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I 

 الآيه

باَحٌ  كَاةٍ فِيهَا مِصأ ضِ مَثلَُ نوُرِهِ كَمِشأ رَأ ُ نوُرُ السهمَاوَاتِ وَالْأ }اللَّه

يٌّ يوُقَدُ مِن شَجَرَةٍ  كَبٌ درُ ِ جَاجَةُ كَأنَههَا كَوأ باَحُ فِي زُجَاجَةٍ الزُّ الأمِصأ

بِيهةٍ يكََادُ زَيأتهَُا يضُِيءُ وَلوَأ لمَأ  قِيهةٍ وَلََّ غَرأ باَرَكَةٍ زَيأتوُنِةٍ لَّه شَرأ مُّ

 ُ رِبُ اللَّه ُ لِنوُرِهِ مَن يشََاء وَيضَأ دِي اللَّه هُ ناَرٌ نُّورٌ عَلىَ نوُرٍ يهَأ سَسأ تمَأ

ءٍ عَلِيمٌ { ُ بكُِل ِ شَيأ ثاَلَ لِلنهاسِ وَاللَّه مَأ  الْأ

 العظيم صدق الله

      35سوره النور الآية 
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IV 

ABSTRACT 

          Stability study is the most important studies in power system; which keep 

the system secure and continuous operation. Stability of power system means 

the ability of the synchronous generators to be in synchronism when small or 

large disturbances occur in load or network of power system. If one of the 

generators losses the synchronism the other generators will be overload and 

make the network separate which cause blackout of the system; so that the 

instability problem must be solved quickly. 

         This thesis concerned to study and analyzes the small signal, transient 

stability problem, and damping of low frequency oscillations by using power 

system stabilizer for multi machines system. The nonlinear equations which 

represent the system have been linearized and then placed in state space form 

in order to study and analysis the dynamic performance of the system. IEEE 

system (10 machines-39 bus bars) has been taken as case study.  The AVR 

system causes negative damping of oscillation; so that the PSS was designed 

and added in optimal location by using participation factor technique to 

increase the damping ratio. The eigenvalue and time domain simulation 

methods were used to analyze the system stability; finally, the responses and 

results have been represented for several cases by using time domain 

simulation. Result obtained showed that the system without PSS is oscillatory 

and after add PSS to the optimal M/Cs the system return back to stability 

conditions after few cycles.  

  

 

 

 



 
 

V 

 المستخلص

على أمن النظام ستقرارية النظام من أهم الدراسات في منظومة القدرة الكهربائية, حيث تحافظ إ       

, والمقصود بإستقرارية منظومة القدرة الكهربائية مقدرة الآلات المتزامنة بها على ستمرارية الخدمةا  و 

 مة القدرة . عند فقد أحدالإحتفاظ بتزامنها بعد أي تغيير يحدث تدريجياً او فجائياُ لشبكة او أحمال منظو 

نقطاع كامل للكهرباء وخروج الشبكة إ مما يؤدي اليائد لبقية المولدات يحصل تحميل ز  تزامنللالمولدات 

 . لذا يجب حل ومعالجة مشكلة عدم الإستقرارية بسرعة من الخدمة

 ثير التغيرات الطفيفةستقرارية لنظام متعدد الماكينات تحت تألإيهتم بدراسة وتحليل ا بحثا الهذ         

. حيث تم تمثيل النظام و اخماد تذبذبات الترددات المنخفضه باستخدام مثبت نظام القدره لتغيرات العابرةاو 

ن ثم وضعها في صورة فراغ لي معادلات خطية ,ومإفي صورة معادلات تفاضلية غير خطية ثم تحويلها 

ماكينات  عشرةخذنا نظام يتكون من أديناميكي للنظام. ولغرض الدراسة تحليل الاداء المن أجل الحالة 

للتذبذبات  اً سالب اً توماتيكي يسبب اخمادنظام متحكم الجهد الأن أ و بما قضبان تجميع. ون ثتسعة وثلاو 

 عطال مثل الأ و التغيرات العابرة ، أملالتي تحصل نتيجة للتغيرات الطفيفة في المنظومة مثل تغيير الح

ضافته مثبت نظام القدرة الكهربائية  تصميمم ت و أشتراك ستخدام تقنية معامل الإإب في الموقع المناسب وا 

ثم حللت إستقراية النظام عن طريق نظريتي أقطاب معادلة المساهمة وذلك لزيادة نسبة التخميد. 

ن التغيرات عدد ملوالنتائج ستجابات الإ تعرضالخصائص، و نظام المحاكاة في حيز الزمن. واخيراً 

من النتائج وجد ان النظام بلا مثبت الزمني. لنظام وتمثيلها في نظام المحاكاةل حدثضطرابات التي توالإ

نظام القدره يكون متذبذب وبعد توصيل مثبت القدرة في الماكينات المناسبه النظام يرجع الى شروط 

 الاستقرارية بعد عدد قليل من الدورات.
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CHAPTER ONE 

INTRODUCTION 

1.1 Background: 

In an electrical power system many equipment and controllers have been 

used to maintain the balance between load and generation in a reliable manner 

with high degree of quality [1]. 

Stability of power systems has been and continues to be of major concern 

in system operation. This arises from the fact that in steady state (under normal 

conditions) the average electrical speed of all the generators must be the same. 

This is termed as the synchronous operation of a system. Any disturbance small 

or large can affect the synchronous operation. 

The stability of a system determines whether the system can settle down 

to a new or original steady state after the transients disappear [2]. 

Modern power systems, apart from a large number of generators and 

associated controllers, there are many types of load, ranging from a simple 

resistive load to more complicated loads with electronic controllers. The 

influence of more and more controllers and loads, increase the complexity and 

nonlinearity of power systems. As a result, power systems are viewed as 

complex nonlinear dynamical system that shows a number of instability 

problems. stability problems can be broadly classified into three main 

categories, namely voltage, angular and frequency stability problems. Though 

instability eventually blackout or collapse never happened in a pure form of 

voltage or angular or frequency problems, the initial part of the incident can be 

clearly related to one of the categories. 

 Operation engineers faced with transient stability problem and 

researchers struggled to find counter measures to overcome it. Transient 

stability problem, considered as part of the angular related problem, is defined 

as the ability of power system to maintain synchronism when subjected to large 

disturbances. When the system faces large disturbances such as large load 
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increase, loss of tie lines, loss of generating units, maintaining constant 

electrical speed among all the generators were challenging as some machines 

speed up while some other slow down to adjust to post disturbance situation. If 

there is no control mechanism to keep the speeding up or slowing down 

generators within the allowable speed limits, there is a good chance that these 

generators would fall out of the grid by losing synchronism. Hence, fast exciter 

or Automatic Voltage Regulators (AVR) was introduced in the system as one 

of the remedial measures to solve the problem. However, the fast AVR could 

not do the “fine adjustment” to control oscillation in the speed. Then, Power 

System Stabilizer (PSS) was introduced in generator to give that fine 

adjustment to damp out power oscillations that are referred to as 

electromechanical or low frequency oscillations (LFO).  

The ability of synchronous machines of an interconnected power system 

to remain in synchronism after being subjected to a small disturbance is known 

as small signal stability that is subclass of angular related stability problem. 

Lack of sufficient synchronizing torque results in “aperiodic” or non-

oscillatory instability, whereas lack of damping torque results in low frequency 

oscillations. Low frequency oscillations are generator rotor angle oscillations 

having a frequency between 0.1 -2.0 Hz and are classified based on the source 

of the oscillation. The root cause of electrical power oscillations are the 

unbalance between power demand and available power at a period of time. In 

the earliest era power system development, the power oscillations are almost 

non-observable because generators are closely connected to loads, but now 

days, large demand of power to the farthest end of the system that forces to 

transmit huge power through a long transmission line, which results an 

increasing power oscillations [1].  

1.2 Statement of Problem: 

The electric power system must be stable to ensure continuity of supply. 

stability problems may lead to partial or full one of causes Low frequency 

oscillations, these frequencies may sustain and grow to cause system separation 



 

3 

or black out if adequate damping is not available. It has always been traditional 

to use the speed input to the AVR to improve system damping, in this thesis 

the damping of the frequency oscillations by using power system stabilizer 

(PSS) device is proposed. 

1.3 Objectives: 

 To determine how accurately a small disturbance (low frequency 

oscillations) behavior in a power system be modeled and predicted using 

transient and dynamic stability analysis. 

 Study the response of generators to external network disturbances 

(faults). 

 Designing of power system stabilizer (PSS). 

1.4 Methodology / Approach: 

  To achieve the thesis objectives, first effect of low frequency oscillations 

in power system stability will be investigated, followed by eigenvalue analysis 

and time domain simulation of the system oscillatory behavior in low frequency 

range, and how it can be damp out by using power system stabilizer (PSS). 

Finally, modeling of (PSS) that used for damping low frequency 

oscillations and investigate the methods to control the PSS output and using 

(NPLAN) to simulate the output.  

1.5 Thesis Lay-out: 

 Chapter One: presents a general introduction to the power system 

stability, low frequency oscillations (LOF) and power system 

stabilizer (PSS), research objectives, statement of problem and 

Methodology. 

 Chapter Two: includes the definition, classification of stability, low 

frequency oscillations (LFO) classification and modeling of power 

system. 

 Chapter Three: linearization of multi-machine system, power 

system stabilizer (PSS) design. 
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 Chapter Four: represent the results of the eigenvalue analysis and 

time domain simulation of small signal and transient stability the 

case study (10 machine, 39 bus bar), and PSS optimized parameters. 

 Chapter Five: represents thesis conclusion and recommendations.  
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CHAPTER TWO 

DEFINITION OF STABILITY AND MODELING OF 

POWER SYSTEM 

The problem of interest is one where a power system operating under a 

steady load condition is perturbed, causing the re- adjustment of the voltage 

angles of the synchronous machines. If such an occurrence creates an unbalance 

between the system generation and load, it results in the establishment of a new 

steady-state operating condition, with the subsequent adjustment of the voltage 

angles. The perturbation could be a major disturbance such as the loss of a 

generator, a fault or the loss of a line, or a combination of such events. It could 

also be a small load or random load changes occurring under normal operating 

conditions. 

Adjustment to the new operating condition is called the transient period. The 

system behavior during this time is called the dynamic system performance, 

which is of concern in defining system stability. The main criterion for stability 

is that the synchronous machines maintain synchronism at the end of the 

transient period. 

2.1 Definition of stability: 

This primitive definition of stability requires that the system oscillations be 

damped. This condition is sometimes called asymptotic stability and means that 

the system contains inherent forces that tend to reduce oscillations. This is a 

desirable feature in many systems and is considered necessary for power 

systems. 

The definition also excludes continuous oscillation from the family of stable 

systems, although oscillators are stable in a mathematical sense. The reason is 

practical since a continually oscillating system would be undesirable for both 

the supplier and the user of electric power. Hence the definition describes a 

practical specification for an acceptable operating condition [4]. Figure (2.1) 

represent classification of power system stability. 



 

6 

Power System 

Stability

Rotor Angle 

Stabilirty

Frequency 

Stability

Voltage 

Stability

Small 

Disturbance 
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Stability

Large 

Disturbance 
Small 

Disturbance 

Short term Short termLong term

Short term Long term

 

Figure 2.1 Classification of power system stability. 

The disturbance can be divided into two categories (a) small and (b) large. A 

small disturbance is one for which the system dynamics can be analyzed from 

linearized equations (small signal analysis). The small (random) changes in the 

load or generation can be termed as small disturbances. The tripping of a line 

may be considered as a small disturbance if the initial (pre-disturbance) power 

flow on that line is not significant. However, faults which result in a sudden dip 

in the bus voltages are large disturbances and require remedial action in the 

form of clearing of the fault. The duration of the fault has a critical influence 

on system stability. 

