face. A local patch, so called facial trait, will be projected

by PCA and LDA to reduce the dimensionality, and extract the feature

for clustering. The features which are clustered together will be seen as

same class.

Figure 2-2: FTC working flow charts

14

The work flow was illustrated as figure 2-2 and the objects are

defined as follow:

• Training Set: Containing neutral and non-neutral images.

• Gallery Set: Containing registration images.

• Probe Set: Testing images whose ids are in gallery set.

• Imposter Set: Testing images whose ids are not in gallery set.

• FTC Model: Containing SVM and clustering models.

Then the actions are defined as follow

• Image Acquiring: Reading images and scaling with bilinear filters, and

then normalizing with XmeanYstd or Adaptive Histeq.

• Clustering: Using PCA and Local Density Approximation "LDA" for

dimension reduction first, and then Clustering training ids for each

defined patch. If the patches have not defined yet, we do.

clustering for all possible patches, and then find the best

“discriminated” patches.

• Support vector machines "SVM" training: For each patch, using all

training images as data and clusters as label to train with SVM.

• Encoding: For each patch, applying dimension reduction, and then

predict the cluster the patch belongs to by SVM.

• Hamming D: Finding bit difference between two codes as the distance.

2.4.3 EigenFace

The recognition process is done by Eigen face algorithm. This

approach was first developed by Sirovich and Kirby (1987) and used

later by Matthew Turk and Alex Pentland [13].

A dataset, such as a digital image, consists of a large number of

inter-related variables. Using Principal Component Analysis, the

dimensionality of the dataset is reduced while retaining as much as

variation in the dataset as possible. The datasets are transformed to a new

15

set of uncorrelated variables called the principal components. These

principal components are ordered in such a way that the first few retain

most of the variation present in all of the original variables.

PCA method is applied in face recognition by discriminating the

image data into several classes. There will be a lot of noise in the image

caused by differing lighting conditions, pose and so on. Despite these

noises, there are patterns that can be observed in the image such as the

presence of eyes, mouth or nose in a face and the relative distances

between these objects. PCA‟s aim is to extract these patterns or the

features from the image.

In the domain of face recognition, the principal components

(features) are referred to as Eigen faces. The original image can be

reconstructed by summing up all the Eigen faces in the right proportion

by adding more weights to the real features of the face. Certain Eigen

faces that do not contribute to the important face features are omitted.

This is necessary because of performance issues while doing large

computations. This idea is applied in our approach where Eigen faces are

prepared from a set of training images and stored first. Then Eigen face

is prepared for the input test image and compare with the training

images. The matching image is the image having similar weights in the

test database.

Sirovich and Kirby showed that a collection of face images can be

approximately reconstructed by storing a small collection of weights for

each face and a small set of standard pictures [14].

Using Principal Component Analysis on a set of human face

images, a set of Eigen faces can be generated. Eigen faces are a set of

eigenvectors used mostly in human face recognition. Eigenvectors are a

set of features that characterize the variation between face images. These

eigenvectors are derived from the covariance matrix of the probability

16

distribution of the high-dimensional vector space of faces of human

beings. The main idea here is to use only the best Eigen faces that

account for the major variance within the set of face images. By using

lesser Eigen faces, computational efficiency and speed is achieved. The

Eigen faces are the basis vectors of the Eigen face decomposition.

Below are the steps of face recognition process:

 A training set of same resolution digital images is initially

prepared.

 The images are stored as a matrix with each row corresponding to

an image.

 Each image is represented as a vector with (r X c) elements where

“r” and “c” are the number of rows and the number of columns

respectively.

 An average image is calculated from the individual training set

images.

 For each image, the deviation from the average image is then

calculated and stored.

 The Eigen vectors and Eigen values are then calculated. These

represent the directions in which the training set images differ

from the average image.

 A new image is then subtracted from the average image and

projected into Eigen face space.

 This is compared with the projection vectors of training faces and

the matching image is determined.

A face image is represented by a two dimensional N by N array of

intensity values or a vector of dimension N2. If there is an image of size

128 by 128, then that can be said as a vector of dimension 16384. Or,

this is equivalent to one point in a 16384-dimensional space. A group of

17

images then maps to a collection of points in this image space. The

training images chosen are all of same dimensions. We need to find the

vectors that best represent the distribution of face images within this

image space and these vectors that define the sub-space of face images

are termed as face space. Each vector of length N2 represents an image

of dimension N by N and is a linear combination of the original face

images. These vectors are termed as Eigen faces because these are the

vectors of the covariance matrix corresponding to the original face

images and they have face-like appearance.

Step 1: Prepare the test data

Choose “M” training face images and prepare the training set

images Ti. The training set of face images are represented as T1, T2,

T3...TM.

Step 2: Calculate the average of the matrix

Average face of the set Ψ = 1/M (T1+T2+T3+... +TM). [1] (3.1)

∑
 n (3.2)

 : Average face

M: Training face images

Step 3: Subtract the average

For each face, the difference with the average is Φi = Ti – (3.3)

Step 4: Calculate the covariance matrix

These vectors are then subjected to PCA which seeks a set of M

orthonormal vectors un and their associated Eigen values λk that best

represent the distribution of the data. The vectors un and λk are the

eigenvectors and Eigen values, respectively of the covariance matrix

C =

∑

 (3.4)

18

C = AA
T
where the matrix A = [Φ1, Φ2, Φ3, Φ4….,ΦM] (3.5)

C: covariance matrix

Step 5: Calculate the eigenvectors and Eigen values of the covariance

matrix.

Since the covariance matrix C is of size N
2
 by N

2
, determining N

2

will be a huge task for typical image sizes. So the alternative is to

determine the eigenvectors by solving a smaller M by M matrix and

taking linear combinations of the resulting vectors. This would reduce

the calculation from the order of the number of pixels in the images N
2

to the order of the images in the training set M.

Step 6: Select the principal components.

Usually, we will use only a subset of M Eigen faces, the M' Eigen

faces with the largest Eigen values. Eigen faces with low Eigen values

are omitted, as they explain only a small part of characteristic features of

the faces. This completes the training phase of the face recognition.

Step 7: Face recognition – classifying the face

The next task is the face recognition. The test image T test is

projected into face space by the following operation:

 ωk =
 () (3.6)

Weights form a vector Ω
T
 = (ω1, ω2, ω3… ωM) describing the

contribution of each Eigen face in representing the input face image.

Whichever face class provides a minimum of Euclidean distance

of εk = ||Ω- Ωk||, where Ωk is vector defining kth face class, is the

matching face image.

A threshold of θ defines the maximum allowable distance from the

face space beyond which the face is considered as “unknown”. [15]

This algorithm was used in this system to face recognition.

19

2.5 Face Detection and Tracking Algorithm

Face detection is the process of identifying the human faces in a

digital image or a video frame from a video source.

There are many algorithms used in face detection and tracking such as:

 AdaBoost algorithm

 SMQT features and SNOW classifier

 Viola Jones algorithm

2.5.1 AdaBoost Algorithm

Boosting is an approach to machine learning based on the idea of

creating a highly accurate prediction rule by combining many relatively

weak and incorrect rules.

The AdaBoost algorithm was the first practical boosting

algorithm, and one of the most widely used and studied, with

applications in numerous field. Using boosting algorithm to train a

classifier which is capable of processing images rapidly while having

high detection rates. AdaBoost is a learning algorithm which produces a

strong classifier by choosing visual features in a family of simple

classifiers and combining them linearly [16].

Although AdaBoost is more resistant to over fitting than many

machine learning algorithms, it is repeatedly sensitive to noisy data and

outliers. AdaBoost is called adaptive because it uses multiple iterations

to generate a single composite strong learner. AdaBoost creates the

strong learner (a classifier that is well-correlated to the true classifier) by

iteratively adding weak learners (a classifier that is only slightly

correlated to the true classifier). Throughout each round of training, a

new weak learner is added to the group and a weighting vector is

adjusted to focus on examples that were misclassified in preceding

20

rounds. The outcome is a classifier that has higher accuracy than the

weak learners „classifiers [17].

2.5.2 SMQT features and SNOW classifier

This method consists of two phase. The primary phase is face

luminance. The operation of this phase is being performed to get pixel

information of an image and further implemented to detection purpose.

The second phase is detection. In this phase, local SMQT features

are used as feature extraction for object detection. The features were

found to be able to cope with illumination and sensor variation in object

detection. The split up SNOW is proposed to speed up the standard

SNOW classifier.

