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الإستهلال

تعالى قال
ۙ والْافْٔئدة والْابْٔصار السّمْع لكم وجعل شيْئا تعْلمون لا امّٔهاتكمْ بطون مّن اخْٔرجكم واللهّ
في انّٕ ۗ اللهّ الٕاّ يمْسكهنّ ما السّماء جوّ في مسخّرات الطيّْر الٕى يروْا الٔمْ تشْكرون لعلكّمْ

يؤْمنون لقّوْم لايٓات ذٰلك
النحل سورة
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العزيزة... امي العظيم.. لقدرك اجلالا الكلمات تقف .. الزمان مر على يفوح عطر
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Abstract

Massive MIMO is a promising technique to increase the spectral efficiency
(SE) of cellular network, by deploying hundreds or thousands of antennas
at the base station (BS) to perform coherence transceiver processing. This
research focusing into study, analyze the performance of massive MIMO for
maximal spectral efficiency. All this accomplished by using MATLAB soft-
ware program which simulate the performance of massive MIMO. We used
complex signal processing technique to obtain optimal performance, compared
between this technique in simulation according to the propagation environ-
ment, which divided into three cases. First, the best case in which all UEs in
are at the cell edge further from the (BS). Second, the average case, in which
averaging over uniform UE locations in all cells. Finally, the worst case in
which all UEs in other cells are at the cell edge closest to BS. From result
it will be observed that the spectral efficiency dramatically increases while
increasing the number of antennas in the (BS). This increased SE give a high
throughput.
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المستخلص
الطيفية الكفاءة لزيادة الواعدة التقنيات من الهائلة المخرجات متعدد المدخلات متعدد تقنية
وذلك الهوائيات الٔاف او بمئات الرئيسية المحطة بتزويد وذلك الخلوية الاتصالات مجال في
التغنية هذه ادائية وتحليل دراسة البحث هذا من الغاية متماسكة. واستقبال ارسال لعملية
استخدمت التقنية. هذه اداء محاكاة في الماتلاب استخدام تم وقد الطيفية الكفاءة لزيادة
في هذه المقارنة تمت ادٔاة احٔسن علي للحصول الاشارة معالجات من مقعدة تقنيات
هي و حالة افضل اولا حالات. ثلاثة الي المقسم الانتشار وسط علي استنادا المحاكي
الرئسية. الخلية محطة عن وبعين الخلية اطراف علي بكونون المستخدمين كل يكون عندما
متناسق. بشكل يكون الخلية داخل المستخدمين توزيع جالة هي و المتوسطة الحالة ثانيا
علي موزعين المجاورة الخلايا في المستخدمين كل يكون عندما هي و حالة سوا اخيرا
تزيد الطيفية كفاءة ان ملاحظة تمت النتائج من الرئيسية. المحطة من قريبة الخلية اطراف
تعني الطيفية الكفاءة وزيادة الرئيسية المحطة في الهوائيات عدد زيادة عند درامية لصورة

البيانات. واستقبال ارسال سرعة زيادة
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Chapter One
Introduction

1.1 Overview

Cellular communication networks are continuously evolving to keep up with
the rapidly increasing demand for wireless data services. Higher area through-
put (in bit/s per km2 ) has traditionally been achieved by a combination of
three multiplicative factors [1], more frequency spectrum (Hz), higher cell den-
sity (more cells per km2), and higher spectral efficiency (bit/s/Hz/cell). The
massive MIMO concept is based on equipping base stations (BSs) with hun-
dreds or thousands of antenna elements which, unlike conventional cellular
technology, are operated in a coherent fashion. This can provide unprece-
dented array gains and a spatial resolution that allows for multi-user MIMO
communication to tens or hundreds of user equipments (UEs) per cell, while
maintaining robustness to inter-user interference. The research on massive
MIMO has so far focused on establishing the fundamental physical (PHY)
layer properties; in particular, that the acquisition of channel state informa-
tion (CSI) is limited by the channel coherence block (i.e., the fact that channel
responses are only static in limited time/frequency blocks) and how this im-
pacts the SEs and the ability to mitigate inter-cell interference [2–4]. In addi-
tion, the aggressive multiplexing in massive MIMO has been shown to provide
major improvements in the overall energy efficiency [5]- [6], while [7, 8] have
shown that the hardware impairments of practical transceivers have smaller
impact on massive MIMO than contemporary systems. The importance of
resource allocation for massive MIMO was described in [9], where initial guide-
lines were given. A main insight is that the limited number of orthogonal pilot
sequences needs to be allocated intelligently among the UEs to reduce inter-
ference, which can be done by capitalizing on path loss differences [10,11], and
spatial correlation [9,10,12]. It is shown that how the coherence block length,
number of antennas, pilot allocation, hardware impairments, and other system
parameters determine the answer. To this end, we derive new SE expressions
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Chapter One - Introduction

which are valid for both uplink (UL) and downlink (DL) transmission, with
random user locations and power control that yields uniform UE performance.

1.2 Problem statement

Communication system, in past years, was suffering from noticed increase in
users who use wireless traffic which impact decrease the speed of transceiver,
marked interference

1.3 Proposed solution

By applying the massive MIMO could be able to maximize the spectral effi-
ciency which cause decries interference and improve the transceiver speed.

1.4 Objectives

The objectives of this study are as follows.

• Using two linear processing schemes: (1) maximum ratio(MR); and (2)
zero forcing (ZF), the impact of the following parameters will be studied

– signal to noise ratio

– path loss (κ)

– coherence block length S

• To compare between the spectral efficiency and number of antennas
(M)in the BS with the linear processing scheme according to the prop-
agation environment

The simulation by default will compare the relationship between SISO, SIMO,
MISO, MIMO and massive MIMO number of antennas in BS and spectral
efficiency.

1.5 Methodology

First a literature review will be conducted. The implementation of massive
MIMO system model will be performed using the MATLAB software program.

2



Chapter One - Introduction

The next step is to analyze the performance of massive MIMO per cell ac-
cording to propagation environment to the UEs in the cell. We consider three
propagation environments with different severity of inter-cell interference

1. Average case: Averaging over uniform UE locations in all cells.

2. Best case: All UEs in other cells are at the cell edge furthest from BS j
(for each j).

3. Worst case: All UEs in other cells are at the cell edge closest to BS j
(for each j).

1.6 Thesis organization

This thesis is organized as follows. Chapter one provides an introduction.
Chapter two presents an background and literature review. Chapter three
discusses the considered system model. Chapter four provides simulation
results and discussion. Finally, chapter five concludes the thesis.
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Chapter Two
Literature Review

2.1 Background

During the last years, data traffic (both mobile and fixed) has grown expo-
nentially due to the dramatic growth of smart phones, tablets, laptops, and
many other wireless data consuming devices. The demand for wireless data
traffic will be even more in future. Figures 2.1 shows the demand for mobile
data traffic and the number of connected devices. Global mobile data traffic
is expected to increase to 15.9 Exabytes per month by 2018, which is about
an 6-fold increase over 2014. In addition, the number of mobile devices and
connections are expected to grow to 10.2 billion by 2018. New technologies
are required to meet this demand. Related to wireless data traffic, the key
parameter to consider is wireless throughput (bits/s) which is defined as:

Throughput
= (Hz) Bandwidth × (bits/s/Hz) efficiency Spectral (2.1)

Clearly, to improve the throughput, some new technologies which can increase
the bandwidth or the spectral efficiency or both should be exploited. In this
thesis, we focus on techniques which improve the spectral efficiency. A well-
known way to increase the spectral efficiency is using multiple antennas at
the transceivers. In wireless communication, the transmitted signals are be-
ing attenuated by fading due to multipath propagation and by shadowing due
to large obstacles between the transmitter and the receiver, yielding a fun-
damental challenge for reliable communication. Transmission with multiple-
input multiple-output (MIMO) antennas is a well-known diversity technique
to enhance the reliability of the communication.

Furthermore, with multiple antennas, multiple streams can be sent out
and hence, we can obtain a multiplexing gain which significantly improves
the communication capacity. MIMO systems have gained significant atten-
tion for the past decades, and are now being incorporated into several new
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Chapter Two - Literature Review

Figure 2.1: Demand for mobile data traffic and number of connected devices.
(Source: Cisco [3])

generation wireless standards (e.g., LTE-Advanced, 802.16m). The effort to
exploit the spatial multiplexing gain has been shifted from MIMO to mul-
tiuser MIMO (MU-MIMO), where several users are simultaneously served by
a multiple-antenna base station (BS). Multi-user MIMO (MU-MIMO) is a
set of multiple-input and multiple-output technologies for wireless communi-
cation, in which a set of users or wireless terminals, each with one or more
antennas, communicate with each other. In contrast, single-user MIMO con-
siders a single multi-antenna transmitter communicating with a single multi-
antenna receiver. MU-MIMO does not only reap all benefits of MIMO sys-
tems, but also overcomes most of propagation limitations in MIMO such as
ill-behaved channels. Specifically, by using scheduling schemes, we can re-
duce the limitations of ill-behaved channels. Line-of-sight propagation, which
causes significant reduction of the performance of MIMO systems, is no longer
a problem in MU-MIMO systems. Thus, MU-MIMO has attracted substan-
tial interest.
MU-MIMO systems, where a (BS) with a hundred or more antennas simulta-
neously serves tens (or more) of users in the same time frequency resource, are
known as Massive MIMO systems (also called very large MU-MIMO, hyper-
MIMO, or full-dimension MIMO systems).

The main benefits of Massive MIMO systems are explained in the following
subsections.

5



Chapter Two - Literature Review

2.1.1 Huge spectral efficiency and high communication reliability

Massive MIMO inherits all gains from conventional MU-MIMO, i.e., with M-
antenna BS and K single-antenna users, we can achieve a diversity of order
M and a multiplexing gain of min (M, K). By increasing both M and K, we
can obtain a huge spectral efficiency and very high communication reliability.

2.1.2 High energy efficiency

In the uplink Massive MIMO, coherent combining can achieve a very high
array gain which allows for substantial reduction in the transmit power of
each user. In the downlink, the BS can focus the energy into the spatial
directions where the terminals are located. As a result, with massive antenna
arrays, the radiated power can be reduced by an order of magnitude, or more,
and hence, we can obtain high energy efficiency. For axed number of users,
by doubling the number of BS antennas, while reducing the transmit power
by two, we can maintain the original the spectral efficiency, and hence, the
radiated energy efficiency is doubled.

2.1.3 Simple signal processing

For most propagation environments, the use of an excessive number of BS
antennas over the number of users yields favorable propagation where the
channel vectors between the users and the BS are pair wisely (nearly) orthog-
onal. Under favorable propagation, the effect of interfuse interference and
noise can be eliminated with simple linear signal processing (liner precoding
in the downlink and linear decoding in the uplink). As a result, simple lin-
ear processing schemes are nearly optimal. Another key property of Massive
MIMO is channel hardening. Under some conditions, when the number of
BS antennas is large, the channel becomes (nearly) deterministic, and hence,
the effect of small-scale fading is averaged out. The system scheduling, power
control, etc., can be done over the large-scale fading time scale instead of
over the small-scale fading time scale. This simplifies the signal processing
significantly. In this research we focus on the point of huge spectral efficiency

6
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2.2 SISO, SIMO, MISO, MIMO terminology

2.2.1 SISO Systems

The modest form is known as SISO - Single Input Single Output . This is
commendably a standard radio channel. The transmitter and receiver both
operates with one antenna, and no diversity and additional processing is re-
quired

Figure 2.2: SISO : Single input singel output.

The advantages and disadvantages are as follows. The advantage of a SISO
system, it does not requires processing in various forms of diversity, also the
SISO system is very simple. Whereas SISO system has limited Performance,
fading and interference affect the system, also its Bandwidth is limited by
Shannon’s law.

2.2.2 SIMO Systems

SIMO is also a form of MIMO, having single antenna at transmitter and
multiple antennas at receiver, which is recognized as receive diversity. SIMO
systems are helpful up to some extent to conquer the fading effects

Figure 2.3: SIMO : Single input Multi output.

There are two forms of SIMO that can be used, which can be explained as
follows.

7
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• Switched diversity SIMO: This form of SIMO appearances for the re-
silient signal and switches to that antenna.

• Maximum ratio combining SIMO: This form of SIMO receives both sig-
nals and adds them to give a combined result.

