
I

SUDAN UNIVERSITY OF SCIENCE & TECHNOLOGY

COLLEGE OF ENGINEERING

ELECTRONICS ENGINEERING DEPARTMENT

Designing Dynamic Consistency for Multi-

Controller Software Defined Network

Topologies

A Research Submitted in Partial fulfillment for the Requirements of the
Degree of B.Sc. (Honors) in Electronics Engineering

Prepared By:

1. Ahmed Mahjoub MohamedAhmed

2. Alnazeer Mohamed Musa

3. Mohamed Abd-Elmonem Ahmed

4. Mohamed Wida’a-tlla Alameen

Supervised By:

 Dr. Ahmed Abdalla Mohamed

October 2017

II

 قال تعالي :

ُ لَكُمْ اياَ أيَُّهَا الَّذِينَ آمَنوُا إِذاَ قِيلَ لَكُمْ تفَسََّحُوا فِي } وَإِذاَ قيِلَ لْمَجَالِسِ فاَفْسَحُوا يفَْسَحِ اللََّّ

ُ الَّذِينَ آمَنوُا مِنْكُمْ وَ ُ انْشُزُوا فَانْشُزُوا يرَْفَعِ اللََّّ مَا تعَْمَلوُنَ بِ الَّذِينَ أوُتوُا الْعِلْمَ درََجَاتٍ وَاللََّّ

 { خَبِير

 سورة المجادلة

III

Dedication

This thesis is dedicated with all sincerity

To our families …

To the ones who brought love to our lives …

To our friends and colleagues whom we spent with the most beautiful

moments …

To everyone who’ve supported us ...

IV

Acknowledgment

First thank to Allah who’ve guided us through our lives till we reached this

point.

We would like to express our special thanks of gratitude to our families who

helped us through the way.

A debt of gratitude to (Dr. Ahmed Abdalla Mohamed Ali), Our beloved thesis

adviser, without his expertise the completion of this study could not have

been possible.

We would also like to thank everyone who supported us academically

regardless of that support

V

Abstract

Motivated by the internet of the future, which will likely be considerably

larger in size as well as highly decentralized, the trending research topic in

the field of Software Defined Networking is the distribution of the control

plane in order to meet the needs of the internet. In this research the concept

of dynamic controllers is introduced into Software Defined Networking,

these controllers can tune their own configurations in real-time in order to

enhance the performance of the network. We used the consistency models in

the context of distributed Software Defined Networks controllers as our

tunable configuration. The project uses Mininet emulation environment, and

POX as a controller to control this environment, the output of this research is

a performance comparison of a proof-of-concept distributed load-balancing

application when it runs on top of our proposed dynamic controller versus

the usual static controller. The results showed that using dynamic consistency

over the traditional static consistency is more beneficial in terms in network

efficiency.

VI

Abstract in Arabic

ركزي بدافع من إنترنت المستقبل والذي من المرجح أن يكون أكبر بكثير في الحجم وكذلك غير م

 ات , هوالشبكات المعرفه بالبرمجي اهم مواضيع البحث في الوقت الحالي في مجال سيصبحللغاية ,

دات وح في هذا البحث يتم إدخال مفهوم توزيع مستوى التحكم للتماشى مع احتياجات الإنترنت ,

 الخاص بها التحكم الديناميكية في الشبكات المعرفه بالبرمجيات , يمكن لهذه الوحدات تعديل الضبط

ه بالبرمجيات استخدمنا انواع التطابق في سياق الشبكات المعرف .ظياً من أجل تعزيز أداء الشبكةلح

 ً سيتم فيها كالبيئة التي Mininet يستخدم المشروع محاكي .كالضبط الذي سيتم التحكم فيه ديناميكا

هو مقارنة كوحدة تحكم للسيطرة على هذه ألبيئة. ناتج هذا البحث POX عملية المحاكاة ،والمتحكم

لتطابق الإستاتيكي أداء تطبيق "موازنة التحميل" عندما يتم استخدام التطابق الديناميكي مقابل استخدام ا

قليدي هو أكثر الديناميكي على التطابق الإستاتيكي التوأظهرت النتائج أن استخدام التطابق المعتاد.

 .فائدة من حيث كفاءة الشبكة

VII

Table of contents

CHAPTER TITLE PAGE

1

DEDICATION III

ACKNOWLEDGMENT IV

ABSTRACT V

ABSTRACT IN ARABIC VI

TABLE OF CONTENTS VII

LIST OF FIGURES IX

LIST OF ABBREVIATION X

Introduction

1.1. Introduction: 2

1.2. Problem statement: 3

1.3. Proposed solution: 4

1.4. Objectives: 4

1.5. Thesis outlines: 5

LITERATURE REVIEW 6

2.1. Introduction: 7

2.2. Software-Defined Networking: 8

2.3. Traditional Network vs. SDN 9

2.4. SDN Architecture: 10

2.5. Architectural components 11

2.6. SDN Controllers: 12

2.7. SDN Emulators: 15

1

2

VIII

2.8. SDN Elements: 16

2.9. OpenFlow: 18

2.10. Challenges of adopting a Single controller network architecture: 20

2.11. Single Controller versus huge networks: 21

2.12. A distributed Multi-domain SDN network architecture: 22

2.13. Consistency in Software-Defined Networks: 24

2.14. Related work: 27

Methodology 29

3.1. Introduction: 30

3.2. Proposed Dynamic Consistency: 31

3.3. Research Activities: 32

3.4. The Design structure for the Dynamic Controllers: 33

3.5. Studying SDN Concept: 33

3.6. Environment tools and technology: 35

3.7. Preparation of Virtual Machine and Network Emulator 37

3.8. Configuration of Dynamic Load Balancing in the Testbed 47

Results and Discussion 58

4.1. Introduction 59

4.2. The performance when applying low traffic: 60

4.3. The performance when applying high traffic: 61

4.4. Fail over test: 62

Conclusion and Recommendations 63

5.1. Conclusion 64

5.2. Recommendations for Future work 64

REFERENCES: 66

APPENDIX A-B 1-89

3

4

5

IX

List of Figures

FIGURE TITILE PAGE

2.1

2.2

2.3

2.4

2.5

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

4.1

4.2

4.3

4.4

4.5

Traditional and software-defined network 10

Logical view of the SDN architecture 11

Example of OpenFlow 19

Connecting Switches to the controller 22

Multi-domain SDN network 23

Our Topology 34

Virtual box main window 39

Importing the Mininet-vm 39

Creating a host-only adaptor 41

Configuring the host-only adaptor 42

Configuring the DHCP server 42

Adding the created adaptor to Mininet 43

Editing mininet interface file 45

Putty SSH configuration 47

Creating the topology using MiniEdit 49

Editing topology code using Gedit 50

Static load balancing Flow chart 53

Adaptation module flow chart 55

Dynamic load balancing flow chart 56

Static at low traffic 60

Dynamic at low traffic 61

Static at high traffic 61

Dynamic at high traffic 62

Fail over test 63

file:///C:/Users/mmone/Desktop/Thesis%20ver.%200.3.docx%23_Toc497731973
file:///C:/Users/mmone/Desktop/Thesis%20ver.%200.3.docx%23_Toc497731973
file:///C:/Users/mmone/Desktop/Thesis%20ver.%200.3.docx%23_Toc497731976
file:///C:/Users/mmone/Desktop/Thesis%20ver.%200.3.docx%23_Toc497731976
file:///C:/Users/mmone/Desktop/Thesis%20ver.%200.3.docx%23_Toc497731977
file:///C:/Users/mmone/Desktop/Thesis%20ver.%200.3.docx%23_Toc497731977
file:///C:/Users/mmone/Desktop/Thesis%20ver.%200.3.docx%23_Toc497731978
file:///C:/Users/mmone/Desktop/Thesis%20ver.%200.3.docx%23_Toc497731978

X

List of Abbreviation

API Application Programmable Interface

SDN Software-Defined Networking

ONF Open Networking Foundation

NBI Northbound Interface

CDPI Control to Data-Plane Interface

NFV Network Function Virtualization (NFV)

GNS3 Graphical Network Simulator-3

NS3 Network Simulator 3

GUI Graphical User Interface

QoS Quality of Service

CLI Command Line Interface

SNMP Simple Network Management Protocol

SPOF Single Point of Failure

DISCO Distributed SDN Control plane

AMQP The Advanced Message Queuing Protocol

ICMP Internet Control Message Protocol

Chapter 1 Introduction

2

Chapter 1

Introduction

1.1. Introduction:

 This chapter provides a brief overview of the literature review,

problem definition, proposed solution, aim and objectives, in addition to the

thesis outline.

