
1 
 

Sudan University of Science and Technology  

Collage of Engineering 

Electronics Engineering  

 

 

 

 

A Comparison between Three Legged and Three 

Part Topologies Using Software Defined Network 

 

A Research Submitted in Partial Fulfillment for the Requirements of the 

Degree of B.Sc. (Honors) in Electronics Engineering 

 

 

Prepared By: 

 

• Ethar Tag-Aldeen Babiker Ahmed. 

• Fatma IbnOmer Yousif Salih. 

• Salih Kamal-Aldeen Salih Abdaullah. 

 

 

 

Supervised by: 

Dr. Yassir Obeid Mohammed 

 

 

 

 

 

October 2017 

 

 

 



I 
 

 

 

 قال تعالى:

 ۖ  أَفَلَمِ يَسِيُروا فِي الِأَرِضِ فَتَكُونَ لَهُمِ قُلُوبٌ يَعِقِلُونَ بِهَا أَوِ آذَانٌ يَسِمَعُونَ بِهَا (

الحج الاية    ) الصُّدُورِ فِي الَّتِي الِقُلُوبُ تَعِمَى كِنۖ  وَلَ الِأَبِصَارُ تَعِمَى لَا فَإِنَّهَا

)64( 

 

 

  



II 
 

Dedication 

 

 

To all those who have been supporting us since day one,, 

Our beloved parents, our gracious families, our great friends and 

our kind colleagues. 

Without all those people we could never complete this work, 

much appreciation. 

  



III 
 

Acknowledgement 

 

 

First of all we thank Allah for enlighten us through the this 

journey and to embrace us with his mercy.  

Second of all we would love to thank our dear supervisor Dr. 

Yassir Obeid for supporting us and guiding us all the way and providing 

us with all the advices we needed to complete this thesis.  

And much gratitude for him and his very helpful spirit and 

elegance attitude, we truly appreciate it.  

We also would like to thank Mohmmed Widaa and Hussam Saif 

for helping us and giving us their time and support.  

  



IV 
 

Abstract 

 

Unlike traditional networking methods, software-defined 

networking technology provides a way for many networks to become 

more agile and adaptive as its design helps in addressing the dynamic 

needs for modern networks. This project presents the implementation of 

two different topologies (three-legged and three-part) using SDN, It also 

indicates the key different between traditional and SDN networks and 

demonstrates the benefits of SDN technology considering the presented 

topologies in terms of factors such as: management, security, and 

performance.  

Mininet emulation environment and its components are used. 

POX SDN controllers is used to provide fair comparison and illustrates 

the key differences according to various scenarios. 

 

 

 

 

 

 

 

 

 



V 
 

 

 

 Mininet  POX 

SDN . 

  



VI 
 

Table of Contents 

Dedication ……………………………………………………..….. II 

Acknowledgement …………………………………………...…… III 

Abstract …………………………………………………………… IV 

Abstract in Arabic ………………………………………………… V 

List of Figures …………………………………………………….. VIII                                                                                                                       

List of Tables ……………………………………………………... IX 

List of Abbreviations ……………………………………………... X                                                                                                  

1. Introduction ………………………………………….……….… 2 

1.1 Preview ……………………………………………………….. 3 

1.2 Problem statement ……………………………………………. 5 

1.3 Proposed Solution …………………………………………….. 5 

1.4 Approach ……………………………………………………… 5 

1.5Thesis Outlines ………………………………………………… 5 

2.1 Background …………………………………………………… 9 

2.2.1 History ……………………………………………………… 9 

2.1.2 Definition of SDN ………………………………………….. 11 

2.1.3Software-defined networking vs. traditional networking …… 12 

2.1.4SDN basic concepts and principles ………………………….. 17 

2.1.4.1 Principle …………………………………………………... 17 

2.1.4.2 Components ………………………………………………. 19 

2.1.5 Network Operating System …………………………………. 24 

2.1.6 SDN Switches ………………………………………………. 26 

2.1.7 SDN Controllers …………………………………………….. 26 

2.1.8 OpenFlow API ……………………………………………… 29 

2.2 Related Work1 ………………………………………………... 29 

2.2.1 Topologies and firewall …………………………………….. 29 



VII 
 

2.2.2 SDN implementation ……………………………………….. 36 

3. Approach ……………………………………………………….. 42 

3.1 Introduction …………………………………………………… 43 

3.2 Suggested topologies …………………………………………. 43 

3.3 Rules …………………………………………………………... 52 

4. Results ………………………………………………………….. 55 

4.1Results …………………………………………………………. 56 

4.2 Comparison …………………………………………………… 67 

5. Conclusion ……………………………………………………... 70 

5.1 Conclusion ……………………………………………………. 71 

5.2 Recommendations ………………………………….…………. 71 

References ………………………………………………………… 72 

Appendix A ……………………………………………………….. 1 

Appendix B ……………………………………………………….. 4 

Appendix C ……………………………………………………….. 8 

  



VIII 
 

List of Figures 

Figure 2-1:Selected developments in programmable networking 

over the past 20 years, and their chronological relationship to 

advances in network virtualization (one of the first successful 

SDN use cases)………………………………………………….. 

 

 

 

11 

Figure 2-2: SDN vs. traditional networking…………………….. 16 

Figure 2-3: SDN vs. traditional networking ……………………. 19 

Figure 2-4: SDN Functional Architecture illustrating the data, 

control and application layers and interfaces……………………. 
 

24 

Figure 2-5: three-part and three-legged network topologies in 

traditional network………………………………………………. 

 

31 

Figure 2-6: packets are matched against multiple tables……...… 39 

Figure 2-7:pre-table packet processing …………………………. 39 

Figure 2-8:flow table fields ………………………………….…. 40 

Figure 2-9: Flowchart detailing packet flow through an 

OpenFlow switch ……………………………………………….. 
 

40 

Figure 3-1: Xming ……………………………………………… 46 

Figure 3-2: PuTTy page ………………………………………… 46 

Figure 3-3: VirtualBox …………………………………………. 47 

Figure 3-4: mininet command line terminal and Putty terminal... 48 

Figure 3-5: MiniEdit opening command ……………………….. 49 

Figure 3-6: opening MiniEdit …………………………………... 49 

Figure 3-7:three-legged in MiniEdit…………………………….. 50 

Figure 3-8: three-part in MiniEdit ……………………………… 51 

Figure 3-9: Command to activate POX ………………………… 52 

Figure 4-1: activation of topology and controller ………………. 56 

Figure 4-2: three-legged rules tests …………………………….. 61 

Figure 4-3: three-part rules tests……...…………………………. 66 

 

  



IX 
 

List of Tables: 

Table 2-1: Most popular open source SDN controllers …….…..……..28 

Table 2-2: A comparison of proprietary and non-proprietary SDN 

strategies ……………………………………………………………….38 

Table 3-1: Controller rules ……………………………………...……..53 

  



X 
 

List of abbreviations: 

ACL   Access Control Lists. 

ACL  Anterior Cruciate Ligament. 

ANP  Application Network Profiles. 

API  Applecation Programming Interface. 

ASIC  Application Specific Integrated Circuit. 

ASIC  Applecation Specific Integrated Circuit. 

BGP  Border Gateway Protocol. 

BGP  Border Gateway Protocol 

CPU  Central Processing Unit. 

D-CPI Data-Controller Plane Interface. 

DMZ  DeMilitarized Zone. 

DPI  Deep Packet Inspection. 

DPID     Data Path Identifier. 

ECMP  Equal Cost Multi Path Routing. 

FPGA  Field Programmable Gate Array. 

FSFW Flowspace Firewall. 

GPL  General Public License. 

GUI              Graphical User Interface. 

HA  High-Availability. 

HTTP  Hyper Text Transfer Protocol. 



XI 
 

ICMP  Internet Control Message Protocol. 

IETF           Internet Engineering Task Force. 

IO                Input Output. 

IT  Information Technology. 

JVM  Java Virtual Machine. 

MAC  Media Control Access. 

NAT  Network Address Translate 

 NE   Network Element. 

 NETCONF Network Configuration. 

NFV  Network Functions Virtualization. 

NIC  Network Interface Card. 

NOS  Network Operating System 

NVF  Network Vitalization Function. 

OF-Config  OpenFlow Configuration. 

ONF  Open Networking Foundation. 

ONF  Open Networking Foundation. 

OS  Operation System. 

OSPF  Open Shortest Path First. 

OVS  Open vSwitch. 

 OVSDB Open Virtual Switch Data Base. 



XII 
 

QoS  Quality of Service. 

 RIP  Routing Information Protocol. 

RPC  Remote Procedure Call. 

SDN  Software Defined Networking. 

SSH  Secure Shell. 

SLA  Service Level Agreement. 

TAP  Text Access Point. 

TCP   Transmission Control Protocol. 

TE                Traffic Engineering. 

VLAN        Virtual LAN. 

VRF  Virtual Routing and Forwarding. 

XNC  Extensible Network Controller. 

 

 

 

 

 

 

 

 



XIII 
 

 

 

 

 

 

 

 

 

 

Chapter One 

Introduction 

  



2 
 

Chapter One 

Introduction 

1.1  Preview  

1.2  Problem statement  

1.3  Proposed Solution 

1.4  Approach 

1.5 Thesis Outlines 

  



3 
 

1.1Preview 

Networking has experienced limited innovation over the past 20 

years. This stagnation has led to overly complex and inflexible networks 

that no longer meet business requirements. Software Defined 

Networking (SDN) technology allows engineers to respond quickly to 

changes in business environments. SDN separates the physical 

infrastructure from network control and forwarding functionality, so that 

the network itself becomes more directly programmable. 

A few key points of SDN integration within existing networks are: 

 Network controls are directly programmable so that one can 

completely manage all forwarding functionality, plus other 

network activities. 

 Network intelligence is centralized within SDN controllers, giving 

a single platform to maintain global look at the network. 

 Policy enforcement aims to work on local and broad levels. 

 There is a reliance on open standards, and SDN technologies also 

perform best when developed to operate in vendor-neutral settings 

so it can operate and adjust to specific and existing hardware. 

 SDN simplifies the network design by providing instructions from 

controllers instead of individual devices and protocols, which 

some vendors can set a limit on older networks.  

 Its heart is agile. The systems are designed to grow, move controls 

and adjust when network demands change. This can be due to 

growth or increased need, both at local level or network-wide 

levels. 

 SDN technology solutions are designed to integrate with a variety 

of different software and hardware options. This is a core tent of 

SDN technology. 



4 
 

This design focus helps software defined networking deployment 

address the dynamic needs of modern networks. Those networks still 

considered “conventional” are falling down in environments like data 

centers and large enterprise campuses because they struggle to adjust 

with processing, storage and other networked element needs. 