The advantages and disadvantages can be summarized as well. The advantage
of SIMO is that it is comparatively easy to implement. SIMO also have some
disadvantages, such as needs processing at the receiver. SIMO can be used in
many applications but in case of mobile phones where receiver is positioned,
processing is limited because of size and also drains the battery.

2.2.3 MISO Systems

MISO(Multiple input single output) also known as transmit diversity. In
MISO systems, same data are transmitted excessively from both transmit
antennas, and the receiver receives the optimal signal to obtain the desired
information.

Figure 2.4: MISO : Multi input singel output.

The advantage of using MISO is that the multiple antennas and the re-
dundancy coding / processing is moved from the receiver to the transmitter.
In instances such as cellphone UEs, this can be a significant advantage in
terms of space for the antennas and reducing the level of processing required
in the receiver for the redundancy coding. This has a positive impact on
size, cost and battery life as the lower level of processing requires less battery
consumption.

2.2.4 MIMO Systems

When talk about more than one antenna at both transmitter and receiver,
that system is known as MIMO system. MIMO stances for Multiple-Input,

8
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Multiple-Output can be used to provide improvements in both channel robust-
ness as well as channel throughput . MIMO is an important factor of wireless
communication standards such as IEEE 802.11n (Wi-Fi), IEEE 802.11ac (Wi-
Fi), 4G, 3GPP Long Term Evolution, WiMAX and HSPA+.

Figure 2.5: MIMO : Multi input Multi output.

2.3 Channel Impairments

2.3.1 Fading

The performance of wireless communication systems is mainly governed by
the wireless channel environment. As opposed to the typically static and
predictable characteristics of a wired channel, the wireless channel is rather
dynamic and unpredictable, which makes an exact analysis of the wireless
communication system often difficult. In recent years, optimization of the
wireless communication system has become critical with the rapid growth
of mobile communication services and emerging broadband mobile Internet
access services. In fact, the understanding of wireless channels will lay the
foundation for the development of high performance and bandwidth-efficient
wireless transmission technology. In wireless communication, radio propaga-
tion refers to the behavior of radio waves when they are propagated from
transmitter to receiver. In the course of propagation, radio waves are mainly
affected by three different modes of physical phenomena: reflection, diffrac-
tion, and scattering [ [13], [14]]. Reflection is the physical phenomenon that
occurs when a propagating electromagnetic wave impinges upon an object
with very large dimensions compared to the wavelength, for example, surface
of the earth and building. It forces the transmit signal power to be reflected
back to its origin rather than being passed all the way along the path to
the receiver. Diffractionrefers to various phenomena that occur when the
radio path between the transmitter and receiver is obstructed by a surface

9
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with sharp irregularities or small openings. It appears as a bending of waves
around the small obstacles and spreading out of waves past small openings.
The secondary waves generated by diffraction are useful for establishing a
path between the transmitter and receiver, even when a line-of-sight path is
not present. Scattering is the physical phenomenon that forces the radiation
of an electromagnetic wave to deviate from a straight path by one or more
local obstacles, with small dimensions compared to the wavelength. Those
obstacles that induce scattering, such as foliage, street signs, and lamp posts,
are referred to as the scatters. In other words, the propagation of a radio wave
is a complicated and less predictable process that is governed by reflection,
diffraction, and scattering, whose intensity varies with different environments
at different instances. A unique characteristic in a wireless channel is a phe-
nomenon called ‘fading,’ the variation of the signal amplitude over time and
frequency. In contrast with the additive noise as the most common source of
signal degradation, fading is another source of signal degradation that is char-
acterized as a non-additive signal disturbance in the wireless channel. Fading
may either be due to multipath propagation, referred to as multi-path (in-
duced) fading, or to shadowing from obstacles that affect the propagation of a
radio wave, referred to as shadow fading. The fading phenomenon in the wire-
less communication channel was initially modeled for HF (High Frequency,
330 MHz), UHF (Ultra HF, 3003000 GHz), and SHF (Super HF, 330 GHz)
bands in the 1950s and 1960s. Currently, the most popular wireless channel
models have been established for 800MHz to 2.5 GHz by extensive channel
measurements in the field. These include the ITU-R standard channel models
specialized for a single-antenna communication system, typically referred to
as a SISO (Single Input Single Output) communication, over some frequency
bands. Meanwhile, spatial channel models for a multi-antenna communication
system, referred to as the MIMO (Multiple Input Multiple Output) system,
have been recently developed by the various research and standardization ac-
tivities such as IEEE 802, METRA Project, 3GPP/3GPP2, and WINNER
Projects, aiming at high-speed wireless transmission and diversity gain. The
fading phenomenon can be broadly classified into two different types: large-
scale fading and small-scale fading. Large-scale fading occurs as the mobile
moves through a large distance, for example, a distance of the order of cell
size [1]. It is caused by path loss of signal as a function of distance and shad-
owing by large objects such as buildings, intervening terrains, and vegetation.
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Figure 2.6: Classification of fading Channel

Shadowing is a slow fading process characterized by variation of median path
loss between the transmitter and receiver in fixed locations. In other words,
large-scale fading is characterized by average path loss and shadowing. On
the other hand, small-scale fading refers to rapid variation of signal levels
due to the constructive and destructive interference of multiple signal paths
(multi-paths) when the mobile station moves short distances. Depending on
the relative extent of a multipath, frequency selectivity of a channel is charac-
terized (e.g., by frequency-selective or frequency flat) for small-scaling fading.
Meanwhile, depending on the time variation in a channel due to mobile speed
(characterized by the Doppler spread), shortterm fading can be classified as
either fast fading or slow fading. Figure 2.6 classifies the types of fading
channels.

Large-scale fading is manifested by the mean path loss that decreases with
distanceand shadowing that varies along the mean path loss. The received
signal strength may be different even at the same distance from a transmitter,
due to the shadowing caused by obstacles on the path. Furthermore, the
scattering components incur small-scale fading, which finally yields a short-
term variation of the signal that has already experienced shadowing.

2.3.2 Noise

Noise: It’s unwanted electrical or electromagnetic energy that degrades the
quality of signals and data. Noise occurs in digital and analog systems, and
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can affect files and communications of all types, including text, programs,
images, audio, and telemetry. Noise may be but not limited into following
two categories:

1. external noise: noise whose source is external

• Atmospheric noises.

• Extraterrestrial noises.

• Man-made noises or industrial noises.

2. Internal noise: noises which get generated within the receiver or com-
munication system.

• Thermal noises or white noise

• Shot noise

2.4 Related Work

Jingxian Wu et al., [14] reviewed exact closed-form expressions for the short-
term Rayleigh fading-averaged spectral efficiency of cellular systems with
channel-aware schedulers that operate with non-identical co-channel inter-
ferers and noise Kamga et al., [15] reviewed the spectral efficiency of massive
MIMO systems in both centralized (C-MIMO) and distributed (D-MIMO)
settings, was analytically investigated, based on a novel comprehensive ana-
lytical channel model where major natural environmental and antenna physi-
cal parameters were accounted for, including path loss, shadowing, multi-path
fading and antenna correlation
Zhang et al ., [16] reviewed the uplink spectral efficiency (SE) of massive
MIMO systems with low-resolution ADCs over Rician fading channels, where
both perfect and imperfect channel state information are considered
Bjornson et al., [17] reviewed analyze how the optimal number of scheduled
users, K?, depends on M and other system parameters and new SE expres-
sions are derived to enable efficient system-level analysis with power control,
arbitrary pilot reuse, and random user locations. The value of K? in the
large-M regime is derived in closed form, while simulations are used to show
what happens at finite M, in different interference scenarios, with different
pilot reuse factors, and for different processing schemes beside concentrates on
frames that carry user-specific signals, in particular, payload data and pilots
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Ngo et al ., [18] reviewed that, when the number of BS antennas M grows with-
out bound, we can reduce the transmitted power of each user proportionally
to 1/M if the BS has perfect channel state information (CSI), and propor-
tionally to 1/

√
M if CSI is estimated from uplink pilots. This holds true even

when using simple, linear receivers. We also derive closed-form lower bounds
on the uplink achievable rates for finite M, for the cases of perfect and im-
perfect CSI, assuming MRC, ZF, and minimum mean-squared error (MMSE)
receivers, respectively, beside the tradeoff between spectral efficiency and en-
ergy efficiency. For imperfect CSI, in the low transmit power regime, we
can simultaneously increase the spectral-efficiency and energy-efficiency. We
further show that in large-scale MIMO, very high spectral efficiency can be
obtained even with simple MRC processing at the same time as the trans-
mit power can be cut back by orders of magnitude and that this holds true
even when taking into account the losses associated with acquiring CSI from
uplink pilots. MRC also has the advantage that it can be implemented in
a distributed manner, i.e., each antenna performs multiplication of the re-
ceived signals with the conjugate of the channel, without sending the entire
baseband signal to the BS for processing. Quantitatively, our energy-spectral
efficiency tradeoff analysis incorporates the effects of small-scale fading but
neglects those of large-scale fading, leaving an analysis of the effect of large-
scale fading for future work in

kammoun et al., [19] show twofold. First is to provide an information-
theoretic channel model for 3D massive MIMO systems and second is to
predict and analyze the performance of these systems by characterizing the
distribution of the MI

Hoydis et al ., [20] show assess to which extent the above conclusions hold
true for large, but finite N provide a definition of massive MIMO as an oper-
ating condition of cellular systems where multiuser interference and noise are
small compared to pilot contamination.

Tai Do et al ., [21] viewed proposes anti-jamming strategies based on pilot
retransmission for a single user uplink massive MIMO under jamming attack.
A jammer is assumed to attack the system both in the training and data
transmission phases. We first derive an achievable rate which enables us to
analyze the effect of jamming attacks on the system performance

13



Chapter Two - Literature Review

2.5 Contributions

The main contribution is increasing the throughput by regardless of band-
width and focus on spectral efficiency and to achieve the propose we use
Massive MIMO instead of point to point MIMO because Massive MIMO has
shown over 10 times spectral efficiency increase over a point-to-point MIMO
under realistic propagation environment with simpler signal processing algo-
rithms so by overabundance the throughput we scale up the covered area and
increase the user deserve service so as to mitigate the effects of noise, fading,
and multi-user interference.

14



Chapter Three
System Model

3.1 Introduction

We consider a cellular network where payload data is transmitted with uni-
versal time and frequency reuse. Each cell is assigned an index in the set
L , where the cardinality |L| is the number of cells. The BS in each cell
is equipped with an array of M antennas and communicates with K single-
antenna UEs at the time, out of a set of K(max) UEs. We are interested
in massive MIMO topologies where M and K max are large and fixed, while
K is a design parameter and all UEs have unlimited demand for data. The
subset of active UEs changes over time, thus the name UE k ∈ 1, ..., K in cell
l ∈ Lis given to different UEs at different times. The geographical position
zlk ∈ R2 of UE k in cell l is therefore an ergodic random variable with a cell-
specific distribution. This model is used to study the average performance
for a random rather than fixed set of interfering UEs. The time- frequency
resources are divided into frames consisting of Tc seconds and Wc Hz, This
leaves room for S = TcWc transmission symbols per frame. We assume that
the frame dimensions are such that T c is smaller or equal to the coherence
time of all UEs, while W c is smaller or equal to the coherence bandwidth of
all UEs.
These channel responses are drawn as realizations from zeromean circularly
symmetric complex Gaussian distributions:

hjlk ∼ CN (0, dj(zlk), IM ) (3.1)

where IM is the M ×M identity matrix. This is a theoretical model for non-
line-of-sight propagation that is known to give representative results with
both few and many BS antennas. The deterministic function dj(z) gives the
variance of the channel attenuation from BS j to any UE position z. The
value of dj(zlk) varies slowly over time and frequency, thus we assume that
the value is known at BS j for all l and k and that each UE knows its value
to its serving BS. The exact UE positions zlk are unknown
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We consider the time-division duplex (TDD) protocol , where B ≥ 1 out of
the S symbols in each frame are reserved for UL pilot signaling. There is no
DL pilot signaling and no feedback of CSI, because the BSs can process both
UL and DL signals using the UL channel measurements due to the channel
reciprocity in TDD systems.