 "Software-Defined Networking (SDN)" is a term of the programmable

networks paradigm. In short, SDN refers to the ability of software

applications to program individual network devices dynamically and

therefore control the behavior of the network as a whole. SDN is a set of

techniques used to facilitate the design, delivery, and operation of network

services in a deterministic, dynamic, and scalable manner,(Haleplidis et al.,

January 2015) its common deployment model is by employing a point of

logically centralized network control which then orchestrates, mediates, and

facilitates communication between applications wishing to interact with

network elements and wishing to convey information to those applications.

The controller then exposes and abstracts network functions and operations

via modern, application friendly and bidirectional programmatic interfaces.

(Gray and Nadeau, August 2013)

3

 Among many benefits, SDN eliminates the rigidity present in

traditional network and make it easier to build application for enterprise

networks, data centers, internet exchange points, home networks and

backbone/WAN. basically because it enables customizing the data plane to

perform functions other than match-action like traffic shaping.

SDN changes the way of designing, configuring and managing networks. By

decoupling the control plane from the data plane the chance of creating secure

network is increased, and with a centralized controller the overall view and

management of a network is becoming much easier. While this simplifies the

implementation of the control logic, it has scalability limitations as the size

and dynamics of the network increase. To overcome these limitations, several

approaches have been proposed that fall into two categories, hierarchical and

fully distributed approaches. In hierarchical solutions,(S.H. Yeganeh and

Ganjali, 2012) distributed controllers operate on a partitioned network view,

while decisions that require network-wide knowledge are taken by a logically

centralized root controller. In distributed approaches,(Koponen, 2010)

controllers operate on their local view or they may exchange synchronization

messages to enhance their knowledge. Distributed solutions are more suitable

for supporting dynamic SDN applications.

1.2. Problem statement:

 The design of SDN applications that run on top of distributed

controllers is a non-trivial task due to the complexity of handling controllers’

state synchronization which in-turn can affect the applications’ performance.

Inconsistency between these distributed controllers can significantly degrade

the performance of SDN applications.

4

 Furthermore, beside application performance degradation,

inconsistency can create other severe problems in the network such as

forwarding loops, black holes and isolation and reachability violation.

 Performance degradation can also be caused by using inappropriate

consistency policies because certain network states need certain consistency

policies. That’s why using static consistency policies become inappropriate

when the network state changes.

1.3. Proposed solution:

 The solution to this problem is to emulate a SDN with multi-controllers

using Mininet network emulator and then implement a dynamic mechanism

for maintaining a consistent view of the network among all controllers and

altering the consistency policies according to the network state, and then a

proof-of-concept distributed load balancing SDN application is implemented

and finally compare its performance when run on-top of: (1) static

consistency controllers and (2) dynamic consistency controllers.

1.4. Objectives:

The main objectives of this research are to:

o Emulate a testbed topology with two controllers.

o Implement an interface between the controllers.

o Design and test the load balancing application that supports

static and dynamic consistency.

o Run a performance test on the load balancing application

when applying static and dynamic consistency then compare

the results.

5

1.5. Thesis outlines:

The rest of this thesis is organized as follows:

Chapter 2: A theoretical background of the proposed work is presented. Also

this chapter presents some SDN-related concepts that is relevant to this thesis,

it also explores some technologies and concepts that forms the road map of

SDN. Then a review of the limitations of multi-controller architectures is

discussed and an overview of the related work is performed on those aspects.

Chapter 3: Describes the tools and technologies used in the implementation

phase. Both network virtualization and SDN tools were used. In this chapter,

all the steps taken to implement the network are explained, and a step by step

description for the design of static consistency and dynamic consistency

modules.

Chapter 4: Shows the results obtained from testing scenarios. This chapter

verifies benefits of using dynamic consistency over static consistency to the

proposed network topology.

Chapter 5: Aims to draw the final remarks and conclusions of the presented

work. Proposed optimizations and complementary future work are also

presented.

6

Chapter 2 LITERATURE REVIEW

7

Chapter 2

Literature Review

2.1. Introduction:

 Software defined networking is a promising network Architecture.

SDN has emerged as an efficient network technology capable of supporting

the dynamic nature of future network functions and intelligent applications

while lowering operating costs through simplified hardware, software, and

management. The term software-defined networking (SDN) has been coined

in recent years. However, the concept behind SDN has been evolving since

1996.

 SDN implementation opens up a means for new innovation and new

applications. Dynamic topology control (i.e., adjusting switch usage

depending on load and traffic mapping) becomes possible with the global

network view. (Sezer et al., July 2013)

 In SDN it is possible to use distributed-central controllers to achieve

high efficiency and scalability. Using multi-controller without achieving

consistency between controllers can cause problems. Our research will focus

on how to achieve consistency between multi-controllers.

8

 In this chapter we define the software Defined Network and present the

architecture of SDN, as well as network management and control. We discuss

previous researches related to the context of this thesis and covering the

benefits and limitations of SDN.

2.2. Software-Defined Networking:

 Software Defined Networking (SDN) is an emerging network

architecture where network control is decoupled from forwarding and is

directly programmable. This migration of control, formerly tightly bound in

individual network devices, into accessible computing devices enables the

underlying infrastructure to be abstracted for applications and network

services, which can treat the network as a logical or virtual entity.

By centralizing network state in the control layer, SDN gives network

managers the flexibility to configure, manage, secure, and optimize network

resources via dynamic, automated SDN programs. Moreover, they can write

these programs themselves and not wait for features to be embedded in

vendors’ proprietary and closed software environments in the middle of the

network.

 In addition to abstracting the network, SDN architectures support a set

of APIs that make it possible to implement common network services,

including routing, multicast, security, access control, bandwidth

management, traffic engineering, quality of service, processor and storage

optimization, energy usage, and all forms of policy management, custom

tailored to meet business objectives. For example, an SDN architecture

makes it easy to define and enforce consistent policies across both wired and

wireless connections.(Jammal et al., October 2014)

9

2.3. Traditional Network vs. SDN

2.3.1. Traditional Network

Network Devices in traditional network consists of Control plane and

Data plane. The control plane provides information used to build a

forwarding table. The data plane consults the forwarding table to make a

decision on where to send frames or packets entering the device. Both of

these planes are exist directly on the networking device. (HumayunKabir,

Augest 2013)

2.3.2. Software Defined Network

 According to the Open Networking Foundation (ONF) the definition

of SDN is an emerging network architecture where network control is

decoupled from forwarding and is directly programmable. (Foundation,

28/5/2017)

 Control Plane functions are removed from individual networking

devices and hosted on a centralized server (Controller). The SDN controller

can be a server running SDN software. The Controller communicates with a

physical or virtual switch Data Plane through a protocol called OpenFlow.

OpenFlow conveys the instructions to the data plane on how to forward data.