The split up SNOW classifier requires just training of one

classifier network which can be arbitrarily divided into several weaker

classifiers in cascade. All weak classifier uses the result from previous

weaker classifiers which makes it computationally efficient [18].

2.5.3 Viola Jones Algorithm

The Viola–Jones Algorithm is the first object detection framework

to provide competitive object detection rates in real-time proposed in

2001 by Paul Viola and Michael Jones. Although it can be trained to

detect a variety of object classes, it was motivated primarily by the

problem of face detection then tracking it. [19]

21

The Voila Jones algorithm is given as follow:

- In voila zone algorithm the detection is done by the Feature

extraction and feature evaluation Rectangular features are used,

with a new image representation their calculation is very fast.

Figure 2-3: Rectangular features

- They are easy to calculate.

- The white areas are subtracted from the black ones.

- A special representation of the sample called the integral image

makes feature extraction faster.

- Features are extracted from sub windows of a sample image.

The base size for a sub window is 24 by 24 pixels.

 Each of the four feature types are scaled and shifted across all

possible combinations.

 A real face may result in multiple nearby detections

 Post process detected sub windows to combine overlapping

detections into a single detection [20].

The algorithm has four stages:

- Haar Feature Selection

- Creating an Integral Image

- Adaboost Training

- Cascading Classifiers

22

The features sought by the detection framework universally involve

the sums of image pixels within rectangular areas. As such, they bear

some resemblance to Haar basis functions, which have been used

previously in the realm of image-based object detection.
[3]

 However,

since the features used by Viola and Jones all rely on more than one

rectangular area, they are generally more complex. The figure on the

right illustrates the four different types of features used in the

framework. The value of any given feature is the sum of the pixels

within clear rectangles subtracted from the sum of the pixels within

shaded rectangles. Rectangular features of this sort are primitive when

compared to alternatives such as steerable filters. Although they are

sensitive to vertical and horizontal features, their feedback is

considerably coarser.

 Haar Features

All human faces share some similar properties. These regularities

may be matched using Haar Features.

A few properties common to human faces:

 The eye region is darker than the upper-cheeks.

 The nose bridge region is brighter than the eyes.

Composition of properties forming matchable facial features:

 Location and size: eyes, mouth, bridge of nose

 Value: oriented gradients of pixel intensities

The four features matched by this algorithm are then sought in the image

of a face (shown at left).

https://en.wikipedia.org/wiki/Haar-like_feature
https://en.wikipedia.org/wiki/Viola%E2%80%93Jones_object_detection_framework#cite_note-3
https://en.wikipedia.org/wiki/Steerable_filter

23

 Rectangle features:

- Value = Σ (pixels in black area) - Σ (pixels in white area)

- Three types: two-, three-, four-rectangles, Viola & Jones used

two-rectangle features

- For example: the difference in brightness between the white

&black rectangles over a specific area

- Each feature is related to a special location in the sub-window

 Summed area table

An image representation called the integral image evaluates

rectangular features in constant time, which gives them a considerable

speed advantage over more sophisticated alternative features. Because

each feature's rectangular area is always adjacent to at least one other

rectangle, it follows that any two-rectangle feature can be computed in

six array references, any three-rectangle feature in eight, and any four-

rectangle feature in nine.

 Learning algorithm

The speed with which features may be evaluated does not adequately

compensate for their number, however. For example, in a standard 24x24

pixel sub-window, there are a total of M = 162,336 possible features, and

it would be prohibitively expensive to evaluate them all when testing an

image. Thus, the object detection framework employs a variant of the

learning algorithm AdaBoost to both select the best features and to train

classifiers that use them. This algorithm constructs a “strong” classifier

as a linear combination of weighted simple “weak” classifiers

https://en.wikipedia.org/wiki/Summed_area_table
https://en.wikipedia.org/wiki/AdaBoost

24

 ()=s gn(∑ ()

m

j=1

)

Each weak classifier is a threshold function based on the feature

 () {
 if

 otherwise

The threshold value and the polarity are determined in the

training, as well as the coefficients.

Here a simplified version of the learning algorithm is reported

Input: Set of positive and negative training images with their labels

(). If image is a face , if not .

A. Initialization: assign a weight

 to each image i.

B. For each feature with

1. Renormalize the weights such that they sum to one.

2. Apply the feature to each image in the training set, then find

the optimal threshold and polarity that minimizes the

weighted classification error. That is

 argmin

∑

 where
 {

 if (
)

 otherwise

3. Assign a weight to that is inversely proportional to the

error rate. In this way best classifiers are considered more.

25

4. The weights for the next iteration, i.e.
 , are reduced

for the images that were correctly classified.

C. Set the final classifier to

 ()=s gn(∑ ()

m

j=1

)

 Cascade architecture

- On average only 0.01% of all sub-windows are positive (faces)

- Equal computation time is spent on all sub-windows

- Must spend most time only on potentially positive sub-windows.

- A simple 2-feature classifier can achieve almost 100% detection

rate with 50% FP rate.

- That classifier can act as a 1st layer of a series to filter out most

negative windows

- 2nd layer with 10 features can tackle “harder” negative-windows

which survived the 1st layer, and so on…

- A cascade of gradually more complex classifiers achieves even

better detection rates. The evaluation of the strong classifiers

generated by the learning process can be done quickly, but it isn‟t

fast enough to run in real-time. For this reason, the strong

classifiers are arranged in a cascade in order of complexity, where

each successive classifier is trained only on those selected samples

which pass through the preceding classifiers. If at any stage in the

cascade a classifier rejects the sub-window under inspection, no

further processing is performed and continue on searching the next

sub-window. The cascade therefore has the form of a degenerate

26

tree. In the case of faces, the first classifier in the cascade – called

the attentional operator – uses only two features to achieve a false

negative rate of approximately 0% and a false positive rate of

40%.[6] The effect of this single classifier is to reduce by roughly

half the number of times the entire cascade is evaluated.

In cascading, each stage consists of a strong classifier. So all the features

are grouped into several stages where each stage has certain number of

features. The job of each stage is to determine whether a given sub-

window is definitely not a face or may be a face. A given sub-window is

immediately discarded as not a face if it fails in any of the stages.

A simple framework for cascade training is given below:

 f = the maximum acceptable false positive rate per layer.

 d = the minimum acceptable detection rate per layer.

 Ftarget = target overall false positive rate.

 P = set of positive examples.

 N = set of negative examples.

The cascade architecture has interesting implications for the

performance of the individual classifiers. Because the activation of each

classifier depends entirely on the behavior of its predecessor, the false

positive rate for an entire cascade is:

F=∏

https://en.wikipedia.org/wiki/Viola%E2%80%93Jones_object_detection_framework#cite_note-6

27

Similarly, the detection rate is:

D=∏

Thus, to match the false positive rates typically achieved by other

detectors, each classifier can get away with having surprisingly poor

performance. For example, for a 32-stage cascade to achieve a false

positive rate of 10−6, each classifier need only achieve a false positive

rate of about 65%. At the same time, however, each classifier needs to be

exceptionally capable if it is to achieve adequate detection rates. For

example, to achieve a detection rate of about 90%, each classifier in the

aforementioned cascade needs to achieve a detection rate of

approximately 99.7%

 Figure 2-4: A Cascade of Classifiers

This algorithm was used in this system to face Detection then

tracking.

All sub-windows

 1

Reject sub-window

Further

processing 3 2

T T T

F F F

28

2.6 Software Environment

In this section the software that used in this system was mention.

2.6.1 Matlab environment

Millions of engineers and scientists worldwide use Matlab to

analyze and design the systems and products transforming our world.

Matlab is in automobile active safety systems, interplanetary spacecraft,

and health monitoring devices, smart power grids, and Long Term

Evolution "LTE" cellular networks. It is used for machine learning,

signal processing, image processing, computer vision, communications,

computational finance, control design, robotics, and much more. The

Matlab platform is optimized for solving engineering and scientific

problems. The matrix-based Matlab language is the world‟s most natural

way to express computational mathematics. Built-in graphics make it

easy to visualize and gain insights from data [21].