Although stability of a system is an integral property of the system, for purposes 

of the system analysis, it is divided into two broad classes [2].  

2.2 Classification of Power System Stability:   

a. Steady-State or Small Signal Stability: 

Small-signal (or small disturbance) stability is the ability of the power 

system to maintain synchronism under small disturbances such as small 

variations in loads and generations. Physically power system stability can be 

broadly classified into two main categories – angle stability or rotor angle 

stability and voltage stability [3].                 
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     b. Transient Stability 

 A power system is transiently stable for a particular steady-state 

operating condition and for a particular (large) disturbance or sequence of 

disturbances if, following that (or sequence of) disturbance(s) it reaches an 

acceptable steady-state operating condition. 

It is important to note that, while steady-state stability is a function only of the 

operating condition, transient stability is a function of both the operating 

condition and the disturbance(s). This complicates the analysis of transient 

stability considerably. Not only system linearization cannot be used, repeated 

analysis is required for different disturbances that are to be considered. 

Another important point to be noted is that while the system can be 

operated even if it is transiently unstable, small signal stability is necessary at 

all times. In general, the stability depends upon the system loading. An increase 

in the load can bring about onset of instability. This shows the importance of 

maintaining system stability even under high loading conditions [2]. 

2.3 Power System Low-frequency Oscillations: 

Power system low-frequency oscillations are the oscillations of active 

power delivered along particular transmission corridors in a power system with 

the oscillation frequency from 0.1 Hz up to a couple of Hz. Once started, the 

oscillations can continue for a while and then disappear, or grow continuously 

to cause power system collapse.  

Manifestation of a power oscillation is the oscillation of relative 

movement of angular positions of generators in the power system. The 

oscillation can be triggered by severe faults, such as a three-phase to-earth short 

circuit along or tripping of a transmission line. It can also occur under normal 

operating conditions when the power system is only subject to small 

disturbances. Hence, if the power system collapse is caused by the power 

oscillation, it could belong to the problem of power system large-signal rotor 

angle (angular) stability or small-signal angular stability [5]. 
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 Types of Oscillation 

The LFO can be classified as local and inter-area mode: 

1- Local modes are associated with the swinging of units at a generating 

station with respect to the rest of the power system. Oscillations 

occurred only to the small part of the power system. Typically, the 

frequency range is 1-3 Hz. 

2- Inter area modes are associated with swinging of many machines in 

one part of the system against machines in other parts. It generally 

occurs in weak interconnected power systems through long tie lines. 

Typically, frequency range is 0.2-0.8 Hz. 

Besides these modes, there can be other modes associated with controllers 

which happen due to poor design of controllers. Torsional oscillation is another 

type of oscillation that happened in series capacitor compensated system and 

the frequency of oscillation is typically in sub synchronous frequency range. 

2.4 Power System Modeling: 

In this section all of the power system component which uses in this 

thesis were modeled. Figure (2.2) below represents the power system 

components. 

 

AVR Exciter

PSS

Power 

System
∑

Vref

+
+

Vs

Main 

Field N-Machines

PSS input 

signal (s)

Figure 2.2 Power System Components 
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2.4.1 Synchronous Machine Modeling: 

 

Figure 2.3: The windings in the synchronous generator and their axes. 

Referring to figure (2.3) shows the coil orientation assumed polarities, and rotor 

position reference. The rotor windings have axes 120 electrical degrees apart 

and assumed to have an equivalent sinusoidal distribution, the following 

windings are depicted: 

• The three stator windings denote a, b, and c. 

• Field winding denoted F. This winding carries the field current, which gives 

rise to the field flux. This rotating flux induces the voltages in the stator 

windings. 

• Short circuited damper winding in the d-axis denoted by D. 

• Short circuited damper winding in the q-axis denoted by Q. 

The basic voltage Equations which descript the machine in a-b-c reference 

system are: 

Stator and rotor Equations 

𝑣𝑎𝑖 = 𝑖𝑎𝑖𝑟𝑎𝑖 + 
𝑑

𝑑𝑡
Ψ𝑎𝑖                                        i=1,….n                    (2.1) 

𝑣𝑏𝑖 = 𝑖𝑏𝑖𝑟𝑏𝑖 + 
𝑑

𝑑𝑡
Ψ𝑏𝑖                                       i=1,….n                    (2.2) 

𝑣𝑐𝑖 = 𝑖𝑐𝑖𝑟𝑐𝑖 + 
𝑑

𝑑𝑡
Ψ𝑐𝑖                                         i=1,….n                    (2.3) 
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𝑣𝑓𝑑𝑖 = 𝑖𝑓𝑑𝑖𝑟𝑓𝑑𝑖 + 
𝑑

𝑑𝑡
Ψ𝑓𝑑𝑖                                  i=1,….n                    (2.4) 

Where Ψ is flux linkage, υ, i, and r is winding voltage, current and resistance 

in the a-b-c reference system respectively. 

Park’s transformation 

It is convenient to transform all synchronous machine stator and network 

variable into a reference frame that converts balance three-phase sinusoidal 

variations into constant. Such a transformation is  

vdqo ≜ Tdqo vabc  , idqo ≜ Tdqo iabc , Ψ dqo ≜ Tdqo Ψ abc                                                              (2.5) 

 where  

vabc ≜ [ va vb vc]
t, iabc≜ [ ia ib ic]

t , Ψ abc≜ [ Ψ a Ψ b Ψ c]
t              (2.6) 

vdqo ≜ [ vd vq vo]
t, idqo≜ [ id iq io]

t , Ψ dqo≜ [ Ψ d Ψ q Ψ o]
t                  (2.7) 

𝑇𝑑𝑞𝑜 = 
2

3

[
 
 
 
 𝑐𝑜𝑠𝜔𝑠𝑡 𝑐𝑜𝑠(𝜔𝑠𝑡 −

2𝜋

3
) 𝑐𝑜𝑠(𝜔𝑠𝑡 +

2𝜋

3
)

−𝑠𝑖𝑛𝜔𝑠𝑡 −𝑠𝑖𝑛(𝜔𝑠𝑡 −
2𝜋

3
) −𝑠𝑖𝑛(𝜔𝑠𝑡 +

2𝜋

3
)

1

2

1

2

1

2 ]
 
 
 
 

       (2.8)

   

𝑇𝑑𝑞𝑜
−1 = [

𝑐𝑜𝑠𝜔𝑠𝑡 −𝑠𝑖𝑛𝜔𝑠𝑡 1

𝑐𝑜𝑠(𝜔𝑠𝑡 −
2𝜋

3
) −𝑠𝑖𝑛(𝜔𝑠𝑡 −

2𝜋

3
) 1

𝑐𝑜𝑠(𝜔𝑠𝑡 +
2𝜋

3
) −𝑠𝑖𝑛(𝜔𝑠𝑡 +

2𝜋

3
) 1

]                          (2.9) 

From (2.1) – (2.4), kirchhoff’s and faraday’s laws are 

vabc = rsiabc+ 
𝑑

𝑎𝑡
Ψabc                            (2.10) 

which, when transformed by using (2.8) and (2.9) are 

v dqo = rsidqo+ 𝑇𝑑𝑞𝑜 
𝑑

𝑎𝑡
(𝑇𝑑𝑞𝑜

−1 Ψdqo)         (2.11) 

[

𝑉𝐷𝑖

𝑉𝑄𝑖

𝑉𝑂𝑖

] = 𝑇𝑑𝑞𝑜𝑇𝑑𝑞𝑜
−1 [

𝑉𝑑𝑖

𝑉𝑞𝑖

𝑉𝑜𝑖

] =
1

√2
𝑇𝑑𝑞𝑜 [

𝑉𝑎𝑖

𝑉𝑏𝑖

𝑉𝑐𝑖

]            i=1,….n                 (2.12) 

[

𝐼𝐷𝑖

𝐼𝑄𝑖

𝐼𝑂𝑖

] = 𝑇𝑑𝑞𝑜𝑇𝑑𝑞𝑜
−1 [

𝐼𝑑𝑖

𝐼𝑞𝑖

𝐼𝑜𝑖

] =
1

√2
𝑇𝑑𝑞𝑜 [

𝐼𝑎𝑖

𝐼𝑏𝑖

𝐼𝑐𝑖

]              i=1,….n                            (2.13) 
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[

Ψ𝐷𝑖

Ψ𝑄𝑖

Ψ𝑂𝑖

] = 𝑇𝑑𝑞𝑜𝑇𝑑𝑞𝑜
−1 [

Ψ𝑑𝑖

Ψ𝑞𝑖

Ψ𝑜𝑖

] =
1

√2
𝑇𝑑𝑞𝑜 [

Ψ𝑎𝑖

Ψ𝑏𝑖

Ψ𝑐𝑖

]          i=1,….n                 (2.14) 

Where 𝑇𝑑𝑞𝑜 is the machine transformation[6] . 

After evaluation, the system in dqo coordinates has the forms 

Stator and rotor equations 

𝑑

𝑑𝑡
Ψ𝐷𝑖 = 𝑖𝐷𝑖𝑟𝑠𝑖 + 𝜔𝑖Ψ𝑄𝑖 + 𝑣𝐷𝑖                                   i=1,….n                 (2.15) 

𝑑

𝑑𝑡
Ψ𝑄𝑖 = 𝑖𝑄𝑖𝑟𝑠𝑖 − 𝜔𝑖Ψ𝐷𝑖 + 𝑣𝑄𝑖                                 i=1,….n                 (2.16) 

𝑑

𝑑𝑡
Ψ𝑂𝑖 = 𝑖𝑂𝑖𝑟𝑠𝑖 + 𝑣𝑂𝑖                                    i=1,….n                 (2.17) 

Where vDi , vQi , vOi , iDi , iQi , iOi , Ψ𝐷𝑖  , Ψ𝑄𝑖  , Ψ𝑂𝑖 are the stator voltage, current, 

and flux linkage in the dq0 reference system, rsi is the stator resistance,  where 

𝜔𝑖 is the rotor  speed.  

𝑣𝑓𝑑𝑖 = 𝑖𝑓𝑑𝑖𝑟𝑓𝑑𝑖 + 
𝑑

𝑑𝑡
Ψ𝑓𝑑𝑖                                   i=1,….n                 (2.18) 

Where 𝑣𝑓𝑑𝑖 , 𝑖𝑓𝑑𝑖  , 𝑟𝑓𝑑𝑖  𝑎𝑛𝑑  Ψ𝑓𝑑𝑖 is field voltage, current, resistance and flux 

component in the dqo reference system respectively 

Figure 2.4:  model of synchronous machine in dqo axis 

Motion equations 

 
𝑑𝛿

𝑑𝑡
=

𝑑𝜃𝑖

𝑑𝑡
− 𝜔𝑠                                                                                    i=1,…,n                         (2.19)  

 𝛿̇ = 𝜔𝑖 − 𝜔𝑠                                                                    i=1,…,n                         (2.20)  
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2𝐻𝑖

𝜔𝑠
 
𝑑2𝛿

𝑑𝑡2
=

2𝐻𝑖

𝜔𝑠
 
𝑑𝜔𝑖

𝑑𝑡
= (𝑇𝑚𝑖 − 𝑇𝑒𝑖 − 𝑇𝑓𝑤𝑖)                   i=1,…,n                          (2.21) 

𝜔𝑖̇ =
𝜔𝑠

2𝐻𝑖
(𝑇𝑚𝑖 − 𝑇𝑒𝑖 − 𝑇𝑓𝑤𝑖)                                                i=1,…,n                          (2.22) 

Where  

H = The inertia time constant in seconds. 

𝑇𝑚𝑖 = The mechanical torque. 