SDN and NVF (network vitalization function) are probably the hottest 

topics in the field right now,SDN discusses the centralization of the 

controller, while NVF discusses the centralization of Services.Both work 

in parallel to make an open source environment that support innovation. 

SDN is a technology that enables innovation in how we design and 

manage networks. The effort is to make computer networks more 

programmable and manageable as it imposes a centralized architecture 

using a single controller that makes all the decisions. 

As in traditional networks, topology of the network plays a critical role 

in the implementation of the SDN so it should also follow certain 

restraints to avoid attacks and malicious actions.SDN uses topology 

discovery methods which underpins higher level applications and 

services such as routing and forwarding.  

An essential component of each and every network that helps in keeping 

the network secure is the firewalls. There are several ways a firewall can 

be established, each depends on the user needstarting from a very simple 

topology to a highly complicated one each providing a certain level of 

protection and security. Keeping in mind we are not talking about a 

firewall which is only a piece of software which runs on the same 

computer you use to connect to the internet and do your work, but we 

are talking about a physical computer which is a dedicated firewall. 



5 
 

Here in this thesis we discuss the SDN implementation of two network 

topologies, one is three-legged network topology, and the other is three-

part network topology.In both topologies the firewall plays a critical 

role. Detailed comparison between them will be established showing the 

importance and benefits of SDN. 

1.2 Problem Statement 

In conventional networks once the forwarding policy has been 

defined, the only way to make an adjustment to the policy is via changes 

to the configuration of the devices. This has proven restrictive for 

network operators who are keen to scale their networks in response to 

rapid changing network demands. 

1.3 Proposed Solution 

The Use of SDN lead to overcome the introduced problem, as 

SDN has a centralized control of the network using a device called the 

controller that has a global view of the network, which makes it easier to 

adapt to changes in the network. 

1.4 Approach 

After formulating the problem and proposing a solution for it, the 

tools to be used in the process has been specified and then we have to 

learn how it can be used to achieve the goal. 

Finally the intended network topologies is implemented using the tools 

and the comparison is carried out. 

1.5 Thesis Outlines 

Chapter one: overviews the research and states the problem and 

proposed solution. 



6 
 

Chapter two: covers a theoretical background of the proposed work and 

gives an overview of the related work. It also 

presents the basic concept of the sdn. 

Chapter three:the process of implementing and comparing three-legged 

and three-part topology is carried out in details. 

Also a sufficient description of tools and 

technologies used is presented.  

Chapter four: presents result and analyzes them to show what the final 

output of this thesis is. 

Chapter five: provides research conclusion and recommendation. 

 

  



7 
 

 

 

 

 

 

 

 

 

Chapter Two 

Literature Review 

  



8 
 

Chapter Two 

Literature Review 

2.1  Background  

2.2 Related Work 

  



9 
 

2.1 Background 

Designing and managing networks has become more innovative 

over the past few years with the aid of SDN. This technology seems to 

have appeared suddenly but it is actually part of long history of trying to 

make computer networks more programmable. 

2.1.1 History 

The term software-defined networking (SDN) has been coined in 

recent years. However, the concept behind SDN has been evolving since 

1996, driven by the desire to provide user-controlled management of 

forwarding in network nodes. Implementations by research and industry 

groups include Ipsilon (proposed General Switch Management protocol, 

1996), The Tempest (a framework for safe, resource-assured, 

programmable networks, 1998) and Internet Engineering Task Force 

(IETF) Forwarding and Control Element Separation, 2000, and Path 

Computation Element, 2004. Most recently, Ethane (2007) and 

OpenFlow (2008) have brought the implementation of SDN closer to 

reality. Ethane is a security management architecture combining simple 

flow-based switches with a central controller managing admittance and 

routing of flows. OpenFlow enables entries in the Flow Table to be 

defined by a server external to the switch. SDN is not, however, limited 

to any one of these implementations, but is a general term for the 

platform. [2] 

SDN was originally created in response to demand from large data 

centers which have found problems coping with totally unpredictable 

traffic patterns. Those traffic patterns would cause very high demand on 

particular resources that couldn‟t meet with the existing infrastructure. 

So they had two choices, the first is to scale the network infrastructure to 



10 
 

meet the peeks; this solution is not only very expensive but also the 

majority of the network will be underutilized most of the time. 

The second choice is to build the network in such a way it can 

reconfigure itself automatically to cope with these peeks and channel the 

resources to meet with the appropriate demand, and this is what SDN 

does. 

SDN uses a programmatic method where the customer can alter the 

network according to their own business rules to meet those peek and 

demand at a very short notice. 

SDN is ideally suited for: 

 Rapidly changing traffic patterns, in which customers have rapid 

changes in their day-to-day networkload, Such as social 

networkingsites. 

 Large data centers that may have geographically 

disbursedresources and they have to reconfigure their network to 

meet the demand in the specific resource. 

Designing and managing networks has become more innovative over the 

past few years with the aid of SDN. This technology seems to have 

appeared suddenly but it is actually part of long history of trying to make 

computer networks more programmable. 

The history of SDN can be divided into three stages, as shown in Figure 

2-1. Each stage has its own contributions to the history: (1) active 

networks (from the mid-1990s to the early 2000s), which introduced 

programmable functions in the network to enable greater to innovation; 

(2) control and data plane separation (from around 2001 to 2007), which 

developed open interfaces between the control and data planes; and (3) 

the OpenFlow API and network operating systems (from 2007 to around 



11 
 

2010), which represented the first instance of widespread adoption of an 

open interface and developed ways to make control-data plane 

separation scalable and practical.[1] 

Figure 2-1: Selected developments in programmable networking over 

the past 20 years, and their chronological relationship to advances in 

network virtualization (one of the first successful SDN use cases). 

 

Figure 2-1     Selected developments in programmable networking. 

2.1.2 Definition of SDN 

Open Networking Foundation (ONF) definition of SDN: “In the 

SDN architecture, the control and data planes are decoupled, network 

intelligence and state are logically centralized, and the underlying 

network infrastructure is abstracted from the applications.” [2] 

Also Nick Mckeown - professor in electrical engineering and computer 

science department in Stanford universitydefines Software Defined 

Networking as: [3] a network in which the control plane is physically 

separate from the forwarding plane. And a single control plane controls 

several forwarding devices. 

 



12 
 

2.1.3 Software-defined networking vs. traditional networking 

Today, business and technical network requirements include 

enhancing performance and realizing broader connectivity. Companies 

have to meet more and more industry-specific security regulations and 

there is a growing demand for mobility. In order to comply with all of 

these criteria, networking protocols have evolved significantly over the 

last few decades. However, the way traditional networks are set up, 

deploying one protocol to realize these needs organization-wide is quite 

the challenge.  

The traditional approach to networking is characterized by two main 

factors:    

i. Network functionality is mainly implemented in a dedicated 

appliance. In this case, „dedicated appliance‟ refers to one or 

multiple switches, routers and/or application delivery controllers. 

ii. Most functionality within this appliance is implemented in 

dedicated hardware. An Application Specific Integrated Circuit 

(ASIC) is often used for this purpose.   

Organizations are increasingly confronted with the limitations that 

accompany this hardware-centric approach, such as:   

• Traditional configuration is time-consuming and error-prone: 

Many steps are needed when a network administrator needs to add or 

remove a single device in a traditional network. First, he will have to 

manually configure multiple devices (switches, routers, firewalls) on a 

device-by-device basis. The next step is using device-level management 

tools to update numerous configuration settings, such as ACLs, VLANs 

and QoS. This configuration approach makes it that much more complex 

for an administrator to deploy a consistent set of policies. As a result, 



13 
 

organizations are more likely to encounter security breaches, non-

compliance with implications.So that the highly administrative hassle 

that is traditional configuration interferes with meeting business 

networking standards. 

• Multi-vendor environments require a high level of expertise: 

The average organization owns a variety of equipment of different 

vendors. To successfully complete a configuration, an administrator will 

therefore need extensive knowledge of all present device types.   

• Traditional architectures complicate network segmentation: 

A development further complicating networking matters, is the 

connectivity evolution that is currently taking place. In addition to 

tablets, PCs and smartphones, other devices such as alarm systems and 

security cameras will soon be linked to the internet. The predicted 

explosion of smart devices is accompanied by a new challenge for 

organizations: how to incorporate all these devices of different vendors 

within their network in a safe and structured manner.  Many traditional 

networks place all types of devices in the same zone. In case of a 

compromised device, this design risks giving external parties access to 

the entire network. This can be hackers exploiting the internet 

connection of smart devices or vendors who can remotely log onto their 

devices. In both cases, there is no apparent reason for giving them access 

to all network components. However, the administrative hassle described 

earlier makes network segmentation a complex process and quickly 

leads to network clutter.   

In conclusion, to overcome these and other traditional networking 

limitations, the time has come to introduce a new perspective on network 

management.   



14 
 

 

• TRADITIONAL NETWORKING-basics in light of SDN 

The control plane is responsible for configuration of the node and 

programming the paths to be used for data flows. Once these paths have 

been determined, they are pushed down to the data plane. Data 

forwarding at the hardware level is based on this control information. 

i. This networkconfiguration we consider traditional is still used by 

many networks today. There are two main factors that determine 

the traditional layout: 

ii. Functionsin the network are typically implemented in a dedicated 

device for each purpose. These devices include switches, routers, 

and application delivery controllers. 

iii. Functionality within each device is executed in a specific piece of 

dedicated hardware. This will often make the use of application 

specific integrated circuits. 

Traditional network devices have a control plane that gives them desired 

information which they use to create a forwarding table, and the data 

plane references this forwarding tables to make decisions. 

Packetsdelivered to the device are then sent based on the control‟s plane 

rules, and both of these planes exist within the network device itself. 

Development of traditional network requires specific, planned steps that 

tend to require an IT administrator to be present even during 

maintenance. Traditional networking often require manual configuration 

of the devices on a device-by-device basis before network management 

tools can be applied for device-level management. 



15 
 

If a traditional network uses hardware from multiple vendors, each 

individual element will need to be configured to work with other devices 

and deployments, but much of this work will have to occur on a case-by-

case basis with direct configuration. 

• Software-defined networking-in light of SDN traditional 

networking 

Software-defined networking (SDN) is the virtualization of the network 

by decoupling hardware from software, as shown in Figure 2.2 making 

adjustments on the two devices planes. 

The control plane is removed from the device and is placed on what is 

essentially a layer of networking software. The data stays on the 

networked hardware so that it can still execute commands and direction 

from the control plane. 

What this means for the network is that the hardware no longer controls 

data paths, allowing centralized software that makes decisions and 

creates a virtual control mesh in the network to be build out. 