A vast library of prebuilt toolboxes lets you get started right away

with algorithms essential to your domain. Matlab code can be integrated

with other languages, enabling to deploy algorithms and applications

within web, enterprise, and production systems. Information about

digital image processing using Matlab and about programming graphics

and Graphical User Interface "GUIs" with Matlab can be found, the

matlab functions can also be used for detection and recognition. This

project, have been implemented using Matlab programming environment

version R2014. Although we cannot guarantee that, all functions will

work properly in older versions of Matlab [22].

29

Figure 2-5: Matlab environment

2.6.2 Arduino IDE

The Arduino Integrated Development Environment - or Arduino

Software (IDE) - contains a text editor for writing code, a message area,

a text console, a toolbar with buttons for common functions and a series

of menus. It connects to the Arduino and Genuino hardware to upload

programs and communicate with them.

Programs written using Arduino Software (IDE) are called

sketches. These sketches are written in the text editor and are saved with

the file extension .ino. The editor has features for cutting/pasting and for

searching/replacing text. The message area gives feedback while saving

and exporting and also displays errors. The console displays text output

by the Arduino Software (IDE), including complete error messages and

other information. The bottom right hand corner of the window displays

the configured board and serial port. The toolbar buttons allow you to

verify and upload programs, create, open, and save sketches, and open

the serial monitor.

30

A program for Arduino may be written in any programming

language for a compiler that produces binary machine code for the target

processor. Atmel provides a development environment for their

microcontrollers, Automatic control to regulate the voltage "AVR"

Studio and the newer Atmel Studio. [46][47][48]

The Arduino project provides the Arduino integrated development

environment (IDE), which is a cross-platform application written in the

programming language Java. It originated from the IDE for the

languages Processing and Wiring. It includes a code editor with features

such as text cutting and pasting, searching and replacing text, automatic

indenting, brace matching, and syntax highlighting, and provides simple

one-click mechanisms to compile and upload programs to an Arduino

board. It also contains a message area, a text console, a toolbar with

buttons for common functions and a hierarchy of operation menus.

The Arduino IDE supports the languages C and C++ using special

rules of code structuring. The Arduino IDE supplies a software library

from the Wiring project, which provides many common input and output

procedures. User-written code only requires two basic functions, for

starting the sketch and the main program loop, that are compiled and

linked with a program stub main() into an executable cyclic executive

program with the GNU tool chain, also included with the IDE

distribution. The Arduino IDE employs the program avrdude to convert

the executable code into a text file in hexadecimal encoding that is

loaded into the Arduino board by a loader program in the board's

firmware [23].

31

Figure 2-6: Arduino IDE Software

2.7 Control Unit

The process of tracking requires a hardware unit to control the

motors movement.

Many types of controllers can be used to perform this operation such as:

 Microcontroller

 Raspberry Pi

 Arduino kit

32

2.7.1 Microcontroller

A microcontroller is a self-contained system with peripherals,

memory and a processor that can be used as an embedded system. Most

programmable microcontrollers that are used today are embedded in

other consumer products or machinery including phones, peripherals,

automobiles and household appliances for computer systems. Due to

that, another name for a microcontroller is "embedded controller." Some

embedded systems are more sophisticated, while others have minimal

requirements for memory and programming length and a low software

complexity. Input and output devices include solenoids, Liquid crystal

display "LCD", relays, switches and sensors for data like humidity,

temperature or light level, amongst others.

There are several different kinds of programmable

microcontrollers at Future Electronics. We stock many of the most

common types categorized by several parameters including Bits, Flash

size, RAM size, number of input/output lines, packaging type, supply

voltage and speed. Our parametric filters will allow you to refine your

search results according to the required specifications.

Programmable microcontrollers contain general purpose

input/output pins. The number of these pins varies depending on the

microcontroller. They can be configured to an input or an output state by

software. When configured to an input state, these pins can be used to

read external signals or sensors. When they are configured to the output

state, they can drive external devices like Light Emitting Diode "LED"

displays and motors.

Programmable microcontrollers are designed to be used for

embedded applications, unlike microprocessors that can be found in PCs.

Microcontrollers are used in automatically controlled devices including

33

power tools, toys, implantable medical devices, office machines, engine

control systems, appliances, remote controls and other types of

embedded systems. [24]

2.7.2 Raspberry Pi

A Raspberry Pi is a credit card-sized computer originally designed

for education, it's board contains Broadcom based ARM Processor,

Graphics Chip, Random access memory "RAM", General - Purpose

Input/Output "GPIO" and other connectors for external devices. The

operating procedure of Raspberry Pi is very similar as compared to PC

and requires additional hardware like Keyboard, Mouse, Display Unit,

Power Supply, Secure Digital "SD" Card with Operating system "OS"

Installed (Acting like Hard Disk) for operation. Raspberry Pi also

facilitates Universal Serial Bus "USB" ports, Ethernet for

Internet/Network-Peer to Peer Connectivity.

Like any other computer, where Operating system acts as

backbone for operation. Raspberry Pi, facilitates open source operating

system‟s based on Linux. [25]

Figure 2-7: Raspberry Pi

34

2.7.3 Arduino

Arduino is an open-source platform used for building electronics

projects. Arduino consists of both a physical programmable circuit board

(often referred to as a microcontroller) and a piece of software, or IDE

(Integrated Development Environment) that runs on your computer, used

to write and upload computer code to the physical board.

The Arduino platform has become quite popular with people just

starting out with electronics, and for good reason. Unlike most previous

programmable circuit boards, the Arduino does not need a separate piece

of hardware (called a programmer) in order to load new code onto the

board – you can simply use a USB cable. Additionally, the Arduino IDE

uses a simplified version of C++, making it easier to learn to program.

Finally, Arduino provides a standard form factor that breaks out the

functions of the micro-controller into a more accessible package.

Arduino makes several different boards, each with different

capabilities. In addition, part of being open source hardware means that

others can modify and produce derivatives of Arduino boards that

provide even more form factors and functionality. If you‟re not sure

which one is right for your project, check this guide for some helpful

hints. Here are a few options that are well-suited to someone new to the

world of Arduino: [26]

 Arduino Uno

The Uno is a great choice for your first Arduino. It‟s got

everything you need to get started, and nothing you don‟t. It has 14

digital input/output pins (of which 6 can be used as Pulse width

modulation "PWM" outputs), 6 analog inputs, a USB connection, a

power jack, a reset button and more. It contains everything needed to

http://arduino.cc/
http://en.wikipedia.org/wiki/Microcontroller
http://arduino.cc/en/Main/Software

35

support the microcontroller; simply connect it to a computer with a USB

cable or power it with a Alternating current "AC"-to- Direct current"DC"

adapter or battery to get started.

Figure 2-8: Arduino Uno

- Power (USB / Barrel Jack)

Every Arduino board needs a way to be connected to a power

source. The Arduino UNO can be powered from a USB cable coming

from your computer or a wall power supply (like this) that is terminated

in a barrel jack. In the picture above the USB connection is labeled (1)

and the barrel jack is labeled (2)

- Pins (5V, 3.3V, Ground "GND", Analog, Digital, PWM, AREF)

The pins on your Arduino are the places where you connect wires

to construct a circuit (probably in conjunction with a breadboard and

some wire. They usually have black plastic „headers‟ that allow you to

36

just plug a wire right into the board. The Arduino has several different

kinds of pins, each of which is labeled on the board and used for

different functions.

GND (3): Short for „Ground‟. There are several GND pins on the

Arduino, any of which can be used to ground your circuit.

5V (4) & 3.3V (5): As you might guess, the 5V pin supplies 5

volts of power, and the 3.3V pin supplies 3.3 volts of power. Most of the

simple components used with the Arduino run happily off of 5 or 3.3

volts.

Analog (6): The area of pins under the „Analog IN‟ label (A0

through A5 on the UNO) are Analog IN pins. These pins can read the

signal from an analog sensor (like a temperature sensor) and convert it

into a digital value that we can read.

Digital (7): Across from the analog pins are the digital pins (0

through 13 on the UNO). These pins can be used for both digital input

(like telling if a button is pushed) and digital output (like powering an

LED).

PWM (8): You may have noticed the tilde (~) next to some of the

digital pins (3, 5, 6, 9, 10, and 11 on the UNO). These pins act as normal

digital pins, but can also be used for something called Pulse-Width

Modulation (PWM). We have a tutorial on PWM, but for now, think of

these pins as being able to simulate analog output (like fading an LED in

and out).