𝑇𝑒𝑖 = The electrical torque. 

𝑇𝑓𝑤𝑖 = The damping torque coefficient given in per unit 

𝛿  = The angular position of the rotor.  

𝜔𝑠 = The synchronous speed.  

𝜔𝑖  = The rotor speed. 

2.4.2 Transmission Line Modeling: 

Electrical power is transferred from generating stations to consumers 

through overhead lines and cables. 

Overhead lines are used for long distance in open country and rural areas, where 

as cables are used for underground transmission in urban areas and for 

underwater crossings [7]. 

Transmission lines are modeled as nominal π circuit as shown in figure (2.5) 

 

Figure 2.5: Transmission Lines as a nominal π circuit. 

Z: represents the series impedance of the line. 

у

2
: represents half of the total line charging y, at each node. 
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2.2.3 Transformer Modeling: 

 Transformers enable utilization of different voltage levels across the 

system. Transformers are generally used as inter connecting (IC) transformers 

and generator transformers. 

In digital computer analysis of power flow, it is not convenient to represent an 

ideal transformer. Transformers are usually with off-nominal-turns- ratio and 

are modeled as equivalent π circuit as shown in figure (2.6) [7]. 

 

Figure 2.6: The transformer as equivalent π circuit. 

Where, 

Уt = 
1

𝑧𝑡
                                                                                          (2.23) 

𝑧𝑡: represents the series impedance at nominal- turns – ratio. 

a: represents per unit off-nominal tap position. 

The transmission network represented by and algebraic equation given by 

𝐼=̅𝑌𝐵𝑈𝑆𝑉̅                                                                                              (2.24) 

Where, 

𝐼:̅ Vector of injected bus currents. 

𝑌𝐵𝑈𝑆: Bus admittance matrix. 

𝑉̅ : Vector of bus voltages. 

The above equation is obtained by writing the network equations in the node-

frame of reference taking ground as the reference [7]. 
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2.4.4 Excitation System Modeling: 

The synchronous generator is provided with two automatic (feedback) 

controllers for the regulation of the terminal voltage and frequency. These 

controllers indirectly influence the reactive power and active power outputs of 

the generator respectively. The regulation of the voltage is the faster of the two 

controllers and has bearing on the system stability much more than the 

regulation of speed. 

The main objective of the excitation system is to control the field current of the 

synchronous machine. The field current is controlled so as to regulate the 

terminal voltage of the machine. As the field circuit time constant is high (of 

the order of a few seconds), fast control of the field current requires field 

forcing. Thus exciter should have a high ceiling voltage which enables it to 

operate transiently with voltage levels that are 3 to 4 times the normal. The rate 

of change of voltage should also be fast. Because of the high reliability 

required, unit exciter scheme is prevalent where each generating unit has its 

individual exciter [2]. Figure (2.7) represent the element of excitation system. 

Limiters and 

Protective Circuits

Terminal voltage 

transducer and load 

compensator 

Generator

Power system 

stabilizer

ExciterRegulatorRef
To power 

System

2
1

3

5

4

 

Figure 2.7 functional block diagram of a synchronous generator excitation 

control system (Element of Excitation System). 

1. Exciter provides dc power to the synchronous machine field winding 

consisting the power stage of the excitation system. 



 

15 

2. Regulator processes and amplifies input control signals a level and form 

appropriate for control of the exciter. This includes both regulating and 

excitation system stabilizing functions (rate feedback or lead-lag 

compensation). 

3. Terminal voltage transducer and load compensator since generator 

terminal voltage, rectifies and filters it to dc quantity, and compares it 

with a reference which represents the desired terminal voltage. In 

addition, load (or line–drop, or reactive) compensation may be provided, 

if it is desired to hold constant voltage at some point electrically remote 

from the generator terminal (for example, partway through the step-up 

transformer). 

4.  Power system stabilizer provides an additional input signal to the 

regulator to damp power system oscillations. Sime commonly used input 

signals are rotor speed deviation, accelerating power, and frequency 

deviation. 

5. Limiters and protective circuits these include a wide array of control and 

protective functions which ensure that the capability limits of the exciter 

and synchronous generator are not exceeded. some of the commonly 

used functions are the field-current limiter, maximum excitation limiter, 

terminal voltage limiter, volt-per-hertz regulator and protection, and 

under excitation limiter. These are normally distinct circuits and their 

output signals may be applied to the excitation system at various 

locations as summing input or a gated input [7]. 

There are three distinct types of excitation systems based on the power source 

for exciter:   

1. DC Excitation Systems (DC) which utilize a DC generator with 

commutator. source for exciter. 

     2.  AC Excitation Systems (AC) which use alternators and either stationary 

or rotating rectifiers to produce the direct current needed. 
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       3. Static Excitation Systems (ST) in which the power is supplied through 

transformers and rectifiers. The first two types of exciters are also called 

rotating exciters which are mounted on the same shaft as the generator and 

driven by the prime mover. 

Modern Automatic Voltage Regulators (AVR) are continuously acting 

electronic regulators with high gain and small time constants. 

The exciters can be one of the following types: 

1. Field controlled dc generator - commutator 

2.  a) Field controlled alternator with non-controlled rectifier (using diodes) 

i) with slip rings and brushes (stationary rectifier) 

ii) brushless, without slip rings (rotating rectifier) 

b) Alternator with controlled rectifier 

3. Static exciter with 

a) potential source controlled rectifier in which the excitation power is 

supplied through a potential transformer connected to generator terminals 

b) Compound source (using both current and voltage transformers at the 

generator terminals) with 

(i) non-controlled rectifier (control using magnetic elements such 

as saturable reactors) 

(ii) controlled rectifier (for controlling the voltage). 

The advantages of the static excitation system are  

1) Expanded rang for excitation voltage and current with high 

amplification.  

2) Very fast response.  

3) Simplicity of design. 

 

Figure 2.8: Block diagram of static excitation system. 
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Figure (2.8) shows simple type of exciter (static exciter). 

High performance excitation systems are essential for maintaining 

steady state and transient stability of modern synchronous generators, apart 

from providing fast control of the terminal voltage. Bus fed static exciters with 

thyristor controllers are increasingly used for both hydraulic and thermal units. 

They are characterized by high initial response and increased reliability due to 

advances in thyristor controllers. Block diagram of exciter simple with limits 

system is shown in Figure (2.9) The time constant TA of the regulator in the 

range of 0.01 to 0.02 sec. The other time constant TR, is necessary for filtering 

of the rectified terminal voltage waveform. The voltage regulator and the 

exciter can be modelled as a gain in series with an optional block of Transient 

Gain Reduction (TGR). The role of TGR is primarily to provide satisfactory 

operation on open circuit. The Automatic Voltage Regulator (AVR) gain is 

typically around 200 pu/pu. The exciter ceiling is typically 8.0 pu. These 

parameters permit the exciter to reach 90% of the ceiling voltage (from the 

rated-load field voltage) within 25 ms for a sustained drop in the terminal 

voltage not exceeding 5%. 

 

Figure 2.9: Block diagram of exciter simple with limits system. 

It is well established that fast acting exciters with high gain AVR can 

contribute to oscillatory instability in power systems. This type or-instability is 

characterized by low frequency (0.2 to 2.0 Hz) oscillations which can persist 

(or even grow in magnitude) for no apparent reason. This type of instability can 

endanger system security and limit power transfer. The major factors that 

contribute to the instability are: 



 

18 

(a) loading of the generator or tie line 

(b) power transfer capability of transmission lines 

(c) power factor of the generator (leading power factor operation is more 

problematic than lagging power factor operation). 

(d) AVR gain [2]. 

2.4.5 Power System Stabilizer (PSS) Modeling: 

The stabilization provided by PSS is not to be confused with that by 

Excitation System Stabi1izer(ESS). While ESS is designed to provide effective 

voltage regulation under open or short circuit conditions, the objective of PSS 

is to provide damping of the rotor oscillations whenever there is a transient 

disturbance. The damping of these oscillations (whose frequency varies from 

0.2 to 2.0 Hz) can be impaired by the provision of high gain AVR, particularly 

at high loading conditions when a generator is connected through a high 

external impedance (due to weak transmission network). 

It consists of a washout circuit, dynamic compensator, torsional filter and 

limiter. The function of each of the components of PSS with guidelines for the 

selection of parameters (tuning) are given next. 

It is to be noted that the major objective of providing PSS is to increase 

the power transfer in the network, which would otherwise be limited by 

oscillatory instability. The PSS must also function properly when the system is 

subjected to large disturbances. The block diagram in figure (2.10) shows the 

element of two stage of PSS. 

 

Figure 2.10: Block diagram of two stage PSS. 

a) Gain (KPSS): 

The gain of PSS is to be chosen to provide adequate damping of all 

critical mode under various operating conditions. Although PSS may be tuned 

to give optimum damping under such condition, the performance will not be 
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optimal under other conditions. The critical modes include not only local and 

inter area modes, but other modes. 

b) Washout Circuit: 

The washout circuit is provided to eliminate steady-state bias in the 

output of PSS which will modify the generator terminal voltage. The PSS is 

expected to respond only to transient variations in the input signal (say rotor 

speed) and The gain of PSS is to be chosen to provide adequate damping of not 

to the dc offsets in the signal. This is achieved by subtracting from it the low 

frequency components of the signal obtained by passing the signal through a 

low pass filter. The washout circuit acts essentially as a high pass filter and it 

must pass all frequencies that are of interest. 

c) Dynamic compensator: 

The compensator is made up to double lead-lag stage where Ks is the 

gain of PSS and the time constants, T1 was chosen to provide a phase lead for 

the input signal in the range of frequencies that are of interest (0.1 to 3.0 Hz). 

With static exciters, only one lead-lag stage may be adequate. 

d) Torsional Filter: 

The torsional filter in the PSS is essentially a band reject or a low pass 

filter to attenuate the first torsional mode frequency. 

For stabilizers derived from accelerating power, torsional filter can have a 

simple configuration of a low pass filter independent of the frequency of the 

torsional mode to be filtered out. 

Torsional filter is necessitated by the adverse interaction of PSS with the 

torsional oscillations. This can lead to shaft damage, particularly at light 

generator loads when the inherent mechanical damping is small. Even if shaft 

damage does not occur; stabilizer output can go into saturation (due to torsional 

frequency components) making it ineffective. The criteria for designing of the 

torsional filter are: 

       1. The maximum possible change in damping of any torsional mode is less 

than some fraction of the inherent torsional damping. 
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2. The phase lag of the filter in the frequency range of 1 to 3 Hz is 

minimized. 

e) Limiter: 

The output of the PSS must be limited to prevent the PSS acting to 

counter the action of AVR. For example, when load rejection takes place, the 

AVR acts to reduce the terminal voltage when PSS action calls for higher value 

of the terminal voltage (due to the increase in speed or frequency). It may even 

be desirable to trip the PSS in case of load rejection. 

The negative limit of PSS output is of importance during the back swing 

of the rotor (after initial acceleration is over). The AVR action is required to 

maintain the voltage (and thus prevent loss of synchronism) after the angular 

separation has increased. PSS action in the negative direction must be curtailed 

more than in the positive direction. Hydro uses a -0.05 pu. as the lower limit 

and 0.1 to 0.2 as the higher limit. Recent studies have shown that higher 

negative limit can impair first swing stability. 

The operation is permitted only if the following conditions are satisfied 

simultaneously 

(a) a drop in the terminal voltage in excess of the preset value 

(b) field voltage is at positive ceiling 

(c) rise in speed above a preset value. 

  f) Input signal: 

The common signal which used as input to the PSS are: rotor speed 

deviation ∆𝜔,bus frequency ∆𝑓,electrical power ∆𝑝 .The signal must be 

obtained from local measurements. Since the basic function of power system 

stabilizer (PSS) is to add damping to the rotor oscillations [2]. In this work a 

speed signal is used as input signal. 