SDN allows a network to be flexible to change data handling and flow 

when the business needs change. If network automation controls, such as 

APIs are also integrated then the SDN controller can deliver instructions 

throughout the network quickly and without the need to understand 

command line and code for each different vendor whose equipment is 

used. 



16 
 

 

Figure 2-2                    SDN vs. traditional networking 

• Benefits of SDN over traditional networking: 

There are two big business benefits to consider when making the 

traditional networking vs. software-defined networking choice: 

Data flow optimization: 

Data flow plays a significant role in networking,SDNs perform better for 

business needs because the SDN controller is able to identify and use 

multiple path per data flow. Traditional networks are typically stuck 

with a single path and don‟t allow you to split traffic across multiple 

nodes. Using multiple nodes and adjusting flow based on traffic size can 

help maintain a quick network and prevent a slowdown. 

Both need to have a network configuration that supports business goals: 

Traditional networks are configured through largely manual processes 

on a per-device scheme. The core of SDN support is that devices can be 

automatically configured and adjusted, improving network 

responsiveness and preventing from taking up all of the time of the 

system administratorwhenever any network element needs to change. 

Thus, flexibility and speed are two big differences between SDN and 

traditional networking. 



17 
 

In addition, SDN is usually able to deliver significant cost savings by 

simply reducing the amount of spend you have to put toward 

infrastructure-when optimizing devices to sometimes run multiple 

different use cases dynamically as the traffic changes leading to the most 

out of existing devices without needing to purchase and install new 

equipment for each possible use case. 

With these cost savings also comes increased visibility, because the 

system administrators are working from a view point of overall network 

functionality. They can then adjust resources where needed, changes and 

flow changes so that the network automatically scales and adjusts. Pre-

stage commands for quick responses and even automate control  

2.1.4 SDN basic concepts and principles 

This sub-section introduces the principles of SDN, and the 

functional entities and relationships that form the SDN architecture. 

SDN basic components are shown in Figure 2-3 

2.1.4.1 Principles 

From this and other sources, several basic principles of SDN may 

be adduced.SDN focuses on four key features: 

Separation: 

A fundamental characteristic of the SDN architecture is the physical 

separation of the control plane from the forwarding (data) plane.This 

principle calls for separable controller and data planes. However, it is 

understood that control must necessarily be exercised within data plane 

systems. The D-CPI between SDN controller and network element is 

defined in such a way that the SDN controller can delegate significant 

functionality to the NE, while remaining aware of NE state. 



18 
 

Conventional routers and switches embody a tight integration between 

the control and data planes. This coupling made various network-

management tasks, such as debugging configuration problems and 

predicting or controlling routing behavior, exceedingly challenging. To   

address these challenges, various efforts to separate the data and control 

planes began to emerge. [3] 

Centralization: 

 In comparison to local control, a centralized controller has a 

broader perspective of the resources under its control, and can 

potentially make better decisions about how to deploy them. 

Scalability is improved both by decoupling and centralizing 

control, allowing for increasingly global but less detailed views of 

network resources. SDN controllers may be recursively stacked 

for scaling or trust boundary reasons 

 Openness: open interfaces between the devices in the control 

plane and those in the data plane. 

 Programmability. 

 
Figure 2-3                     SDN overview 

 

 



19 
 

2.1.4.2 Components 

Data plane: 

The data plane comprises a set of one or more network elements, each of 

which contains a set of traffic forwarding or traffic processing resources. 

Resources are always abstractions of underlying physical capabilities or 

entities. 

Data plane functions: 

• Forwards traffic to the next hop along the path to the selected 

destination network according to control plane logic.  

• Data plane packets go through the router.  

• The routers/switches use what the control plane built to dispose of 

incoming and outgoing frames and packets. 

Control plane: 

The control plane comprises a set of SDN controllers, each of which has 

exclusive control over a set of resources exposed by one or more 

network elements in the data plane (its span of control). 

The minimum functionality of the SDN controller is to faithfully execute 

the requests of the applications it supports, while isolating each 

application from all others. To perform this function, an SDN controller 

may communicate with peer SDN controllers, subordinate SDN 

controllers, or non-SDN environments, as necessary. A common but 

non-essential function of an SDN controller is to act as the control 

element in a feedback loop, responding to network events to recover 

from failure, re-optimize resource allocations, or otherwise. 

 

 



20 
 

Data plane functions: 

      •   Makes decisions about where traffic is sent. 

      • Control plane packets are destined to (like telnet) or locally    

originated by the router itself .                               

• The control plane functions include the system configuration, 

management, and exchange of routing table information. 

• The route controller exchanges the topology information with 

other routers and constructs a routing table based on a routing 

protocol, for example, RIP, OSPF or BGP. 

• Control plane packets are processed by the router to update the 

routing table information.  

• It is the Signaling of the network. 

• Since the control functions are not performed on each arriving 

individual packet, they do not have a strict speed constraint and 

are less time-critical.  

Application plane: 

The application plane comprises one or more applications, each of which 

has exclusive control of a set of resources exposed by one or more SDN 

controllers. Additional interfaces to applications are not precluded. An 

application may invoke or collaborate with other applications. An 

application may act as an SDN controller in its own right. 

Manager: 

Each application, SDN controller and network element has a functional 

interface to a manager. The minimum functionality of the manager is to 

allocate resources from a resource pool in the lower plane to a particular 

client entity in the higher plane, and to establish reachability information 

that permits the lower and higher plane entities to mutually 



21 
 

communicate. Additional management functionality is not precluded, 

subject to the constraint that the application, SDN controller, or NE have 

exclusive control over any given resource. 

Administration: 

 Each entity in a north-south progression through the planes may belong 

to a different administrative domain. The manager is understood to 

reside in the same administrative domain as the entity it manages. 

Open Programmable Interfaces: 

A standardized programmable interface, OpenFlow [4], was adopted by 

the industry in order to program multiple flavors of forwarding devices 

(i.e. ASIC, FPGA-based, Network Processors, virtual switches) thereby 

abstracting the complexity of the underlying hardware. [6] 

Several interfaces are identified in Figure 2-4: the Control-Data Interface 

(also known as the Southbound API such as OpenFlow, OF-Config, 

OVSDB, NETCONF), the Application-Control Interface (also known as 

the Northbound API such as REST API) and the East-West Interface 

between Controllers. The East-West interface refers to the bidirectional 

and lateral communication between SDN controllers. It is noted that in 

[6], Jarschel et al. propose a definition referring to the east interface for 

communication between SDN controllers and the west interface for 

communication between an SDN controller and other, non-SDN control 

planes. The interoperability between SDN and legacy control planes is, 

however, out of scope of this work. 

ONF protocols: 

A companion interface to the programmable interface described above is 

the switch management protocol (e.g. OF-Config, OVSDB). Such a 

protocol is required to standardize the configuration and management 



22 
 

functions of the programmable hardware. For instance, the OF-Config 

protocol is used to configure and manage an OpenFlow capable switch 

as well as multiple logical switches that can be instantiated on top of the 

device. Internally, the protocol uses NETCONF as the transport protocol 

that defines the set of operations over a messaging layer (RPC), which 

exchanges the switch configuration information between the 

configuration point and the packet forwarding entity. [7] 

Third-party Network Services: 

 SDN allows the integration of third-party network services in the 

architecture. In a monolithic SDN controller implementation (e.g. RYU, 

POX, NOX), these applications are compiled and run as part of the 

controller module while controllers like OpenDayLight allow the 

instantiation of applications at run-time, without restarting the controller 

module. This is analog oust operating systems, where in software 

modules and libraries can be downloaded and integrated within a 

running environment. From a deployment standpoint, this drives 

innovation, allows customization of services, introduces flexibility in the 

overall architecture to adapt to new features , and reduces the cost of 

proprietary services. Depending on the controller implementation, third-

party services can communicate to a controller module via internal APIs 

or open northbound APIs (e.g. REST APIs) supported by the controller. 

Virtualized Logical Networks: 

Virtualizing the SDN components supports multi-tenancy in the 

infrastructure. In a typical SDN network, multiple logical switches can 

be instantiated in a shared physical substrate such that each entity can 

represent individual customers. The goal here is to containerize the SDN 

components thereby guaranteeing customized performance, security, and 



23 
 

Quality of Service (QoS) based on customer requirements. While SDN 

is developing in the IT community, Network Functions Virtualization 

(NFV) is being developed by the Telecommunications industry. NFV 

uses IT virtualization technologies to virtualize network 

functions/services previously implemented in proprietary hardware 

appliances. This supports dynamic and agile network service provision. 

NFV and SDN are closely connected offering a software-based 

networking paradigm. 

Centralized Monitoring Units: 

Although not unique to the SDN architecture, a centralized monitoring 

unit unifies the analytical capabilities of the infrastructure and creates a 

feedback control loop with the controller to automate updates to the 

networking function. For example, a TAP monitoring unit can feed data 

traffic to Deep Packet Inspection (DPI) engines that can assess the data 

traffic, identify attack patterns and then programmatically update the 

forwarding table to block attack traffic. While the SDN entities can 

internally include several monitoring capabilities, a typical network 

deployment would consider deploying dedicated monitoring solutions in 

the infrastructure. For example, the OpenFlow protocol provides 

statistical and status information about the switch and its internal state. 

 



24 
 

Figure 2-4            SDN Functional Architecture 

 

 Figure 2-4 represent theSDN Functional Architecture illustrating the 

data, control and application layers and interfaces. 

2.1.5 Network Operating System 

• Network elements has two components: 

– OpenFlow client. 

– Forwarding hardware with flow tables. 

• The SDN controller must implement the network OS 

functionality 

– Provide abstraction to the upper layer. 

– Provide control to the underlying hardware. 

– Managing the resources. 

 

 

 



25 
 

OS vs. NOS: 

OS: 

• Resources managed 

– CPU, memory, disk, IO devices, etc. 

• Applications: 

– User programs that use the resources 

• OS functionality (abstraction): 

– CPU virtualization 

– Memory virtualization 

– IO virtualization 

– File systems 

NOS: 

• Resources managed 

– Connected switches/routers/NICs 

• Applications 

– Firewall, migration, network virtualization, NAT, TE, 

etc. 

• NOS functionality 

– Network abstraction – this is a new concept that is not 

well understood. 

SDN switches are controlled by a network operating system (NOS) that 

collects information using the API and manipulates their forwarding 

plane, providing an abstract model of the network topology to the SDN 

controller hosting the applications. The controller can therefore exploit 

complete knowledge of the network to optimize flow management and 

support service-user requirements of scalability and flexibility. 



26 
 

2.1.6 SDN Switches 

OpenFlow switch is a software program or hardware device that 

forwards packets in SDN environment. OpenFlow switches are either 

based on the OpenFlow protocol or compatible with it. 