The network device must run the OpenFlow protocol for this to be

possible.(HumayunKabir, Augest 2013)

10

(HumayunKabir, Augest 2013)

Figure 2-1 Traditional and software-defined network

2.4. SDN Architecture:

 The aim of SDN is to provide open interfaces enabling development

of software that can control the connectivity provided by a set of network

resources and the flow of network traffic though them, along with possible

inspection and modification of traffic that may be performed in the network.

 Figure 2-2 depicts a logical view of the SDN architecture. Network

intelligence is (logically) centralized in software-based SDN controllers,

which maintain a global view of the network. As a result, the network appears

to the applications and policy engines as a single, logical switch.

11

Figure 2-2 Logical view of the SDN architecture

The Figure is a graphical representation of the architectural components and

their interactions.(hoang, 28/5/2017)

2.5. Architectural components

2.5.1. SDN Application:

 SDN Applications are programs that explicitly, directly, and

programmatically communicate their network requirements and desired

network behavior to the SDN Controller via a Northbound Interface (NBI).

2.5.2. SDN controller:

 The control plane is placed at a central device called the Controller

(sometimes a distributed-central controllers). The controller is responsible

for translating the requirements from the SDN Application layer down to the

SDN Data paths, providing the SDN Applications with an abstract view of

12

the network, building the forwarding base and figuring out how a packet

should be forwarded through a network.

2.5.3. Data plane:

 Represents the forwarding devices on the network (routers, switches,

etc.). It uses the southbound APIs to interact with the control plane by

receiving the forwarding rules and policies to apply them to the

corresponding devices.

2.5.4. SDN Control to Data-Plane Interface (CDPI):

 The SDN CDPI (also called Southbound API) is the interface defined

between an SDN Controller and an SDN Data path, which provides at least

(i) programmatic control of all forwarding operations, (ii) capabilities for

advertisement, (iii) statistics reporting, and (iv) event notification. One value

of SDN lies in the expectation that the CDPI is implemented in an open,

vendor-neutral and interoperable way. A common open standard SDN

protocol, and one of the most popular options for southbound APIs is

OpenFlow.

2.5.5. SDN Northbound Interface (NBI):

 SDN NBI is the interface between SDN Application and SDN

Controller and typically provide abstract network views and enable direct

expression of network behavior and requirements.

2.6. SDN Controllers:

 The control plane (Controller) presents an abstract view of the

complete network infrastructure, enabling the administrator to apply custom

13

policies/protocols across the network hardware. SDN controllers are based

on protocols, such as OpenFlow, that allow servers to tell switches where to

send packets.(Jammal et al., October 2014)

 Open source SDN controllers have evolved over the years. Some

examples of this controllers,

2.6.1. NOX

 NOX was developed by Nicira and donated to the research community

and hence becoming open source in 2008.The first highly popular OpenFlow

controller was NOX. NOX is often used in academic network research to

develop SDN applications. NOX being programmed primarily in C++. (Gray

and Nadeau, August 2013)

2.6.2. POX

 NOX's successor, POX, was built as a friendlier alternative and has

been used and implemented by a number of SDN developers and engineers.

Compared to NOX, POX performs well compared to NOX applications

written in Python, POX has an easier development environment to work with

and a reasonably well written API and documentation it's also provides a web

based GUI and is written in Python.(Gray and Nadeau, August 2013)

2.6.3. Beacon

 Beacon has been in development since early 2010, and has been used

in several research projects, networking classes, and trial deployments.

Beacon is a very well written and organized SDN controller written in Java

and it’s also runs on many platforms.(Beacon, 3/9/2017)

14

2.6.4. Floodlight

 Floodlight is a very popular SDN controller contribution from Big

Switch Networks to the open source community. Floodlight is based on

Beacon from Stanford University. Floodlight is an Apache-licensed, Java-

based OpenFlow controller. Floodlight has a very active community and has

a large number of features that can be added to create a system that best meets

the requirements of a specific organization.(Gray and Nadeau, August 2013)

2.6.5. RYU

 RYU is an open source controller. The name comes from a Japanese

word meaning "flow”. Ryu provides software components with well-defined

API that make it easy for developers to create new network management and

control applications. RYU controller written in python programming

language. (Ryu, 28/5/2017)

2.6.6. OpenDayLight

 OpenDayLight is a Linux Foundation collaborative project that has

been highly supported by Cisco, Big Switch, and several other networking

companies. The goal of the project is to promote software defined network

(SDN) and network function virtualization (NFV). Like Floodlight,

OpenDayLight is written in Java programming language and is a popular,

well-supported SDN controller. (ODL, 3/9/2017)

15

2.7. SDN Emulators:

 We can use multiple emulators to implement SDN networks like:

2.7.1. GNS3

 Graphical Network Simulator-3 (GNS3) GNS3 offers an easy way to

design, build and test networks of any size in a virtual environment without

the need for hardware.(GNS-3, 16/7/2017)

2.7.2. NS3

 Network Simulator3 (NS3) is a network simulator for Internet systems,

targeted primarily for research and educational use. ns-3 is free software and

is publicly available for research, development, and use.(NS-3, 28/5/2017)

2.7.3. Mininet

 Mininet is a network emulator which creates a network of virtual hosts,

switches, controllers, and links. Mininet hosts run standard Linux network

software, and its switches support OpenFlow for highly flexible custom

routing and Software-Defined Networking. Mininet supports research,

development, learning, testing, debugging, and any other tasks that could

benefit from having a complete experimental network on a laptop or other

PC. (overview, 28/5/2017)

2.7.4. EstiNet

 EstiNet network simulator and emulator It became a commercial

software on 2011 EstiNet's user-friendly GUI provides users a convenient

way to construct a simulated network and a visual display for simulation

result observation and debugging. (EstiNet, 28/5/2017)

16

2.8. SDN Elements:

2.8.1. Separation of control plane

 Separation of control plane means that the decision about how to

handle traffic is not made by the entity handling the traffic, and all policy

decisions in the network are made by a centralized controller.

 Separation of control requires a well--‐defined and standard API

Between the controller and the network device, so that the two can be

logically separated.

 OpenFlow Is defined as a network protocol so that the physical

separation can also be achieved on top of the logical separation.

 The Controller owns all the network policies, and uses the mechanisms

in the API to enforce those policies. The OpenFlow Protocol must therefore

offer enough control and visibility to enforce those policies. The Split of

responsibility between the controller and the network device is

evolving. Complex Processing may be offloaded to the data path

however; the policy decision must rest in the control function.

(HumayunKabir, December , 2014)

2.8.2. Logical centralization

 A Logically centralized control plane is a departure from traditional

network protocols which are mainly distributed. However, Experience has

shown that some traffic engineering problems, such as QoS and load

balancing, can better be solved with a global view of the network and its

policies. Many Other aspects of networking can also benefit from global

optimization.

17

 This Centralization means that the controller needs to be able to fully

control all network devices within the policy domain. This Also means that

the network devices must offer APIs for the controller to derive the topology,

and to implement the monitoring and control of network resources across

multiple devices.

2.8.3. Programmability

 Programmability enables automation software that can react and

reprogram the network without involving humans in the critical path.

Previous Interfaces to network devices were mostly designed for human

interaction (the CLI) or narrow management functions (SNMP: Simple

Network Management Protocol).

 The SDN Framework must be flexible enough to handle all kinds of

network devices, rather than one API per device type. This Means dealing

with both hardware and software devices, simple forwarding devices and

devices with rich and complex behavior.

 Having a common framework means that programs which are complex

to build can be more easily repurposed to a different context. This Also means

that a lot of developments and management tools, such as inspection and

debugging tools, can be common.