The control equation is given by: 

Output (PSS)=  
𝑆 Kpss Tw (1+ST1)(1+ST3) 

(1+𝑆Tw)(1+ST2)(1+ST4)
.Input               (2.25) 

Where; 
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Kpss : Power System Stabilizer gain. 

Tw : washout time constant. 

T1,T2,T3,T4 :Time constant selected to provide a phase lead for the input 

signal in the range of frequencies of interest. 
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CHAPTER THREE 

LINEARIZED MODEL OF MULTI- MACHINES 

SYSTEM and DESIGN of PSS 

3.1 Introduction: 

When the system is subjected to a small load change, it tends to acquire 

a new operating state. During the transition between the initial state and the 

new state the system behavior is oscillatory. If the two states are such that all 

the state variables change only slightly (i.e., the variable xi changes from xi0 to 

xio + x i   where x i is a small change in xi), the system is operating near the 

initial state. The initial state may be considered as a quiescent operating 

condition for the system. To examine the behavior of the system when it is 

perturbed such that the new and old equilibrium states are nearly equal, the 

system equations are linearized about the quiescent operating condition. By this 

we mean that first-order approximations are made for the system Equations. 

The new linear Equations thus derived are assumed to be valid in a region near 

the quiescent condition. 

As an example of product nonlinearities, consider the product xixj. Let 

the state variables xi and xj have the initial values xio and xjo. Let the changes in 

these variables be x i  and x j .Initially their product is given by xio xjo.   The 

new value becomes 

               (x x )(x x ) x x x x x x x xio i jo j io jo io j jo i i j          

The last term is a second-order term, which is assumed to be negligibly 

small. Thus for a first-order approximation, the change in the product xixj is 

given by 

               0(x x )(x x ) x x x x x xio i jo j io jo jo i i j        

 We note that xjo and xio are known quantities and are treated here as 

coefficients, while x i   and x j  are “incremental” variables. 
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The trigonometric nonlinearities are treated in a similar manner as 

              0 0 0cos( ) cos cos sin sin           

with cos   1 and sin    .therefore, 

               0 0 0cos( ) cos ( sin )           

The incremental change in cos  is then (-sin 0 )  ; the incremental variable 

is  and its coefficient is -sin 0 . Similarly, we can show that the incremental 

change in the term sin   is given by 

                 0 0 0sin( ) sin (cos )          

The equivalent circuit of MMS can be shown below:  

+

-

RsmjX'dm

+

-

RsijX'di

Load 

bus 

node
Generator  

bus node

Network
   I=YNV

i

1 m 1+

m n

PLm(Vm)+jQLm(Vm)

PLi(Vi)+jQLi(Vi)
PLm+1(Vm+1)+

jQLm+1(Vm+1)

PLn(Vn)+jQLn(Vn)

 

Figure 3.1: Interconnection of the synchronous machine dynamic circuit and  

the rest of the network. 

 third Order Model Differential Equations: 

𝐸′̇ qi=
 

1
qi di di di fdi

doi

E x x I E
T

                                                     (3.1) 

  𝛿 ̇ i = 𝜔i – 𝜔s                                                                                              (3.2) 

  𝜔̇i = ( ) ( )
2

s
mi qi qi qi di di qi i i s

i

T E I x x I I D
H


                                              (3.3) 
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                                                                                                   For i=1,…,n 

 Algebraic Equations: 

 Stator Algebraic Equations: 

            

( )
2

( )
2

0 ( )

E (x' x' ) I '

i
i

i

j
j

i di di qi

j

di qi di qi qi

v e jx I jI e

jE e













   

    

                              (3.4) 

                                                                         For i=1,…,n 

          In polar form: 

            ' cos( ) ' 0qi i i i di diE V x I                                          (3.5) 

 

          sin( ) ' 0di i i i qi qiE V x I                                         (3.6) 

 Network Equations: 

+

+

-

RsijX'di (ldi +jIqi)ej(δi-Π/2 )

[(X'qi-X'di)Iqi+jE'qi]e j(δi-Π/2) 

-

(Vdi +jVqi )e j(δi-Π/2) =Vi e jѲi

  

          Figure 3.2: Synchronous machine two-axis model dynamic circuit 

                              (i=1,…,n) 

 Generator Buses: 

        
1

sin( ) cos( )

cos( ) 0

di i i i qi i i i

n

li i i k ik i k ik

k

I V I V

P V V V Y

   

  


  

                                      (3.7) 

       
1

cos( ) sin( )

sin( ) 0

di i i i qi i i i

n

li i i k ik i k ik

k

I V I V

Q V V V Y

   

  


  

                                      (3.8) 
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For i=1,…,n 

 Load Buses: 

        
1

cos( )
n

li i li i i k ik i k ik

k

P V Q V V V Y   


                                     (3.9) 

       
1

sin( )
n

li i li i i k ik i k ik

k

P V Q V V V Y   


                                     (3.10) 

                                                       For i=1,…,n 

3.2 Linearization:  

        Let the state-space vector x have an initial state x0 at time t=t0 ,  at 

occurrence of a small disturbance, i.e., after t=t0+,  the states will change 

slightly from their previous positions or values. Thus  

x x x                         

The state-space model is in the form 

𝑥̇= (x, t)f  

    Which 

𝑥̇0 +  𝑥̇=f[(x0 + x), t] 

From which we obtain the linearized state-space equation 

                                               𝑥̇= A(x0)  x+ B(x0) u 

Where A and B are state matrixes. Therefore, the system variable be: 

Vi  = Vi + Vi                       0i i i                     0i i i       

0i i i                  0' ' 'q i q i q iE E E            fdi fdi fdiE E E   

3.2.1 The Linearization of the Differential Equations:  

          The linearization of the third order differential equations (3.1) –   

 (3.3) yields 

   
' 1

' (x x' ) I
'

qi

qi di di di fdi

doi

d E
E E

dt T


                                       (3.11)  

   i
i

d

dt





                                                                                             (3.12) 
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0

0 0 0

1
[ ' (x' x' ) I I

(x' x' ) ' ' ' ]

i
Mi qi qi di qi qi di

i

di qi di qi i i qi qi di di di di

d
T E I

dt M

I I D E I E I E I






      

        
        (3.13) 

Writing (3.12) through (3.15) in matrix notation, we obtain 

'

0 1 0

0

1
0 0

0 0

( ' ' ) ( ' ' ) '

( ' )
0

'

0 0

1
0

0 0

i i

qii
i i

i i

qi qi

qoi

qi di qi di di di qi qi

dii i

qidi di

doi

i

ID

M M
E E

T

I x x E I x x E

IM M

Ix x

T

M

 

 

 
 
     
    

         
          

 
  

 
      
 

   
   

    
 
 
  






mi

ref

T

V




   
   

   
 
 

                  (3.14) 

3.2.2 The System with AVR: 

      we add a fast exciter whose state space equation is:   

1
( )f c f

Ri

V V V
T



                                                                                 (3.15) 

1
( )Ai

fdi fdi ref i

Ai Ai

K
E E V V

T T
                                                     (3.16) 

   The linearized form of (3.17) is: 

  
1

( )f c f

Ri

V V V
T



                                                                            (3.17) 

 
1

( )Ai
fdi fdi ref i

Ai Ai

K
E E V V

T T
                                                      (3.18) 
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Writing (3.11) through (3.17), (3.18) in matrix notation, we obtain 

0 1 0 0 0

0 0 0

1 1
0 0 0

1
0 0 0 0

1
0 0 0 0

0 0

( ' ' ) ( ' ' )

qii

i ii i

i i

qi qidoi doi

f
f

fdiRifdi

Ai

qi di qi di di di qi

i

ID

M M

E ET T

VV

ETE

T

I x x E I x x

M

 

 



 
 
       

                  
     

                
 


 
 

     '

( ' )
0

'

0 0

0 0

0 0
0 0

1
00 0

0 0
0 0

0 0
0 0

0
0

qi

i
di

di di
qi

doi

i

Mii

refi

Ai

Ai

Ai

Ai

E

M
I

x x
I

T

M
T

VV

K
K

T
T



 
 


 
 

  
       

 
 
 
 

 
   
   
   

      
              

   
       

 
                                                                                                                   (3.19) 

 

Put 

    giI = 
di

qi

I

I

 
 
 

,         giV = 
i

iV

 
 
 

,     iV = 
Mi

ref

T

V

 
 
   

 

Then 

     1 1 2i i i i gi i gi i ix A x B I B V E V                         i=1,…,n   (3.20) 

3.2.3 Linearization of Algebraic Equations: 

        The linearization of algebraic equations (3.4) and (3.6) in matrix form 

yields 
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0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

cos( ) 0 0 0 0 0 '

sin( ) 0 0 0 0 ' 0

cos( ) sin( )
0

sin( ) cos( )

i

i

dii i i qi

qi

qii i i di

f

fdi

ii i i i i

i i i i i i

IV x
E

IV x
V

E

V

V V




 

 

   

   

 
 


        
                

  

     
   

       

           (3.21) 

Rewriting (3.21) we obtain 

        1 1 20 i i i gi i giC x D I D V                                                         (3.22) 

In matrix notation, (3.23) can be written as 

       1 1 20 g gC x D I D V                                                                    (3.23) 

Where C1, D1, and D2 are block diagonal. 

3.2.4 Linearization the Network Equations: 

         For generator buses (3.7) and (3.8)  



 

29 

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

cos( ) sin( ) 0 0 0 00

0 sin( ) cos( ) 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

sin( )

di i i i qi i i i i

i
di i i i qi i i i

qi

f

fdi

i i i i

I V I V

I V I V

E

V

E

V V

    

   

 

         
                     
    

    
          

 0 0

0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

1

cos( )

cos( ) sin( )

0 0

0 0

0 0

cos( ) sin( ) sin( ) cos( )

V sin( ) V c

i i

i i i i i i

di

qi

di i i i qi i i i
di i i i qi i i i

n

io ko ik io ko ik
io ko ik

k
k i

V V
I

I

I V I V I V I V

V Y V Y

 

   

       

  



 
 

  
   
   

   
 
  

      

   
1

0 0 0 0 0 0
0 0 0 0 0 0

1
1

( )
os( )

sin( ) cos( ) cos( ) sin( )

( )V sin( ) V sin( )

0 0

0 0

0 0

n
li i

io ko ik

k i

di i i i qi i i i
di i i i qi i i i

n
n

li i
io ko ik io ko ik

io ko ik io ko ik
k

k ik i

P V

V

I V I V I V I V

Q VV Y V Y
V

  

       

     










 

  



      


      






 

1 1

1 1

V sin( ) V cos( )

V cos( ) V sin( )

0 0

0 0

0 0

i

i

n n

io ko ik io ko ik io ko ik io ko ik

k k
k i

n n

io ko ik io ko ik io ko ik io ko ik K
k k
k i

K

V

V Y V Y

V Y V Y

V



     

      

 


 








  
  
  


 
 
 
 
 

 
      
 
 
       
 
  
 
 
 
 
 

 

   
 
 

 

                                                                              i=1,…,n             (3.24) 

   Rewriting (3.24) we obtain 
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1121 31

2 3

1 n 141,1 41,n 51, 1 51,

4 ,1 4 , 5 , 1 5 , n

0

g

n n n gm

g n m

n n n gn n n n m

IxC D

C x D I

V VD D D D

D D V D D V





     
     

       
             

       
      

      
            

            (3.25) 

  

Where the various sub matrices of (3.25) can be easily identified. In matrix 

notation, (3.26) is 

    2 3 4 50 g gC x D I D V D V                                                        (3.26) 

Where 

                      V = 
K

KV

 
 
 

 

For the non-generator buses i=1,…,n 

     Note that C2, D3 are block diagonal, whereas D4, D5 are full matrices. 