Open vSwitch the „v‟ stands for virtual. This is a virtual OpenFlow 

switch. Apart from OpenFlow, it also support other switch management 

protocols 

OpenFlow switch identification: 

EachOpenFlow instance on a switch is identified by a Datapath 

Identifier. This is a 64-bit number determined as follows according to 

the OpenFlow specifications:  

“The datapath_id field uniquely identifies a datapath. The lower 48 bits 

are intended for the switch MAC address, while the top 16 bits are up to 

the implementer. An example use of the top 16 bits would be a VLAN 

ID to distinguish multiple virtual switch instances on a single physical 

switch.” [10] 

Every OF switch should have a datapath id (DPID), which should be 

available at the controller when the switch registers with it. The DPID 

should be unique for every switch that is to be handled by a single 

controller.Each time a new OpenFlow switch connects to controller, it 

have to send its own information including DPID port statistics to the 

controller. 

2.1.7SDN Controllers 

The control plane is an essential part of the SDN architecture, so it 

is very important to give proper attention to any proposal or design of an 

SDN controller. During the past few years, several controllers have been 



27 
 

developed and several studies have been done to evaluate, compare and 

test the performance of these controllers. 

The followings are Examples of the most common SDN controllers are 

those and additionalcontroller are shown in Table 2-1. 

• NOX:  is a first-generation OpenFlow controller, it‟s one of the 

most widely used controllers because it is stable, open source 

and it supports OpenFlow. It is available in two versions either 

NOX-Classis which is implemented in C++ or Python but is no 

longer supported. Or either, a newer supported version of NOX 

which is implemented in C++ only but with a cleaner code 

base and better performance.  

• POX:  is essentially the same as NOX but it‟s implemented in 

Python only and it‟s relatively easier to deal with it in terms of 

writing and reading codes.It is a good choice if the 

performance is not an issue.  

• Ryu:  is an open-source Python controller that supports 

OpenFlow and OpenStack.It had relatively poor performance 

with respect to other commercial grade controllers.  

• Floodlight is an open-source Java controller that supports 

OpenFlow and is maintained by Big Switch Networks. It‟s 

considered the optimum choice for multi-tenant‟s cloud 

environment because is supports OpenStack and this type of 

implementation, it is also suitable when production level 

performance is needed and it is well documented, however, it 

has a steep learning curve.  

• OpenDayLight: The OpenDayLight Project is a recent 

opensource project founded by some of the big vendors such 

as: Big Switch Networks, Brocade, Cisco, Citrix, Ericsson, HP, 



28 
 

IBM, Juniper Networks, Microsoft, NEC, Red Hat and 

VMware. OpenDayLight is developed as a modular, pluggable, 

and flexible controller platform. This controller is completely 

programmed and it is integrated within its own Java Virtual 

Machine (JVM). Hereby, it can be deployed on any hardware 

and operating system platform that has Java environment 

installed. Chapter 3 Background 22 Table 2-1 shows a 

summary of some properties of some controllers.    

Table 2-1: most popular open source SDN controllers 

 

 

 



29 
 

2.1.8 OpenFlow API 

Before the emergence of OpenFlow, the ideas underlying SDN 

faced a tension between the vision of fully programmable networks and 

pragmatism that would enable real-world deployment. OpenFlow struck 

a balance between these two goals by enabling more functions than 

earlier route controllers and building on existing switch hardware 

through the increasing use of merchant-silicon chipsets in commodity 

switches.  Although relying on existing switch hardware did somewhat 

limit flexibility, OpenFlow was almost immediately deployable, 

allowing the SDN movement to be both pragmatic and bold. The 

creation of the OpenFlow API51 was followed quickly by the design of 

controller platforms such as NOX37 that enabled the creation of many 

new control applications.  

2.2 Related Work 

2.2.1 Topologies and firewall 

Firewall topologies include Simple Dual-Homed Firewall 

(thesimplest and possibly most common way to use a firewall. The 

Internet comes into the firewall directly), Two-Legged Network 

(exposes DeMilitarized Zone (DMZ), which is a computer host or small 

network imposed as a "neutral zone" between a private network and the 

outside public network. It prevents outside users from getting direct 

access to a server which contains data), Three-Legged Network, Three-

part Network, and so on. 

This thesis discusses two firewall topologies, three-legged topology and 

three-part topology. Shown in figure 2-5. Three-legged has a single 

firewall while three-part has two firewall devices. 



30 
 

In the former, the firewall is configured to route packets between the 

outside world and the DMZ differently than between the outside world 

and the private network. 

One of the most important features of this topology is that it can be 

modified to work as the Simple Dual-Homed Network. The primary 

disadvantage of the three-legged firewall is the additional complexity. 

Access to and from the DMZ and to and from the internal network is 

controlled by one large set of rules. 

Thelatter has the following three specialized layers: 

• DMZ. 

• A router that acts as an inside packet filter between the 

corporate internetwork and DMZ. 

• Another router that acts as an outside packet filter between the 

DMZ and the outside internetwork. 

These two topologies will be implemented and discussed in an 

attempt to meet security and performance requirements. 

 

Three-legged network topology 



31 
 

 

 

Three-part network topology 

Figure 2-5            the two network topologies under investigation 

                              SDN Switch a New Form of a Firewall 

SDN switches can behave like a firewall. Many people anticipated that 

enterprise organizations would adopt Software Defined Network (SDN) 

technologies later than service providers or multi-tenant data centers and 

cloud service providers. We are now seeing more use of Network 

Functions Virtualization (NFV) within enterprises and some enterprises 

are starting SDN pilot projects. As enterprises consider how to utilize 

SDN technologies in their data center environments, they start to 

consider what new security capabilities SDN can provide. SDN switches 

can drop packets for flows that are not permitted by the controller.  

Software Defined Networking evolved from the concept of decoupling 

the lower-layer packet/frame forwarding from the control function that 

intelligently determines how application traffic should be transported. 

The separation of the control plane from the forwarding plane allows 

networks to facilitate packet processing in new and innovative ways and 



32 
 

created a new paradigm for network virtualization. SDN has opened up a 

whole new world of network design and enabled creative approaches to 

networking. SDN has also caused us to reconsider how security policies 

are enforced within the network. 

In the OpenFlow SDN model, the flows within a network switch are 

placed there by an OpenFlow controller. If a flow is not present (table-

miss), then the switch punts to the controller to ask for help determining 

how the packet should be forwarded. The OpenFlow technical 

specifications state that if the table-miss flow entry is not present in the 

switch and there is no rule to send the packet to the controller, then the 

packet is dropped by the switch. If the switch punts the packet to the 

controller, then the controller processes the Packet-in message and 

determines the fate of that packet. The controller then determines if the 

packet should be forwarded or dropped. This behavior sounds like the 

SDN switch is behaving like a firewall and enforcing the “that which is 

not included in the flow table, is dropped” standard security policy. This 

can be thought of as similar to the default “Fail-Safe Stance ” that was 

also mentioned in the book Building Internet Firewalls , by Elizabeth D. 

Zwicky, Simon Cooper and D. Brent Chapman. On first blush, this 

sounds like a great new form of security and makes it seem like every 

port of an SDN switch can behave like a firewall. 

Many SDN switches behave much like a standard Ethernet switch and 

flood traffic out all ports for Ethernet frames destined to broadcast, 

multicast or unknown MAC addresses. Most SDN switches flood normal 

ARP traffic like a typical hardware-based Ethernet switch. In most 

situations, the default behavior for an SDN switch is to act like an 

Ethernet bridge, or learning switch. However, it is possible to put an 



33 
 

SDN switch into an explicit forwarding mode whereby only flows 

allowed or configured/pushed by the controller are allowed. 

If every Ethernet switch in the environment could perform like a 

traditional firewall, it would change the way security policy is 

implemented in a networked environment. Imagine if every Ethernet 

switch were a multi-port firewall, then firewall policies could be 

implemented throughout the network at every ingress switch port and on 

every link between switches. There would be firewalls for every server, 

desktop, every link, and the firewall policy would be implemented by a 

controller that maintained a global view of the current application traffic 

and what traffic should be permitted. Having security policy enforced 

throughout the environment would mean the complete erosion of the 

security perimeter. Having that many security policies implemented and 

maintained manually would be an administrative nightmare. However, 

with a controller architecture, the policy would be created once and then 

pushed down to every network device for enforcement. 

Network slicing is one of the popular use cases of SDN. A network can 

be logically carved up into logically separated networks overlaid upon 

the same physical network hardware. Network slicing is a popular use 

case within universities because they would like to separate different 

departments (admissions, finance, residence halls, computer science 

departments, etc.) into their own logical network enclaves. The SDN can 

separate the networks similar toVirtual Routing and Forwarding (VRF) 

instances may be used to separate layer-3 forwarding. This can also be 

done by adding a slicing layer between the control plane and the data 

plane, thus making the security policies slice-specific. Enforcement of 

strong isolation between slices in “Flowspace” means that actions in one 

slice do not affect another slice. For more information look at Flowvisor 



34 
 

and the FSFW: Flowspacefirewall. An example of this would be 

theCisco Extensible Network Controller (XNC) with the Networking 

Slicing application. In these ways, SDNs can provide the “Diversity of 

Defense” concept which was also mentioned in Building Internet 

Firewalls. 

The key concept to the feasibility of using an SDN-enabled switch as a 

firewall is the state that it would maintain the application traffic flows. 

Access Control Lists (ACLs) are not stateful and do not have awareness 

of when the connection started or ended. Even with the good-old Cisco 

ACL CLI parameter “established”, the ACLs became only slightly 

“statefulish”. ACLs typically do not pay any attention to the three-way 

TCP handshake (SYN, SYN-ACK, and ACK) or the FIN/ACK session 

teardown. Stateful firewalls, on the other hand, observe the session 

establishment and close process and apply their policies directionally 

using Stateful Inspection. 

So, how do modern SDN products implement security and could they 

behave like a traditional firewall? When it comes to Cisco‟s Application 

Centric Infrastructure (ACI), the Nexus 9000 switches operate in a 

stateless manner. The Application Network Profiles (ANPs) configured 

in the Application Policy Infrastructure Controller (APIC) are deployed 

to the switches in the ACI fabric in a stateless fashion. Therefore, an 

ACI system would not be able to operate with the same level of security 

as a standard stateful firewall. This is why ACI allows for Layer-4-to-7 

Service Graphs to be configured and integrated into the ACI fabric. 

When it comes to OpenvSwitch (OVS), it has supported only stateless 

matches on policies. It is possible to configure OVS policies that match 

TCP flags or configure rules to use a “learn” method to establish the 



35 
 

return flow of traffic. However, neither of these methods are stateful like 

a traditional stateful inspection firewall. There is work being done by the 

Open vSwitch community to have connection tracking ( Conntrack ) to 

allow the OVS to notify a Netfilter (think ip_tables) connection tracker 

and maintain a state table of existing sessions. 