AREF (9): Stands for Analog Reference. Most of the time you can

leave this pin alone. It is sometimes used to set an external reference

37

voltage (between 0 and 5 Volts) as the upper limit for the analog input

pins

- Reset Button

Just like the original Nintendo, the Arduino has a reset button

(10). Pushing it will temporarily connect the reset pin to ground and

restart any code that is loaded on the Arduino. This can be very useful if

your code doesn‟t repeat, but you want to test it multiple times. Unlike

the original Nintendo however, blowing on the Arduino doesn‟t usually

fix any problems.

- Power LED Indicator

Just beneath and to the right of the word “UNO” on your circuit

board, there‟s a tiny LED next to the word „ON‟ (11). This LED should

light up whenever you plug your Arduino into a power source. If this

light doesn‟t turn on, there‟s a good chance something is wrong. Time to

re-check your circuit!

- Transmitter "Tx" Receiver "Rx" LEDs

TX is short for transmit, RX is short for receive. These markings

appear quite a bit in electronics to indicate the pins responsible for serial

communication. In our case, there are two places on the Arduino UNO

where TX and RX appear – once by digital pins 0 and 1, and a second

time next to the TX and RX indicator LEDs (12). These LEDs will give

us some nice visual indications whenever our Arduino is receiving or

transmitting data (like when we‟re loading a new program onto the

board).

- Main Integrated Circuit "IC"

38

The black thing with all the metal legs is an IC, or Integrated

Circuit (13). Think of it as the brains of our Arduino. The main IC on the

Arduino is slightly different from board type to board type, but is usually

from the ATmega line of IC‟s from the ATMEL company. This can be

important, as you may need to know the IC type (along with your board

type) before loading up a new program from the Arduino software. This

information can usually be found in writing on the top side of the IC. If

you want to know more about the difference between various IC‟s,

reading the datasheets is often a good idea.

- Voltage Regulator

The voltage regulator (14) is not actually something you can (or

should) interact with on the Arduino. But it is potentially useful to know

that it is there and what it‟s for. The voltage regulator does exactly what

it says – it controls the amount of voltage that is let into the Arduino

board. Think of it as a kind of gatekeeper; it will turn away an extra

voltage that might harm the circuit. Of course, it has its limits, so don‟t

hook up your Arduino anything greater than 20 volts [26].

This type of Arduino was used in this system to control servo motor.

 LilyPad Arduino

LilyPad is a wearable e-textile technology developed by Leah

Buechley and cooperatively designed by Leah and SparkFun. Each

LilyPad was creatively designed with large connecting pads and a flat

back to allow them to be sewn into clothing with conductive thread. The

LilyPad also has its own family of input, output, power, and sensor

boards that are also built specifically for e-textiles. They‟re even

washable! [26].

39

Figure 2-9: LilyPad Arduino

 RedBoard Arduino

The RedBoard can be programmed over a USB Mini-B cable

using the Arduino IDE. It‟ll work on Windows 8 without having to

change your security settings (we used signed drivers, unlike the UNO).

It‟s more stable due to the USB/Future Technology Devices International

"FTDI" chip we used, plus it‟s completely flat on the back, making it

easier to embed in your projects. Just plug in the board, select “Arduino

UNO” from the board menu and you‟re ready to upload code. You can

power the RedBoard over USB or through the barrel jack. The on-board

power regulator can handle anything from 7 to 15VDC [26].

Figure 2-10: RedBoard Arduino

40

 Arduino Mega

The Arduino Mega is like the UNO‟s big brother. It has lots (54!)

of digital input/output pins (14 can be used as PWM outputs), 16 analog

inputs, a USB connection, a power jack, and a reset button. It contains

everything needed to support the microcontroller; simply connect it to a

computer with a USB cable or power it with a AC-to-DC adapter or

battery to get started. The large number of pins make this board very

handy for projects that require a bunch of digital inputs or outputs (like

lots of LEDs or buttons) [26].

Figure 2-11: Arduino Mega

 Arduino Leonardo

The Leonardo is Arduino‟s first development board to use one

microcontroller with built-in USB. This means that it can be cheaper and

simpler. Also, because the board is handling USB directly, code libraries

are available which allow the board to emulate a computer keyboard,

mouse, and more! [26].

41

Figure 2-12: Arduino Leonardo

2.8 Motors

Motors are the power transmission workhorse of industry,

converting electrical energy into mechanical movement. There many

type of motor some of them are listed below.

2.8.1 DC Motor

A DC motor is any of a class of rotary electrical machines that

converts direct current electrical energy into mechanical energy. The

most common types rely on the forces produced by magnetic fields.

Nearly all types of DC motors have some internal mechanism, either

electromechanical or electronic, to periodically change the direction of

current flow in part of the motor.

DC motors were the first type widely used, since they could be

powered from existing direct-current lighting power distribution

systems. A DC motor's speed can be controlled over a wide range, using

either a variable supply voltage or by changing the strength of current in

its field windings. Small DC motors are used in tools, toys, and

appliances.

42

There are three types of electrical connections between the stator

and rotor possible for DC electric motors: series, shunt/parallel and

compound (various blends of series and shunt/parallel) and each has

unique speed/torque characteristics appropriate for different loading.[27]

Figure 2-13: DC Motor

2.8.2 AC Motor

An AC motor is an electric motor driven by an alternating

current (AC). The AC motor commonly consists of two basic parts, an

outside stationary stator having coils supplied with alternating current to

produce a rotating magnetic field, and an inside rotor attached to the

output shaft producing a second rotating magnetic field. The rotor

magnetic field may be produced by permanent magnets, reluctance

saliency, or DC or AC electrical windings. Less commonly, linear AC

motors operate on similar principles as rotating motors but have their

stationary and moving parts arranged in a straight line configuration,

producing linear motion instead of rotation.

The simple AC Motor contains a coil of wire and two fixed

magnets surrounding a shaft. When an electric (AC) charge is applied to

the coil of wire, it becomes an electromagnet, generating a magnetic

field. Simply described, when the magnets interact, the shaft and the coil

of wires begin to rotate, operating the motor.

https://en.wikipedia.org/wiki/Electric_motor
https://en.wikipedia.org/wiki/Alternating_current
https://en.wikipedia.org/wiki/Alternating_current
https://en.wikipedia.org/wiki/Stator
https://en.wikipedia.org/wiki/Rotor_(electric)

43

The AC Motor comes in three different types known as Induction,

Synchronous, and Industrial. These AC Motor types are determined by

the rotor design used in the construction. Anaheim Automation carries

all three types in its product line. [28]

Figure 2-14: AC Motor

2.8.3 Stepper Motor

A stepper motor or step motor or stepping motor is a brushless DC

electric motor that divides a full rotation into a number of equal steps.

The motor's position can then be commanded to move and hold at one of

these steps without any feedback sensor (an open-loop controller), as

long as the motor is carefully sized to the application in respect

to torque and speed. Switched reluctance motors are very large stepping

motors with a reduced pole count, and generally are closed-

loop commutated.

There are three main types of stepper motors: Permanent magnet

stepper ,Hybrid synchronous stepper and Variable reluctance stepper.

Permanent magnet motors use a permanent magnet (PM) in the rotor and

operate on the attraction or repulsion between the rotor PM and

the stator electromagnets. Variable reluctance (VR) motors have a

plain iron rotor and operate based on the principle that

https://en.wikipedia.org/wiki/Brushless_DC_electric_motor
https://en.wikipedia.org/wiki/Brushless_DC_electric_motor
https://en.wikipedia.org/w/index.php?title=Feedback_sensor&action=edit&redlink=1
https://en.wikipedia.org/wiki/Open-loop_controller
https://en.wikipedia.org/wiki/Torque
https://en.wikipedia.org/wiki/Switched_reluctance_motor
https://en.wikipedia.org/wiki/Commutator_(electric)
https://en.wikipedia.org/w/index.php?title=Permanent_magnet_stepper&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Permanent_magnet_stepper&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Hybrid_synchronous_stepper&action=edit&redlink=1
https://en.wikipedia.org/wiki/Reluctance_motor
https://en.wikipedia.org/wiki/Permanent_magnet_motor
https://en.wikipedia.org/wiki/Permanent_magnet
https://en.wikipedia.org/wiki/Stator
https://en.wikipedia.org/w/index.php?title=Variable_reluctance&action=edit&redlink=1
https://en.wikipedia.org/wiki/Iron

44

minimum reluctance occurs with minimum gap, hence the rotor points

are attracted toward the stator magnet poles.[29]

There are two basic winding arrangements for the electromagnetic

coils in a two phase stepper motor: bipolar and unipolar.