The remaining S – B symbols are allocated for payload data and are split
between UL and DL transmission. We let ζ (ul) and ζ (dl) denote the fixed
fractions allocated for UL and DL, respectively. These fractions can be se-
lected arbitrarily, subject to the constraint ζ(ul)+ζ(dl) = 1 and that ζ(ul)(S−B)

and ζ(ul)(S −B) are positive integers.

3.2 Uplink Model

The received UL signal yj ∈ CM at BS j in a frame is modeled as

Yj =
∑
ι∈ς

K∑
k=1

√
Pιkhjιkxιk + nj (3.2)

where hjlk ∈ CN denotes the channel response between BS j and UE k in cell l
, xlk ∈ Cis the symbol transmitted by UEkin cell l. This signal is normalized as
E|xlk|2 = 1, while the corresponding UL transmit power is defined by plk ≥ 0.
The additive noise nj ∈ CM is modeled as nj ∼ CN(0, σ2IM ), where σ2 is the
noise variance.

Contrary to most previous works on massive MIMO, which assume fixed UL
power, we consider statistics-aware power control the symbols from UE k in
cell l have the transmit powerplk = ρ

dl(zlk)
, where ρ > 0 is a design parameter

. This power-control policy inverts the average channel attenuation dl(zlk)

and has the merit of making the average effective channel gain the same
for all UEs: Eplk||hllk||2 = Mρ Hence, this policy guarantees a uniform user
experience, saves valuable energy at UEs, and avoids near-far blockage where
weak signals drown in stronger signals due to the finite dynamic range of
analog-to-digital converters (ADCs).

3.3 Downlink Model

the received DL signal zjk ∈ C at UE k in cell j in a frame is modeled as

zjk =
∑
ι∈ς

K∑
m=1

hTιjkwιmsιm + ηjk (3.3)
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where (.)T denotes transpose, slm is the symbol intended for UE m in cell
l, wlm ∈ CM is the corresponding precoding vector, and ||wlm||2 is the allo-
cated DL transmit power, The additive noise at UEkin cell j is modeled as
ηjk ∼ CN(0, σ2).
The UL/DL system models in 3.2and 3.3 assume perfect synchronization
across all cells, as commonly done in the massive MIMO literature. Local
synchronization is achievable, for example, using the cyclic prefix in OFDM-
based systems, but network-wide synchronization is probably infeasible over
large coverage areas. The processing techniques analyzed in this project can
thus be used to suppress the strong interference between the closest tiers of
neighboring cells, while the interference from distant cells is asynchronously
received and practically insuppressible. We expect that the simplified syn-
chronization modeling used here and elsewhere has negligible impact on the
system performance, since the insuppressible distant interferers are weak as
compared to(partially suppressed) interference from neighboring cells.

3.4 Linear Processing

To obtain optimal performance, complex signal processing techniques must
be implemented. For example, in the uplink, the maximum likelihood (ML)
multiuser detection can be used. With ML multiuser detection, the BS has
to search all possible transmitted signal , and choose the best one. The BS
can use linear processing schemes (linear receivers in the uplink and linear
precoders in the downlink) to reduce the signal processing complexity. These
schemes are not optimal. However, when the number of BS antennas is large,
that linear processing is nearly-optimal. We consider both conventional linear
processing schemes such as maximum ratio (MR) combining/transmission and
zero forcing (ZF).

3.4.1 Maximum Ratio Combining

In this technique, the received signals are adjusted both in magnitude and
phase by the weights in the combining filter to maximise the Signal-to-Noise-
Ratio (SNR) at the output of the combiner [22,23]. The weighting applied to
each diversity branch is adjusted independently from other branches according
to the SNR at that branch. The received signal at kth branch, yk , and the
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output of the MRC combiner, d, are given by

d =

M∑
k=1

wH
k yk (3.4)

yk = hku+ n (3.5)

wH
k = hHk (3.6)

Where [.]H represents the Hermitian or complex conjugate. The transmitted
signal, u is corrupted by the channel effects characterized by hk , while wk is
the associated weight of the kth antenna element.

3.4.2 Zero Forcing

In a zero-forcing combiner, the combiner coefficients W are chosen to remove
undesired interference leaving only the desired signal. This technique assumes
the channel characteristic is known or estimated from the pilot bits.The out-
put of the zero-forcing combiner is given by [24]

y = Hu + n (3.7)

d = WHy (3.8)

WH = (HHH)−1aH (3.9)

Where d is an estimate of the users’ signal vector, y is a received signal vector
corrupted by the channel effects characterized by matrix H of size M × N

as given in (3.5). W is a corresponding weight matrix of size N ×M to the
antenna elements and (.)−1 is the inverse matrix.

3.5 Pilot Contamination

Ideally every terminal in a Massive MIMO system is assigned an orthogonal
uplink pilot sequence. However, the maximum number of orthogonal pilot
sequences that can exist is upper bounded by the duration of the coherence
interval divided by the channel delay-spread. In [2], for a typical operating
scenario, the maximum number of orthogonal pilot sequences in a one mil-
lisecond coherence interval is estimated to be about 200. It is easy to exhaust
the available supply of orthogonal pilot sequences in a multi-cellular system.
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The effect of re-using pilots from one cell to another, and the associated neg-
ative consequences, is termed “pilot contamination”. More specifically, when
the service-array correlates its received pilot signal with the pilot sequence
associated with a particular terminal it actually obtains a channel estimate
that is contaminated by a linear combination of channels to the other ter-
minals that share the same pilot sequence. Downlink beamforming based on
the contaminated channel estimate results in interference that is directed to
those terminals that share the same pilot sequence. Similar interference is
associated with uplink transmissions of data.

This directed interference grows with the number of service-antennas at the
same rate as the desired signal [2]. Even partially correlated pilot sequences
result in directed interference. Pilot contamination as a basic phenomenon is
not really specific to massive MIMO, but its effect on massive MIMO appears
to be much more profound than in classical MIMO [2,4]. In [2] it was argued
that pilot contamination constitutes an ultimate limit on performance, when
the number of antennas is increased without bound, at least with receivers
that rely on pilot-based channel estimation. While this argument has been
contested recently [25], at least under some specific assumptions on the power
control used, it appears likely that pilot contamination must be dealt with in
some way. This can be done in several ways

• The allocation of pilot waveforms can be optimized. One possibility is
to use a less aggressive frequency re-use factor for the pilots (but not
necessarily for the payload data)—say 3 or 7. This pushes mutually-
contaminating cells farther apart. It is also possible to coordinate the use
of pilots or adaptively allocate pilot sequences to the different terminals
in the network [12]. Currently, the optimal strategy is unknown.

• Clever channel estimation algorithms [25], or even blind techniques that
circumvent the use of pilots altogether [26], may mitigate or eliminate
the effects of pilot contamination. The most promising direction seems
to be blind techniques that jointly estimate the channels and the payload
data.

• New precoding techniques that take into account the network struc-
ture, such as pilot contamination precoding [27], can utilize cooperative
transmission over a multiplicity of cells—outside of the beamforming
operation—to nullify, at least partially, the directed interference that
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results from pilot contamination. Unlike coordinated beamforming over
multiple cells which requires estimates of the actual channels between
the terminals and the service-arrays of the contaminating cells, pilot-
contamination precoding requires only the corresponding slow-fading
coefficients. Practical pilot-contamination precoding remains to be de-
veloped.

3.6 Computing Spectral Efficiency

Let j(β) ⊂ L be the subset of cells that uses the same pilots as cell j. In the
UL, an achievable SE in cell j is

SE
(ul)
j = Kζ(ul)(1− B

S
) log2 (1 +

1

Ischeme
j

) [bit/s/HZ/cell] (3.10)

Let Ll(β) ⊂ L be the subset of cells that uses the same pilots as cell j. in the
DL, , an achievable SE in cell j is

SE
(dl)
j = Kζ(dl)(1− B

S
) log2 (1 +

1

Ischeme
j

) [bit/s/HZ/cell] (3.11)

where the interference term

Ischeme
j =

∑
l∈ιj(β)\{j}

(
µ
(2)
jl +

µ
(2)
jl −

(
µ
(1)
jl

)2

Gscheme

)
+

(∑
l∈ι µ

(1)
jl Z

scheme
jl + σ2

ρ

)(∑
l∈ιj(β) µ

(1)
jl + σ2

ρ

)
Gscheme

(3.12)

The SE expression manifests the importance of pilot allocation, since the
interference term in equation (3.12) contains summations that only consider
the cells that use the same pilots as cell j The first term describes the pilot
contamination, while the second term mention the inter-user interference,
where the interference term Ischeme

j is defined in (3.12) and depends on Gscheme

and Zscheme
jl . The parameter values with MR and ZF,

• In the term MR

GMR = M (3.13)
ZMR
jl = K (3.14)
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• In the term ZF
GZF = M −K (3.15)

ZZF
jl =


K

(
1−

µ
(1)
jl∑

l∈ι(β)µjl(1) +
σ2

Bρ

)
ifl ∈ ιj(β),

K ifl /∈ ιj(β),

(3.16)

3.7 Propagation parameters

The hexagonal grid is infinitely large, to avoid edge effects and to give all cells
the same properties. The cell radius is denoted by r > 0 and is the distance
from the cell center to the corners. Each cell can be uniquely indexed by a
pair of integers αj(1), j(2) ∈ Z , where Z is the set of integers. This integer
pair specifies the location of BS j:

bj =
√
3

[√
3r/2

r/2

]
α
(1)
j +

[
0

√
3r

]
α
(2)
2 ∈ R2 (3.17)

Every cell on the hexagonal grid has 6 interfering cells in the first surrounding
tier, 12 in the second tier, etc. this limits which pilot reuse factors that give
symmetric reuse patterns: β ∈ {1, 3, 4, 7, 9, 12, 13, ...} [28]

µ
(ω)
jι = Ezιm

{(
dj(zιm)

dι(zιm)

)ω}
= Ezlm

{(
||zlm − bl||
||zlm − bj ||

)κω}
(3.18)

consider a classic pathloss model where the variance of the channel attenuation
in 3.1 is dj(z) = C

||z−bj ||κ , where ||.||is the Euclidean norm, C > 0 is a reference
value, and κ ≥ 2 is the pathloss exponent

The latter two are the average ratio between the channel variance to BS
j and the channel variance to BS ι, for an arbitrary UE in cellι , and the
second-order moment of this ratio, respectively. These parameters are equal
to 1 for j =ι and otherwise go to zero as the distance between BS j and cell
ι increases Based on equations of the spectral efficiency is SE(ul) and SE(dl),
the sum of the per-cell achievable SEs in the UL and DL are given by the
following [28]

SEj = SE
(ul)
j + SE

(dl)
j (3.19)

K(1− B

S
) log2 (1 +

1

Ischeme
j

) [bit/s/HZ/cell] (3.20)
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where M → ∞ . This SE is maximized jointly for all cells when the number
of scheduled UEs is either K = [S/2β] , the asymptotically optimal SE is [28]

SE∞
j =

S

4β
log2

(
1 +

1∑
ι∈ςj(β)/j µ

(2)
jι

)
(3.21)

where the interference term Ischeme
j for UE k is given in (3.11) and (3.10) for

MR and ZF . This SE can be divided between the UL and DL arbitrarily
using any positive fractions ζ(ul) and ζ(dl) , with ζ(ul) + ζ(ul) = 1

The SE increases linearly with the frame length S, the asymptotically opti-
mal scheduling gives B = [S/2] for any β, which means that half the frame is
allocated to pilot transmission. The rationale is that the SE gain from adding
an extra UE outweighs the pre-log loss at the existing UEs if at least half
the frame is used for data (a criterion independent of β). The asymptotically
optimal β cannot be computed in closed-form, but we notice that a larger β

leads to fewer interferers in Lj(β) and also reduces the pre-log factor; hence,
a larger β brings SINR improvements until a certain point where the pre-log
loss starts to dominate
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Simulation Results

4.1 Simulation Assumptions

We simulate the SE in an arbitrary cell on the hexagonal grid and take all non-
negligible interference into account. The UEs can be anywhere in the cells,
but at least 0.14r from the serving BS (this makes the analysis independent
of r). Since the SE expressions in system model are the same for the UL and
DL, except for the fractions ζ(ul) and ζ(dl)

We simulate the sum of these SEs and note that it can be divided arbitrarily
between the UL and DL. The same linear processing schemes are used in both
directions. The simulations consider MR and ZF combining, and all results
are obtained by computing the closed-form expressions from system model
for different parameter combinations. For each number of antennas, M , we
optimize the SE with respect to the number of UEs K and the pilot reuse
factor β (which determine B = βK) by searching the range of all reasonable
integer values. We set the coherence block length to S = 400 (e.g., 2 ms
coherence time and 200 kHz coherence bandwidth) , set the SNR to ρ/σ2 =

5dB , and pick κ = 3.7 as pathloss exponent. Note that there are various
values for the path loss based on the propagation environment

• for free space, κ = 2,

• Urban Area 2.7 to 3.5

• Suburban Area 3 to 5

• Indoor (line-of-sight) 1.6 to 1.8

We consider three propagation environments with different severity of inter-
cell interference:

• Average case: Averaging over uniform UE locations in all cells.
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• Best case: All UEs in other cells are at the cell edge furthest from BS j

(for each j).