Project Floodlight can configure ACLs, however, these also operate like 

a stateless firewall. Floodlight has a Firewall application module that 

enforces ACL rules by inspecting Packet-In behavior. This works in a 

reactive way, with the first packet helping to instantiate the flow and 

traffic is allowed or denied based on the priority-sorted policy rule-set. 

Rules are allows to have overlapping flowspace but the priority creates 

the first-match rule action top-down policy. 

VMware NSX has the ability to configure security policies within the 

SDN environment. NSX for vSphere supports logical switching/routing, 

firewall, load balancing, and VPN functionality. The firewall rules are 

enforced at the vNIC, but the firewall policy is associated with the VM 

and when the host moves, so does the policy. The NSX Distributed 

Firewall is a kernel loadable module and provides stateful L2/L3/L4 

dual-protocol firewalling and can do anti-spoofing. The VMware NSX 

firewall polices operate like a Cisco router with a reflexive ACL. When 

it comes to Equal Cost Multi-Path (ECMP) designs or High-Availability 

(HA), the NSX Edge Services Gateway firewall functions in a stateless 

manner. In other words, stateful firewalling and load balancing or NAT 

are not supported by the Edge Services Gateway with an HA or ECMP 

topology. 

There are groups who are working to try to create SDN systems that 

provide robust security policy enforcement. Research projects like 



36 
 

FlowGuard and a paper titled “An OpenFlow-Based Prototype of SDN-

Oriented Stateful Hardware Firewalls” written by Jacob Collings at the 

University of North Dakota show that there may be potential to establish 

state fulness within the SDN network devices. 

From this analysis, we can conclude that SDN switches that obtain their 

forwarding policies from a controller are not necessarily stateful. These 

SDN-enabled switches are, therefore, unable to provide the same level of 

protection as a stateful firewall. It is important to ask the vendor about 

the details of the state fulness of their firewall capabilities in their SDN 

solutions and understand how they operate. Because many of these SDN 

systems may operate in a stateless way, if the organization requires 

stateful firewall protections, then SDN policies must be used  to steer the 

traffic with service-chaining toward a stateful packet inspection Network 

Functions Virtualization (NFV) firewall. 

2.2.2 SDN implementation 

Strategies: 

i. Proprietary SDN Strategy : 

One of the two distinctive SDN tends in networking world with respect 

to SDN is to have products with proprietary software components. This 

approach gives importance to programmability but puts restrictions to 

the openness by having propriety components in a programmable 

infrastructure. The customers are interested in the programmability of 

computer networks while the industry is deciding about the placement of 

OpenFlow and SDN in the current networksystem. Therefore, while 

OpenFlow and SDN are important developments , there‟s thing that will 

get customers excited is exposing the intelligence that‟s already there in 

the network and be able to program networks as per their needs. Having 

such an approach means that instead of dealing with protocol 



37 
 

configuration such as border gateway protocol (BGP) and virtual local 

area networks (VLAN) setups, a user just passes on a network the 

requirement of a connection between two points under certain service 

level agreement (SLA). The underlying network will make the 

arrangement to complete this networking task. All industrial players in 

the networking world agree on the requirement of programmability, but 

they differ in how this programmability should practically be 

implemented. Some hardware vendors want to use proprietary 

components in implementing programmability but the other type of 

vendors may consider it a compromise on being open source. [8] 

Many vendors, such as VMware and Cisco, sell proprietary SDN 

controllers along with higher-level software applications as a part of 

their programmable networking system. Cisco offers, in particular, a 

range of products to suite to various levels of networking 

ii. Open Source and Non-proprietary : 

The flowers of the open source and non-proprietary SDN believe that the 

main purpose of SDN survives by being available to all as an open 

source provision with no hidden proprietary components so that the 

independent use and development of SDN could grow further. Some 

hardware vendors might like the notion of being open source or not, but 

the competition in the market is forcing them to consider open source 

options as their competitor shave already found a fit of the open standard 

in their product lines. Based on this aspect, NSX product of VMware is 

capable of creating a virtual network overlay that is loosely coupled to 

the physical network underneath. Similarly, OpenContrail by Juniper is 

an SDN controller freely available through an open-source license. A re-



38 
 

branded version comes with services and support on per socket cost 

basis. 

The open programmable SDN product suite by Big Switch enables easy 

adaptation of new network applications in an easier way as compared to 

the adaptation of new applications with traditional and non-

programmable networks. This hardware platform-independent suite 

supports open standards and APIs including OpenFlow. HP also backs 

up open standard and offers an OpenFlow-enabled SDN controller and 

switches. 

A comparison between proprietary and non-proprietary SDN strategies 

is shown in tabular format in table 2-2. 

Table 2-2: proprietary vs. non-proprietary SDN strategies. 

 

Firewall implementation: 

In a recent work simple firewall is implemented in SDN using 

OpenFlow. 

One can think of the control plane as being the network‟s “brain” as it is 

responsible for making all decisions, while the data plane is what 

actually moves the data. 

The SDN control plane is implemented by the “controller” and the data 

plane by “switches”. The controller acts as the brain of the network, and 

sends rules to the switches on how to handle traffic. OpenFlow has 

emerged as the de facto SDN standard and specifies how the controller 



39 
 

and the switches communicate as well as the rules controllers install on 

switches. 

Mininet, pox and OpenFlow 1.3 -the version the OpenFlow protocol 

supported within the Mininet environment- used to establish the 

firewall.Figure2-6and Figure 2-7 explain the operation of OpenFlow 

switches.  

 

Figure 2-6           Packets are matched against multiple tables 

 

Figure 2-7                  Pre-table packet processing 

When the packet comes into an OpenFlow switch, the switch will 

reference a table containing “rules” and “actions”. This flow tablelooks  

like the one shown in Figure2-8and it contains the fields showed in 

Figure 2-7. 

 

Figure 2-8                   Flow table fields 



40 
 

Figure 2-9 below shows the flow of execution that follows.  

 

 Figure 2-9        Packet flow through an OpenFlow switch Flowchart. 

 

If an ofp_packet_in does not match any of the flow entries and the flow 

table does not have a “table-miss” flow entry, the packet will be 

dropped.  If the packet matches the “table-miss” flow entry, it will be 

forwarded to the controller.  If there is a match-entry for the packet, the 

switch will execute the action stored in the instruction field of the 

corresponding flow table. 

 

  



41 
 

 

 

 

 

 

 

 

 

 

 

Chapter Three 

Approach 

  



42 
 

Chapter Three 

Approach 

3.1  Introduction   

3.2  Suggested topologies  

3.3  Rules 

  



43 
 

3.1 Introduction 

In this chapter research methodology will be demonstrated in a 

step-by-step basis using Mininet emulator tool, with the use of the POX 

controller and OpenFlow switches to implement the three-legged and the 

three-part network topology. 

Mininet will be operated in a VirtualBox –Linux environment to enable 

us to have the privileges that Linux have while other operating system 

haven‟t to allow us to implement the topologies-presented earlier using 

SDN technology to compare them and extract the advantages that SDN 

provides. 

Alsoall the used tools and components will be explained to give the 

reader a good overview so that even a common person with no previous 

knowledge knows what this thesis is about, then it will be taken to a 

higher level that needs back knowledge of various concepts that only a 

developer/engineer can understand. 

3.2 Suggested topologies 

i. Three-legged topology:  

Three-legged topology-as its name proclaims-has three-legged,all 

connected to one single firewall that apply network policies to protect 

the internal network in the first place. 

One of the legs represents the DMZ area, the two others represents 

Intranet and Internet. 

DMZ contains servers that are frequently accessed by the Internet 

(untrusted) clients. 

Intranet implies the network in need for protection because it contains 

sensitive data. 



44 
 

 

ii. Three-parttopology: 

As the name suggests it, consist of three parts managed by two firewalls 

(Dual-firewall topology). 

Middle part is the DMZ, the two bounding areas are the Internet and the 

Intranet. 

The external firewall connects the Internet with the DMZ, while the 

internal firewall connects the DMZ to the internal network. 

 Operating Environment : 

Oracle VM VirtualBox : 

VirtualBox is a powerful x86 and AMD64/Intel64 virtualization product 

for enterprise as well as home use.It is a hypervisor used to run operating 

systems in a virtual machine, on top of the existing operating system. 

VirtualBox has an ever growing list of features. It comes with 

aGUI(graphical user interface), as well as headless and SDL command-

line tools for managing and running virtual machines. In order to 

integrate functions of the host system to the guests, including shared 

folders and clipboard, video acceleration and a seamless window 

integration mode, guest additions are provided for some guest operating 

systems.Not only is VirtualBox an extremely feature rich, high 

performance product for enterprise customers, it is also the only 

professional solution that is freely available as Open Source Software 

under the terms of the GNU General Public License (GPL) version 2.  

VirtualBox runs on Windows, Linux, Macintosh, and Solaris hosts and 

supports a large number of guest operating systems. 

 



45 
 

Mininet emulator: 

Mininet is an open-source network emulator which creates a network of 

virtual hosts, switches, controllers, and links. Mininet hosts run standard 

Linux network software, and its switches support OpenFlow for highly 

flexible custom routing and Software-Defined Networking. It is 

designed to support research and education in the field of SDN systems 

as it creates a simulated network that runs real software on the 

components of the network so it can be used to interactively test 

networking software. It helps in creating complex custom scenarios 

using the Mininet Python API. 

Mininet provides a simple GUI editor that helps in the implementation 

of network topologies and also provide a code for the illustrated 

topologies. As a conclusion,Mininet combines many of the best features 

of emulators, hardware testbeds, and simulators. 

POX: 

POX is an open source development platform for Python-based 

software-defined networking (SDN) control applications, such as 

OpenFlow SDN controllers. It enables rapid development and 

prototyping. POX started life as an OpenFlow controller but can now 

also function as an OpenFlow switch and can be useful for wiring 

networking software in general.The ultimate goal for POX is to use it to 

create “an archetypal, modern SDN controller.” 

 Configuration: 

Xming: 

At a very early stage the X windows system server (Xming).Figure 3-

1.Must be activated to obtain basic framework for a GUI environment. 



46 
 

Xming allows us to pipe graphics out of our Mininet VM, receive them 

via putty (explained below), and display them via Xming.  

 

Figure 3-1                                Xming 

Putty: 

is an SSH(secure shell) /Telnet client that gives a keen terminal to talk to 

the Mininet VM.it can also do SSH X11 forwarding  which is important 

for getting XTerms running in the VM on the host (windows in our 

case)desktop. Putty also allows copy/paste features.  