2.8.4. Flow entries

 A Key principle of network design has been the separation of network

layers, where the operation of each layer is done without using information

from other layers. However, more and more products violate those

assumptions and now operate in a cross-layer manner.

18

 The OpenFlow API Needs to offer flexible control and visibility of

packet processing which is decoupled from the protocol definitions. The API

should enable the collapsing of network layers as needed. Packet Processing

should be enabled at any granularity desired, as fine or as coarse as desired

and suitable for the deployment.

 The Solution adopted by OpenFlow Was the concept of a flow entry.

The Flow entry match describes a pattern of header values, though some

header fields may be omitted (wildcard) or bit-masked. Flow entries enable

to select related packets with flexible granularity and across protocol layers,

and unrelated flow patterns can be used. In OpenFlow, most processing is

attached to flow entries, and therefore flow entries are one of the most

important concepts of the API.

2.9. OpenFlow:

 OpenFlow is the first standard communications interface defined

between the controls and forwarding layers of an SDN architecture.

OpenFlow allows direct access to and manipulation of the forwarding plane

of network devices such as switches and routers, both physical and virtual

(hypervisor-based).

 It is the absence of an open interface to the forwarding plane that has

led to the characterization of today’s networking devices as monolithic,

closed, and mainframe-like. No other standard protocol does what OpenFlow

does, and a protocol like OpenFlow is needed to move network control out

of the networking switches to logically centralized control software.

 OpenFlow can be compared to the instruction set of a CPU. As shown

in Figure 2-3, the protocol specifies basic primitives that can be used by an

19

external software application to program the forwarding plane of network

devices, just like the instruction set of a CPU would program a computer

system.

Figure 2-3 Example of OpenFlow

 The OpenFlow protocol is implemented on both sides of the interface

between network infrastructure devices and the SDN control software. As

shown in the Figure 2-3.(Foundation, April 2012)

 OpenFlow uses the concept of flows to identify network traffic based

on pre-defined match rules that can be statically or dynamically programmed

by the SDN control software. It also allows IT to define how traffic should

flow through network devices based on parameters such as usage patterns,

applications, and cloud resources. Since OpenFlow allows the network to be

programmed on a per-flow basis, an OpenFlow-based SDN architecture

provides extremely granular control, enabling the network to respond to real-

time changes at the application, user, and session levels. Current IP-based

routing does not provide this level of control, as all flows between two

20

endpoints must follow the same path through the network, regardless of their

different requirements.

 The OpenFlow protocol is a key enabler for software-defined networks

and currently is the only standardized SDN protocol that allows direct

manipulation of the forwarding plane of network devices. While initially

applied to Ethernet-based networks, OpenFlow switching can extend to a

much broader set of use cases. OpenFlow-based SDNs can be deployed on

existing networks, both physical and virtual. Network devices can support

OpenFlow-based forwarding as well as traditional forwarding, which makes

it very easy for enterprises and carriers to progressively introduce OpenFlow-

based SDN technologies, even in multi-vendor network environments.

 The Open Networking Foundation is chartered to standardize

OpenFlow and does so through technical working groups responsible for the

protocol, configuration, interoperability testing, and other activities, helping

to ensure interoperability between network devices and control software from

different vendors. OpenFlow is being widely adopted by infrastructure

vendors, who typically have implemented it via a simple firmware or

software upgrade. OpenFlow-based SDN architecture can integrate

seamlessly with an enterprise or carrier’s existing infrastructure and provide

a simple migration path for those segments of the network that need SDN

functionality the most.(Foundation, April 2012)

2.10. Challenges of adopting a Single controller network

architecture:

 Three critical requirements are not achievable in an SDN-enabled

centralized network, which was the main tendency for early proposed SDN

21

architectures, using just one controller: first, efficiency that is not enough

established with just one centralized controller, second, scalability that is one

of the most issues that pushes network architects to consider the idea of multi-

controllers, and, third, high availability, which has two items, redundancy

and security. Redundancy is one of the most significant aspects of any design.

One controller could fail anytime and, for this reason, abandon the network

without its control plane. Security is considered an important item. If an

attacker compromises the controller, subsequently it loses the entire

management over the network. Clearly, if we have multiple controllers, we

can certainly minimize the issue, because they will team up to identify that

another one is misbehaving and for that reason separate the attacker from the

network.(Blial et al., April 2016)

2.11. Single Controller versus huge networks:

 The majority of current SDN architectures, relies on this single or

master/slave controllers that is a physically centralized control plane. This

centralization, adapted for datacenters, is not suitable for wide multi-

technology multi-domain networks. Because the centralized SDN controller

represents a Single Point of Failure (SPOF), which makes SDN architectures

highly vulnerable to disruptions and attacks.

 Also recent studies conducted on the networks of many real-world data

centers showed that such networks necessitate the handling of about 150

million flows per second. On the other hand, today's OpenFlow controllers

are known handle at most 6 million flows per second on a high end dedicated

server with 4 cores. Therefore, implementation of SDN for one of such data

center networks requires a controller running either on an appropriate

22

mainframe computer with sufficiently many cores or a server cluster where

each server is composed of limited cores. Implementation of the controller

on a cluster offers a number of benefits. First, this platform is scalable, as an

increasing load on the controller is easily handled by introducing new servers

to the cluster. Second, the cluster offers more reliability than an

implementation on a single mainframe.

Figure 2-4 Connecting Switches to the controller

2.12. A distributed Multi-domain SDN network

architecture:

2.12.1. Multi-domain networks:

 Are generally decomposed into administrative or geographical

domains interconnected with a large variety of network technologies from

high-capacity leased lines to limited-bandwidth satellite links, or from costly

but highly secured links to cheap but unsecured ones. The distributed and

heterogeneous nature of these environments call for a distributed multi-

domain network control plane which should be lightweight, adaptable to user

or network requirements, and robust to failures. Current state of the art

23

distributed SDN solutions are not suitable, as they do not provide a fine grain

mean to control and adapt inter-controller information exchanges. (A. Dixit

et al., 2013)

2.12.2. Distributed SDN control plane for multi-domain SDN

networks:

 It relies on a per domain organization, where each controller is in

charge of an SDN domain, and communicates with neighbor domains using

inter-domain channel to exchange aggregated network-wide information for

end-to-end flow management purposes. This can be seen in the figure:

Figure 2-5 Multi-domain SDN network

2.12.3. Trade-offs of distributing the control plane:

 The design of SDN applications that run on top of distributed

controllers is a non-trivial task due to the complexity of handling controllers’

state synchronization which in-turn can affect the application’s performance.

Levin et al. studied the impact of the inconsistent controllers on the SDN

application performance, they found that inconsistency can significantly

degrade the performance of SDN applications.(Levin et al., 2012)

24

 Brewer theorem (also known as CAP theorem) stated that it is

impossible for a distributed system to simultaneously provide the following

guarantees: Consistency, Availability, and Partition tolerance, and that there

is always a trade-off between the system’s consistency and availability in the

presence of network partitions. For example, in the case of a data store cluster

that is comprised of a set of distributed nodes. At one point of time, those

nodes got partitioned due to a network failure, while new data update requests

continued to arrive at some of the nodes. If those nodes continued to handle

the requests, the stored data might become inconsistent but the cluster will

still be available. Otherwise the data would remain consistent but it would be

said that the cluster is unavailable. As the CAP theorem applies to any

distributed system, we believe that in SDN that would imply that designing

an SDN application that runs on top of physically distributed controllers

encounters a trade-off between consistency and availability, in case of

network partitions. Panda and et al., investigated how these trade-offs apply

to software-defined networks. They concluded that availability and partition

tolerance are identical in networks and data stores, however the notion of

consistency may differ. In data store systems, the consistency of data across

replicas is the primary concern, but in SDN it is the consistent application of

policies across the network. (Brewer, 2000)