Figure 2-15: Stepper Motor

2.8.4 Servo Motor

servomotor is a rotary actuator or linear actuator that allows for

precise control of angular or linear position, velocity and acceleration. It

consists of a suitable motor coupled to a sensor for position feedback. It

also requires a relatively sophisticated controller, often a dedicated

module designed specifically for use with servomotors.

Servomotors are used in applications such as robotics, Computer

Numerical Control "CNC" machinery or automated manufacturing. The

first servomotors were developed with synchro‟s as their encoders.

Modern servomotors use rotary encoders, either absolute or incremental.

Absolute encoders can determine their position at power-on, but are

more complicated and expensive. Incremental encoders are simpler,

cheaper and work at faster speeds. Incremental systems, like stepper

motors, often combine their inherent ability to measure intervals of

rotation with a simple zero-position sensor to set their position at start-

up. Most modern servomotors are designed and supplied around a

https://en.wikipedia.org/wiki/Magnetic_reluctance
https://en.wikipedia.org/wiki/Magnet
https://en.wikipedia.org/wiki/Electromagnetic_coil
https://en.wikipedia.org/wiki/Electromagnetic_coil

45

dedicated controller module from the same manufacturer. Controllers

may also be developed around microcontrollers in order to reduce cost

for large-volume applications.

In this project it was used to move the camera with the direction of

facial movement [30].

Figure 2-16: Servo Motor

2.9 Webcam

A webcam is a video camera that feeds or streams its image in real

time to or through a computer to a computer network. When "captured"

by the computer, the video stream may be saved, viewed or sent on to

other networks via systems such as the internet, and emailed as an

attachment. When sent to a remote location, the video stream may be

saved, viewed or on sent there. Unlike an Internet protocol "IP" camera

(which connects using Ethernet or Wireless fidelity "Wi-Fi"), a webcam

is generally connected by a USB cable, or similar cable, or built into

computer hardware, such as laptops. The term "webcam" (a clipped

compound) may also be used in its original sense of a video camera

connected to the Web continuously for an indefinite time, rather than for

a particular session, generally providing a view for anyone who visits its

web page Over the Internet. Some of them, for example, those used as

online traffic cameras, are expensive, rugged professional video cameras.

46

First developed in 1991, a webcam was pointed at the Trojan

Room coffee pot in the Cambridge University Computer Science

Department (initially operating over a local network instead of the web).

The camera was finally switched off on August 22, 2001. The final

image captured by the camera can still be viewed at its homepage. In

2004, the oldest webcam still operating was FogCam at San Francisco

State University, which had been running continuously since 1994 [31].

Figure 2-17: Webcam

CHAPTER THREE

METHODOLOGY

48

Chapter Three

Methodology

3.1 Overview

3.2 Circuit Diagram

3.3 Principle of operation

3.4 Arduino Connection

49

3.1 Overview

The system consists two parts: software implementation and

hardware implementation. In software implementation matlab will be

used to capture the image from webcam and compare it with the saved

image in database. In hardware implementation webcam moves with the

direction of the facial movement detected by servo motor, which was

attached to the Arduino, and Arduino is linked to the Matlab in PC.

System Block diagram as shown in the figure 3-1.

Figure 3-1: System Block diagram

3.2 Circuit Diagram

 System contains on Matlab, 2 servo motors, Arduino uno and

webcam. Figure 3-2 below show how system component connects with

each other.

PC

Face recognition and

tracking Application

Arduino Uno

Webcam

Servo motor

Up-down/Left-right

object

50

Fig 3-2: Face recognition and tracking component block diagram

3.3 Principle of Operation

 Graphical menu which contain choices was created. Simply

clicking through mouse on specified choice can perform the desired

action as shown in figure 3-3 below.

Figure 3-3: System Option

51

3.3.1 Database generation

 Database was created by simply taking face photos through

camera, renaming and saving face images of .jpg format in a particular

folder then comparing with the face to recognize with database faces.

The number of faces that saves in database is equal to M * times, where

M is the no. of person entered by user and times is used for increasing

the accuracy i.e. let times be 5, so 5 face images per person. The flow

chart for database generation is given below in figure 3-4.

START

Initialize camera

Enter No. of faces M

i=0; times=5;

While(i<=M*times)

Capture photo through

camera

i=i+1;

Give name and save .jpg in a

folder

END

NO

Yes

Figure 3-4: Flow chart for generating database

52

3.3.2 Face Recognition

 The recognition process is done by Eigen face algorithm which

comparing picture that taken from webcam with picture that saved in

database. The flow chart for recognition process is given below in figure

3-5.

START

Initialize

Camera

Take photo

from camera

Eigenface

Is it the

same face

Access the

database

Track

YES
NO

Figure 3-5: Flow chart for recognition process

53

 The Eigenface algorithm was explained in detail in the previous

chapter. In this section we show flow chart of Face Recognition using

Eigenface in figure 3-6 and figure 3-7.

Training set

preparation

Store image as a matrix represented as a

vector with (r X c) elements

Calculate average image from training

images

Calculate and store deviation o each Image

from average image

Calculate covariance matrix

Calculate Eigenvectors and Eigenvalues of

the covariance matrix

END

Figure 3-6: Train set preparation

54

Eigenface

Test input image

Subtract from the average

image

Project into eigenface space

Compare with training

vectors

Determine the minimum

Euclidean distance which is

the matching image

END

Training set preparation

Figure 3-7: Face recognition stage

3.3.3 Object Tracking

The face tracking is done using Viola Jones algorithm. It was

explained in the previous chapter. Code in Matlab detects a face from

every frame of the live video stream and inserts a bounding box around

the Region of Interest, which is a face in this case (by detecting some

haar features present in the human faces).

The set of frames with bounding boxes make up the addition of a

55

bounding box around the face in live video. While adding a bounding

box, the coordinates of centroid of the bounding box was calculated also.

These coordinates are sent as a string to the arduino UNO

microcontroller, from Matlab.

Figure 3-7 below show flow chart for tracking process.

Track

Initialize camera

Detect the recognize face in video

frames

Extract features and bounding box

around the recognize face

Calculate the coordinates of centroid

of the bounding box

Transmit coordinates to the Arduino

Start moving the camera to the given

direction

Figure 3-8: Flow chart for tracking process

56

3.4 Arduino Connection

The coordinates that came from matlab are processed according to

the code written on arduino IDE for the movement of motors. During

processing, the arduino gets the positions of PAN and TILT servo

motors. Then, arduino checks if the centroid coordinates lie in the center

region of the screen. We are trying to move the camera in such a way

that the centroid lies at the center of the frame. (The pan and tilt servos

are given to the digital pins 9 and 10 respectively).

For this reason, the frame is divided into left and right halves and

also top and bottom halves. If the centroid falls in the left half, the

camera is panned right and if it falls in the right half, camera is panned

left and the same with the top and bottom halves and tilting.

An image is divided into sections using its parameters such as

length and width. These parameters can be determined using size

command of MATLAB. Following is the logic behind this algorithm.

centx=bbox(1) + (bbox(3)/2)

centy=bbox(2) - (bbox(4)/2)

The resolution of image is 320x240.

The centroid of the object is computed using the horizontal and

vertical mean of the object. Bwlabel is a MATLAB function used to

extract the features from a binary image generated after calibration. This

function generates a 2-D matrix. Components of this matrix is used for

determining the centroid of the detected object. The Matlab send the

coordinates in form of ASCII code to the Arduino via the serial, which

converts it to PWM to servo motor. Communication of object detection

algorithm with Arduino board is done through serial data transfer. To

access the serial port of a computer using MATLAB, couple of lines of

coding should be done. MATLAB function for serial port access is: -

Arduino=serial('COM3','BaudRate',9600)

57

Here, COM3 is a serial communication port on which Arduino

board is connected. Moreover, a program has to be booted on ATmega

328 using Arduino IDE. This program makes serial communication port

as an input port for the Arduino board.

 Figure 3-9: Servo motor connecting with Arduino

CHAPTER FOUR

RESULT AND DISCUSSION

59

Chapter Four

Result and Discussion

4.1 Overview

4.2 Result of Generate Database

4.3 Result of Face Recognition

4.4 Result of Face Tracking

4.5 Result of simulation

60

4.1 Overview

In the previous chapter, part of the methodology used to

implement face recogntion and tracking system have been discussed.