Mininet is loaded into the putty with the host IP address 192.168.56.101 

in our case, and port number 22, and SSH connection type as shown in 

Figure 3-2. 

 

Figure 3-2                               Putty page. 



47 
 

Then Mininet is activated on VirtualBox to start the implementation of 

the two topologies (three-legged and three-part).Figure3-3. 

 

              Figure3-3                        VirtualBox 

Then Mininet terminal opens as shown in Figure 3-4 (A) and all nexts 

step will be done using this terminal and the Putty terminal of Figure 3-4 

(B) with the aid of Linux command line (as we mentioned earlier 

Mininet is a Linux-based environment). 

Figure 3-4 

(A):Mininetcommandline terminal 



48 
 

 

Figure 3-4             (B):Putty terminal 

Logging in with the username “mininet” and password is also “mininet” 

(it will not appear as you type it). 

 Then heading to MiniEditGUI (Figure3-5) using the command shown in 

Figure 3-6 to implement the two topologies that is place in 

/mininet/examples directory. 

 

Figure 3-5                   MiniEdit opening command 



49 
 

 

Figure 3-6                          Opening MiniEdit 

Then the topologies can be implemented in an environment that looks 

like the PacketTracer environment used to demonstrate traditional 

networks. Which contains host, OpenFlow switch, legacy switch, legacy 

router, netlink, and the SDN controller. 

Three-legged topology in SDN: 

The firewall is implemented using an OpenFlow switch that can be 

configure to work as a filter to supervise and monitor packets that come 

in and packets go out.Figure 3-7 shows three-legged topology 

implementation on the MiniEdit. 

 

Figure3-7                        Three-legged in MiniEdit 



50 
 

The switch is directly connected to the POX controller, so it can get the 

rules from the controller to accomplish its forwarding job and to know 

exactly how to deal with each packet type based on the controller‟s 

guide.  

Three-part topology in SDN: 

The same method followed in implementing the three-legged topology 

will be followed to implement the three-part topology as shown in 

Figure 3-8. 

 

Figure3-8                      Three-part in MiniEdit 

Mininet has a great feature which is generation of the code of the 

topologies implemented on the MiniEdit. See appendix A and appendix 

B.  

POX controller configuration: 

As explained in details in the previous chapter, SDN basic characteristic 

is the decoupling of the control plane and the data plane. 



51 
 

The controller is the brain of the network. All configuration information 

are implemented and stored in the controller and then distributed to the 

rest of the network components (OpenFlow switches). 

As we are dealing with a firewall, the rules and policies that govern the 

flow of the packets in both ways through the OpenFlow switches are 

stored in the POX controller to ensure the safety of the data in the 

internal network. 

Same rules will be implemented on both controllers of the two 

implemented topologies. 

The POX is activated and open using the command shown in figure 3-9 

 

Figure3-9                Command to activate POX 

 

3.3 RULES 



52 
 

POX is a python-based controller, so in order to apply the rules the code 

must be written in python programming language. 

As shown in Figure 3-6 and Figure 3-7 we have one server in the DMZ, 

one host (h1) in the internal network, and the internet (of course 

additional terminals can be added, but we made it as simple as possible 

to help the reader to understand the configuration), HTTP (hypertext 

transfer protocol) and ICMP (internet control message protocol) 

protocols are used to demonstrate the concept. 

h1 can have HTTP services and can ping both of the server and the 

Internet, while the server cannot do both because mainly its job is only 

to provide services, clients from the Internet can have HTTP service 

from the server, but cannot ping the server (for security purposes), 

Internet clients cannot neither ping or have HTTP services from the host 

in the Intranet. These details are presented in Table 3-1. 

We configured these basic rules into the POX controller with aid of a 

python script. See appendix C. 

Table 3-1: controller rules 

Source Destination Protocol Action 

h1 Server http/icmp Accept 

h1 Ithesnternet http/icmp Accept 

Internet Server http Accept 

Internet Server Icmp Deny 

Internet h1 http/icmp Deny 

Server - - Deny 

 

 



53 
 

 

 

 

 

 

 

 

 

Chapter Four 

Results 

  



54 
 

Chapter Four 

Results 

4.1 Results 

4.2  Comparison   



55 
 

This chapter verifies the convenience of the implementation of the 

two topologies, and presents the result of applying the rules proposed in 

the previous chapter. 

Depending on the results a comparison between three-legged and three-

part network topologies that already implemented using SDN in the 

previous chapter is provided. 

4.1Results 

Topology and controller are activated using the commands shown in 

Figure 4-1 to start making the tests. 

 

Figure 4-1               Activation of topology and controller 

In the figures below different scenarios are executed to verify the 

feasibility of the employed rules in both topologies. 

Three-legged tests: 

Tests conducted for the three-legged network are shown in the screens of 

Figure 4-2 below. 

 

 

 



56 
 

 

 



57 
 

 

 



58 
 

 

 



59 
 

 

 



60 
 

 

 

           Figure 4-2                Three-legged rules tests 

 

 

 

 



61 
 

Three-part: 

Tests conducted for the three-part network are shown in the screens of 

Figure 4-3 below. 

 

 



62 
 

 

 

 



63 
 

 

 



64 
 

 

 



65 
 

 

 

Figure 4-3                           three-part rules tests 

 

 

 

 



66 
 

4.2Comparison 

The Comparison carried out considering different aspects. 

i.  Performance: 

In the three-legged topology, firewall use multiple interfaces to control 

the access to three- different subnets this allows the internal network 

host to communicate with other part of the network with a relatively fair 

speed, throughput and bandwidth. 

While the three-part topology provide less performance compared to the 

three-legged as the packets has to transfer through two stages.  

ii.  Complexity: 

Three-legged controller rule-base that used to implement access 

restrictions on the firewall is complicated. This increases the likelihood 

that the controller will be misconfigured, introducing risks into this 

design. 

While three-legged has less complex configuration when considering 

eachfirewall on its own. Though as a whole complexity is distributed 

among the two firewalls. 

iii.  Reliability: 

Three-legged has single firewall, even if redundant in hardware, presents 

a single point of failure for the design. If it is compromised then the 

whole network will be down. 

As three-part has two firewall, each protecting a specific area of the 

network, so if one is compromised the other still has a good choice to 

survive and save the contained data. 

 

 



67 
 

 

iv.  Scalability: 

Having a programmable network makes it easier for both topologies to 

expand and scale up without requiring a great effort in changing the 

configuration and installing the new devices. 

v. . QoS: 

QoS is fair in both topologies.  

vi.  Management: 

Both topologies are managed well, as the SDN provide a global view of 

the network on the controller to monitor and supervise the network. 

Three-legged may be slightly easier to be managed as it has a single 

point management.  

vii.  Cost: 

Three-legged has less components (a single firewall) than the three-part 

that has two firewalls. 

This may be a concern in traditional networks, but SDN offers 

OpenFlow switches with suitable cost for enterprise and others. 

The only cost concern is when it comes to afford the SDN controller. 

 

 

  



68 
 

 

 

 

 

 

 

 

 

 

Chapter Five 

Conclusion 

  



69 
 

Chapter Five 

Conclusion 

5.1 Conclusion   

5.2  Recommendations 

 

  



70 
 

5.1 Conclusion 

As networks become an essential part of our daily life and they 

are involved in almost every single detail of our lives, security of the 

network becomes a crucial aspect. 

We believe that the network topology plays a major role in the security, 

performance, reliability, availability, Etc. of the network so implying a 

robust topology in ourhouse, companies,hospitals, and schools is 

necessary. 

SDN is considered as a great step towards achieving this goal as it offers 

many features that helps to have sustainable and robust network. 

Both three-legged and three- part offers high security to the network to 

stand against maliciousactions. Each topology has its own operating 

circumstances. 

Depending on the comparison provided in this thesis a one can choose 

the suitable configuration and layout of their network that meets their 

design and work goals. 

5.2 Recommendation 

• We recommend the emphasis on doing further investigation on 

SDN network topologies to achieve additional design and work 

goals to match different scenarios and environment starting from 

simple environments to complex ones. 

• Also we suggest that future workers put additional effort on 

enhancing the security of the SDN network.So the world can get 

both programmable and secure networks. 

  



71 
 

References: 

[1] ONF, “Software-Defined Networking: The New Norm for 

Networks,” white paper, https://www.opennetworking.org. 

[2] (SakirSezer, Sandra Scott-Hayward, P. K. Chouhan, et al July 2013). 

“Are we ready for SDN?”  Implementation challenges for software-

defined networks Communications Magazine, IEEE, Vol. 51, No. 7.  

[3] ONF, “Software-Defined Networking: The New Norm for 

Networks,” white paper, https://www.opennetworking.org. 

[4] (Nick Feamster, Jennifer Rexford Ellen Zegura 2013).The Road to 

SDN: An Intellectual History of Programmable Networks,. 

[5] (N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. 

Peterson, J. Rexford, S. Shenker, and J. Turner 2008), “OpenFlow: 

enabling innovation in campus networks,” ACM SIGCOMM Computer 

Communication Review, vol. 38, no. 2, pp. 69–74,. 

[6] (Sandra Scott-Hayward, Member, IEEE, Sriram Natarajan, and 

SakirSezer Member 2015), IEEE,A:Survey of Security in Software 

Defined Networks ,. 

[7] M. Jarschel, T. Zinner, T. Hofeld, P. Tran-Gia, and W. Kellerer, 

“Interfaces, attributes, and use cases: A compass for sdn,” 

Communications Magazine, IEEE, vol. 52, no. 6, pp. 210–217, 2014. 

[8] (Scott-Hayward, S., Natarajan, S., &Sezer, S. 2016). A Survey of 

Security in Software Defined Networks. IEEE Communications Surveys 

and Tutorials, 18(1), 623-654. DOI: 10.1109/COMST.2015.2453114 

[9] (Nick McKeown, Tom Anderson, HariBalakrishnan, Guru Parulkar, 

Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. 