For load buses (3.9) and (3.10) can be given as: 

 



 

31 

1 1

1 1

( )
sin( ) cos( )

( )
cos( ) sin( )

0 0

0 0

0 0

V

n n
li i

io ko ik io ko ik ko ik io ko ik

k k i
k i

n n
li i

io ko ik io ko ik ko ik io ko ik i

k k i
k i

i

io ko ik

P V
V V Y V Y

V

Q V
V V Y V Y

V
V

V Y

     

      

 


 


 
      

 
 

            
   
 
 
 
 
 





 

 

1 1

1 1

sin( ) V cos( )

V sin( ) V sin( )

0 0

0 0

0 0

n n

io ko ik io ik io ko ik

k k
k i

n n

io ko ik io ko ik io ik io ko ik K
k k
k i

K

Y

V Y Y

V

     

      

 


 


 
     

 
 
         

 
   
 
 
 
 
 

 

 

      

                                                                                                                  (3.27) 

  Rewriting (3.27) we obtain 

1 16m 1,1 6 1,m 7m 1,m 1 7 1,

6 ,1 6 ,m 7n,m 1 7 ,n n

0

g mm m n

n n gm n

V VD D D D

D D V D D V

    



       
      

       
            

     (3.28) 

In matrix notation, (3.28) can be written as 

 
760 gD V D V                                                                          (3.29) 

Where D6 and D7 are full matrices. 

Rewritten equation (3.20),(3.23),(3.26) and (3.29) together as follow : 

1 1 2i i i i gi i gi i ix A x B I B V E V                                              (3.30) 

1 1 20 g gC x D I D V                                                                          (3.31)  

2 3 4 50 g gC x D I D V D V                                                            (3.32)  

760 gD V D V                                                                                     (3.33) 

From (3.31) we obtain  
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1 1

1 1 1 2   g gI D C X D D V                                                                      (3.34) 

Substitute (3.34) in (3.30) as shown 

1 1

2 3 1 1 1 2 4 5C D ( ) 0g gX D C X D D V D V D V                                       (3.35) 

Let 

1

4 3 1 2 1   D D D D K       

And 

1

2 3 1 1 2C D D C K                  

Then 

2 1 5 0gK X K V D V                                                                      (3.36) 

Substitute (3.36) in (3.30) we find 

1 1

1 1 1 1 1 1 2 2 1( ) X ( ) gX A B D C B D D B V E u


                                             (3.37)  

2 1 5 0gK X K V D V                                                                   (3.38)  

    
760 gD V D V                                                                 (3.39)  

Equation (3.37)-(3.39) can be put in a form of  matrix shown below 

1 1

1 1 1 1 1 1 2 2 1

2 1 5

6 7

0

0 0

0 0 0

g

X A B D C B D D B X E

K K D V u

D D V


  

         
                          

 

                      (3.40)     

Let  

A'=   [ 1

1 1 1 1A B D C ] 

' 1

1 1 2 2B B D D B    

So, 

' '

1X gX A B V E u


                                                                                 (3.41)  

 2 1 5 0g lK X K V D V                                                                    (3.42)     

 
760 gD V D V   

                                                                            
(3.43)  

From (3.43)  
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7

1

6 gV D D V                                                                                      (3.44) 

Substitute (3.43) in (3.39) we find 

2 0gK X F V                                                                                       

(3.45) 

Where  

1

1 5 7 6F K D D D                                                                                    (3.46) 

From (3.45) 

 
1

2gV F K X                                                                                       (3.47) 

Substitute (3.47) in (3.41) we find [9] 

1XSYSX A E u


                                                                                      (3.48) 

Where  

' ' 1

2SYSA A B F K                                                                       (3.49) 
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3.3 Methods of Analysis of Small Signal Stability: 

1. Eigenvalue analysis.  

2. Synchronizing and damping torque analysis.  

3. Frequency response- and residue-based analysis.  

4. Time-domain solution analysis. 
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3.3.1 Eigenvalue Analysis for Small Signal Stability:  

Eigenvalue analysis is used to study oscillatory behavior of power 

systems and hence has been described in detail. The system is linearized about 

an operating point and typically involves computation of eigenvalues. After 

linearization of system equations, the system can be described as  

Δ𝑥̇= A Δx(t) + B Δu(t)                   (3.50)  

λ = σ ± jω                      (3.51)  

Where: 

 A is the state matrix and  

λ is the eigenvalues of the matrix A.  

The small signal stability can be assessed by the eigenvalues λi of the state 

matrix A. For any eigenvalue λi, there exists at least one nonzero column vector 

ri that satisfies 

A . ri = λi . ri  

The vector ri  is called a right eigenvector of its eigenvalue λi . A vector Ii that 

satisfies 

AT . Ii = λi . Ii  

is called a left eigenvector of its eigenvalue λi .   

The stability of a power system is determined by the eigenvalues as follows: 

(i) A real eigenvalue corresponds to a non-oscillatory mode. A 

negative real eigenvalue represents a decaying mode. The larger 

its magnitude, the faster is the decay. A positive real eigenvalue 

represents aperiodic instability. 

(ii) Complex eigenvalues occur in conjugate pairs (since the state 

matrix is real), and each pair correspond to an oscillatory mode. 

The real component of the eigenvalues gives the damping, and the 

imaginary component gives the frequency of oscillation. A 

negative real part represents a damped oscillation whereas a 

positive real part represents oscillation of increasing amplitude. 
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For a complex pair of eigenvalues λ = σ ± jω the frequency of 

oscillation in Hz is given by 

 f = 
𝜔

2𝜋
                                                                                                    (3.52)  

The damping ratio is given by  

ζ = 
−𝜎

√(𝜎2+ω2)
                                                                                      (3.53) 

The damping ratio ζ determines the rate of decay of the amplitude of the 

oscillation. The time constant of amplitude decay is [1/ |σ|] [9] . 

 Advantages of Eigenvalue or Modal Analysis: 

With eigenvalue techniques, oscillations can be characterized easily, 

quickly and accurately. Different modes, which are mixed with each other in 

curves of time-domain simulation, are identified separately. Root loci plotted 

with variations in system parameters or operating conditions provide valuable 

insight into the dynamic characteristics of the system.  

Using eigenvectors coherent groups of generators which participate in a 

given swing mode can be identified. In addition, linear models can be used to 

design controllers that damp oscillations. Further, information regarding the 

most effective site of controller, tuning of existing one, installation of new  

controller can be decided. 

Eigenvalue or modal analysis describes the small-signal behavior of the 

system about an operating point, and does not take into account the nonlinear 

behavior of components such as controller's limits at large system 

perturbations. Further, design and analysis carried out using various indices 

such as participation factors, residues, etc. may lead to many alternate options. 

These options need to be verified for their effectiveness using system responses 

for small/large disturbances. In such cases, time-domain simulations are very 

essential. In this thesis time-domain simulation, and modal analysis in the 

frequency domain should be used in a complement manner in analyzing small-

signal stability of power systems [10]. 
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3.3.2 Time Domain Simulation: 

The time domain simulations were performed to validate the results of 

modal analysis. The effectiveness of the PSSs is assessed by their ability to 

damp low frequency oscillations under various operating conditions. 

Furthermore, the PSS must be able to stabilize the system under transient 

conditions. Therefore, two types of time domain simulations are performed; 

small signal and transient simulations. 

3.4 Development of a Location Selection Indicator of PSS: 

During the application of PSS to a multi machine power system to 

achieve the largest improvement in damping, first, the best location of PSS 

must be identified among a number of interconnected machines. Study reveals 

that the PSS displaces the swing mode from its critical position to a more 

desirable position, changing the response of the excitation system. Based on 

the change of the exciter transfer function, a simple and easy indicator called 

OPLI to identify the best location of the PSS in a multi machine system [8]. 

3.4.1 Participation Factor: 

        Participation factor is a tool for identifying the state variables that 

have significant participation in a selected mode among many modes in a multi-

-generator power system. It is natural to say that the significant state variables 

for an eigenvalue 𝜆p are those that correspond to large entries in the 

corresponding eigenvector 𝜙p. However, the problem of using right and left 

eigenvector entries individually for identifying the relationship between the 

states and the modes is that the elements of the eigenvectors are dependent on 

dimension and scaling associated with the state variables. As a solution of this 

problem, a matrix called the participation matrix (P) is suggested in which the 

right and left eigenvectors entries are combined, and it is used as a measure of 

the association between the state variables and the modes:

 1 2 rp p p p  
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                                                                                           (3.54) 

Where: 

 𝜙kp is the element on the kth row and pth column of the modal matrix. 

 Φ is the kth entry of the right eigenvector 𝜙p. 

 𝜓pk is the element on the pth row and kth column of the modal matrix. 

 𝜓 is the kth entry of the left eigenvector 𝜓p.  

The element Pkp= 𝜙kp𝜓pk is termed the participation factor. It is a measure of 

the relative participation of the kth state variable in the pth mode, and vice 

versa. 

Since 𝜙kp measures the activity of the variable Xk in the pth mode, and 𝜓pk 

weighs the contribution of this activity to the mode, the product Pkp measures 

the net participation. The effect of multiplying the elements of the left and right 

eigenvectors makes the Pkp dimensionless. In view of the eigenvector 

normalization, the sum of the participation factors associated with any mode 

(∑ 𝑝𝑘𝑝
𝑟
𝑝=1 ) or with any state variable (∑ 𝑝𝑘𝑝

𝑟
𝑘=1 )  is equal to 1. For a given 

autonomous linear system 

Δ𝑥̇ = Asys Δ𝑥                                                                                               (3.55) 

Participation factor is actually a measurement of sensitivity of the eigenvalue 

𝜆p to the diagonal element akk of the state matrix A, defined as: 

pkp = 
𝜕𝜆𝑝

𝜕𝑎𝑘𝑘 
 , k = 1,2,….r                                                                             (3.56) 

pkp = 
𝜓𝑘𝑝𝜙𝑘𝑝

𝜓𝑝
𝑇𝜙𝑝

 , k = 1,2,….r                                                                          (3.57) 

where 𝜓kp and 𝜙kp are the kth entries in the left and right eigenvector associated 

with the pth eigenvalue [8]. 

In power system, participation factors give good indications for power 

system stabilizers placement. As previously mentioned, PSS is a device use to 

provide supplementary signal to add damping at the generator shaft. Hence, the 
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participation factor is use to identify the states that correspond have the highest 

participation in the mode (in general rotor speed and rotor angle). If the 

corresponding rotor angle and/or rotor speed participation factor of a generator 

in a mode is zero, then that particular generator state does not contribute to the 

damping of the mode. However, if the participation factor is real positive, 

adding damping at the generator will increase the damping of the mode whereas 

if negative, it will have adverse effects [9]. 

In this thesis participation factor (PF) method is considered. 

 3.4.2 Sensitivity of PSS Effect: 

            The PSS installed on a machine in a power system is a closed-loop 

controller. If a machine is selected for installation of PSS, for best effect, first, 

the amplitude of PSS input that is measured by the right eigenvector 

corresponding to speed change Δ𝜔 should be relatively large, and second, the 

control effect of PSS measured by the coefficient Sji should be strong. 