The work discussed in the previous chapter comprises the steps from

take a picture for face step to tracking it step.

In this chapter, the results that obtained from the system are

described and discussed and the performance of system is evaluated.

4.2 Result of Generate Database

Database was Generated Successfuly by taking a image of one

person for 5 times in all directions as shown in the figure 4-1.

Figure 4-1: Training set

61

The mean image for the respected set of images is given as shown

in the figure 4-2:

Figure 4-2: Mean Image

4.3 Result of Face Recognition

The Eigenfaces for the given set of image with respect to

evaluated mean image is given as shown in figure 4-3 .

62

Figure 4-3: Eigenfaces

The same person in database was taken by webcam for recognition

as shown in the figure 4-4.

Figure 4-4: Input image

63

result is given as shown in the figure 4-5:

Figure 4-5: recognition result

Maximum value and minimum value explain Euclidean distance.

MaximumValue=max(Euclidean distance).

MinimumValue=min(Euclidean distance).

If is the same person in database the maximum value and minimum

value will be <= 3.8e+04.

Else the maximum value and minimum value will be > 3.8e+04.

Face class provides the best description for the input image by

minimizing the Euclidean distance. The input face is consider to belong

to a class if Euclidean distance is bellow an established threshold θε.

 Figure 4-6 show another person's picture was taken by a webcam to

recognize:

Figure 4-6: Input image

64

result is given as follow:

Figure 4-7: recognition result

Successful test result of Face Recognition process using eigenface

method. But there were number of challenges and problems we

encountered, some of them were:

1- When the program is turned off and restarted face recognition process

cannot access the database.

2- In case of similar facial features, the recognition process cannot

discriminate.

3- In the case of low light we also had problems.

4.4 Result of Face Tracking

Figure 4-8 show face tracking by using Viola Jones Algorithm.

Figure 4-8: Face Tracking

65

After face recognition process, the face tracking was successfully

tested. Some of the problems we encountered are:

1- After recognition , any face inside the video is tracked

2- Delay in tracking.

3- In low light we also had problems.

4.5 Result of simulation

MATLAB has been linked to the simulation by "virtual serial

ports emulator" as shown in figure 4-9.

Figure 4-9: Virtual Serial Ports Emulator

Figure 4-8 show simulation of system hardware.

66

Figure 4-10: System simulation

MATLAB has been linked to the simulation successfully by D9

and the servo motor was successfully moved.

The problem we encountered is movement of motor is slow.

CHAPTER FIVE

CONCLUSION AND RECOMMENDATION

68

Chapter Five

Conclusion and Recommendation

5.1 Conclusion

5.2 Recommendation

69

5.1 Conclusion

In this research a successful simulation as well of face recognition

and tracking system has been done. The proposed system is composed of

a complete hardware prototype and user friendly Software application.

Face recognition using eigenface algorithm approach is definitely

robust, simple, and easy and fast to implement compared to other

algorithms, and we implement face tracking in the Matlab by using Viola

jones Algorithm. This method is verified and the limitations of the

scheme are observed through testing and debugging our codes. And then,

limited by Matlab performance. Compared with other popular tracking

algorithms such as optical flow, we found the Viola jones algorithm is

more suitable for real-time face tracking since they require less CPU

resource and costs shorter time.

5.2 Recommendation

Further work still need

 Improve the proposed system and making it more efficient and

more secure.

 Solve tracking any face problem by combining the recognition

code and tracking code together.

 Use three-dimensional face recognition. This technique uses 3D

sensors to capture information about the shape of a face. This

information is then used to identify distinctive features on the

surface of a face, such as the contour of the eye sockets, nose, and

chin. One advantage of 3D face recognition is that it is not

affected by changes in lighting like other techniques. It can also

70

identify a face from a range of viewing angles, including a profile

view.

 Use Skin texture analysis. The addition of skin texture analysis,

performance in recognizing faces can increase 20 to 25 percent.

 Use Thermal cameras, by this procedure the cameras will only

detect the shape of the head and it will ignore the subject

accessories such as glasses, hats, or make up.

REFERENCES

72

References

[1] Bonsor, K. "How Facial Recognition Systems Work".

Retrieved 2008-06-02 R. Brunelli and T. Poggio, "Face Recognition:

Features versus Templates.

[2] Muhammet Baykara and Resul Das "Real time face recognition and

tracking system" | Software Engineering Department, Firat University

Elazig , Turkey "2013.

[3] Unsang Park, Hyun-Cheol Choi, Anil K. Jain, Seong-Whan Lee

"Face Tracking and Recognition at a Distance: A Coaxial and Concentric

PTZ Camera System" | Department of Computer Science and

Engineering, Sogang University, Seoul, Korea "2013.

[4] Zhaowei Cai, Longyin Wen, Dong Cao, Zhen Lei, Dong Yi and Stan

Z. Li " Person-Specific Face Tracking with Online Recognition" | Center

for Biometrics and Security Research & National Laboratory of Pattern

Recognition Institute of Automation, Chinese Academy of Sciences

"2013.

[5] S.V. Viraktamath, Mukund Katti, Aditya Khatawkar and Pavan

Kulkarni " Face Detection and Tracking using OpenCV" Department of

Electronics and Communication Engineering, SDM College of

Engineering & Technology, Dharwad, Karnataka, INDIA "2013.

[6] R. P. Archana, “Medical Application of Image Segmentation with

Intensity Inhomogeneities,” Int. J. Sci. Eng. Res 2014.

[7] R. C. Gonzalez and R. E. Woods, “Digital Image Processing,” Satell.

Remote Sens. GIS Appl. Agric. Meteorol., vol. 24, pp. 1–30, 2002.

http://computer.howstuffworks.com/facial-recognition.htm
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Unsang%20Park.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Hyun-Cheol%20Choi.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Anil%20K.%20Jain.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Seong-Whan%20Lee.QT.&newsearch=true

73

[8] T. Ojala, M. Pietikainen and D. Harwood, “A comparative study of

texture measures with classification based on feature distributions”

Pattern Recognition vol. 29, 1996.

[9] T. Ahonen, A. Hadid and M. Pietikainen, “Face description with

Local Binary Patterns”, Application to Face Recognition. Machine

Vision Group, University of Oulu, Finland, 2006.

[10] T. Ahonen, A. Hadid, M. Pietikainen and T. M aenpaa. “Face

recognition based on the appearance of local regions”, In Proceedings of

the 17th International Conference on Pattern Recognition, 2004.

[11] R. Gottumukkal and V.K. Asari, “An Improved Face Recognition

Technique Based on Modular PCA Approach” Pattern Recognition

Letters, vol. 25, pp. 429- 436, Mar. 2004.

[12] P.-H. Lee, G.-S. Hsu, T. Chen, and Y.-P. Hung. Facial trait code

and its application to face recognition. In ISVC ‟08: Proceedings of the

4th International Symposium on Advances in Visual Computing, Part II,

pages 317–328, Berlin, Heidelberg, 2008.

[13] L. Sirovich; M. Kirby (1987). "Low-dimensional procedure for the

characterization of human faces" . Journal of the Optical Society of

America .

[14] M. Kirby; L. Sirovich (1990). "Application of the Karhunen-Loeve

procedure for the characterization of human faces".

[15] Face Recognition using Eigenfaces and Neural Networks

"Mohamed Rizon, Muhammad Firdaus Hashim, Puteh Saad, Sazali

Yaacob, Mohd Rozailan Mamat, Ali Yeon Md Shakaff, Abdul Rahman

Saad, Hazri Desa and M. Karthigayan " |School of Mechatronics and

Engineering School of Computer and Communication Engineering -

74

Kolej Universiti Kejuruteraan Utara Malaysia, Jalan Kangar-Arau 02600

Jejawi, Perlis, Malaysia' 2006.

[16] R. Meir and G. R¨atsch. An introduction to boosting and Leveraging

S. Mendelson and A. J. Smola Ed., Advanced Lectures on Machine

Learning, Springer-Verlag Berlin Heidelberg, pages 118–183, 2003.

[17] Kégl, Balázs (20 December 2013). "The return of AdaBoost.MH:

multi-class Hamming trees".

[18] K Somashekari , Puttamadappa C2 & DN Chandrappa2, face

detection by SMQT features and snow classifier using color information

, K Somashekar et al. / International Journal of Engineering Science and

Technology (IJEST), ISSN : 0975-5462 Vol. 3 No. 2 Feb 2011.