72 
 

2008) Openflow: enabling innovation in campus networks. ACM 

SIGCOMM Computer Communication Review;38(2):6974 

[10] http://pakiti.com/datapath-ids/David Bombal in Comware, HP, HP 

Switch, HP VAN SDN Controller, OpenFlow, ProCurve, SDN. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

Appendix A 

Python code of three-legged topology: 

 

#!/usr/bin/python 

from mininet.net import Mininet 

frommininet.node import Controller, RemoteController, OVSController 

frommininet.node import CPULimitedHost, Host, Node 

frommininet.node import OVSKernelSwitch, UserSwitch 

frommininet.node import IVSSwitch 

frommininet.cli import CLI 

from mininet.log import setLogLevel, info 

frommininet.link import TCLink, Intf 

fromsubprocess import call 

 

defmyNetwork(): 

 

net = Mininet( topo=None, 

build=False, 

ipBase='10.0.0.0/8') 

 



2 
 

info( '*** Adding controller\n' ) 

    c0=net.addController(name='c0', 

controller=RemoteController, 

ip='127.0.0.1', 

protocol='tcp', 

port=6633) 

 

info( '*** Add switches\n') 

    s1 = net.addSwitch('s1', cls=OVSKernelSwitch, dpid='1') 

 

info( '*** Add hosts\n') 

server = net.addHost('server', cls=Host, ip='10.0.0.3', 

defaultRoute=None) 

internet = net.addHost('internet', cls=Host, ip='10.0.0.2', 

defaultRoute=None) 

    h1 = net.addHost('h1', cls=Host, ip='10.0.0.1', defaultRoute=None) 

 

info( '*** Add links\n') 

net.addLink(server, s1) 

net.addLink(h1, s1) 

net.addLink(internet, s1) 



3 
 

 

info( '*** Starting network\n') 

net.build() 

info( '*** Starting controllers\n') 

for controller in net.controllers: 

controller.start() 

 

info( '*** Starting switches\n') 

net.get('s1').start([c0]) 

 

info( '*** Post configure switches and hosts\n') 

 

CLI(net) 

net.stop() 

 

if __name__ == '__main__': 

setLogLevel( 'info' ) 

myNetwork() 

 

 



4 
 

Appendix B 

Python code of three-part topology: 

 

#!/usr/bin/python 

 

from mininet.net import Mininet 

frommininet.node import Controller, RemoteController, OVSController 

frommininet.node import CPULimitedHost, Host, Node 

frommininet.node import OVSKernelSwitch, UserSwitch 

frommininet.node import IVSSwitch 

frommininet.cli import CLI 

from mininet.log import setLogLevel, info 

frommininet.link import TCLink, Intf 

fromsubprocess import call 

 

defmyNetwork(): 

 

net = Mininet( topo=None, 

build=False, 

ipBase='10.0.0.0/8') 



5 
 

 

info( '*** Adding controller\n' ) 

    c0=net.addController(name='c0', 

controller=RemoteController, 

ip='127.0.0.1', 

protocol='tcp', 

port=6633) 

 

info( '*** Add switches\n') 

dmz = net.addSwitch('dmz', cls=OVSKernelSwitch, dpid='2') 

ifire = net.addSwitch('ifire', cls=OVSKernelSwitch, dpid='1') 

ofire = net.addSwitch('ofire', cls=OVSKernelSwitch, dpid='3') 

 

info( '*** Add hosts\n') 

internet = net.addHost('internet', cls=Host, ip='10.0.0.2', 

defaultRoute=None) 

    h1 = net.addHost('h1', cls=Host, ip='10.0.0.1', defaultRoute=None) 

server = net.addHost('server', cls=Host, ip='10.0.0.3', 

defaultRoute=None) 

 

info( '*** Add links\n') 



6 
 

net.addLink(ifire, dmz) 

net.addLink(dmz, ofire) 

net.addLink(server, dmz) 

net.addLink(h1, ifire) 

net.addLink(internet, ofire) 

 

info( '*** Starting network\n') 

net.build() 

info( '*** Starting controllers\n') 

for controller in net.controllers: 

controller.start() 

 

info( '*** Starting switches\n') 

net.get('dmz').start([c0]) 

net.get('ifire').start([c0]) 

net.get('ofire').start([c0]) 

 

info( '*** Post configure switches and hosts\n') 

 

CLI(net) 



7 
 

net.stop() 

 

if __name__ == '__main__': 

setLogLevel( 'info' ) 

myNetwork() 

 

  



8 
 

Appendix C 

Python code of the controller rules : 

 

#!/usr/bin/python 

# Copyright 2012 William Yu 

# wyu@ateneo.edu 

# 

# This file is part of POX. 

# 

# POX is free software: you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation, either version 3 of the License, or 

# (at your option) any later version. 

# 

# POX is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied 

warranty of 

# MERCHANTABILITY or FITNESS FOR A PARTICULAR 

PURPOSE. See the 

# GNU General Public License for more details. 

# 



9 
 

# You should have received a copy of the GNU General Public License 

# along with POX. If not, see <http://www.gnu.org/licenses/>. 

# 

# NOISY FIREWALL. This is a simple firewall implementation for 

demonstration 

# purposes. This firewall is bad because only flows for valid packets are 

# installed. Non-matches always trigger a PacketIn(). 

# 

# This is a demonstration file aims to build a firewall. In this demo,  

# firewall rules are applied to specific ports in the switch using the 

# following commands: 

#   AddRule (event, dl_type=0x800, nw_proto=1, port=0, 

src_port=of.OFPP_ALL) 

#   DeleteRule (event, dl_type=0x800, nw_proto=1, port=0, 

src_port=of.OFPP_ALL): 

#   ShowRule () 

# 

# Mininet Command Line: sudomn --topo single,3 --mac --switch ovsk -

-controller remote 

# Command Line: ./pox.py pylog.level --DEBUG samples.of_firewall 

# 



10 
 

# THIS VERSION SUPPORT resend() functionality in the betta branch 

POX. 

# 

 

# These next two imports are common POX convention 

frompox.core import core 

frompox.lib.util import dpidToStr 

import pox.openflow.libopenflow_01 as of 

frompox.lib.packet.ethernet import ethernet 

 

# Even a simple usage of the logger is much nicer than print! 

log = core.getLogger() 

 

# This table maps (switch,MAC-addr) pairs to the port on 'switch' at 

# which we last saw a packet *from* 'MAC-addr'. 

# (In this case, we use a Connection object for the switch.) 

table = {} 

 

# This table contains the firewall rules: 

# firewall[(switch, dl_type, nw_proto, port, src_port)] = TRUE/FALSE 

#  



11 
 

# Our firewall only supports inbound rule enforcement per port only. 

# By default, this is empty. 

#   Sample dl_type(s): IP (0x800) 

#   Sample nw_proto(s): ICMP (1), TCP (6), UDP (17) 

# 

firewall = {} 

 

# function that allows adding firewall rules into the firewall table 

defAddRule (event, dl_type=0x800, 

nw_proto=1,srcip="0.0.0.0",dstip="0.0.0.0"): 

firewall[(event.connection,dl_type,nw_proto,IPAddr(srcip),IPAddr(dstip

))]=True 

 

# function that allows deleting firewall rules from the firewall table 

defDeleteRule (event, dl_type=0x800, nw_proto=1, port=0, 

src_port=of.OFPP_ALL): 

try: 

del firewall[(event.connection,dl_type,nw_proto,port,src_port)] 

log.debug("Deleting firewall rule in %s: %s %s %s %s" % 

dpidToStr(event.connection.dpid), dl_type, nw_proto, port, src_port) 

exceptKeyError: 



12 
 

log.error("Cannot find in %s: %s %s %s %s" % 

dpidToStr(event.connection.dpid), dl_type, nw_proto, port, src_port) 

 

# function to display firewall rules 

defShowRules (): 

for key in firewall: 

log.info("Rule %s defined" % str(key)) 

 

# function to handle all housekeeping items when firewall starts 

def _handle_StartFirewall (event): 

ifevent.connection.dpid==1: 

AddRule (event,0x800, 1,"10.0.0.1","10.0.0.3") 

AddRule (event,0x800, 1,"10.0.0.1","10.0.0.2") 

AddRule (event,0x800, 80,"10.0.0.1","10.0.0.3") 

AddRule (event,0x800, 6,"10.0.0.1","10.0.0.3") 

AddRule (event,0x800, 6,"10.0.0.3","10.0.0.1") 

AddRule (event,0x800, 80,"10.0.0.1","10.0.0.2") 

AddRule (event,0x800, 6,"10.0.0.1","10.0.0.2") 

AddRule (event,0x800, 6,"10.0.0.2","10.0.0.3") 

AddRule (event,0x800, 80,"10.0.0.2","10.0.0.3") 



13 
 

ifevent.connection.dpid==3: 

AddRule (event,0x800, 80,"10.0.0.2","10.0.0.3") 

AddRule (event,0x800, 6,"10.0.0.2","10.0.0.3") 

AddRule (event,0x800, 6,"10.0.0.1","10.0.0.2") 

AddRule (event,0x800, 1,"10.0.0.1","10.0.0.2") 

 

ShowRules() 

core.openflow.addListenerByName("PacketIn", _handle_ifire_PacketIn) 

#core.openflow.addListenerByName("PacketIn", _handle_PacketIn) 

 

# function to handle all PacketIns from switch/router 

frompox.lib.addresses import IPAddr 

def _handle_ifire_PacketIn (event): 

 

  #if packet.type == packet.ARP_TYPE: 

   # arpp = packet.find('arp') 

    #if arpp.opcode == arpp.REPLY: 

 

ifevent.connection.dpid==1: 

   _handle_innerfirewall(event) 



14 
 

 

ifevent.connection.dpid==2: 

   _handle_switch(event) 

ifevent.connection.dpid==3: 

 

   _handle_outterfirewall(event) 

 

defresend_packet(event, dst_port = of.OFPP_ALL): 

msg = of.ofp_packet_out(data = event.ofp) 

msg.actions.append(of.ofp_action_output(port = dst_port)) 

event.connection.send(msg) 

 

def drop (event,duration = None): 

      """ 

      Drops this packet and optionally installs a flow to continue 

dropping similar ones for a while 

      """ 

packet=event.parsed 

if duration is not None: 

if not isinstance(duration, tuple): 



15 
 

duration = (duration,duration) 

msg = of.ofp_flow_mod() 

msg.match = of.ofp_match.from_packet(packet) 

msg.idle_timeout = duration[0] 

msg.hard_timeout = duration[1] 

msg.buffer_id = event.ofp.buffer_id 

event.connection.send(msg) 

elifevent.ofp.buffer_id is not None: 

msg = of.ofp_packet_out() 

msg.buffer_id = event.ofp.buffer_id 

msg.in_port = event.port 

event.connection.send(msg) 

 

def _handle_outterfirewall(event): 

packet = event.parsed 

 

  # only process Ethernet packets 

 

 

ifpacket.type == packet.ARP_TYPE: 



16 
 

print("arp") 

arpp = packet.find('arp') 

     #if IPAddr(arpp.protodst)==IPAddr('10.0.0.1')and arpp.opcode == 

arpp.REQUEST: 

     #   drop(event) 

     #   return 

  # only process Ethernet packets 

elifpacket.type == ethernet.IP_TYPE: 

print("hi3") 

if (firewall[(event.connection, packet.type, 

packet.payload.protocol,packet.next.srcip,packet.next.dstip)] == True): 

log.debug("Rule (%s %s %s )" % 

      (str(event.connection.dpid), str(packet.type), 

str(packet.payload.protocol))) 

else: 

log.debug("Rule (%s %s %s )" % 

      (str(event.connection), str(packet.type), 

str(packet.payload.protocol))) 

return 

 

else: 

print("return") 



17 
 

return 

 

 

 

  # Learn the source and fill up routing table 

 

 

 

 

table[(event.connection,packet.src)] = event.port 

dst_port = table.get((event.connection,packet.dst)) 

ifdst_port == event.port: # 5 

          # 5a 

log.warning("Same port for packet from %s -> %s on %s.%s.  Drop." 