• Worst case: All UEs in other cells are at the cell edge closest to BS j

(for each j).

The corresponding values of the parameters µ
(1)
jl and µ

(2)
jl were computed by

Monte-Carlo simulations with 103 UE locations in each cell. The best case is
overly optimistic since the desirable UE positions in the interfering cells are
different with respect to different cells. However, it gives an upper bound on
what is achievable by coordinated scheduling across cells. The worst case is
overly pessimistic since the UEs cannot all be at the worst locations, with
respect to all other cells, at the same time. The average case is probably the
most applicable in practice, where the averaging comes from UE mobility,
scheduling, and random switching of pilot sequences between the UEs.

4.2 Simulation Flow

This flow chart figure [4.2] takes points in the complex plane and check if
they are inside a hexagon of specified size (and a rotation with two sides
being parallel to the horizontal axis). The check can be done by input the
point = point in the complex plane radius = Radius (length to corners) of
the hexagon in the complex plane and then we calculate the angle and the
distance of the point then we save the different locations of UEs in matrix
telling if the points are inside the hexagon other wise if the point out of the
hexagon we ignoring it and add new point

After we input the location of the point in complex plane and doing the
hexagon test then flow chart figure [4.1] check that if the point is not in for-
bidden area and achieve the pathloss exponent then we determine the exactly
position of the point if the point is in uniform location in the cell we save this
point in average case if the point is in the cell edge furthest from BS then
save the point in best case otherwise if the point is in the cell edge closest
from BS save the point in worst case After all points saved in their location
we finally calculate propagation parameter for the different cases.
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Figure 4.1: Flowchart show how the compute environment and the htree cases
production
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4.3 SE and Number of Antennas

In the fallowing cases there are a clear increase in SE ,while we increasing
the number of antennas(M).The Mean different came in which way we use
the Linear processing to reduce the different type of interference and as we
mentioned before we well take ZF and MR to compare

Results for the average case are shown in Fig 4.1, the best case in Fig 4.2,
and the worst case in Fig 4.3.

The enhance SE and the corresponding K∗ are shown the figures respec-
tively.The achievable SEs (per cell) are very different between the best case
interference and the two other cases this confirms the fact that results from
single-cell analysis of massive MIMO is often not applicable to multi-cell cases
(and vice versa). ZF brings much higher SEs than MR under the best case
inter- cell interference, since then the potential gain from mitigating intra-
cell interference is very high. In the realistic average case, the optimized
SEs are rather similar for MR and ZF; particularly in the practical range of
10 ≤ M ≤ 200 antennas. In all cases, the largest differences appear when the
number of antennas is very large (notice the logarithmic M-scales). At least
M = 105 is needed to come close to comparing between this cases .

4.4 Impact of Other Parameters

We would like to change some of the parameter and figure out the new effect
of it in the simulation result.

4.4.1 Coherence block length

The first parameter we change is Coherence block length S from 400 to 800
while the other parameters is constant (Pathloss = 3.7 and SNR= 5 dB ) and
then we noticed that the are increasing in spectral efficiency appreciably in
the average case and ZF is sort of similar to MR other wise in the best case
also we found the same result of increasing the spectral efficiency and ZF
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achieve high result comparing to the MR but in the worst case there are no
noticed change in the value of the spectral efficiency as the fallowing figures
present

4.4.2 Pathloss exponent

the second parameter we change is Pathloss exponent from 3.7 to 5 while the
other parameters is constant (S = 400 and SNR= 5 dB ) and then we noticed
that the are increasing in spectral efficiency in the average case and ZF is sort
of similar to MR other wise in the best case and the worst case there are no
noticed change in the value of the spectral efficiency as the fallowing figures
present

4.4.3 Signal-to-Noise Ratio

the third parameter we change is Signal-to-Noise from 5 dB to -10 dB while
the other parameters is constant (S = 400 and Pathloss= 3.7 ) and then we
noticed that the are increasing in spectral efficiency in the average case and
ZF is sort of similar to MR other wise in the best case and the worst case there
are no noticed change in the value of the spectral efficiency as the fallowing
figures present
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Figure 4.2: Flowchart show the process of calculate the location of the point28
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Figure 4.3: Simulation of enhanced SE, as a function of M, with average inter-
cell interference.
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Figure 4.4: Simulation of enhanced SE, as a function of M, with best-case
inter-cell interference.

Figure 4.5: Simulation of enhanced SE, as a function of M, with worst-case
inter-cell interference
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Figure 4.6: Average case with change in Coherence block length S = 800

Figure 4.7: Best case with change in Coherence block length S = 800
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Chapter Four - Simulation Results

Figure 4.8: Worst case with change in Coherence block length S = 800

Figure 4.9: Average case with change κ = 5
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Chapter Four - Simulation Results

Figure 4.10: Best case with change κ = 5

Figure 4.11: Worst case with change κ = 5
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Chapter Four - Simulation Results

Figure 4.12: Average case with change SNR = −10dB

Figure 4.13: Best case with change SNR = −10dB
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Chapter Four - Simulation Results

Figure 4.14: Worst case with change SNR = −10dB
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Chapter Five
Conclusions and Recommendations

5.1 Conclusions

This project concerning with how to maximal the spectral efficiency by ap-
plying spatial multiplexing (massive MIMO) . ZF give high spectral efficiency
per cell when it compared with MR, whats mean the reduce of the interference
is better in ZF than MR

The study, analyze , plan of the software program to simulate the perfor-
mance of massive MIMO has being done by using MATLAB software program.
The linear schemes which has taken under consideration are zero forcing and
the maximum ratio methods. The implementation of massive MIMO by us-
ing different linear processing schemes under different interference situations.
The spectral efficiency is directly proportional with number of antennas in
the (BS).

5.2 Recommendations

From the results we suggest the following recommendation for future work:

• Analyze and implement the massive MIMO using other linear processing
technique, or non linear processing technique such as (DP) and (SIC)
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Chapter Five - Conclusions and Recommendations

• Optimize the number of UEs antennas (K) per-cell.

• Pilot contamination imposes much more severe limitations on massive
MIMO than on traditional MIMO systems. The effect of massive MIMO
in power consumption

.
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Appendix A

A.1 Program 1

1 f unc t i on okay = checkHexagonal ( po ints , r ad iu s )
2 %This func t i on takes po in t s in the complex plane and check ...

i f they are
3 %in s i d e a hexagon o f s p e c i f i e d s i z e ( and a ro t a t i on with ...

two s i d e s being
4 %pa r a l l e l to the ho r i z on t a l a x i s .
5 %
6 %INPUT
7 %po int s = Matrix with po in t s in the complex plane
8 %rad ius = Radius ( l ength to co rne r s ) o f the hexagon in the ...

complex plane
9 %

10 %OUTPUT
11 %okay = Matrix with boo leans t e l l i n g i f the po in t s are ...

i n s i d e the hexagon
12

13 %Extract d i s t an c e s and ang le
14 ang l e s = ang le ( po in t s ) ;
15 d i s t an c e s = abs ( po in t s ) ;
16

17 %Symmetry a l l ows us to r o t a t e a l l ang l e s to l i e in the area ...

0 , p i /3
18 angles_modulus = mod( angles , p i /3) ;
19

20 %Extract the Cartes ian coo rd ina t e s f o r the ro ta ted po in t s
21 x = d i s t an c e s . * cos ( angles_modulus ) ;
22 y = d i s t an c e s . * s i n ( angles_modulus ) ;
23

24 %Check i f the po in t s are in the hexagon , in an area l im i t ed ...

by three l i n e s
25 okay = (x<rad iu s ) & ( y<rad iu s *( sq r t (3 ) /2) ) & (x < rad iu s − ...

y/ sq r t (3 ) ) ;
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A.2 Program 2

1 f unc t i on [ muValues1Mean , muValues2Mean , . . . .
2 reuseMu1Mean , reuseMu1Mean2 , reuseMu1MeanNext . . .
3 reuseMu1Mean2Next , reuseMu2Mean , . . .
4 reuseMuMeanVariance , muValues1Worst , . . .
5 muValues2Wors
6 reuseMu1Worst , reuseMu1Worst2 , reuseMu1WorstNext . . .
7 , reuseMu1Worst2Next , reuseMu2Worst . . .
8 reuseMuWorstVariance , muValues1Best , muValues2Best . . .
9 , reuseMu1Best , reuseMu1Best2 , . .

10 reuseMu1BestNext , reuseMu1Best2Next , reuseMu2Best . . .
11 , reuseMuBestVariance , r euseFactor ]
12 = computeEnvironment ( kappa , forbiddenRegion , monteCarloUEs )
13 %This func t i on performs Monte Carlo s imu la t i on s to compute ...

var i ous sums o f
14 %the mu−parameters
15

16

17

18 %Set number o f UE l o c a t i o n s in the Monte Carlo s imulat ions , ...

i f t h i s number
19 %i s not s e t as an input parameter
20 i f nargin<3
21 monteCarloUEs = 1000 ;
22 end
23

24

25 %Def ine matrix f o r s t o r i n g UE l o c a t i o n s
26 UElocat ions = ze ro s (1 , monteCarloUEs ) ;
27

28

29 %Def ine c e l l d imensions ( the un i t or exact s i z e doesn ’ t ...

matter s i n c e
30 %everyth ing i s the mu−parameters are s c a l e i nva r i an t )
31 i n t e r s i t eD i s t a n c e = 0 . 5 ; %Distance between ne ighbor ing BSs
32

33 dmax = i n t e r s i t eD i s t a n c e /2 ; %Ce l l r ad iu s
34 dmin = dmax * forbiddenRegion ; %Shor t e s t d i s t anc e from a BS
35

36
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37 %Generate UE l o c a t i o n s randomly with uniform d i s t r i b u t i o n ...

i n s i d e the c e l l s
38 nbrToGenerate = monteCarloUEs ;
39 notFin i shed = true (monteCarloUEs , 1 ) ;
40

41

42 %I t e r a t e the gene ra t i on o f UE l o c a t i o n s un t i l a l l o f them ...

are i n s i d e a
43 %hexagonal c e l l
44 whi le nbrToGenerate>0
45

46 %Generate new UE l o c a t i o n s uni formly at random in a ...

c i r c l e o f rad iu s dmax
47 UElocat ions (1 , notFin i shed ) =
48 s q r t ( rand (1 , nbrToGenerate ) *(dmax^2−dmin^2)+ dmin^2 ) . . .
49 . * exp (1 i *2* p i * rand (1 , nbrToGenerate ) ) ;
50

51 %Check which UEs that are i n s i d e a hexagonal and ...

de c l a r e as f i n i s h e d
52 f i n i s h e d = checkHexagonal ( UElocat ions ( 1 , : ) ’ ,dmax) ;
53

54 %Update which UEs that are l e f t to generate
55 notFin i shed = ( f i n i s h e d==f a l s e ) ;
56

57 %Update how many UEs that are l e f t to generate
58 nbrToGenerate = sum( notFin i shed ) ;
59

60 end
61

62

63 %Angle between each edge po int (360/6 = 60)
64 baseAngle = 60 ;
65

66 %Se l e c t how many t i e r s o f BSs should be cons ide r ed around ...

the c e l l o f
67 %i n t e r e s t
68 howFar = 5 ;
69

70

71 %Placeho lde r s f o r s t o r i n g r e s u l t s f o r the mean i n t e r f e r e n c e ...