2.13. Consistency in Software-Defined Networks:

2.13.1. Consistency Models

 In distributed systems, the consistency of data among different nodes

(different nodes holding copies of same data are known as replicas) is

governed by the consistency model being employed. Tanenbaum and Van

25

Steel, presented different consistency models for distributed data stores. They

defined the consistency model as a contract between the applications and the

data store, which embodies that if applications agree to obey certain rules,

the store promises to work correctly. In the light of their work, the main

consistency models of many distributed systems can be categorized into:

strong, weak or eventual. In the presence of network partitioning, a strong

consistency model would favor consistency to availability, a weak

consistency model would favor availability to consistency. While an eventual

consistency model, would be in the favor of availability, relax its consistency

requirements so that replicas will eventually converge to the same state (i.e.

become consistent) in case of no further updates were served. To the best of

our knowledge, we believe that most of the research conducted in the area of

distributed controllers can be categorized as either strong or eventually

consistent controllers.(Tanenbaum and Steen, 2007)

2.13.2. Impact of Inconsistency in Networks

 As aforesaid, Levin et al. studied the impact of inconsistency among

distributed controllers on the SDN(Levin et al., 2012)application

performance, the less consistent the controllers become, and the lower the

application performs. Levin et al. only studied the impact of inconsistency on

application performance. We also confirm that the inconsistent state

information among the controllers or between the controllers and switches

had an impact on the application performance.(Aslan and Matrawy,

2015)However, beside application performance degradation, inconsistency

can create other severe problems in the network such as forwarding loops,

black holes and isolation and reachability violation, which we discuss later

in this subsection. Guo et al. identified some of these problems. An example

26

of an application that would employ strong consistency is a security-sensitive

firewall application. Such application would probably employ a strong

consistency model as it must ensure certain policies are met, and any

inconsistency in such policies could led to illegitimate traffic traversing

restricted links. On the other hand, an application that would tolerate using a

weaker consistency model is a load-balancing application. Such application

could tolerate some inconsistency between the controllers, as long as they

agree on the least-loaded server in order to avoid creating forwarding loops

which we discuss in details next. In such case, non-strongly consistent load-

balancers must develop techniques to ensure that all the controllers agree on

the least-loaded server, or to be designed in a way to avoid such conflicts.

Indeed, this can complicate the design of such SDN application.

 Further, it is of great importance to highlight the following critical

problems that can occur as result of inconsistency between the SDN

controllers. It is worth noting that those problems can also be caused by other

means e.g. implementation or misconfiguration bugs (even in case of non-

distributed controllers). However, in this paper we are only considering the

case where those problems were caused as result of controllers’

inconsistency.

1) Forwarding loops.

2) Black holes.

3) And Isolation and Reachability Violation.(Khurshid et al., 2012)

27

2.14. Related work:

 Parallel open source initiatives such as NOX, Beacon, Floodlight, Ryu

etc. Researchers mainly focused on improving the performance of a specific

controller, like Maestro and NOX or demonstrating the improvement offered

by OpenFlow against a classic L2 paradigm.(Koponen, 2010)

 Several attempts have been done to tackle the problem of scaling

SDNs. A first class of solutions, such as DIFANE and DevoFlow, address

this problem by extending data

 Plane mechanisms of switches with the objective of reducing the load

towards the controller. DIFANE tries to partly offload forwarding decisions

from the controller to special switches, called authority switches. Using this

approach, network operators can reduce the load on the controller and the

latencies of rule installation. DevoFlow, similarly, introduces new

mechanisms in switches to dispatch far fewer ‘important’ events to the

control plane.

 A second class of solutions proposes to distribute controllers.

HyperFlow, Onix, and Devolved controllers try to distribute the control plane

while maintaining a logically

 Centralized using a distributed file system, a distributed hash table and

a pre-computation of all possible combinations Respectively. These

approaches, despite their ability to distribute the SDN control plane, impose

a strong requirement: a consistent network-wide view in all the

controllers.(Koponen, 2010)

 On the contrary, Kandoo proposes a hierarchical distribution of the

28

Controllers based on two layers of controllers:

1. the bottom layer, a group of controllers with no interconnection, and

no knowledge of the network-wide state, and

2. The top layer, a logically centralized controller that maintains the

network wide state.(S.H. Yeganeh and Ganjali, 2012)

 Google has presented their experience with B4 (Jain, 2013), a global

SDN deployment interconnecting their datacenters with a centralized Traffic

Engineering service and clusters of controllers in each data center. In

addition, the work of D. Levin et al(Levin et al., 2012) analyzes the trade-off

between centralized and distributed control states in SDN, while the work of

B. Heller et al proposes a method to optimally place a single controller in an

SDN network.

 Distributed SDN Control plane (DISCO)(Phemius et al., 2014) is a

distributed controllers’ platform that was designed for multi domain SDN

networks, it is built on top of Floodlight(Floodlight, 15/6/2015)SDN

controllers, and employs an AMQP-based publish/subscribe messaging

module. To support other functionalities such as QoS, DISCO uses agents

that can be dynamically be added at the different controllers.

29

Chapter 3 Methodology

30

Chapter 3

Methodology

3.1. Introduction:

This chapter demonstrates how to implement a dynamic mechanism

on software defined networks for maintaining a consistent view of the

network among all controllers and allowing the controllers to tune their own

configurations in real-time according to the network state in order to enhance

the performance of the applications running on top of them. This could

alleviate some of the emerging challenges in SDN that could have an impact

on the performance, security, or scalability of the network. The development

and testing environment will be Mininet emulator. Mininet is an emulator

which works based on Linux operating system used for network simulation

and testing. Also we will use Pox controller this controller will be

programmed using python programming language.

To give a better understanding of how this project works this chapter

is divided into five sections, the first section abstracts a short brief about our

proposed solution to solve the research problem, the second section gives an

abstraction of what was done throughout the project, the third section gives

the proposed topology, the fourth section describes the environment tools and

technology in which the project is implemented, the last section contains the

configuration and software.

31

3.2. Proposed Dynamic Consistency:

The problem of inconsistency between different controllers in SDN

network can degrade the performance of SDN applications, also

inconsistency can create other severe problems in the network such as

forwarding loops, black holes and isolation and reachability violation. To

overcome this problem, we will implement a dynamic mechanism for

maintaining a consistent view of the network among all controllers this will

let the controllers to be Dynamic Controllers. The dynamic controller is the

controller that can autonomously and dynamically tune its configuration in

order to achieve a certain level of performance measured in predefined

metrics and based on its requirements. In the case where the tunable

configuration is the consistency level, we call it a dynamically consistent

controller. In other words, a dynamically consistent controller is one that can

tune its level of consistency in order to reach the desired level of performance

based on specific metrics.

There are a number of reasons, which we believe are enough, for

justifying and implementing the concept of dynamic consistency in SDN

controllers. Dynamically consistent controllers can:

1) Reduce the complexity at the applications. Without dynamic consistency,

application developers would need to implement application-specific

consistency models directly into their applications as every application has

different requirements. In turn this could contribute to a lower application

implementation cost. Nevertheless, the need for dynamically consistent

controllers becomes more apparent in case of deploying multiple applications

with different requirements where application developers ought to implement

multiple consistency models.

32

2) React rapidly to the changing network conditions. By tracking the

applications’ performance in real time, dynamically consistent controllers

can tune the consistency level in order to maintain a certain performance level

based on pre-defined metrics. In other words, dynamically consistent

controllers could provide the applications with robustness and reliability

against sudden changes in network conditions.

3) Reduce the overhead of controller’s state distribution by eliminating

unnecessary state distribution messages without compromising the

application performance, especially in case strong consistency is not a

requirement, or network states do not have to be replicated to all the

controllers.