The control effect of PSS on the system (by the PSS output state ΔVsi and the 

system mode 𝜆j) can be calculated by Sji =𝜓j, ΔE𝑓𝑑𝑖, where 𝜓j, ΔE𝑓𝑑𝑖 is the 

left-eigenvector entry of the jth mode (𝜆j) corresponding to the state variable 

ΔE𝑓𝑑𝑖 of the ith machine. In order to take into consideration, the effect of both 

the PSS input and the PSS control in selecting the PSS location, SPE for the ith 

machine has been considered as 

SPEi =𝜙𝑗,Δ𝜔i  𝜓𝑗,ΔEfdi                                                                                (3.58) 

for i=1, 2, . . .,m (the number of machines) where 𝜙𝑗,Δ𝜔i  is the right-eigenvector 

entry and 𝜓𝑗,ΔEfdi is the left-eigenvector entry of the jth mode corresponding to 

the state Δ𝜔i and ΔEfdi of the ith machine. SPE measures both the activity of 

PSS input (Δ𝜔i) participating in a certain oscillatory mode and the control 

effect of PSS, on this mode. The larger the magnitude of the SPE, the better is 

the overall performance of the PSS. In a multi machine power system, there 

may be several swing modes that are of interest, and for each mode, a set (SPEi, 
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i=1, 2, . . .,m) can be calculated by Equation (3.56). The SPE with the largest 

magnitude of any ith machine identifies the best location of PSS. 

 3.4.3 Optimum PSS location index: 

The newly proposed concept of OPLI is based on the change of exciter 

transfer function with respect to the PSS transfer function in a certain swing 

mode. The PSS on a machine is a closed-loop controller and that considers 

usually the machine speed or power as its input and introduces a damping so 

that the system moves from a less stable region to a more stable region. As the 

PSS acts through the excitation system, the effect of displacement of swing 

modes due to the installation of PSS will change the response of the excitation 

system. The response of the excitation system at a swing mode l0 can be 

obtained by replacing 𝜆′for “s” in its transfer function Gex(s). The change of 

response of the excitation system with respect to the PSS response for a swing 

mode 𝜆′ is determined by the proposed index OPLI and is defined by 

|OPLIi|=
|𝐺𝑒𝑥𝑖(𝜆

′)−𝐺𝑒𝑥𝑖(𝜆
𝑜)|

|𝐺𝑃𝑆𝑆(𝜆′)|
                                                                            (3.59) 

 for i=1, 2, . . .,m (the number of machines). 

Here, 𝜆′and 𝜆0 are the critical swing modes before and after the installation of 

PSS, respectively. The magnitude of OPLI measures the effect of PSS on the 

exciter response in a swing mode 𝜆′ of interest. The larger value of the OPLI, 

the larger is the control effect of PSS on the exciter and the better is the overall 

performance of PSS in the power system [9]. Figure (3.3) represent the location 

of PSS. 
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Figure 3.3: Location of PSS in a power system. 

3.5 Design of Power System Stabilizer: 

3.5.1 Operating Principle: 

The basic function of power system stabilizer (PSS) is to add damping 

to the generator rotor oscillations by controlling its excitation by using auxiliary 

stabilizing signal(s). Based on the automatic voltage regulator (AVR) and using 

speed deviation, power deviation or frequency deviation as additional control 

signals, PSS is designed to introduce an additional torque coaxial with the 

rotational speed deviation, so that it can increase low-frequency oscillation 

damping and enhance the dynamic stability of power system.  

                                                               ∆𝜔 

  

∆𝑀𝑃         ∆𝑀𝑃2              

                                     ∆𝑀 

                                                              ∆𝜑𝑃                                   

 

                                                                                    ∆𝛿 

                          𝜑𝑒 

                                                                                          

                                                                                       ∆𝑀𝑒2 

                                                                    

Figure (3.4): Torque analysis between AVR and PSS. 

As shown in Figure (3.4) the torque analysis between AVR and PSS. 
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 under some conditions, such as much impedance, heavy load need etc., the 

additional torque ΔMe2 provided by the AVR lags the negative feedback 

voltage (-∆Vt) by one angle ∆𝜑𝑥  which can generate the positive synchronizing 

torque and the negative damping torque component to reduce the low frequency 

oscillations damping. On the other hand, the power system stabilizer, using the 

speed signal (∆ω) as input signal, will have a positive damping torque 

component ΔMp2. So, the synthesis torque with positive synchronous torque 

and the damping torque can enhance the capacity of the damping oscillation 

[7]. 

3.5.2 Phase compensation method: 

The steps involved in designing a PSS are as follows: 

a. Computation of GEPS(s). 

b. Design of compensator using phase compensation technique. 

c. Determination of compensator gain. 

     a. Computation of GEPS(s): 

             A PSS acts through generator, exciter system, and power system 

(GEPS). Therefore, a PSS must compensate the phase lag through the GEPS. 

To obtain the phase information of GEPS, the frequency response of the 

transfer function between the exciter reference input (i.e., PSS output) and the 

generator electrical torque should be observed. In computing this response, the 

generator speed and rotor angle should remain constant, otherwise, when the 

excitation of a generator is modulated, the resulting change in electrical torque 

causes variations in rotor speed and angle and that in turn affect the electrical 

torque. As we are interested only in the phase characteristics between exciter 

reference input and electrical torque, the feedback effect through rotor angle 

variation should be eliminated by holding the speed constant. This is achieved 

by removing the columns and rows corresponding to rotor speed and angle from 

the state matrix. 

GEPS(s)  = 
∆𝑇𝑒(𝑠)

∆𝑣𝑠(𝑠)
                            (3.60) 
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Where 

∆𝑇𝑒(𝑠) is the electrical torque and ∆𝑣𝑠(𝑠) is the terminal voltage . 

b.  Design of Compensator GC (s): 

            If a PSS is to provide pure damping torque at all frequencies, ideally, 

the phase characteristics of PSS must balance the phase characteristics of GEPS 

at all frequencies. 

The following criteria are chosen to design the phase compensation for PSS: 

 Compute the phase angle from the GEPs transfer function. 

 Substitute the phase angle in the compensator transfer function  

Gc(s) = 𝐾𝑝𝑠𝑠𝑖
 𝑠𝑇𝑤𝑖(1+𝑠𝑇1𝑖)(1+𝑠𝑇3𝑖)

(1+𝑠𝑇𝑤𝑖)(1+𝑠𝑇2𝑖)(1+𝑠𝑇4𝑖)
                                                  (3.61) 

An improvement in the damping torque component is reflected in an 

increase in the damping factor of the mode [10]. 

The proposed optimized PSS parameters set should minimize the objective 

function given below. 

J=max Re (𝜆i)                                                                                            (3.62) 

Where, 𝜆i is the closed loop eigenvalue of the system. Damping ratio about 

0.05 is considered to be sufficient. The parameters constraints are the PSS 

parameters settings. Thus, the tuning problem can be formulated as an 

optimization problem as follows 

Min J                                                                                                           (3.63) 

Subject to 

𝐾𝑝𝑠𝑠𝑖
𝑚𝑖𝑛  ≤ 𝐾𝑝𝑠𝑠𝑖 ≤ 𝐾𝑝𝑠𝑠𝑖

𝑚𝑎𝑥  

𝑇1𝑖
𝑚𝑖𝑛  ≤ 𝑇1𝑖 ≤ 𝑇1𝑖

𝑚𝑎𝑥  

𝑇2𝑖
𝑚𝑖𝑛  ≤ 𝑇2𝑖 ≤ 𝑇2𝑖

𝑚𝑎𝑥  

The objective of optimization is to maximize to damping ratio up to 0.05. 

The parameters to be optimized (Kpssi, T1i, and T2i). Assuming T1i=T3i, T2i=T4i , 

in this study Tw is set as 10 sec, and for convinces T2 is set to 0.05, the OPSS 

parameters settings (Kpssi , T1i) are to be computed. Where i=1, 2…n. Where n 

is number of machines [11]. 
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To determine T1 and T2 the phase angle lead ∅m to be provided by the 

compensator is related to T1 and T2 as 

sin(∅m) = 
1−𝛼

1+𝛼
                                                                         (3.64) 

Where   𝛼 is the ratio between T2 and T1  

𝛼 = 
𝑇2

𝑇1
                                                                                   (3.65) 

The center frequency at which it offers a phase lead ∅m is given by 

𝜔m =  
1

√𝛼𝑇1
                                                                            (3.66) 

Typically 
𝑇1

𝑇2
  must be less than 10. 

c. Determination of compensator gain: 

          To set the gain of the PSS, the following criterion are generally employed 

1. Based on the gain for instability 

*

2

PSS
PSS

K
K   

Where,  

*

PSSK  is the instability gain, which determine by trial and error. 

2. Damping factor of the critical mode: Here, the gain is selected such that 

damping factor for the mode is above some typical value say 0.05. 

3. High frequency gain: The high frequency gain of PSS is given by 

1

2
PSS

T
K

T
 this should not be too high, as it would lead to noise 

amplification decreasing the effectiveness of a PSS [10]. 

3.5.3 Residues method: 

Another way to obtain the best place to install PSS controllers is to use 

the residues of the open-loop transfer function of this device. The residues (Rijk) 

provide information about the observability and controllability of the PSS 

input-output set (Cj − Bk) in a predefined eigenvalue (λi) according to the right 

(φi) and left ( ψi) eigenvectors as described in equation (3.67). 
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ijk i i i kR C B                                                                                                                         (3.67) 

Therefore, the bigger the residues obtained the bigger the damping insert 

on the system. It is emphasized that the residues obtained from each possible 

installation of the PSS provide the best localization of these devices on the 

system. 

 Once the residues are obtained, this index gives the procedure to design 

and obtain the PSS parameters To design the controller, it is necessary to 

calculate the time constants T1=T3,T2=T4 and the gain Kpss in order to introduce 

the necessary phase compensation to the displacement of the eigenvalue of 

interests.  

An eigenvalue (𝜆i) can be displaced to the left semi-plane including PSS, 

in such way that the real part becomes more negative, increasing the damping 

of the oscillatory mode. Equation (3.68) shows the relation between the 

displacement of the eigenvalue and the correspondent residue. 

( ) ( ( ))i ijk i ijk iR PSS R K pssH                                                           (3.68) 

Thus, consider that the angle to be compensated by the controller is 𝛽, 

and 𝜔i is the frequency in rad/s of the electromechanical mode of interests, and 

𝜆ides the desired position of the eigenvalue, then the equations below provides 

the procedure to obtain the parameters of the controller [12]. 

180 arg( )ijkR    

𝛼 = 
1−sin (

β

2
)

1+sin (
β

2
)
                                                                                                (3.69) 

Where   𝛼 is the ratio between T2 and T1  

𝛼 = 
𝑇1

𝑇2
       

( )

ides i
PSS

ijk i

K
R H

 




                                                                                                               (3.70) 

the center frequency at which it offers a phase lead is given by 

𝜔i =  
1

√𝛼𝑇2
                                                                                                    (3.71) 
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3.6 Interfacing PSS to the System Matrix: 

To see the performance of the system with PSS, the system matrix needs 

to be modified to account for PSS. 

The state space equations for two stages PSS can be written as 

𝑣1 =̇
1

𝑇𝑤
[KPSS ∆𝜔-v1]                                                                                 (3.72) 

𝑣2 =̇
1

𝑇2
[KPSS 

(𝑇2−𝑇1)

𝑇2
∆𝜔-

(𝑇2−𝑇1)

𝑇2
 v1 –v2]                                                      (3.73) 

𝑣𝑠 =̇
1

𝑇4
[KPSS 

𝑇1

𝑇2

(𝑇4−𝑇3)

𝑇4
∆𝜔-

𝑇1

𝑇2

(𝑇4−𝑇3)

𝑇4
v1 +

(𝑇4−𝑇3)

𝑇4
v2-vs]                                  (3.74) 

𝐸𝑓𝑑 =̇ −
1

𝑇𝑟
𝐸𝑓𝑑  + 

𝐾𝑟

𝑇𝑟
𝑣𝑟𝑒𝑓- 

𝐾𝑟

𝑇𝑟
vk + 

𝐾𝑟

𝑇𝑟
vs                                                       (3.75) 

 Tw is usually chosen in range of (10-20) sec, T1=T3, and T2=T4. 