case
72 muValues1Mean = ze ro s (6 , 6 ) ;
73 muValues2Mean = ze ro s (6 , 6 ) ;
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74 muValues1Mean (1 , 1 ) = 1 ;
75 muValues2Mean (1 , 1 ) = 1 ;
76

77 reuseMu1Mean = ze ro s (6 , 6 ) ;
78 reuseMu1Mean2 = ze ro s (6 , 6 ) ;
79 reuseMu1MeanNext = ze ro s (6 , 6 ) ;
80 reuseMu1Mean2Next = ze ro s (6 , 6 ) ;
81

82 reuseMu2Mean = ze ro s (6 , 6 ) ;
83 reuseMuMeanVariance = ze ro s (6 , 6 ) ;
84

85

86 %Placeho lde r s f o r s t o r i n g r e s u l t s f o r the worst ...

i n t e r f e r e n c e case
87 muValues1Worst = ze ro s (6 , 6 ) ;
88 muValues2Worst = ze ro s (6 , 6 ) ;
89 muValues1Worst (1 , 1 ) = 1 ;
90 muValues2Worst (1 , 1 ) = 1 ;
91

92 reuseMu1Worst = ze ro s (6 , 6 ) ;
93 reuseMu1Worst2 = ze ro s (6 , 6 ) ;
94 reuseMu1WorstNext = ze ro s (6 , 6 ) ;
95 reuseMu1Worst2Next = ze ro s (6 , 6 ) ;
96

97 reuseMu2Worst = ze ro s (6 , 6 ) ;
98 reuseMuWorstVariance = ze ro s (6 , 6 ) ;
99

100

101 %Placeho lde r s f o r s t o r i n g r e s u l t s f o r the bes t i n t e r f e r e n c e ...

case
102 muValues1Best = ze ro s (6 , 6 ) ;
103 muValues2Best = ze ro s (6 , 6 ) ;
104 muValues1Best (1 , 1 ) = 1 ;
105 muValues2Best (1 , 1 ) = 1 ;
106

107 reuseMu1Best = ze ro s (6 , 6 ) ;
108 reuseMu1Best2 = ze ro s (6 , 6 ) ;
109 reuseMu1BestNext = ze ro s (6 , 6 ) ;
110 reuseMu1Best2Next = ze ro s (6 , 6 ) ;
111

112 reuseMu2Best = ze ro s (6 , 6 ) ;
113 reuseMuBestVariance = ze ro s (6 , 6 ) ;
114
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115

116 %Placeho lder f o r s t o r i n g reuse f a c t o r s
117 reuseFactor = ze ro s (6 , 6 ) ;
118

119 %Def ine the po s i t i o n o f one o f the ne ighbor ing c e l l s , as ...

seen from the
120 %o r i g i n .
121 nextNeighbor = sq r t (3 ) *dmax*exp (1 i * p i *(30/180) ) ;
122

123

124 %Go through ne ighbor ing c e l l s at d i f f e r e n t d i s t an c e s us ing the
125 %paramete r i za t i on in Eq. (31) . Only one search d i r e c t i o n i s ...

cons idered , but
126 %there are s i x ne ighbor ing c e l l s at the same d i s t a n c e .
127 f o r alpha1 = 1 : 1 : howFar
128 f o r alpha2 = 0 : 1 : howFar
129

130 %Put out another BS us ing coo rd ina t e s u and v
131 BSlocat ions =
132 sq r t (3 ) * alpha1 *dmax*exp (1 i * p i *(30/180) ) + ...

s q r t (3 ) * alpha2 *dmax*1 i ; . . .
133 %Coordinates based on Eq. (31)
134

135

136 %Compute the reuse f a c t o r f o r the hexagonal ...

topology when the
137 %current ne ighbor ing c e l l i s the f i r s t one that ...

r eu s e s the same
138 %p i l o t sequences
139 reuseFactor ( alpha1+1, alpha2+1) = ...

alpha1^2+alpha2^2+alpha1 * alpha2 ;
140

141

142 %Mean i n t e r f e r e n c e
143

144 %Compute the mu^(1) and mu^(2) va lue s f o r mean ...

i n t e r f e r e n c e
145 %seen from the base s t a t i o n in the o r i g i n
146 muValues1Mean ( alpha1+1, alpha2+1) =
147 mean ( ( abs ( UElocat ions ( : ) ) . /abs ( UElocat ions ( : ) . . .
148 +BSlocat ions ) ) . ^kappa ) ;
149 muValues2Mean ( alpha1+1, alpha2+1) =
150 mean ( ( abs ( UElocat ions ( : ) ) . /abs ( UElocat ions ( : ) . . .
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151 +BSlocat ions ) ) . ^(2*kappa ) ) ;
152

153 %Store the sum of i n t e r f e r e n c e f o r the c e l l s that ...

have the same
154 %p i l o t sequences as the c e l l in the o r i g i n , when ...

the p i l o t r euse
155 %fa c t o r i s alpha1^2+alpha2^2+alpha1 * alpha2
156 reuseMu1Mean ( alpha1+1, alpha2+1) =
157 reuseMu1Mean ( alpha1+1, alpha2+1) + . . .
158 muValues1Mean ( alpha1+1, alpha2+1) ; %Sum of mu^(1)
159 reuseMu1Mean2 ( alpha1+1, alpha2+1) =
160 reuseMu1Mean2 ( alpha1+1, alpha2+1) + . . .
161 muValues1Mean ( alpha1+1, alpha2+1)^2; %Sum of (mu^(1) ) ^2
162 reuseMu2Mean ( alpha1+1, alpha2+1) =
163 reuseMu2Mean ( alpha1+1, alpha2+1) + . . .
164 muValues2Mean ( alpha1+1, alpha2+1) ; %Sum of mu^(2)
165 reuseMuMeanVariance ( alpha1+1, alpha2+1) =
166 reuseMuMeanVariance ( alpha1+1, alpha2+1) . . .
167 + muValues2Mean ( alpha1+1, alpha2+1) − ...

muValues1Mean ( alpha1+1, alpha2+1)^2; . .
168

169 %Store the sum of i n t e r f e r e n c e f o r the c e l l s that ...

have the same
170 %p i l o t sequences as one o f the ne ighbors o f the ...

c e l l in the o r i g i n ,
171 %when the p i l o t r euse f a c t o r i s ...

alpha1^2+alpha2^2+alpha1 * alpha2
172 newMu1ReuseNext =
173 mean ( ( abs ( UElocat ions ( : ) ) . /abs ( UElocat ions ( : )+nextNeighbor ) ) . ^kappa ) ;
174 newMu1ReuseNextOneStep =
175 mean ( ( abs ( UElocat ions ( : ) ) . /abs ( UElocat ions ( : )+BSlocat ions+nextNeighbor ) ) . . .
176 . ^kappa ) ;
177 reuseMu1MeanNext ( alpha1+1, alpha2+1) =
178 reuseMu1MeanNext ( alpha1+1, alpha2+1) + ...

newMu1ReuseNext . . .
179 + newMu1ReuseNextOneStep ;
180 reuseMu1Mean2Next ( alpha1+1, alpha2+1) =
181 reuseMu1Mean2Next ( alpha1+1, alpha2+1) + ...

newMu1ReuseNext.^2 . . .
182 +newMu1ReuseNextOneStep. ^2 ;
183

184

185 %Worst−case i n t e r f e r e n c e
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186

187 %Compute the mu^(1) and mu^(2) va lue s f o r ...

worst−case i n t e r f e r e n c e ,
188 %seen from the base s t a t i o n in the o r i g i n
189 muValues1Worst ( alpha1+1, alpha2+1) =
190 max( ( abs ( UElocat ions ( : ) ) . /abs ( UElocat ions ( : )+BSlocat ions ) ) . . .
191 . ^kappa ) ;
192 muValues2Worst ( alpha1+1, alpha2+1) =
193 max( ( abs ( UElocat ions ( : ) ) . /abs ( UElocat ions ( : )+BSlocat ions ) ) . . .
194 . ^(2* kappa ) ) ;
195

196 %Store the sum of i n t e r f e r e n c e f o r the c e l l s that ...

have the same
197 %p i l o t sequences as the c e l l in the o r i g i n , when ...

the p i l o t r euse
198 %fa c t o r i s alpha1^2+alpha2^2+alpha1 * alpha2
199 reuseMu1Worst ( alpha1+1, alpha2+1) =
200 reuseMu1Worst ( alpha1+1, alpha2+1) + . . .
201 muValues1Worst ( alpha1+1, alpha2+1) ; %Sum of mu^(1)
202 reuseMu1Worst2 ( alpha1+1, alpha2+1) =
203 reuseMu1Worst2 ( alpha1+1, alpha2+1) . . .
204 + muValues1Worst ( alpha1+1, alpha2+1) . ^2 ; %Sum of ...

(mu^(1) ) ^2
205 reuseMu2Worst ( alpha1+1, alpha2+1) =
206 reuseMu2Worst ( alpha1+1, alpha2+1) . . .
207 + muValues2Worst ( alpha1+1, alpha2+1) ; %Sum of mu^(2)
208 reuseMuWorstVariance ( alpha1+1, alpha2+1) =
209 reuseMuWorstVariance ( alpha1+1, alpha2+1) . . .
210 + muValues2Worst ( alpha1+1, alpha2+1) − . . .
211 muValues1Worst ( alpha1+1, alpha2+1)^2;
212

213 %Store the sum of i n t e r f e r e n c e f o r the c e l l s that ...

have the same
214 %p i l o t sequences as one o f the ne ighbors o f the ...

c e l l in the o r i g i n ,
215 %when the p i l o t r euse f a c t o r i s ...

alpha1^2+alpha2^2+alpha1 * alpha2
216 newMu1ReuseNext =
217 max( ( abs ( UElocat ions ( : ) ) . /abs ( UElocat ions ( : )+nextNeighbor ) ) . ^kappa ) ;
218 newMu1ReuseNextOneStep =
219 max( ( abs ( UElocat ions ( : ) ) . /abs ( UElocat ions ( : ) . . .
220 +BSlocat ions+nextNeighbor ) ) . ^kappa ) ;
221 reuseMu1WorstNext ( alpha1+1, alpha2+1) =
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222 reuseMu1WorstNext ( alpha1+1, alpha2+1) . . .
223 + newMu1ReuseNext + newMu1ReuseNextOneStep ;
224 reuseMu1Worst2Next ( alpha1+1, alpha2+1) =
225 reuseMu1Worst2Next ( alpha1+1, alpha2+1) . . .
226 + newMu1ReuseNext.^2 + newMu1ReuseNextOneStep. ^2 ;
227

228

229

230 %Best−case i n t e r f e r e n c e
231

232 %Compute the mu^(1) and mu^(2) va lue s f o r best−case ...

i n t e r f e r e n c e
233 %seen from the base s t a t i o n in the o r i g i n
234 muValues1Best ( alpha1+1, alpha2+1) =
235 min ( ( abs ( UElocat ions ( : ) ) . / abs ( UElocat ions ( : ) . . .
236 +BSlocat ions ) ) . ^kappa ) ;
237 muValues2Best ( alpha1+1, alpha2+1) =
238 min ( ( abs ( UElocat ions ( : ) ) . / abs ( UElocat ions ( : ) . . .
239 +BSlocat ions ) ) . ^(2*kappa ) ) ;
240

241 %Store the sum of i n t e r f e r e n c e f o r the c e l l s that ...

have the same
242 %p i l o t sequences as the c e l l in the o r i g i n , when ...

the p i l o t r euse
243 %fa c t o r i s alpha1^2+alpha2^2+alpha1 * alpha2
244 reuseMu1Best ( alpha1+1, alpha2+1) =
245 reuseMu1Best ( alpha1+1, alpha2+1) + . . .
246 muValues1Best ( alpha1+1, alpha2+1) ; %Sum of mu^(1)
247 reuseMu1Best2 ( alpha1+1, alpha2+1) =
248 reuseMu1Best2 ( alpha1+1, alpha2+1) + . . .
249 muValues1Best ( alpha1+1, alpha2+1) . ^2 ; %Sum of (mu^(1) ) ^2
250 reuseMu2Best ( alpha1+1, alpha2+1) =
251 reuseMu2Best ( alpha1+1, alpha2+1) + . . .
252 muValues2Best ( alpha1+1, alpha2+1) ; %Sum of mu^(2)
253 reuseMuBestVariance ( alpha1+1, alpha2+1) =
254 reuseMuBestVariance ( alpha1+1, alpha2+1) . . .
255 + muValues2Best ( alpha1+1, alpha2+1) − . . .
256 muValues1Best ( alpha1+1, alpha2+1)^2;
257