3.3. Research Activities:

1. Studying literatures and related works.

2. Determining an appropriate testbed topology.

3. Installing Ubuntu as the operating system by using VM.

4. Representing the topology by using mininet emulator.

5. Configure and using Pox controller.

6. Implement an interface between the controllers.

7. Design and test the load balancing application with static consistency

8. Implement the dynamic consistency module and integrate it with the

load balancing application.

9. Run a performance test on the load balancing application when

applying static and dynamic consistency then compare the results.

33

3.4. The Design structure for the Dynamic Controllers:

 At the core of a dynamic controller, lies down the adaptation module.

The dynamic module is one that is given a current state for the network,

calculates application-specific performance indicators and apply a dynamic

strategy in order to find suitable values for the tunable parameters that would

maintain the required level of application performance.

The tunable consistency module is one that implements the tunable

consistency model and provides a configurable consistency level. In other

words, this module encapsulates the complexity of maintaining distributed

information across multiple controllers and provides other modules with a

uniform interface that can be used to change the consistency of such

information in between strong and weak consistency levels.

3.5. Studying SDN Concept:

In this part enough information has been gathered in order to start the

implementation of the project by studying courses and reading books and

papers.

Based on this literature review both emulator, controller and other

necessary tools has been selected, these tools will be discussed later.

3.5.1. Choosing the topology:

A suitable network topology was chosen for testing the load balancing

application and to clarify our idea about the concept of the dynamic

consistency, the network will consist of two domains each domain has a

controller, 32 clients and a server, all connected to a single switch, and the

two domains are connected together using a cable between the switches. Each

34

switch will forward the traffic it receives according to the application running

on the controller connected to it.

This topology was implemented in Mininet emulator as shown in the

figure:

Figure 3-1 Our Topology

3.5.2. Choosing the suitable environment:

Ubuntu was chosen to run the virtual topology using Mininet (the

emulator) because it's stable and reliable operating system.

3.5.3. Choosing the emulator:

Mininet was chosen because it allows the user to create, interact with,

customize and share a software-defined network (SDN) prototype to

simulate a network topology that uses OpenFlow switches, in addition to

35

that is widely used in research. Mininet is an SDN emulator that runs

virtual switches that support OpenFlow protocol.

3.5.4. Choosing the controller:

There is a collection of SDN controllers available to implement

OpenFlow protocol to control the switches and act as the aggregated control

plane, this collection includes NOX, POX, OpenDayLight, Floodlight… Etc.

POX controller was chosen because it has an easier development

environment to work with and a reasonably well written API and

documentation.

3.6. Environment tools and technology:

Here a brief information about tools and technologies that used in this

project:

3.6.1. Oracle VM VirtualBox:

VirtualBox is a cross-platform virtualization application. It can be

installed on our existing Intel or AMD-based computers, whether they are

running Windows, Mac, Linux or Solaris operating systems. This

virtualization software actually create a special environment called Virtual

Machine by using system resources like disk space & memory from our

existing operating system (Host OS) in which entire operating system (Guest

OS) could run. It can run multiple operating systems in our existing computer

at the same time. For Example, we can run Linux on our Windows system or

run Windows & Linux on our Mac system.

 Here Oracle VM VirtualBox is used to run Ubuntu operating system

in our Laptop that represent the whole topology.

36

3.6.2. Mininet network emulator:

 Mininet is a software emulator for prototyping a large network on a

single machine. Mininet can be used to quickly create a realistic virtual

network running actual kernel, switch and software application code on a

personal computer. Mininet allows the user to quickly creates a network of

virtual hosts, switches, controllers, and links. Mininet hosts run standard

Linux network software, and its switches support OpenFlow.

One feature of Mininet is Miniedit; it allows editing and configuring

the topology through graphical user interface (GUI).

Mininet is used in the project as the emulation environment, it installed

in our laptop and acts as the emulation of the topology.

3.6.3. POX Controller:

 POX is an open source development platform for Python-based

software-defined networking (SDN) control applications. The project goal

for POX controller is to use it to create “an archetypal, modern SDN

controller.”

 POX acts as the controller that is able to configure the switches,

it can manipulate and redirect the flows on each switch using OpenFlow

protocol, which enables rapid development and prototyping. the controller

can be thought of as an aggregation of all the control planes of the switches.

 The official Mininet emulator come with POX installed.

3.6.4. PuTTY:

 PuTTY is a free and open-source terminal emulator, serial console and

network file transfer application. It supports several network protocols, and

raw socket connection. It can also connect to a serial port. PuTTY was

37

originally written for Microsoft Windows, but it has been ported to various

other operating systems.

 PuTTY will allow us to easily access the VM through the host

machine.

3.6.5. Xming:

 Xming is an X display server (X is the windowing capability of Unix,

Linux, etc. It is the graphical user interface of most operating systems but

not Microsoft's operating systems.) for Microsoft Windows operating

systems, including Windows XP or later.

3.6.6. RabbitMQ:

 Is an open source message broker software (sometimes called

message-oriented middleware) that implements the Advanced Message

Queuing Protocol (AMQP). The RabbitMQ server is written in the Erlang

programming language and is built on the Open Telecom Platform

framework for clustering and failover. Client libraries to interface with the

broker are available for all major programming languages.

 The Advanced Message Queuing Protocol (AMQP) is an open

standard application layer protocol for message-oriented middleware. The

defining features of AMQP are message orientation, queuing, routing

(including point-to-point and publish-and-subscribe), reliability and security

3.7. Preparation of Virtual Machine and Network

Emulator

 In this part all steps to build and integrate the system will be explained

in details.

https://en.wikipedia.org/wiki/Message_broker
https://en.wikipedia.org/wiki/Message-oriented_middleware
https://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol
https://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol
https://en.wikipedia.org/wiki/Erlang_(programming_language)
https://en.wikipedia.org/wiki/Erlang_(programming_language)
https://en.wikipedia.org/wiki/Open_Telecom_Platform
https://en.wikipedia.org/wiki/Open_standard
https://en.wikipedia.org/wiki/Open_standard
https://en.wikipedia.org/wiki/Application_layer
https://en.wikipedia.org/wiki/Message-oriented_middleware
https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe

38

3.7.1. Set up the Mininet network simulator:

The easiest way to get started using the Mininet network simulator is

to use the Mininet virtual machine. It is based on the Ubuntu Linux Server

operating system and comes with all the software and tools required to

support Mininet already installed.

 The Mininet virtual machine is downloaded from the Mininet site

(Mininet, 15/3/2017). This file is a compressed ZIP archive containing two

files so, after downloading it, the files are decompressed to import them to

VirtualBox in the next step.

 The decompression process will create a folder named mininet-2.1.0-

130919-ubuntu-13.04-server-amd64-ovf. The folder will contain the

following files:

mininet-vm-x86_64.vmdk
mininet-2.1.0-130919-ubuntu-13.04-server-amd64.ovf

3.7.2. Import the virtual machine into VirtualBox:

Next, a version of the Mininet virtual machine that will run in

VirtualBox is created by importing the Mininet virtual machine into the

VirtualBox program.

Start the VirtualBox manager application on your host system, to import the

Mininet virtual machine, use the VirtualBox menu command:

39

Figure 3-2 Virtual box main window

File → Import Appliance

Figure 3-3 Importing the Mininet-vm

40

Navigate to the folder containing the mininet-2.1.0-130919-ubuntu-13.04-

server-amd64.ovf file and select it.

Then, click the “Next” button to get to the Appliance Settings screen. Use the

default settings. Finally click on the “Import” button and the Mininet VM

will appear in the VirtualBox window.