[19] Viola, Jones: Robust Real-time Object Detection, IJCV 2001 See

pages 1,3.

[20] P. Viola and M. Jones. Rapid object detection using a boosted

cascade of simple features. In Computer Vision and Pattern Recognition,

2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society

Conference on, volume 1, pages I– 511. IEEE, 2001.

[21] Goering, Richard (4 October 2004). "Matlab edges closer to

electronic design automation world.

[22] MATLAB Programming Language". Altius Directory. Retrieved 17

December 2010.

[23] Programming Arduino Getting Started with Sketches". McGraw-

Hill. Nov 8, 2011. Retrieved 2013-03-28.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.110.4868
http://www.eetimes.com/document.asp?doc_id=1151422
http://www.eetimes.com/document.asp?doc_id=1151422
http://www.altiusdirectory.com/Computers/matlab-programming-language.php

75

[24] Edwards, Robert (1987). "Optimizing the Zilog Z8 Forth

Microcontroller for Rapid Prototyping" (PDF). Martin Marietta: 3.

Retrieved 9 December 2012.

[25] Pritchard, Stephen (1 March 2012). "Raspberry Pi: A BBC Micro

for today's generation". ITPRO. Retrieved 15 March 2012.

[26] Arduino. Arduino introduction. 2014 [cited 2015 21 April];

Available from: https://www.arduino.cc/en/guide/introduction.And

https://www.arduino.cc/en/Main/Products

[27] Herman, Stephen. Industrial Motor Control. 6th ed. Delmar,

Cengage Learning, 2010. Page 251.

[28] Electromechanical Dynamics, Part 1 John Wiley and Sons, Inc.

1968.

[29] Liptak, Bela G. (2005). Instrument Engineers' Handbook: Process

Control and Optimization. CRC Press.

[30] Suk-Hwan Suh; Seong Kyoon Kang; Dae-Hyuk Chung; Ian Stroud

(22 August 2008). Theory and Design of CNC Systems. Springer

Science & Business Media.

[31] Jonathan Knoder (9 May 2013). "1080p, 2.0 Mega Pixels?

Understanding Webcam Technical Terms". Top Ten Reviews.

Retrieved 29 July 2015.

http://www.ornl.gov/info/reports/1987/3445602791343.pdf
http://www.ornl.gov/info/reports/1987/3445602791343.pdf
http://www.itpro.co.uk/639292/raspberry-pi-a-bbc-micro-for-todays-generation
http://www.itpro.co.uk/639292/raspberry-pi-a-bbc-micro-for-todays-generation
https://www.arduino.cc/en/guide/introduction
https://books.google.com/books?id=E9nP3VBRO6AC&pg=PA251&dq=shunt+series+compound+dc+motor+connections&hl=en&ei=Aw24ToO0H4TL0QGU_rzRBw&sa=X&oi=book_result&ct=result&resnum=1&ved=0CDgQ6AEwAA#v=onepage&q=shunt%20series%20compound%20dc%20motor%20connections&f=false
http://www.rle.mit.edu/cehv/documents/emd_part1.pdf
https://books.google.com/books?id=TxKynbyaIAMC&dq=Instrument+Engineers%27+Handbook&pg=PP1&ots=jvrdPR7wxJ&sig=1hOUpQQDQH_8drYjW1yPVocJSYI&hl=en&sa=X&oi=book_result&resnum=1&ct=result
https://books.google.com/books?id=TxKynbyaIAMC&dq=Instrument+Engineers%27+Handbook&pg=PP1&ots=jvrdPR7wxJ&sig=1hOUpQQDQH_8drYjW1yPVocJSYI&hl=en&sa=X&oi=book_result&resnum=1&ct=result
https://books.google.com/books?id=c_-3TxZlnpMC&pg=PA11
http://webcam-review.toptenreviews.com/1080p-2.0-mega-pixels-understanding-webcam-technical-terms.html
http://webcam-review.toptenreviews.com/1080p-2.0-mega-pixels-understanding-webcam-technical-terms.html

APPENDIXES

Appendix A: Matlab code

Option and database code

imaqreset;

clear all;

close all;

clc;

i=1;

global M; %input no. of faces

global face_id

times=5; %no. of pics capture for an individual

N=4; %default no. of faces

vid = videoinput('winvideo',1,'YUY2_320x240');

while (1==1)

 choice=menu('System Option',...

 'Generate database',...

 'Recogntion and Tracking',...

 'Exit');

 if (choice==1)

 choice1=menu('Face Recognition',...

 'Enter no. of faces',...

 'Exit');

 if (choice1==1)

 M=input('Enter : ');

 preview(vid);

 while(i<((M*times)+1))

 choice2=menu('Face Recognition',...

 'Capture');

 if(choice2==1)

 g=getsnapshot(vid);

 rgbImage=ycbcr2rgb(g);

 str=strcat(int2str(i),'.jpg');

 fullImageFileName =

fullfile('C:\Users\User\Desktop\graduation

project\test2\database',str);

 imwrite(rgbImage,fullImageFileName);

 grayImage=rgb2gray(rgbImage);

 Dir_name=fullfile(pwd,str);

 imwrite(grayImage,Dir_name);

 i=(i+1);

 end

 end

 closepreview(vid);

 end

 if (choice1==2)

 clear choice1;

 end

 end

 if(choice==2)

 if(isempty(M)==1)

 default=N*times;

 face_id=recognize_face_cam(default);

 else

 faces=M*times;

 face_id=recognize_face_cam(faces);

 end

 end

 if (choice==3)

 close all;

 return;

 end

end

stop(vid);

Face recognition code

function p1 = recognize_face_cam(M)

imaqreset;

close all

clc

vid = videoinput('winvideo',2,'YUY2_320x240');

um=100;

ustd=80;

person_no=0;

times=5;

S=[];

figure(1);

for i=1:M

 str=strcat(int2str(i),'.jpg'

 eval('img=imread(str);');

 subplot(ceil(sqrt(M)),ceil(sqrt(M)),i)

 imshow(img)

 if i==3

 title('Training set','fontsize',18)

 end

 drawnow;

 [irow icol]=size(img);

 temp=reshape(img',irow*icol,1);

 S=[S temp];

end

for i=1:size(S,2)

 temp=double(S(:,i));

 m=mean(temp);

 st=std(temp);

 S(:,i)=(temp-m)*ustd/st+um;

end

figure(2);

for i=1:M

 str=strcat(int2str(i),'.jpg');

 img=reshape(S(:,i),icol,irow);

 img=img';

 eval('imwrite(img,str)');

 subplot(ceil(sqrt(M)),ceil(sqrt(M)),i)

 imshow(img)

 drawnow;

 if i==3

 title('Normalized Training Set','fontsize',18)

 end

end

m=mean(S,2

tmimg=uint8(m);

img=reshape(tmimg,icol,irow);

img=img'

figure(3);

imshow(img);

title('Mean Image','fontsize',18)

dbx=[]; for i=1:M

 temp=double(S(:,i));

 dbx=[dbx temp];

end

A=dbx';

L=A*A';

[vv dd]=eig(L);

v=[];

d=[];

for i=1:size(vv,2)

 if(dd(i,i)>1e-4)

 v=[v vv(:,i)];

 d=[d dd(i,i)];

 end

end

[B index]=sort(d);

ind=zeros(size(index));

dtemp=zeros(size(index));

vtemp=zeros(size(v));

len=length(index);

for i=1:len

 dtemp(i)=B(len+1-i);

 ind(i)=len+1-index(i);

 vtemp(:,ind(i))=v(:,i);

end

d=dtemp;

v=vtemp;

for i=1:size(v,2)

 kk=v(:,i);

 temp=sqrt(sum(kk.^2));

 v(:,i)=v(:,i)./temp;

end

u=[];

for i=1:size(v,2)

 temp=sqrt(d(i));

 u=[u (dbx*v(:,i))./temp];

end

for i=1:size(u,2)

 kk=u(:,i);

 temp=sqrt(sum(kk.^2));

 u(:,i)=u(:,i)./temp;

end

figure(4);

for i=1:size(u,2)

 img=reshape(u(:,i),icol,irow);

 img=img';

 img=histeq(img,255);

 subplot(ceil(sqrt(M)),ceil(sqrt(M)),i)

 imshow(img)

 drawnow;

 if i==3

 title('Eigenfaces','fontsize',18)

 end

end

omega = [];

for h=1:size(dbx,2)