258 %Store the sum of i n t e r f e r e n c e f o r the c e l l s that ...

have the same
259 %p i l o t sequences as one o f the ne ighbors o f the ...

c e l l in the o r i g i n ,
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260 %when the p i l o t r euse f a c t o r i s ...

alpha1^2+alpha2^2+alpha1 * alpha2
261 newMu1ReuseNext =
262 min ( ( abs ( UElocat ions ( : ) ) . / abs ( UElocat ions ( : )+nextNeighbor ) ) . ^kappa ) ;
263 newMu1ReuseNextOneStep =
264 min ( ( abs ( UElocat ions ( : ) ) . / abs ( UElocat ions ( : )+ . . .
265 BSlocat ions+nextNeighbor ) ) . ^kappa ) ;
266 reuseMu1BestNext ( alpha1+1, alpha2+1) =
267 reuseMu1BestNext ( alpha1+1, alpha2+1) + . . .
268 newMu1ReuseNext + newMu1ReuseNextOneStep ;
269 reuseMu1Best2Next ( alpha1+1, alpha2+1) =
270 reuseMu1Best2Next ( alpha1+1, alpha2+1) + . . .
271 newMu1ReuseNext.^2 + newMu1ReuseNextOneStep. ^2 ;
272

273

274 %Consider the next two c e l l s with the same reuse ...

f a c t o r ( the re are
275 %two ne igbor s in s t ead o f one in the second ...

i n t e r f e r i n g t i e r )
276 f o r index = 0 :1
277

278 %Compute l o c a t i o n o f the next BS that use the ...

same reuse f a c t o r
279 BSlocat ion2 =
280 BSlocat ions + ...

BSlocat ions *exp (1 i * p i * ( ( index *baseAngle ) /180) ) ;
281

282

283 %Mean i n t e r f e r e n c e
284

285 %Compute the mu^(1) and mu^(2) va lue s f o r mean ...

i n t e r f e r e n c e
286 %seen from the base s t a t i o n in the o r i g i n
287 newMu1Reuse = mean ( ( abs ( UElocat ions ( : ) ) . / . . .
288 abs ( UElocat ions ( : )+BSlocat ion2 ) ) . ^kappa ) ;
289 newMu2Reuse = mean ( ( abs ( UElocat ions ( : ) ) . / . . .
290 abs ( UElocat ions ( : )+BSlocat ion2 ) ) . ^(2*kappa ) ) ;
291 newMu1ReuseNext = mean ( ( abs ( UElocat ions ( : ) ) . / . . .
292 abs ( UElocat ions ( : ) . . .
293 +BSlocat ion2+nextNeighbor ) ) . ^kappa ) ;
294

295 reuseMu1Mean ( alpha1+1, alpha2+1) =
296 reuseMu1Mean ( alpha1+1, alpha2+1) + . . .
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297 newMu1Reuse ; %Add to sum of mu^(1)
298 reuseMu1Mean2 ( alpha1+1, alpha2+1) =
299 reuseMu1Mean2 ( alpha1+1, alpha2+1) + . . .
300 newMu1Reuse. ^2 ; %Add to sum of (mu^(1) ) ^2
301 reuseMu2Mean ( alpha1+1, alpha2+1) =
302 reuseMu2Mean ( alpha1+1, alpha2+1) + . . . .
303 newMu2Reuse ; %Add to sum of mu^(2)
304 reuseMuMeanVariance ( alpha1+1, alpha2+1) =
305 reuseMuMeanVariance ( alpha1+1, alpha2+1) . . .
306 + newMu2Reuse − newMu1Reuse^2;
307 reuseMu1MeanNext ( alpha1+1, alpha2+1) =
308 reuseMu1MeanNext ( alpha1+1, alpha2+1) + . . .
309 newMu1ReuseNext ;
310 reuseMu1Mean2Next ( alpha1+1, alpha2+1) =
311 reuseMu1Mean2Next ( alpha1+1, alpha2+1) + . . .
312 newMu1ReuseNext. ^2 ;
313

314

315 %Worst−case i n t e r f e r e n c e
316

317 %Compute the mu^(1) and mu^(2) f o r the next BS , ...

f o r worst−case
318 %in t e r f e r e n c e seen from the base s t a t i o n in the ...

o r i g i n
319 newMu1Reuse = max( ( abs ( UElocat ions ( : ) ) . / . . .
320 abs ( UElocat ions ( : )+BSlocat ion2 ) ) . ^kappa ) ;
321 newMu2Reuse = max( ( abs ( UElocat ions ( : ) ) . / . . .
322 abs ( UElocat ions ( : )+BSlocat ion2 ) ) . ^(2*kappa ) ) ;
323 newMu1ReuseNext = max( ( abs ( UElocat ions ( : ) ) . / . . .
324 abs ( UElocat ions ( : ) . . .
325 +BSlocat ion2+nextNeighbor ) ) . ^kappa ) ;
326

327 %Store the r e s u l t s
328 reuseMu1Worst ( alpha1+1, alpha2+1) =
329 reuseMu1Worst ( alpha1+1, alpha2+1) . . .
330 + newMu1Reuse ; %Add to sum of mu^(1)
331 reuseMu1Worst2 ( alpha1+1, alpha2+1) =
332 reuseMu1Worst2 ( alpha1+1, alpha2+1) . . .
333 + newMu1Reuse. ^2 ; %Add to sum of (mu^(1) ) ^2
334 reuseMu2Worst ( alpha1+1, alpha2+1) =
335 reuseMu2Worst ( alpha1+1, alpha2+1) . . .
336 + newMu2Reuse ; %Add to sum of mu^(2)
337 reuseMuWorstVariance ( alpha1+1, alpha2+1) =
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338 reuseMuWorstVariance ( alpha1+1, alpha2+1) . . .
339 + newMu2Reuse − newMu1Reuse^2;
340 reuseMu1WorstNext ( alpha1+1, alpha2+1) =
341 reuseMu1WorstNext ( alpha1+1, alpha2+1) . . .
342 + newMu1ReuseNext ;
343 reuseMu1Worst2Next ( alpha1+1, alpha2+1) =
344 reuseMu1Worst2Next ( alpha1+1, alpha2+1) . . .
345 + newMu1ReuseNext. ^2 ;
346

347

348 %Best−case i n t e r f e r e n c e
349

350 %Compute the mu^(1) and mu^(2) f o r the next BS , ...

f o r best−case
351 %in t e r f e r e n c e seen from the base s t a t i o n in the ...

o r i g i n
352 newMu1Reuse = min ( ( abs ( UElocat ions ( : ) ) . / . . .
353 abs ( UElocat ions ( : )+BSlocat ion2 ) ) . ^kappa ) ;
354 newMu2Reuse = min ( ( abs ( UElocat ions ( : ) ) . /
355 abs ( UElocat ions ( : )+BSlocat ion2 ) ) . ^(2*kappa ) ) ;
356 newMu1ReuseNext = min ( ( abs ( UElocat ions ( : ) ) . / . . .
357 abs ( UElocat ions ( : ) . . .
358 +BSlocat ion2+nextNeighbor ) ) . ^kappa ) ;
359

360 %Store the r e s u l t s
361 reuseMu1Best ( alpha1+1, alpha2+1) =
362 reuseMu1Best ( alpha1+1, alpha2+1) + . . .
363 newMu1Reuse ; %Add to sum of mu^(1)
364 reuseMu1Best2 ( alpha1+1, alpha2+1) =
365 reuseMu1Best2 ( alpha1+1, alpha2+1) + . . .
366 newMu1Reuse. ^2 ; %Add to sum of (mu^(1) ) ^2
367 reuseMu2Best ( alpha1+1, alpha2+1) =
368 reuseMu2Best ( alpha1+1, alpha2+1) + . . .
369 newMu2Reuse ; %Add to sum of mu^(2)
370 reuseMuBestVariance ( alpha1+1, alpha2+1) =
371 reuseMuBestVariance ( alpha1+1, alpha2+1) . . .
372 + newMu2Reuse − newMu1Reuse^2;
373 reuseMu1BestNext ( alpha1+1, alpha2+1) =
374 reuseMu1BestNext ( alpha1+1, alpha2+1) + . . .
375 newMu1ReuseNext ;
376 reuseMu1Best2Next ( alpha1+1, alpha2+1) =
377 reuseMu1Best2Next ( alpha1+1, alpha2+1) + . . .
378 newMu1ReuseNext. ^2 ;
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379

380

381

382 %Consider the next three c e l l s with the same ...

r euse f a c t o r
383 %( there are three ne igbor s in s t ead o f two in ...

the th i rd i n t e r f e r i n g t i e r )
384 f o r index2 = index : 1
385

386 %Compute l o c a t i o n o f the next BS that use ...

the same reuse f a c t o r
387 BSlocat ion3 = BSlocat ion2 + BSlocat ions * . . .
388 exp (1 i * p i * ( ( index2 *baseAngle ) /180) ) ;
389

390

391 %Mean i n t e r f e r e n c e
392

393 %Compute the mu^(1) and mu^(2) f o r the next ...

BS, f o r mean
394 %in t e r f e r e n c e seen from the base s t a t i o n in ...

the o r i g i n
395 newMu1Reuse = mean ( ( abs ( UElocat ions ( : ) ) . / . . . .
396 abs ( UElocat ions ( : ) . . .
397 +BSlocat ion3 ) ) . ^kappa ) ;
398 newMu2Reuse = mean ( ( abs ( UElocat ions ( : ) ) . / . . .
399 abs ( UElocat ions ( : ) . . .
400 +BSlocat ion3 ) ) . ^(2*kappa ) ) ;
401 newMu1ReuseNext = ...

mean ( ( abs ( UElocat ions ( : ) ) . / . . .
402 abs ( UElocat ions ( : ) . . .
403 +BSlocat ion3+nextNeighbor ) ) . ^kappa ) ;
404

405 reuseMu1Mean ( alpha1+1, alpha2+1) =
406 reuseMu1Mean ( alpha1+1, alpha2+1) . . .
407 + newMu1Reuse ; %Add to sum of mu^(1)
408 reuseMu1Mean2 ( alpha1+1, alpha2+1) =
409 reuseMu1Mean2 ( alpha1+1, alpha2+1) . . .
410 + newMu1Reuse. ^2 ; %Add to sum of (mu^(1) ) ^2
411 reuseMu2Mean ( alpha1+1, alpha2+1) =
412 reuseMu2Mean ( alpha1+1, alpha2+1) . . .
413 + newMu2Reuse ; %Add to sum of mu^(2)
414 reuseMuMeanVariance ( alpha1+1, alpha2+1) =
415 reuseMuMeanVariance ( alpha1+1, alpha2+1) . . .
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416 + newMu2Reuse − newMu1Reuse^2;
417 reuseMu1MeanNext ( alpha1+1, alpha2+1) =
418 reuseMu1MeanNext ( alpha1+1, alpha2+1) + . . .
419 newMu1ReuseNext ;
420 reuseMu1Mean2Next ( alpha1+1, alpha2+1) =
421 reuseMu1Mean2Next ( alpha1+1, alpha2+1) + . . .
422 newMu1ReuseNext. ^2 ;
423

424

425 %Worst−case i n t e r f e r e n c e
426

427 %Compute the mu^(1) and mu^(2) f o r the next ...