3.7.3. Add a Host-only Adapter in VirtualBox

To use Mininet in the way recommended by the Mininet setup notes,

a “host only” network interface must be created in VirtualBox. This creates

a loopback interface on the host computer that can be used to connect the

virtual machine to the host computer (or to other virtual machines). This is

needed so that the host computer can run remote X11 sessions on the virtual

machine in the later steps.

Open the VirtualBox preferences panel. Use the VirtualBox menu command:

VirtualBox → Preferences.

Click on the “Network” icon in the Preferences panel. Then. click on the

small green “plus” sign on the right side of the window to add a new network

adapter. An adapter called Virtual Host-Only Ethernet Adapter will be

created

.

http://mininet.org/vm-setup-notes/

41

Check the settings by clicking on the small “screwdriver” icon on the right

side of the window to edit the adapter’s configuration. Make a note of the IP

address.

In this case the default IP address used by VirtualBox for the first host-only

adapter is 192.168.56.1/24.

Figure 3-4 Creating a host-only adaptor

42

Figure 3-5 Configuring the host-only adaptor

 The DHCP server is enabled on the interface and we see that the Lower

Address Bound is 192.168.56.101/24. So, we know that the IP address of the

virtual interface connected to the host-only network on the virtual machine

will be assigned that IP address.

Figure 3-6 Configuring the DHCP server

43

3.7.4. Adding a Network Adapter to Mininet virtual machine

 In the VirtualBox Manager window, click on the Mininet virtual

machine and then click on the “Settings” icon on the top of the window. Click

on the “Network” icon in the settings panel that appears.

 Click on the “Adapter 2” tab and, in the “Attached to:” field, select

“Host-only network”. This allows other programs running on your host

computer to connect to the VM using SSH. Since only one host-only network

is currently created, VirtualBox will automatically select the “Virtual Host-

Only Ethernet Adapter” host-only network.

Click the “OK” button.

Now the network settings are configured for the Mininet virtual machine.

Figure 3-7 Adding the created adaptor to Mininet

44

3.7.5. Start the Mininet virtual machine

In the VirtualBox manager, select the Mininet virtual machine and then

click the “Start” button to start the Mininet VM.

The VM will boot up and present a login prompt, log in with

userid=mininet and password=mininet

 The first step is to configure the new host-only interface to request an

IP from the DHCP every time the machine is booted, by editing the

/etc/network/interfaces file.

sudo vi /etc/network/interfaces

Then add the following lines to the file:

auto eth1
iface eth1 inet dhcp

45

Save and restart the VM and changes will be applied.

For future use, we note the following information:

-Host-only network address: 192.168.56.0/24

 -Virtual Machine’s virtual interface IP address on host-only

 network:192.168.56.101/24

3.7.6. Using SSH to connect to the Mininet VM:

Putty the SSH client software on the host computer will be used to

connect to the Mininet virtual machine. This accomplishes two things:

 From the host computer, we can connect to remote X applications

running on the Mininet VM, such as xterm and wireshark.

Figure 3-8 Editing mininet interface file

46

 We can use an easier-to-use terminal window or xterm window to

interact with the Mininet virtual machine. Working with the VirtualBox

console window is difficult because:

 The VirtualBox console window captures your mouse whenever you

use it and you have to use the appropriate “host key” to escape from the

virtual machine and return control to your host computer.

 You cannot cut-and-paste text from the virtual machine console

window to a program on your host computer.

 We need to set up an SSH connection to the virtual machine with X11

forwarding enabled so that we can run X applications on the Mininet virtual

machine but display the applications on the X Server running on our host

computer. Then we can set up an Xterm and stop using the virtual machine

console window.

3.7.7. SSH and X11 configuration

On the Mininet VM, SSH forwarding is already enabled (in the

/etc/ssh/sshd_config file). So you do not need to make any SSH configuration

changes on the virtual machine.

On the host computer we run Putty and use the Virtual Machine’s virtual

interface IP address as the session ip then enable X11 forwarding from the

SSH tap

Finally, Xming which is our X11 application is launched and the open button

is clicked to start the SSH session.

47

3.8. Configuration of Dynamic Load Balancing in the

Testbed

 In this step we set up the Mininet virtual machine on our host computer

and we verified that we can communicate properly with it. We are ready to

work with Mininet.

3.8.1. The Topology:

 A suitable network topology for testing the load balancing application

is simulated, the network consists of two domains each domain has a

Figure 3-9 Putty SSH configuration

48

controller, 32 clients and a server, all connected to a single switch, and the

two domains are connected together using a cable between the switches. As

shown in Figure 3-1

 Each switch will forward the traffic it receives according to the

application running on the controller connected to it.

 Topology generation will be done in two steps, the first one is to

simulate a simplified version of the proposed topology using MiniEdit which

is a simple GUI editor for Mininet.

 It works by dragging and dropping network elements, then an

executable Python file representing the topology will be generated to be

edited in the second step.

 MiniEdit is launched using the command

Sudo python mininet/examples/miniedit.py

 The simplified network consists of two domains each domain has a

controller, 2 clients and a server.

49

Figure 3-10 Creating the topology using MiniEdit

the executable Python file is generated by clicking:

File → Export level 2 script

and then saving it for further editing, the file was saved in the directory

“mininet/examples” under the name “firsttopo.py”

The second step is editing the python code to simulate our proposed topology,

we will use Gedit as our python coding environment, the command to install

Gedit is:

Sudo apt-get install gedit

After installation is complete the topology is edited using the

Sudo gedit mininet/examples/firsttopo.py

50

Figure 3-11 Editing topology code using Gedit

 The code is edited to generate all 64 clients, start the servers and

generate the traffic. (As shown in appendix A)

3.8.2. The testing scenario:

The characteristics of the traffic generated by the clients, which

consists of ICMP packets, is as follows:

 Flow arrival rates at the switches are 2 and 1 flows/sec. In order to

simulate a sudden network change, we change the parameters of traffic

shortly after 30 secs to 10 flows/sec from each domain.

 This test will be run on the network when applying static and dynamic

consistency and the captured results will be analyzed and compared

51

3.8.3. The controller:

The controllers handling the switches are Pox controllers, Pox

controllers are pre-installed in mininet and to start a controller first you have

to navigate to “/pox” directory.

 The command to run any program over a pox controller has three

common attributes:

--port: Specifies the TCP port the controller will use to listen for connections

on

--log.LEVEL : Specifies the level of logging the controller will operate

according to.

Openflow.of_0X : Specifies the version of Openflow .

 The rest of the command varies according to the attributes needed by

the program running on the controller.

 Communication between the two controllers will be accomplished

using RabbitMQ which is a messaging broker. It gives applications a

common platform to send and receive messages.

3.8.4. The Program “load balancing”:

The basic concept of load balancing is that when a flow arrives at the

switch with no rules to match, the switch will notify its controller which in-

turn decides where to assign the flow (i.e. which server should handle it).

 The decision is based on the controllers’ network view of the least-

loaded server. Each controller will negotiate the number of flows assigned to

its domain server with the other controller and they both agree on the least

52

loaded server; the negotiation process is done over a logical “RabbitMQ”

channel connecting the controllers.

 The programs implemented to achieve load balancing receives two

attributes:

--ip: which is the IP of the load balancing service that will

be requested by the clients.

10.1.1.3 for domain 1

10.1.1.4 for domain 2

--servers: which is a list of two IPs the first is the

domains’ server IP and the other is the other domains’ service

IP.