The linearized equations: 

∆𝑣1 =̇
1

𝑇𝑤
[KPSS ∆𝜔-∆v1]                                                                             (3.76) 

∆𝑣2 =̇
1

𝑇2
[KPSS 

(𝑇2−𝑇1)

𝑇2
∆𝜔-

(𝑇2−𝑇1)

𝑇2
 ∆v1 –∆v2]            (3.77) 

∆𝑣𝑠 =̇
1

𝑇4
[KPSS 

𝑇1

𝑇2

(𝑇4−𝑇3)

𝑇4
∆𝜔-

𝑇1

𝑇2

(𝑇4−𝑇3)

𝑇4
∆v1 +

(𝑇4−𝑇3)

𝑇4
∆v2-∆vs]                       (3.78) 

∆𝐸𝑓𝑑 =̇ −
1

𝑇𝑟
∆𝐸𝑓𝑑  + 

𝐾𝑟

𝑇𝑟
∆𝑣𝑟𝑒𝑓- 

𝐾𝑟

𝑇𝑟
∆vk + 

𝐾𝑟

𝑇𝑟
∆vs           (3.79) 
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3.7 State space modal: 
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CHAPTER FOUR 

SIMULATION AND RESULTS 

4.1 Background 

In the previous chapter the power system stabilizer (PSS) was designed.  

Eigenvalues analysis and time-domain simulation have been represented for 

the multi-machines. The results are obtained through simulations of the system 

response for different operating conditions: the system with static AVR and the 

system with PSS for the following different cases: 

i. Switch off the Load at bus 3 for part of second and then return to 

service.   

ii. A three-phase short circuit is applied at bus 16 and, then cleared 

after specific time. 

iii. Tripping line5-6 and a three phase short circuit is applied at bus 

16 at the same time. 

4.2 Case study: 

  IEEE system with 10 machines, 39-bus-bars power system has been used 

to demonstrate the modal analysis of power system. Generator (2) is a slack bus 

the other bus-bars are PV bus-bars and the total generation is 6140.811MW, 

198.2518 Mvar. Each M/C had rated generation 10 kV. The network had total 

load of 6097.1MW, 1408.9 Mvar, and the total number of transformers are 

twelve 3- phases transformers.   

The single line diagram of the system is shown in Figure (4.1). Analysis 

of the third order model of the 10 M/Cs under normal condition is carried out 

by NEPLAN software.  
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Figure 4.1: IEEE 39 – 10 machins bus. 

4.2.1 The system without PSS: 

a. eigenvalue analysis: 

The stability in small nonlinear system is given by roots of the 

characteristic equation of the eigen values λ= σ+jω. 

The system is stable if all eign values have negative real parts,if any of 

eignvalues have postive real part that mean the system is un stable and if the 

eignvalues have real part equal to zero it is not possible to judge. 

Simulation are carried on case study without PSS ,result of shown in 

table (4.1) . 
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Table (4.1): The Eigenvalues of The System With Out PSS 

  

Eigenvalue Real 

Part 

Eigenvalue 

Imaginary Part 

Damping 

Ratio 
Frequency 

Nature of 

Mode 

1/s 1/s _ Hz _ 

1 -6.650589e-005 0 1 0 Non swing 

2 -0.055 0.063 0.455 0.2 Inter area 

3 -0.076 0 1 0 Non swing 

4 -0.125 0 1 0 Non swing 

5 -0.167 0 1 0 Non swing 

6 -0.176 0 1 0 Non swing 

7 -0.199 0 1 0 Non swing 

8 -0.208 0 1 0 Non swing 

9 -0.23 0 1 0 Non swing 

10 -0.238 7.449 0.032 1.186 Local 

11 -0.244 6.297 0.039 1.002 Local 

12 -0.245 0 1 0 Non swing 

13 -0.275 0 1 0 Non swing 

14 -0.28 3.801 0.073 0.605 Inter area 

15 -0.288 5.894 0.049 0.938 Local 

16 -0.293 6.876 0.043 1.094 Local 

17 -0.358 8.614 0.042 1.371 Local 

18 -0.411 8.841 0.046 1.407 Local 

19 -0.736 8.666 0.085 1.379 Local 

20 -0.906 0 1 0 Non swing 

21 -0.964 0 1 0 Non swing 

22 -0.978 0 1 0 Non swing 
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23 -0.979 7.47 0.13 1.189 Local 

24 -1.079 0 1 0 Non swing 

25 -1.346 0 1 0 Non swing 

26 -1.483 0 1 0 Non swing 

27 -5.103 0 1 0 Non swing 

28 -5.586 0 1 0 Non swing 

29 -6.8 0 1 0 Non swing 

30 -21.208 0 1 0 Non swing 

 

From table (4.1), All of the real parts are negative. The system is poorly 

damped there are two modes (inter area mode of oscillation having damping 

ratio less than 5%, and local mode of oscillations) 

 Two  states have an inter area nature of mode and  8 states have a local 

nature of mode. Figure (4.2), show the eigenvalues from table (4.1) which 

previously in s plane. 

  

Figure 4.2: Eignvalues real part(σ) and imagenary part (jω). 
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From figur (4.2), describe that most of eigenvalues are located close to 

Y axis in s plane which mean that the system is poorly damped.   

b. Time domain simulation 

                 To verify the EVs analysis, following cases are considered: 

i. small disturbance: 

A switch off load at bus 3 (load out), at t=0.5 sec. and load 

return to serves at t=0.6. 

ii. large disturbance: 

1.  A three phase short circuit is applied at bus 16, at t=0.5 

sec. and cleared at t=0.6. 

          2. A three phase short circuit is applied at bus 16, tripping 

line 5-6 at t=0.5 sec. and the fault cleared at t=0.6 sec. 

First: small disturbance (switch off bus 3 load): 

The time domain simulation represented as follow: 

 

Figure 4.3: response of field voltage. 
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Figure 4.4: response of rotor speed. 

 

Figure 4.5: response of output active power. 
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Figure 4.6: response of rotor angle. 

           From Figures (4.3) (4.4) (4.5) (4.6) observed that the effect of small 

disturbance (switch off load at bus 3) make small changes of oscillation and 

then the system return back to stable condition after few cycles. 

 Second: large disturbance 

1.  Three –phase to ground short circuit fault at bus 16 at 0.5 sec and then 

the fault removing at 0.6 sec. 

The time domain simulation represented as follow: 

 

Figure 4.7: response of field voltage. 
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Figure 4.8: response of rotor speed. 

 

Figure 4.9: response of output active power. 
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Figure 4.10: response of rotor angle. 

From figures (4.7) (4.8) (4.9) (4.10) are observed that the effect of large 

disturbance (Three –phase to ground short circuit fault at bus 16 at 0.5 sec and 

then the fault cleared at 0.6 sec) make the system oscillatory. 

2. A three phase short circuit is applied at bus 16 at t= 0.5 sec, and tripping 

line 5-6 at t=0.55 sec the fault cleared at t=0.6 sec. 

The time domain simulation represented as follow: 

 

 Figure 4.11: response of field voltage. 
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Figure 4.12: response of rotor speed. 

 

Figure 4.13: response of output active power 
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Figure 4.14: response of rotor angle. 

         From figures (4.11) (4.12) (4.13) (4.14) observed that the effect of large 

disturbance (Three –phase to ground short circuit fault at bus 16 at 0.5 sec and 

tripping line 5-6 at 0.55sec). Increases the oscillations for the system and the 

system may be unstable. 

       In power system, to Selection optimal location of PSS participation factors 

give good indications for power system stabilizers placement, discussed in 

chapter (3). 

        There are different oscillations frequencies but we interested here in a 

swing modes (local modes and inter area mode of oscillations (0.2-2 HZ)). The 

eigenvectors for swing modes have been determined by using slip-participation 

matrix; which represent the nature of oscillatory modes. 

Table (4.2): the contribution of generators in inter area mode. 
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G01 0.747 0.879 
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G05 0.154 0.16 
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            From table (4.2) the contributed generators in inter area mode are 

arranged in a sending form, the contribution greater than 5% has been assumed 

that it high contribution in the modes, then PSS’s are added.   

4.2.2 system with PSS: 

a. eigenvalue analysis: 

the eigenvalues of the system with PSS shown below 

Table (4.3): The Eigenvalues of The System With PSS 

  

eigenvalue 

real part 

eigenvalue 

imaginary part 

damping 

ratio 
frequency 

Nature of 

Mode 

1/s 1/s _ Hz  _ 

1 -0.0001198 0.001 0.108 0 Non swing 

2 -0.1 0 1 0 Non swing 

3 -0.1 0 1 0 Non swing 

4 -0.1 0 1 0 Non swing 

5 -0.1 0 1 0 Non swing 

6 -0.147 7.422 0.05 1.181 Local 

7 -0.156 0 1 0 Non swing 

8 -0.359 6.428 0.056 1.023 Local 

9 -0.413 3.811 0.108 0.607 Inter area 

10 -0.458 0.675 0.562 0.107 Non swing 

11 -0.482 0.609 0.62 0.097 Non swing 

12 -0.486 0.639 0.605 0.102 Non swing 

13 -0.588 0.662 0.664 0.105 Non swing 

14 -0.69 0.808 0.65 0.129 Non swing 

15 -0.722 8.734 0.082 1.39 Local 

16 -0.809 0.821 0.702 0.131 Non swing 

17 -0.846 0.772 0.738 0.123 Non swing 

18 -0.906 0 1 0 Non swing 
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19 -0.959 0 1 0 Non swing 

20 -0.976 0 1 0 Non swing 

21 -1.024 8.587 0.118 1.367 Local 

22 -1.046 0.227 0.977 0.036 Non swing 

23 -1.099 0 1 0 Non swing 

24 -1.149 7.299 0.155 1.162 Local 

25 -1.173 6.563 0.176 1.045 Local 

26 -1.22 0.909 0.802 0.145 Non swing 

27 -1.459 0 1 0 Non swing 

28 -1.479 0.511 0.945 0.081 Non swing 

29 -1.516 0 1 0 Non swing 

30 -1.89 9.989 0.186 1.59 Local 

31 -2.093 1.705 0.775 0.271 Inter area 

32 -2.287 7.274 0.3 1.158 Non swing 

33 -3.49 3.383 0.718 0.538 Inter area 

34 -4.327 1.6 0.938 0.255 Inter area 

35 -5.531 0 1 0 Non swing 

36 -5.792 0 1 0 Non swing 

37 -5.877 3.742 0.844 0.596 Inter area 

38 -7.182 0 1 0 Non swing 

39 -12.673 6.678 0.885 1.063 Local 

40 -21.154 0 1 0 Non swing 

41 -59.421 0 1 0 Non swing 

42 -61.092 0 1 0 Non swing 

43 -63.074 0 1 0 Non swing 

44 -63.398 0 1 0 Non swing 

45 -63.864 0 1 0 Non swing 

46 -63.924 0 1 0 Non swing 

47 -64.655 0 1 0 Non swing 
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48 -64.675 0 1 0 Non swing 

49 -65.975 0 1 0 Non swing 

50 -66.407 0 1 0 Non swing 

51 -100.902 0 1 0 Non swing 

52 -101.293 0 1 0 Non swing 

53 -101.309 0 1 0 Non swing 

54 -101.316 0 1 0 Non swing 

55 -101.898 0 1 0 Non swing 

56 -102.118 0 1 0 Non swing 

57 -102.209 0 1 0 Non swing 

58 -102.655 0 1 0 Non swing 

59 -103.738 0 1 0 Non swing 

60 -104.568 0 1 0 Non swing 

 

From table (4.2) note that eigenvalues has been ranking, the PSS’s raise 

the damping ratio of inter area and local modes above the 5% . 