BS, f o r
428 %worst−case i n t e r f e r e n c e seen from the base ...

s t a t i o n in the o r i g i n
429 newMu1Reuse = max( ( abs ( UElocat ions ( : ) ) . / . . .
430 abs ( UElocat ions ( : ) . . .
431 +BSlocat ion3 ) ) . ^kappa ) ;
432 newMu2Reuse = max( ( abs ( UElocat ions ( : ) ) . / . . .
433 abs ( UElocat ions ( : ) . . .
434 +BSlocat ion3 ) ) . ^(2*kappa ) ) ;
435 newMu1ReuseNext = max( ( abs ( UElocat ions ( : ) ) . / . . .
436 abs ( UElocat ions ( : ) . . .
437 +BSlocat ion3+nextNeighbor ) ) . ^kappa ) ;
438

439 %Store the r e s u l t s
440 reuseMu1Worst ( alpha1+1, alpha2+1) =
441 reuseMu1Worst ( alpha1+1, alpha2+1) . . .
442 + newMu1Reuse ; %Add to sum of mu^(1)
443 reuseMu1Worst2 ( alpha1+1, alpha2+1) =
444 reuseMu1Worst2 ( alpha1+1, alpha2+1) . . .
445 + newMu1Reuse. ^2 ; %Add to sum of (mu^(1) ) ^2
446 reuseMu2Worst ( alpha1+1, alpha2+1) =
447 reuseMu2Worst ( alpha1+1, alpha2+1) . . .
448 + newMu2Reuse ; %Add to sum of mu^(2)
449 reuseMuWorstVariance ( alpha1+1, alpha2+1) =
450 reuseMuWorstVariance ( alpha1+1, alpha2+1) + . . .
451 newMu2Reuse − newMu1Reuse^2;
452 reuseMu1WorstNext ( alpha1+1, alpha2+1) =
453 reuseMu1WorstNext ( alpha1+1, alpha2+1) . . .
454 + newMu1ReuseNext ;
455 reuseMu1Worst2Next ( alpha1+1, alpha2+1) =
456 euseMu1Worst2Next ( alpha1+1, alpha2+1) . . .
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457 + newMu1ReuseNext. ^2 ;
458

459

460 %Best−case i n t e r f e r e n c e
461

462 %Compute the mu^(1) and mu^(2) f o r the next ...

BS, f o r
463 %best−case i n t e r f e r e n c e seen from the base ...

s t a t i o n in the o r i g i n
464 newMu1Reuse = ...

min ( ( abs ( UElocat ions ( : ) ) . /abs ( UElocat ions ( : ) . . .
465 +BSlocat ion3 ) ) . ^kappa ) ;
466 newMu2Reuse = ...

min ( ( abs ( UElocat ions ( : ) ) . /abs ( UElocat ions ( : ) . . .
467 +BSlocat ion3 ) ) . ^(2*kappa ) ) ;
468 newMu1ReuseNext = ...

min ( ( abs ( UElocat ions ( : ) ) . /abs ( UElocat ions ( : ) . . .
469 +BSlocat ion3+nextNeighbor ) ) . ^kappa ) ;
470

471 %Store the r e s u l t s
472 reuseMu1Best ( alpha1+1, alpha2+1) =
473 reuseMu1Best ( alpha1+1, alpha2+1) . . .
474 + newMu1Reuse ; %Add to sum of mu^(1)
475 reuseMu1Best2 ( alpha1+1, alpha2+1) =
476 reuseMu1Best2 ( alpha1+1, alpha2+1) . . .
477 + newMu1Reuse. ^2 ; %Add to sum of (mu^(1) ) ^2
478 reuseMu2Best ( alpha1+1, alpha2+1) =
479 reuseMu2Best ( alpha1+1, alpha2+1) . . .
480 + newMu2Reuse ; %Add to sum of mu^(2)
481 reuseMuBestVariance ( alpha1+1, alpha2+1) =
482 reuseMuBestVariance ( alpha1+1, alpha2+1) . . .
483 + newMu2Reuse − newMu1Reuse^2;
484 reuseMu1BestNext ( alpha1+1, alpha2+1) =
485 reuseMu1BestNext ( alpha1+1, alpha2+1) . . .
486 + newMu1ReuseNext ;
487 reuseMu1Best2Next ( alpha1+1, alpha2+1) =
488 reuseMu1Best2Next ( alpha1+1, alpha2+1) . . .
489 + newMu1ReuseNext. ^2 ;
490

491 end
492

493 end
494
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495 end
496

497 end

A.3 Program 3

1 %I n i t i a l i z a t i o n
2 c l o s e a l l ;
3 c l e a r a l l ;
4

5

6 %%Simulat ion parameters
7

8 %I n i t i a t e the random number gene ra to r s
9 % with a random seed

10 randn ( ’ s t a t e ’ , sum(100* c l o ck ) ) ;
11

12 %Path los s exponent
13 kappa = 3 . 7 ;
14

15 %Number o f d i r e c t i o n s to look f o r i n t e r f e r i n g c e l l s
16 %( f o r hexagonal c e l l s )
17 d i r e c t i o n s = 6 ;
18

19 %Percentage o f the rad iu s i n s i d e the c e l l where no UEs are ...

al lowed
20 forb iddenRegion = .14 ;
21

22 %Parameters f o r the Monte Carlo s imu la t i on s
23 monteCarloUEs = 1000 ; %Number o f random UE l o c a t i o n s per c e l l
24

25 %Compute var i ous combinat ions o f the
26 %mu−parameters Propagation parameter Eq , us ing
27 %Monte Carlo s imu la t i on s
28 [ muValues1Mean , muValues2Mean , reuseMu1Mean ,
29 reuseMu1Mean2 , reuseMu1MeanNext , reuseMu1Mean2Next , . . .
30 reuseMu2Mean , reuseMuMeanVariance
31 ,muValues1Worst , muValues2Worst ,
32 reuseMu1Worst , reuseMu1Worst2 , . . .
33 reuseMu1WorstNext , reuseMu1Worst2Next , reuseMu2Worst ,
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34 reuseMuWorstVariance , muValues1NorthWest , . . .
35 muValues2NorthWest , reuseMu1NorthWest , reuseMu1NorthWest2 , . . .
36 reuseMu1NorthWestNext , reuseMu1NorthWest2Next ,
37 reuseMu2NorthWest , . . .
38 reuseMuNorthWestVariance , r euseFactor ] =
39 computeEnvironment ( kappa , forbiddenRegion , monteCarloUEs ) ;
40

41

42

43

44 %Se l e c t range o f BS antennas
45 %Number o f d i f f e r e n t ca s e s
46 nbrOfMvalues = 1000 ;
47 %Spread out antenna numbers equa l l y in log−s c a l e
48 Mvalues = round ( log space (1 , 5 , nbrOfMvalues ) ) ;
49

50 %Coherence block l ength
51 S = 400 * ones (1 , 2 ) ;
52

53 %Inve r s e SNR value
54 sigma2rho = 1/10^(5/10) * ones (1 , 2 ) ; %5 dB
55

56 %EVM value
57 ep s i l on2 = [0 0 . 1 ^ 2 ] ;
58

59

60

61

62 %Def ine the range o f UEs to con s id e r
63 Kvalues = 1 :max(S) ;
64

65

66 %Compute the sum of a l l mu va lues in Propagation parameter Eq
67 mu1all_mean = 1+d i r e c t i o n s *(sum(muValues1Mean ( : ) )−1) ;
68 mu1all_worst = 1+d i r e c t i o n s *(sum(muValues1Worst ( : ) )−1) ;
69 mu1all_NorthWest = 1+d i r e c t i o n s *(sum(muValues1NorthWest ( : ) )−1) ;
70

71

72 %Extract only reuse f a c t o r s sma l l e r or equal to 7
73 r e u s e I nd i c e s = f i nd ( reuseFactor >0 & reuseFactor≤ d i r e c t i o n s +1) ;
74 f o r j = 1 : l ength ( r e u s e I nd i c e s ) ;
75 i f sum( reuseFactor ( r e u s e I nd i c e s ( j ) )==
76 reuseFactor ( r e u s e I nd i c e s ( 1 : j−1) ) )>0
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77 r e u s e I nd i c e s ( j )=1;
78 end
79 end
80 r e u s e I nd i c e s = r eu s e I nd i c e s ( r eu s e Ind i c e s >1) ;
81

82

83

84 %%Compute s p e c t r a l e f f i c i e n c i e s accord ing to Equations .
85

86 %Placeho lde r s f o r s t o r i n g s p e c t r a l e f f i c i e n c i e s
87 SE_MR_mean =
88 z e ro s ( l ength (Mvalues ) ,max(S) , l ength ( r e u s e I nd i c e s ) , l ength (S) ) ;
89 SE_ZF_mean =
90 z e ro s ( l ength (Mvalues ) ,max(S) , l ength ( r e u s e I nd i c e s ) , l ength (S) ) ;
91

92 SE_MR_worst =
93 z e ro s ( l ength (Mvalues ) ,max(S) , l ength ( r e u s e I nd i c e s ) , l ength (S) ) ;
94 SE_ZF_worst =
95 z e ro s ( l ength (Mvalues ) ,max(S) , l ength ( r e u s e I nd i c e s ) , l ength (S) ) ;
96

97 SE_MR_NorthWest =
98 z e ro s ( l ength (Mvalues ) ,max(S) , l ength ( r e u s e I nd i c e s ) , l ength (S) ) ;
99 SE_ZF_NorthWest =

100 z e r o s ( l ength (Mvalues ) ,max(S) , l ength ( r e u s e I nd i c e s ) , l ength (S) ) ;
101

102

103

104 %Go through the d i f f e r e n t reuse f a c t o r s
105 f o r j = 1 : l ength ( r e u s e I nd i c e s ) ;
106

107 %Extract the reuse f a c t o r
108 currentReuseFactor =
109 reuseFactor ( r e u s e I nd i c e s ( j ) ) ;
110

111 %Extract sum of mu−va lue s f o r cur rent reuse f a c t o r
112 % fo r mean i n t e r f e r e n c e
113 mu1reuse_mean =
114 d i r e c t i o n s *reuseMu1Mean ( r eu s e I nd i c e s ( j ) ) ;
115 mu2reuse_mean =
116 d i r e c t i o n s *reuseMu2Mean ( r eu s e I nd i c e s ( j ) ) ;
117 variance_mean =
118 d i r e c t i o n s *reuseMuMeanVariance ( r e u s e I nd i c e s ( j ) ) ;
119
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120 %Extract sum of mu−va lue s f o r cur rent reuse f a c t o r
121 % fo r worst i n t e r f e r e n c e
122 mu1reuse_worst =
123 d i r e c t i o n s *reuseMu1Worst ( r e u s e I nd i c e s ( j ) ) ;
124 mu2reuse_worst =
125 d i r e c t i o n s *reuseMu2Worst ( r e u s e I nd i c e s ( j ) ) ;
126 variance_worst =
127 d i r e c t i o n s * reuseMuWorstVariance ( r e u s e I nd i c e s ( j ) ) ;
128

129 %Extract sum of mu−va lue s f o r cur rent reuse f a c t o r
130 %fo r NorthWest i n t e r f e r e n c e
131 mu1reuse_NorthWest =
132 d i r e c t i o n s *reuseMu1NorthWest ( r e u s e I nd i c e s ( j ) ) ;
133 mu2reuse_NorthWest =
134 d i r e c t i o n s *reuseMu2NorthWest ( r e u s e I nd i c e s ( j ) ) ;
135 variance_NorthWest =
136 d i r e c t i o n s * reuseMuNorthWestVariance ( r e u s e I nd i c e s ( j ) ) ;
137

138 %Number o f ne ighbors that use each o f the other s e t s o f ...

p i l o t s
139 ne ighborsPerOtherPi lo t =
140 d i r e c t i o n s /( currentReuseFactor −1) ;
141

142

143

144 f o r n = 1 : l ength (Mvalues )
145

146

147 f o r m = 1 : l ength (S)
148

149

150 f o r K = 1 : S(m)
151

152

153 B = currentReuseFactor *K;
154

155 i f B < S(m)
156

157

158

159

160

161 %Maximum ra t i o (MR) combining/ precoding
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162 %
163 %Achievable s p e c t r a l e f f i c i e n c y us ing ...

the formula in
164 %Theorem 1 , f o r mean , worst , and ...

NorthWest case i n t e r f e r e n c e
165 SINR_MR_mean =
166 B*(1− ep s i l on2 (m) ) /( ep s i l on2 (m) *B + ...