 WW=[];

 for i=1:size(u,2)

 t = u(:,i)';

 WeightOfImage = dot(t,dbx(:,h)');

 WW = [WW; WeightOfImage];

 end

 omega = [omega WW];

end

preview(vid);

choice=1;

if(choice==1)

 g=getsnapshot(vid);

end

rgbImage=ycbcr2rgb(g);

imwrite(rgbImage,'camshot.jpg');

closepreview(vid);

InputImage = imread('camshot.jpg');

figure(5)

subplot(1,2,1)

imshow(InputImage); colormap('gray');title('Input

image','fontsize',18)

input_img=rgb2gray(InputImage);

InImage=reshape(double(input_img)',irow*icol,1);

temp=InImage;

me=mean(temp);

st=std(temp);

temp=(temp-me)*ustd/st+um;

NormImage = temp;

Difference = temp-m;

p = [];

aa=size(u,2);

for i = 1:aa

 pare = dot(NormImage,u(:,i));

 p = [p; pare];

end

ReshapedImage = m + u(:,1:aa)*p;

ReshapedImage = reshape(ReshapedImage,icol,irow);

ReshapedImage = ReshapedImage';

subplot(1,2,2)

imagesc(ReshapedImage); colormap('gray');

title('Reconstructed image','fontsize',18)

InImWeight = [];

for i=1:size(u,2)

 t = u(:,i)';

 WeightOfInputImage = dot(t,Difference');

 InImWeight = [InImWeight; WeightOfInputImage];

end

ll = 1:M;

figure(68)

subplot(1,2,1)

stem(ll,InImWeight)

title('Weight of Input Face','fontsize',14)

e=[];

for i=1:size(omega,2)

 q = omega(:,i);

 DiffWeight = InImWeight-q;

 mag = norm(DiffWeight);

 e = [e mag];

end

kk = 1:size(e,2);

subplot(1,2,2)

stem(kk,e)

title('Eucledian distance of input image','fontsize',14)

MaximumValue=max(e)

MinimumValue=min(e)

Min_id=find(e==min(e));

person_no=Min_id/times;

p1=(round(person_no));

if(person_no<p1 && MinimumValue < 3.8e+04)

 p1=(p1-1);

 display('Detected face number :')

 display(p1)

end

if(person_no>p1 && MinimumValue < 3.8e+04)

 p1=(p1+1);

 display('Detected face number1 :')

 display(p1)

recog_trck()

end

if(MinimumValue > 3.8e+04)

 display('error')

end

if(person_no==p1 && MinimumValue < 3.8e+04)

 display('Detected face number :')

 display(p1)

 recog_trck()

end

stop(vid);

end

Face Tracking code

 function [std_f,mean_f] = recog_trck()

clear all

clc

answer=1;

arduino=serial('COM4','BaudRate',9600);

fopen(arduino);

faceDetector = vision.CascadeObjectDetector();

obj =imaq.VideoDevice('winvideo', 2, 'I420_320x240','ROI', [1

1 320 240]);

set(obj,'ReturnedColorSpace', 'rgb');

figure('menubar','none','tag','webcam');

wait=0;

while (wait<6000);

 wait=wait+1;

 frame=step(obj);

 bbox=step(faceDetector,frame);

 wait;

 if(~isempty(bbox))

 bbox;

 centx=bbox(1) + (bbox(3)/2) ;

 centy=bbox(2) - (bbox(4)/2) ;

 c1=(centx);

 c2=(centy);

 c1;

 c2;

 fprintf(arduino,'%s',char(centx));

 fprintf(arduino,'%s',char(centy));

 end

 boxInserter =

vision.ShapeInserter('BorderColor','Custom',...

 'CustomBorderColor',[255 0 255]);

videoOut = step(boxInserter, frame,bbox);

 imshow(videoOut,'border','tight');

 f=findobj('tag','webcam');

 if (isempty(f));

 [hueChannel,~,~] = rgb2hsv(frame);

rectangle('Position',bbox(1,:),'LineWidth',2,'EdgeColor',[1 1

0]);

hold off

noseDetector = vision.CascadeObjectDetector('Nose');

faceImage = imcrop(frame,bbox);

noseBBox = step(noseDetector,faceImage);

noseBBox(1:1) = noseBBox(1:1) + bbox(1:1);

videoInfo = info(obj);

ROI=get(obj,'ROI');

VideoSize = [ROI(3) ROI(4)];

tracker = vision.HistogramBasedTracker;

initializeObject(tracker, hueChannel, bbox);

time=0;

while (time<600);

 time=time+1;

 frame = step(obj);

 time;

 [hueChannel,~,~] = rgb2hsv(frame);

 bbox = step(tracker, hueChannel);

 pause (.2);

end

time;

release(obj);

release(videoPlayer);

 close(gcf)

 break

 end

 pause(0.05);

end

fclose(arduino);

release(obj);

end

Appendix B : Arduino code

#include <Servo.h>

// Title: Auto Pan-Tilt Servo/Cam Control

// Subject: This Sketch receives X,Y coordinates from srial then

// moves the camera to center of those coordinates.

#define servomaxx 180 // max degree servo horizontal (x) can turn

#define servomaxy 180 // max degree servo vertical (y) can turn

#define screenmaxx 320 // max screen horizontal (x)resolution

#define screenmaxy 240 // max screen vertical (y) resolution

#define servocenterx 90 // center po#define of x servo

#define servocentery 90 // center po#define of y servo

#define servopinx 9 // digital pin for servo x

#define servopiny 10 // digital servo for pin y

#define baudrate 9600 // com port speed. Must match your C++ setting

#define distancex 1 // x servo rotation steps

#define distancey 2 // y servo rotation steps

int valx = 0; // store x data from serial port

int valy = 0; // store y data from serial port

int posx = 0;

int posy = 0;

int incx = 10; // significant increments of horizontal (x) camera movement

int incy = 10; // significant increments of vertical (y) camera movement

Servo servox;

Servo servoy;

short MSB = 0; // to build 2 byte integer from serial in byte

short LSB = 0; // to build 2 byte integer from serial in byte

int MSBLSB = 0; //to build 2 byte integer from serial in byte

void setup() {

 Serial.begin(baudrate); // connect to the serial port

 Serial.println("Starting Cam-servo Face tracker");

 pinMode(servopinx, OUTPUT); // declare the LED's pin as output

 pinMode(servopiny, OUTPUT); // declare the LED's pin as output

 servoy.attach(servopiny);

 servox.attach(servopinx);

 // center servos

 servox.write(servocenterx);

 delay(200);

 servoy.write(servocentery);

 delay(200);

}

void loop () {

 while (Serial.available() <= 0); // wait for incoming serial data

 if (Serial.available() >= 4) // wait for 4 bytes.

 {

 // get X axis 2-byte integer from serial

 //MSB = Serial.read();

 //delay(5);

 LSB = Serial.read();

 //MSBLSB=word(MSB, LSB);

 valx = int(LSB);

 delay(5);

 // get Y axis 2-byte integer from serial

 //MSB = Serial.read();

 //delay(5);

 LSB = Serial.read();

 //MSBLSB=word(MSB, LSB);

 valy = int(LSB);

 delay(5);

 // read last servos positions

 posx = servox.read();

 posy = servoy.read();

 //Find out if the X component of the face is to the left of the middle of the screen.

 if (valx < (screenmaxy / 2 - incx)) {

 if (posx >= 5/*incx*/) posx -= distancex; //Update the pan position variable to move the

servo to the left.

 }

 //Find out if the X component of the face is to the right of the middle of the screen.

 else if (valx > screenmaxy / 2 + incx) {

 if (posx <= 175/*servomaxx-incx*/) posx += distancex; //Update the pan position

variable to move the servo to the right.

 }

 //Find out if the Y component of the face is below the middle of the screen.

 if (valy < (screenmaxx / 2 - incy)) {

 if (posy >= 5)posy += distancey; //If it is below the middle of the screen, update the tilt

position variable to lower the tilt servo.

 }

 //Find out if the Y component of the face is above the middle of the screen.

 else if (valy > (screenmaxx / 2 + incy)) {

 if (posy <= 175)posy -= distancey; //Update the tilt position variable to raise the tilt

servo.

 }

 // Servos will rotate accordingly

 servox.write(posx);

 servoy.write(posy);

 }

}