From table (4.2), damping ratios has been increased for local as well 

inter-area modes, and eigenvalues shifted to the left of s plane. 

 

Figure 4.15: Eignvalues real part(σ) and imagenary part (jω). 
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b. Time domain simulation 

First: small disturbance (switch off bus 3 load): 

The time domain simulation represented as follow: 

 

 

Figure 4.16: response of field voltage. 

 

Figure 4.17: response of rotor speed. 
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Figure 4.18: response of output active power. 

 

 

Figure 4.19: response of rotor angle. 
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Second: large disturbance: 

1.  Three –phase to ground short circuit fault at bus 16 at 0.5 sec and then 

the fault removing at 0.6 sec. 

The time domain simulation represented as follow: 

 

 

Figure 4.20: response of field voltage. 

 

Figure 4.21: response of rotor speed. 
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Figure 4.22: response of output active power. 

 

Figure 4.23: response of rotor angle. 
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The time domain simulation represented as follow: 

 

 Figure 4.24: response of field voltage. 

Figure 4.25: response of rotor speed. 
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Figure 4.26: response of output active power. 

 

Figure 4.27: response of rotor angle. 
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disturbance (Three –phase to ground short circuit fault at bus 16 at 0.5 sec and 

then the fault removing at 0.6 sec and tripping line 5-6 at 0.55sec) the 

oscillations decreases, also maximum over shot decreases and the system return 

to stable conditions after few cycles. 

The settling time for all cases with and without PSS show in table (4.4) below. 
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Table (4.4): The settling time for cases. 

No the case Variables settling time (sec) 

without PSS with PSS 

1 A switch off 

bus element at 

bus 3 (load 

out) 

∆δ 9 7 

∆ω 11.5 9 

Efd 7.5 6.5 

P 11.5 7 

2 A three phase 

short circuit at 

bus 16 

∆δ oscillatory 13 

∆ω oscillatory 9 

Efd oscillatory 11 

P oscillatory 13 

3 A three phase 

short circuit at 

bus 16. and 

tripping line 

5-6 

∆δ oscillatory 14 

∆ω oscillatory 13 

Efd oscillatory 14 

P oscillatory 13 

 

Note that the settling time with out PSS at the  small distubance state the 

time was decrease ,at large disturbance without PSS the sysem has been 

oscilltory  and at case 3 the system would be unstalble after using PSS the 

settling time was decrease and the system return to stable condition after few 

cycles as shown as upper table(4.4).  
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

5.1 CONCLUSION: 

        The problem of the power system stability (rotor angle stability) of multi-

machines system (10 m/c -39 bus) has been addressed in this thesis by using 

eigenvalue method, and time domain simulation. The system in base case (the 

system without PSS) is a stable at normal condition (no disturbance occurs) but 

have poor damping ratio. To provide adequate damping ratio, the power system 

stabilizer has been designed by using phase compensation technique. 

      Before design of PSS the optimal location of PSS has been specified 

according to participation factor, which represent the contribution of machines 

in modes. After that the effect of PSS has been discussed for small and large 

disturbances. 

      Finally, the power system stabilizer (PSS) is a cost effective way of 

improving the damping of electromechanical oscillations of rotor and return the 

stability to the system. Also it improves the power transfer capability of 

transmission lines.    
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5.2 RECOMMENDATIONS: 

        In this thesis design and optimal location of PSS to improve dynamic 

stability were determined, speed deviation was taken as the input signal; other 

investigations: 

 Change the input signal to PSS such as terminal bus frequency or 

electrical power output. 

 Improve the stability by using another controller addition to PSS 

such as flexible AC transmission system (FACTS) family.  

 Use other methods to specify the optimal location of PSS such as 

Genetic Algorithm (GA) method. 

 Use other methods to appropriate tuning of PSS parameters such 

as Particle Swarm Optimization (PSO) technique or Multi-

Objective Honey Bee Mating Optimization (MOHBMO). 
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APPENDIX ( A ) 

A.1 Generator inertia data 

------------------------------------------ 

Unit No.               M=2*H 

------------------------------------------ 

1                     2 *500.0 / (120π) 

2                     2*  30.3 /(120 π) 

3                     2* 35.8 /(120 π) 

4                     2 * 28.6 /(120 π) 

5                     2* 26.0 /(120 π) 

6                     2* 34.8 /(120 π) 

7                     2 * 26.4 /(120 π) 

8                     2* 24.3 /(120 π) 

9                     2* 34.5 /(120 π) 

10                   2* 42.0 /(120 π) 

------------------------------------------- 

A.2 Generator data 

------------------------------------------------------------------------------------- 

Unit No.          H           Ra          x́d           x́q          xd             xq         T́do           T́qo           xl 

------------------------------------------------------------------------------------- 

1                    500            0         0.006      0.008       0.02         0.019         7                0.7         0.003 

2                    30.3           0         0.0697    0.17         0.295       0.282         6.56           1.5         0.035 

3                    35.8           0         0.0531    0.0876     0.2495     0.237         5.7             1.5         0.0304 

4                    28.6           0         0.0436    0.166       0.262       0.258         5.69           1.5         0.0295 

5                    26              0         0.132      0.166       0.67         0.62           5.4             0.44       0.054 

6                    34.8           0         0.05        0.0814     0.254       0.241         7.3             0.4         0.0224 

7                    26.4           0         0.049      0.186       0.295       0.292         5.66           1.5         0.0322 

8                    24.3           0         0.057      0.0911     0.29         0.28           6.7             0.41       0.028 

9                    34.5           0         0.057      0.0587     0.2106     0.205         4.79           1.96       0.0298 

10                  42              0         0.031      0.008       0.1           0.069          10.2            0          0.0125 

--------------------------------------------------------------------------------------- 

 

 

 



A.3 Bus Load 

Active and reactive power draws for all loads at initial voltage 

--------------------------------- 

Bus no    P[pu]       Q [pu] 

--------------------------------- 

1             0.000         0.000 

2             0.000         0.000 

3             3.220         0.024 

4             5.000         1.840 

5             0.000         0.000 

6             0.000         0.000 

7             2.338         0.840 

8             5.220         1.760 

9             0.000         0.000 

10           0.000         0.000 

11           0.000         0.000 

12           0.075         0.880 

13           0.000         0.000 

14           0.000         0.000 

15           3.200         1.530 

16           3.290         0.323 

17           0.000         0.000 

18           1.580         0.300 

19           0.000         0.000 

20           6.280         1.030 

21           2.740         1.150 

22           0.000         0.000 

23           2.475         0.846 

24           3.086        -0.920 

25           2.240         0.472 

26           1.390         0.170 

27           2.810         0.755 

28           2.060         0.276 

29           2.835         0.269 

31           0.092         0.046 

39           11.040       2.500 

---------------------------------      

 

 

 

 

 

 



A.4 Network data:    
-------------------------------------------------------------------------------------------------------      

                               Line Data                                                          Transformer Tap 

------------------------------------------------------------------------------------------------------- 

From Bus             To Bus            R                 X                 B           Magnitude    Angle 

------------------------------------------------------------------------------------------------------- 

1                                 2              0.0035      0.0411         0.6987             -                   - 

1                                39             0.001        0.025           0.75                 -                   - 

2                                3               0.0013      0.0151         0.2572             -                   - 

2                                25             0.007        0.0086         0.146               -                   - 

3                                4               0.0013      0.0213         0.2214             -                   - 

3                                18             0.0011      0.0133         0.2138             -                   - 

4                                5               0.0008      0.0128         0.1342             -                   - 

4                                14             0.0008      0.0129         0.1382             -                   - 

5                                6               0.0002      0.0026         0.0434             -                   - 

5                                8               0.0008      0.0112         0.1476             -                   - 

6                                7               0.0006      0.0092         0.113               -                   - 

6                                11             0.0007      0.0082         0.1389             -                   - 

7                                8               0.0004      0.0046         0.078               -                   - 

8                                9               0.0023      0.0363         0.3804             -                   - 

9                                39             0.001        0.025           1.2                   -                   - 

10                              11             0.0004      0.0043         0.0729             -                   - 

10                              13             0.0004      0.0043         0.0729             -                   - 

13                              14             0.0009      0.0101         0.1723             -                   - 

14                              15             0.0018      0.0217         0.366               -                   - 

15                              16             0.0009      0.0094         0.171               -                   - 

16                              17             0.0007      0.0089         0.1342             -                   - 

16                              19             0.0016      0.0195         0.304               -                   - 

16                              21             0.0008      0.0135         0.2548             -                   - 

16                              24             0.0003      0.0059         0.068               -                   - 

17                              18             0.0007      0.0082         0.1319             -                   - 

17                              27             0.0013      0.0173         0.3216             -                   - 

21                              22             0.0008      0.014           0.2565             -                   - 

22                              23             0.0006      0.0096         0.1846             -                   - 

23                              24             0.0022      0.035           0.361               -                   - 

25                              26             0.0032      0.0323         0.513               -                   - 

26                              27             0.0014      0.0147         0.2396             -                   - 

26                              28             0.0043      0.0474         0.7802             -                   - 

26                              29             0.0057      0.0625         1.029               -                   - 

28                              29             0.0014      0.0151         0.249               -                   - 

12                              11             0.0016      0.0435            0                1.006              0 

12                              13             0.0016      0.0435            0                1.006              0 

6                                31             0               0.025              0                1.07                0 

10                              32             0               0.02                0                1.07                0 

19                              33             0.0007      0.0142            0                1.07                0 

20                              34             0.0009      0.018              0                1.009              0 

22                              35             0               0.0143            0                1.025              0 

23                              36             0.0005      0.0272            0                1                     0 

25                              37             0.0006      0.0232            0                1.025              0 

2                                30             0               0.0181            0                1.025              0 

29                              38             0.0008      0.0156            0                1.025              0 

19                              20             0.0007      0.0138            0                1.06                0 

---------------------------------------------------------------------------------------- 

 



APPENDIX ( B ) 

NEPLAN Data 

B.1 Single-time constant exciter with simple limits: 
------------------------------------------------------------------------------------------------------- 

Gen.no.       TR       KA      TA       TB       TC       EFDMIN      EFDMAX 

----------------------------------------------------------------------------------------- 

1                  0.1       200      0.015     10        1             -5.0                5.0 

2                  0.1       200      0.015     10        1             -5.0                5.0 

3                  0.1       200      0.015     10        1             -5.0                5.0 

4                  0.1       200      0.015     10        1             -5.0                5.0 

5                  0.1       200      0.015     10        1             -5.0                5.0 

6                  0.1       200      0.015     10        1             -5.0                5.0 

7                  0.1       200      0.015     10        1             -5.0                5.0 

8                  0.1       200      0.015     10        1             -5.0                5.0 

9                  0.1       200      0.015     10        1             -5.0                5.0 

10                0.1       200      0.015     10        1             -5.0                5.0 

----------------------------------------------------------------------------------------- 

 

B.2 System Stabilizer conventional PSS: 
----------------------------------------------------------------------------------------- 

Gen.no.   KPSS        TW       T1        T2        VPSS MAX       VPSSMIN      

---------------------------------------------------------------------------- 

1              1          10       5         0.6       2.0                -2.0 

4              2          10       1         0.1       2.0                -2.0 

5              1          10       1.5      0.2       2.0                -2.0 

6              4          10       0.5      0.1       2.0                -2.0 

9              2          10       1         0.5       2.0                -2.0 

------------------------------------------------------------------------------ 

 

 

 

 

 

 



APPENDEX(C) 

 
Figure: IEEE 39 – 10 machins bus with PSS 

 

 

 

 

 

  

 


	LIST OF CONTANT
	appendex
	master research last one