              % (packet.src, packet.dst, dpid_to_str(event.dpid), port)) 

drop(event,10) 

return 

 

ifdst_port is None: 

    # We don't know where the destination is yet. So, we'll just 



18 
 

    # send the packet out all ports (except the one it came in on!) 

resend_packet(event) 

 

log.debug("Broadcasting %s.%i -> %s.%i" % 

      (packet.src, event.ofp.in_port, packet.dst, of.OFPP_ALL)) 

else: 

    # Since we know the switch ports for both the source and dest 

    # MACs, we can install rules for both directions. 

msg = of.ofp_flow_mod() 

msg.idle_timeout = 2 

msg.hard_timeout = 0 

    #msg.buffer_id = None 

msg.match.dl_dst = packet.src 

msg.match.dl_src = packet.dst 

msg.match.dl_type = packet.type 

msg.actions.append(of.ofp_action_output(port = event.port)) 

event.connection.send(msg) 

 

    # This is the packet that just came in -- we want to 

    # install the rule and also resend the packet. 



19 
 

msg = of.ofp_flow_mod() 

msg.idle_timeout = 2 

msg.hard_timeout = 0 

    #msg.buffer_id = None 

 

msg.data = event.ofp # Forward the incoming packet 

msg.match.dl_src = packet.src 

msg.match.dl_dst = packet.dst 

msg.match.dl_type = packet.type 

ifpacket.type == ethernet.IP_TYPE: 

msg.match.nw_proto = packet.payload.protocol 

 

msg.actions.append(of.ofp_action_output(port = dst_port)) 

event.connection.send(msg) 

 

log.debug("Installing %s.%i -> %s.%i AND %s.%i -> %s.%i" % 

      (packet.dst, dst_port, packet.src, event.ofp.in_port, 

packet.src, event.ofp.in_port, packet.dst, dst_port)) 

 

defsend_packet(event, dst_port = of.OFPP_FLOOD): 



20 
 

msg = of.ofp_packet_out(data = event.ofp) 

msg.actions.append(of.ofp_action_output(port = all_ports)) 

event.connection.send(msg) 

 

def _handle_innerfirewall(event): 

packet = event.parsed 

ifpacket.type == packet.ARP_TYPE: 

print("arp") 

  # only process Ethernet packets 

elifpacket.type == ethernet.IP_TYPE: 

print("hi1") 

if (firewall[(event.connection, packet.type, 

packet.payload.protocol,packet.next.srcip,packet.next.dstip)] == True): 

log.debug("Rule (%s %s %s )" % 

      (str(event.connection.dpid), str(packet.type), 

str(packet.payload.protocol))) 

else: 

log.debug("Rule (%s %s %s )" % 

      (str(event.connection), str(packet.type), 

str(packet.payload.protocol))) 

return 



21 
 

else: 

print("return") 

return 

 

 

 

 

  # Learn the source and fill up routing table 

table[(event.connection,packet.src)] = event.port 

dst_port = table.get((event.connection,packet.dst)) 

ifdst_port == event.port: # 5 

          # 5a 

log.warning("Same port for packet from %s -> %s on %s.%s.  Drop." 

              % (packet.src, packet.dst, dpid_to_str(event.dpid), port)) 

drop(event,10) 

return 

 

ifdst_port is None: 

    # We don't know where the destination is yet. So, we'll just 

    # send the packet out all ports (except the one it came in on!) 



22 
 

resend_packet(event) 

 

log.debug("Broadcasting %s.%i -> %s.%i" % 

      (packet.src, event.ofp.in_port, packet.dst, of.OFPP_ALL)) 

else: 

    # Since we know the switch ports for both the source and dest 

    # MACs, we can install rules for both directions. 

msg = of.ofp_flow_mod() 

msg.idle_timeout = 2 

msg.hard_timeout = 0 

    #msg.buffer_id = None 

msg.match.dl_dst = packet.src 

msg.match.dl_src = packet.dst 

msg.match.dl_type = packet.type 

msg.actions.append(of.ofp_action_output(port = event.port)) 

event.connection.send(msg) 

 

    # This is the packet that just came in -- we want to 

    # install the rule and also resend the packet. 

msg = of.ofp_flow_mod() 



23 
 

msg.idle_timeout = 2 

msg.hard_timeout = 0 

    #msg.buffer_id = None 

msg.data = event.ofp # Forward the incoming packet 

msg.match.dl_src = packet.src 

msg.match.dl_dst = packet.dst 

msg.match.dl_type = packet.type 

ifpacket.type == ethernet.IP_TYPE: 

msg.match.nw_proto = packet.payload.protocol 

 

msg.actions.append(of.ofp_action_output(port = dst_port)) 

event.connection.send(msg) 

 

log.debug("Installing %s.%i -> %s.%i AND %s.%i -> %s.%i" % 

      (packet.dst, dst_port, packet.src, event.ofp.in_port, 

packet.src, event.ofp.in_port, packet.dst, dst_port)) 

 

def _handle_switch(event): 

 

packet = event.parsed 



24 
 

 

  

ifpacket.type == packet.ARP_TYPE: 

print("arp") 

  # only process Ethernet packets 

elifpacket.type == ethernet.IP_TYPE: 

print("hi2") 

 

else: 

print("return") 

return 

 

 

 

  # Learn the source and fill up routing table 

table[(event.connection,packet.src)] = event.port 

dst_port = table.get((event.connection,packet.dst)) 

ifdst_port == event.port: # 5 

          # 5a 

log.warning("Same port for packet from %s -> %s on %s.%s.  Drop." 



25 
 

              % (packet.src, packet.dst, dpid_to_str(event.dpid), port)) 

drop(event,10) 

return 

 

ifdst_port is None: 

    # We don't know where the destination is yet. So, we'll just 

    # send the packet out all ports (except the one it came in on!) 

resend_packet(event) 

log.debug("Broadcasting %s.%i -> %s.%i" % 

      (packet.src, event.ofp.in_port, packet.dst, of.OFPP_ALL)) 

else: 

    # Since we know the switch ports for both the source and dest 

    # MACs, we can install rules for both directions. 

msg = of.ofp_flow_mod() 

msg.idle_timeout = 3 

msg.hard_timeout = 5 

    #msg.buffer_id = None 

msg.match.dl_dst = packet.src 

msg.match.dl_src = packet.dst 

msg.match.dl_type = packet.type 



26 
 

msg.actions.append(of.ofp_action_output(port = event.port)) 

event.connection.send(msg) 

 

    # This is the packet that just came in -- we want to 

    # install the rule and also resend the packet. 

msg = of.ofp_flow_mod() 

msg.idle_timeout = 3 

msg.hard_timeout = 5 

    #msg.buffer_id = None 

msg.data = event.ofp # Forward the incoming packet 

msg.match.dl_src = packet.src 

msg.match.dl_dst = packet.dst 

msg.actions.append(of.ofp_action_output(port = dst_port)) 

event.connection.send(msg) 

 

log.debug("Installing %s.%i -> %s.%i AND %s.%i -> %s.%i" % 

      (packet.dst, dst_port, packet.src, event.ofp.in_port, 

packet.src, event.ofp.in_port, packet.dst, dst_port)) 

 

def _handle_PacketIn (event): 



27 
 

 

packet = event.parsed 

 

  # only process Ethernet packets 

ifpacket.type != ethernet.IP_TYPE: 

return 

 

  # check if packet is compliant to rules before proceeding 

if (firewall[(event.connection, packet.dl_type, packet.nw_proto, 

packet.tp_src, event.port)] == True): 

log.debug("Rule (%s %s %s %s) FOUND in %s" % 

dpidToStr(event.connection.dpid), packet.dl_type, packet.nw_proto, 

packet.tp_src, event.port) 

else: 

log.debug("Rule (%s %s %s %s) NOT FOUND in %s" % 

dpidToStr(event.connection.dpid), packet.dl_type, packet.nw_proto, 

packet.tp_src, event.port) 

return 

 

  # Learn the source and fill up routing table 

table[(event.connection,packet.src)] = event.port 



28 
 

dst_port = table.get((event.connection,packet.dst)) 

 

ifdst_port is None: 

    # We don't know where the destination is yet. So, we'll just 

    # send the packet out all ports (except the one it came in on!) 

msg = of.ofp_packet_out(resend = event.ofp) 

msg.actions.append(of.ofp_action_output(port = of.OFPP_ALL)) 

msg.send(event.connection) 

 

log.debug("Broadcasting %s.%i -> %s.%i" % 

      (packet.src, event.ofp.in_port, packet.dst, of.OFPP_ALL)) 

else: 

    # Since we know the switch ports for both the source and dest 

    # MACs, we can install rules for both directions. 

msg = of.ofp_flow_mod() 

msg.match.dl_type = packet.dl_type 

msg.match.nw_proto = packet.nw_proto 

if (nw_proto != 1): 

msg.match.tp_src = packet.tp_src 

msg.match.dl_dst = packet.src 



29 
 

msg.match.dl_src = packet.dst 

msg.idle_timeout = 10 

msg.hard_timeout = 30 

msg.actions.append(of.ofp_action_output(port = event.port)) 

msg.send(event.connection) 

 

    # This is the packet that just came in -- we want to 

    # install the rule and also resend the packet. 

msg = of.ofp_flow_mod() 

msg.match.dl_type = packet.dl_type 

msg.match.nw_proto = packet.nw_proto 

if (nw_proto != 1): 

msg.match.tp_src = packet.tp_src 

msg.match.dl_src = packet.src 

msg.match.dl_dst = packet.dst 

msg.idle_timeout = 10 

msg.hard_timeout = 30 

msg.actions.append(of.ofp_action_output(port = dst_port)) 

msg.send(event.connection, resend = event.ofp) 

 



30 
 

log.debug("Installing %s.%i -> %s.%i AND %s.%i -> %s.%i" % 

      (packet.dst, dst_port, packet.src, event.ofp.in_port, 

packet.src, event.ofp.in_port, packet.dst, dst_port)) 

 

# main function to start module 

def launch (): 

  #from proto.arp_responder import launch as arp_launch 

  #arp_launch(eat_packets=False,**{str(ip):True}) 

core.openflow.addListenerByName("ConnectionUp", 

_handle_StartFirewall) 

 

 