(mu1all_mean*K . . .
167 + ...

sigma2rho (m) ) *(B*(mu1reuse_mean+1)+sigma2rho (m) ) / . . . .
168 ((1− ep s i l on2 (m) ) . . .
169 *Mvalues (n) ) + mu2reuse_mean*B + . . . .
170 B*variance_mean *(1/((1− ep s i l on2 (m) ) . . .
171 *Mvalues (n) ) ) ) ;
172 SE_MR_mean(n ,K, j ,m) =
173 K*(1−B/S(m) ) * log2 (1+SINR_MR_mean) ;
174

175 SINR_MR_worst =
176 B*(1− ep s i l on2 (m) ) /( ep s i l on2 (m) *B + ...

( mu1all_worst*K . . .
177 + sigma2rho (m) ) *(B*(mu1reuse_worst+1)+ . . .
178 sigma2rho (m) ) /((1− ep s i l on2 (m) ) . . .
179 *Mvalues (n) ) + mu2reuse_worst*B + . . .
180 B*variance_worst *(1/((1− ep s i l on2 (m) ) . . .
181 *Mvalues (n) ) ) ) ;
182 SE_MR_worst(n ,K, j ,m) =
183 K*(1−B/S(m) ) * log2 (1+SINR_MR_worst) ;
184

185 SINR_MR_NorthWest =
186 B*(1− ep s i l on2 (m) ) /( ep s i l on2 (m) *B + . . .
187 (mu1all_NorthWest*K . . .
188 + ...

sigma2rho (m) ) *(B*(mu1reuse_NorthWest+1)+ . . .
189 sigma2rho (m) ) /((1− ep s i l on2 (m) ) . . .
190 *Mvalues (n) ) + mu2reuse_NorthWest*B + . . .
191 B*variance_NorthWest* . . .
192 (1/((1− ep s i l on2 (m) ) *Mvalues (n) ) ) ) ;
193 SE_MR_NorthWest(n ,K, j ,m) = K*(1−B/S(m) ) . . .
194 * log2 (1+SINR_MR_NorthWest) ;
195

196

197 %Zero−f o r c i n g (ZF) combining/ precoding
198 %
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199 %Achievable s p e c t r a l e f f i c i e n c y us ing ...

the formula in
200 %Theorem 1 , f o r mean , worst , and ...

NorthWest case i n t e r f e r e n c e
201 i f Mvalues (n)−K>0
202

203 %Compute one o f the terms in ...

Theorem 1
204 term2_ZF_mean =
205 ( d i r e c t i o n s *reuseMu1Mean2 ( r e u s e I nd i c e s ( j ) )+1^2) . . .
206 /(B*(mu1reuse_mean+1)+sigma2rho (m) ) ;
207 term2_ZF_worst =
208 ( d i r e c t i o n s *reuseMu1Worst2 ( r e u s e I nd i c e s ( j ) )+1^2) . . .
209 /(B*(mu1reuse_worst+1)+sigma2rho (m) ) ;
210 term2_ZF_NorthWest =
211 ( d i r e c t i o n s *reuseMu1NorthWest2 ( r e u s e I nd i c e s ( j ) ) . . .
212 +1^2) /(B*(mu1reuse_NorthWest+1)+sigma2rho (m) ) ;
213

214 SINR_ZF_mean =
215 B*(1− ep s i l on2 (m) ) /( ep s i l on2 (m) *B + ...

mu2reuse_mean*B . . .
216 + B*variance_mean /(Mvalues (n)−K)/ . . .
217 (1− ep s i l on2 (m) ) + (K*(mu1all_mean ...

− . . . .
218 (1− ep s i l on2 (m) ) *B*term2_ZF_mean) + . . .
219 sigma2rho (m) ) *(B*(mu1reuse_mean+1) . . .
220 +sigma2rho (m) ) /(Mvalues (n)−K)/(1− ep s i l on2 (m) ) ...

) ;
221 SE_ZF_mean(n ,K, j ,m) =
222 K*(1−B/S(m) ) * log2 (1+SINR_ZF_mean) ;
223

224 SINR_ZF_worst =
225 B*(1− ep s i l on2 (m) ) /( ep s i l on2 (m) *B + ...

mu2reuse_worst*B . . .
226 + B*variance_worst /(Mvalues (n)−K)/ . . . .
227 (1− ep s i l on2 (m) ) + (K*(mu1all_worst . . .
228 − (1− ep s i l on2 (m) ) *B*term2_ZF_worst ) ...

. . . .
229 + sigma2rho (m) ) * . . .
230 (B*(mu1reuse_worst+1)+sigma2rho (m) ) / . . .
231 (Mvalues (n)−K)/(1− ep s i l on2 (m) ) ) ;
232 SE_ZF_worst (n ,K, j ,m) =
233 K*(1−B/S(m) ) * log2 (1+SINR_ZF_worst ) ;
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234

235 SINR_ZF_NorthWest =
236 B*(1− ep s i l on2 (m) ) /( ep s i l on2 (m) *B + . . .
237 mu2reuse_NorthWest*B + ...

B*variance_NorthWest/ . . . .
238 (Mvalues (n)−K) . . .
239 /(1− ep s i l on2 (m) )
240 + (K*(mu1all_NorthWest − . . .
241 (1− ep s i l on2 (m) ) *B*term2_ZF_NorthWest ) ...

. . .
242 + sigma2rho (m) ...

) *(B*(mu1reuse_NorthWest+1) . . .
243 +sigma2rho (m) )
244 /(Mvalues (n)−K)/(1− ep s i l on2 (m) ) ) ;
245 SE_ZF_NorthWest(n ,K, j ,m) =
246 K*(1−B/S(m) ) . . .
247 * log2 (1+SINR_ZF_NorthWest) ;
248

249 end
250

251 end
252

253 end
254

255 end
256

257 end
258

259 end
260

261

262

263 %%Compute optimal number o f UEs , K, f o r d i f f e r e n t system ...

parameters
264 %Placeho lde r s f o r s t o r i n g s imu la t i on r e s u l t s f o r optimal ...

number o f UEs
265 optimalK_MR_mean = ze ro s ( l ength (Mvalues ) ,3 , l ength (S) ) ;
266 optimalK_ZF_mean = ze ro s ( l ength (Mvalues ) ,3 , l ength (S) ) ;
267

268 optimalK_MR_worst = ze ro s ( l ength (Mvalues ) ,3 , l ength (S) ) ;
269 optimalK_ZF_worst = ze ro s ( l ength (Mvalues ) ,3 , l ength (S) ) ;
270

271 optimalK_MR_NorthWest = ze ro s ( l ength (Mvalues ) ,3 , l ength (S) ) ;

62



Appendix A

272 optimalK_ZF_NorthWest = ze ro s ( l ength (Mvalues ) ,3 , l ength (S) ) ;
273

274

275 %Go through d i f f e r e n t number o f antennas
276 f o r n = 1 : l ength (Mvalues )
277

278 %Go through d i f f e r e n t reuse f a c t o r s
279 f o r j = 1 : l ength ( r e u s e I nd i c e s )
280

281 currentReuseFactor = reuseFactor ( r e u s e I nd i c e s ( j ) ) ;
282

283 f o r m = 1 : l ength (S)
284 [ maxValue , maxIndex ] = max(SE_MR_mean(n , : , j ,m) ) ;
285 i f maxValue > optimalK_MR_mean(n , 2 ,m)
286 optimalK_MR_mean(n , : ,m) =
287 [ maxIndex maxValue currentReuseFactor ] ;
288 end
289

290 [ maxValue , maxIndex ] = max(SE_ZF_mean(n , : , j ,m) ) ;
291 i f maxValue > optimalK_ZF_mean(n , 2 ,m)
292 %Store optimal number o f UEs along with the ...

opt imized SE
293 %and the corre spond ing reuse f a c t o r
294 optimalK_ZF_mean(n , : ,m) =
295 [ maxIndex maxValue currentReuseFactor ] ;
296 end
297

298

299

300

301 %Optimize f o r worst i n t e r f e r e n c e case
302 [ maxValue , maxIndex ] = max(SE_MR_worst(n , : , j ,m) ) ;
303 i f maxValue > optimalK_MR_worst (n , 2 ,m)
304

305 %and the corre spond ing reuse f a c t o r
306 optimalK_MR_worst (n , : ,m) =
307 [ maxIndex maxValue currentReuseFactor ] ;
308 end
309

310 [ maxValue , maxIndex ] = max(SE_ZF_worst (n , : , j ,m) ) ;
311 i f maxValue > optimalK_ZF_worst (n , 2 ,m)
312 %Store optimal number o f UEs along with the ...

opt imized SE
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313 %and the corre spond ing reuse f a c t o r
314 optimalK_ZF_worst (n , : ,m) =
315 [ maxIndex maxValue currentReuseFactor ] ;
316 end
317

318

319

320

321 %Optimize f o r NorthWest i n t e r f e r e n c e case
322 [ maxValue , maxIndex ] = ...

max(SE_MR_NorthWest(n , : , j ,m) ) ;
323 i f maxValue > optimalK_MR_NorthWest (n , 2 ,m)
324 %Store optimal number o f UEs along with the ...

opt imized SE
325 %and the corre spond ing reuse f a c t o r
326 optimalK_MR_NorthWest (n , : ,m) =
327 [ maxIndex maxValue currentReuseFactor ] ;
328 end
329

330 [ maxValue , maxIndex ] = ...

max(SE_ZF_NorthWest(n , : , j ,m) ) ;
331 i f maxValue > optimalK_ZF_NorthWest (n , 2 ,m)
332 %Store optimal number o f UEs along with the ...

opt imized SE
333 %and the corre spond ing reuse f a c t o r
334 optimalK_ZF_NorthWest (n , : ,m) =
335 [ maxIndex maxValue currentReuseFactor ] ;
336 end
337

338

339

340 end
341

342 end
343

344 end
345

346

347

348

349

350 %%Plot s imu la t i on r e s u l t s
351 %Simulat ions from Sect i on IV.A
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352

353

354 %Plot Figure 4( a )
355 f i g u r e (4 ) ;
356

357

358 hold on ; box on ;
359

360

361 p lo t (Mvalues , optimalK_ZF_mean ( : , 2 , 1 ) , ’ k−− ’ , ’ LineWidth ’ , 1 ) ;
362 p lo t (Mvalues , optimalK_MR_mean ( : , 2 , 1 ) , ’b−. ’ , ’ LineWidth ’ , 1 ) ;
363

364 x l ab e l ( ’Number o f BS Antennas (M) ’ ) ;
365 y l ab e l ( ’ Spe c t r a l E f f i c i e n c y (SE) [ b i t / s /Hz/ c e l l ] ’ ) ;
366 l egend ( ’ZF ’ , ’MR’ , ’ Locat ion ’ , ’ NorthWest ’ ) ;
367 s e t ( gca , ’ Xscale ’ , ’ l og ’ ) ;
368 ax i s ( [ 1 0 1e5 0 400 ] ) ;
369

370

371

372

373

374 %Plot Figure 5( a )
375 f i g u r e (5 ) ;
376

377

378 hold on ; box on ;
379

380

381 p lo t (Mvalues , optimalK_ZF_NorthWest ( : , 2 , 1 ) , ’ k−− ’ , ’ LineWidth ’ , 1 ) ;
382 p lo t (Mvalues , optimalK_MR_NorthWest ( : , 2 , 1 ) , ’b−. ’ , ’ LineWidth ’ , 1 ) ;
383

384 x l ab e l ( ’Number o f BS Antennas (M) ’ ) ;
385 y l ab e l ( ’ Spe c t r a l E f f i c i e n c y (SE) [ b i t / s /Hz/ c e l l ] ’ ) ;
386 l egend ( ’ZF ’ , ’MR’ , ’ Locat ion ’ , ’ NorthWest ’ ) ;
387 s e t ( gca , ’ Xscale ’ , ’ l og ’ ) ;
388 ax i s ( [ 1 0 1e5 0 2600 ] ) ;
389

390

391

392

393

394
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395 %Plot Figure 6( a )
396 f i g u r e (6 ) ;
397

398

399 hold on ; box on ;
400

401

402 p lo t (Mvalues , optimalK_ZF_worst ( : , 2 , 1 ) , ’ k−− ’ , ’ LineWidth ’ , 1 ) ;
403 p lo t (Mvalues , optimalK_MR_worst ( : , 2 , 1 ) , ’b−. ’ , ’ LineWidth ’ , 1 ) ;
404

405 x l ab e l ( ’Number o f BS Antennas (M) ’ ) ;
406 y l ab e l ( ’ Spe c t r a l E f f i c i e n c y (SE) [ b i t / s /Hz/ c e l l ] ’ ) ;
407 l egend ( ’ZF ’ , ’MR’ , ’ Locat ion ’ , ’ NorthWest ’ ) ;
408 s e t ( gca , ’ Xscale ’ , ’ l og ’ ) ;
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