10.0.0.32 for server 1

10.0.0.64 for server 2

--operation mode: 1 for static load balancing and 2 for

dynamic load balancing

3.8.5. Static load balancing:

 When applying static consistency, the controllers will negotiate every

4 seconds to agree on the least loaded server

 The commands used for running the two controllers are:

sudo ./pox.py log.level --ERROR openflow.of_01 --port=6633 misc.newiploadbalancer --
ip=10.1.1.3 --servers=10.0.0.32,10.1.1.4 --operation_mode=1
sudo ./pox.py log.level --ERROR openflow.of_01 --port=6634 misc.newiploadbalancer --
ip=10.1.1.4 --servers=10.0.0.64,10.1.1.3 --operation_mode=1

53

The following flow chart describes the operation of the static load balancing

program:

Figure 3-12 Static load balancing Flow chart

The controllers exchange the flow count assigned to their local domain server

using the RabbitMQ logical channel connecting them, then they decide the

least loaded server accordingly.

This process is repeated every synchronization period of four seconds.

54

3.8.6. Dynamic load balancing:

 When applying dynamic consistency, the controllers will negotiate

every X seconds to agree on the least loaded server

 The synchronization period X is determined by the adaption module

every two seconds.

The commands used for running the two controllers are:

 sudo ./pox.py log.level --ERROR openflow.of_01 --port=6633 misc.newiploadbalancer --
ip=10.1.1.3 --servers=10.0.0.32,10.1.1.4 --operation_mode=2

sudo ./pox.py log.level --ERROR openflow.of_01 --port=6634 misc.newiploadbalancer --

ip=10.1.1.4 --servers=10.0.0.64,10.1.1.3 –operation_mode=2

 The following flow charts describe the operation of the dynamic load

balancing program and the adaptation module:

[The adaptation module (figure 3-13) is responsible for determining the

synchronization period used by the controllers, every two seconds the module

calculates the relative difference in flows between the two servers and then

decides whether do keep, increase or decrease the synchronization period,

according to a pre-defined acceptable relative difference region]

55

Figure 3-13 Adaptation module flow chart

56

Figure 3-14 Dynamic load balancing flow chart

57

[The controllers exchange the flow count assigned to their local domain

server using the RabbitMQ logical channel connecting them, then they decide

the least loaded server accordingly.

This process is repeated every synchronization period which is determined

by the adaptation module.]

58

Chapter 4 Results and Discussion

59

Chapter 4

Results and Discussion

4.1. Introduction

 This chapter verifies the previous setup and check the efficiency of the

proposed technology. The testing process will start with generating low

traffic from the clients to their domain service IP for a period of time, this

test will be performed twice, once when the controllers are behaving in a

static manner and second when the controllers are running our proposed

dynamic consistency module then the results will be logged and compared.

After that the same process will be repeated but with high traffic generating

from the clients and the results will be captured and compared. Finally, a fail

over test will be done by disconnecting a server from the topology when high

traffic is applied and see how will the load balancing service perform in both

conditions.

 The relative difference is used as a control and a performance

parameter, it is calculated using the following equation:

Relative difference =
|𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑙𝑜𝑤𝑠 𝑜𝑛 𝑠𝑒𝑟𝑣𝑒𝑟 1 – 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑙𝑜𝑤𝑠 𝑜𝑛 𝑠𝑒𝑟𝑣𝑒𝑟 2 |

number of flows on server 1+ number of flows on server 2

 The result value is between 0 and 1, 0 means no difference and 1 means

complete difference

60

 To control the dynamic consistency module a relative difference

threshold region of 0.07 to 0.15 is set to define the normal region, this region

is tunable to achieve different levels of performance, the more the readings

of the relative difference stay inside this region the more efficient the load

balancing application is.

4.2. The performance when applying low traffic:

 Requests arrival rates at the two switches are 2 AND 1 respectively the

relative difference between the two servers was logged every 2 secs, the

following plots show the results of the two technologies:

Figure 4-1 Static at low traffic

Figure 4-2 Dynamic at low traffic

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

R
e

la
ti

ve
 d

if
fe

re
n

ce

Time Sec.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

R
e

la
ti

ve
 d

if
fe

re
n

ce

Time Sec.

relative difference between the two servers logged every 2secs

relative difference between the two servers logged every 2secs

____ Linear equation for the results

____ Linear equation for the results

61

 The results indicate clearly that both techniques are performing

excellently but there is one down side to applying dynamic consistency when

the network is facing low traffic time, the relative difference gets lower than

the normal region more frequently which means that the frequency of

changing between the servers is more than needed. This is caused by the tries

of the adaptation module to stay inside the threshold region after facing a rise

in the relative difference.

4.3. The performance when applying high traffic:

 Requests arrival rates at the two switches are 10 flows/sec from each

domain, the relative difference between the two servers was logged every 2

secs, the following plots show the results of the two technologies:

Figure 4-3 Static at high traffic

Figure 4-4 Dynamic at high traffic

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

R
e

la
ti

ve
 d

if
fe

re
n

ce

Time Sec.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

R
e

la
ti

ve
 d

if
fe

re
n

ce

Time Sec.

relative difference between the two servers logged every 2secs

relative difference between the two servers logged every 2secs

____ Linear equation for the results

____ Linear equation for the results

62

 The results prove that the proposed dynamic consistency technique is

more efficient and more flexible to network state changes than using the static

consistency technique, the static 4 seconds synchronization period became

too much when the network was flooded with high traffic.

4.4. Fail over test:

 The fail over test was done by inspecting the ping from one client to

the load balancing service after flooding the network with high traffic then

dropping the link to the server that’s serving the clients at the moment, the

following screen captures shows the ping statistics from the client terminal:

Figure 4-5 Fail over test

the statistics showed a packet loss of 60% until the requests where redirected

to the other server when using static consistency against 12% packet loss

when applying dynamic consistency, because the service checks for server

aliveness every synchronization period, that’s why the dynamic consistency

module behaved faster than the static consistency module.

63

Chapter 5 Conclusion and Recommendations

64

Chapter 5

Conclusion and Recommendations

5.1. Conclusion

 Results are captured live and plotted for further analysis, the plots are

compared to insure that using dynamic consistency over the traditional static

consistency is more beneficial in terms in network efficiency.

 Our results showed that dynamic controllers were more resilient to

sudden changes in the network conditions than the static ones.

 This thesis proposed a new way of achieving consistency in multi

controller SDN topologies and proved that the proposed technique is better

than the traditional technique being used,

5.2. Recommendations for Future work

 We believe that future work should include implementing the

distributed load balancing application over different types of controllers

which has advantages over the POX to compare which type is better.

 Another important addition is distributing the topology on multiple

devices to notice the effect of network delays on the results.

65

 Also a great addition would be running other services on the servers

(HTTP, FTP).

Implementation on a real operational network

66

References:

A. DIXIT, F. H., MUKHERJEE, S., LAKSHMAN, T. & KOMPELLA, R.

2013. Towards an elastic distributed SDN controller.

ASLAN, M. & MATRAWY, A. 2015. On the impact of network state

collection on the performance of SDN applications.

BEACON. 3/9/2017. Beacon home website [Online]. Available:

https://openflow.stanford.edu/display/Beacon/Home

BLIAL, O., MAMOUN, M. B. & BENAINI, R. April 2016. An Overview

on SDN Architectures with multiple controllers.

BREWER, E. 2000. Towards robust distributed systems.

ESTINET. 28/5/2017. EstiNet [Online]. Available:

http://www.estinet.com/ns/?page_id=21140

FLOODLIGHT. 15/6/2015. Project Floodlight. [Online]. Available:

http://www.projectfloodlight.org/.

FOUNDATION, O. N. 28/5/2017. ONF [Online]. Available:

https://www.opennetworking.org/sdn-resources/sdn-definition

FOUNDATION, O. O. N. April 2012. Software-Defined Networking: The

New Norm for Networks.

GNS-3. 16/7/2017. Graphical Network Simulator-3 [Online]. Available:

https://www.gns3.com/software.

GRAY, K. & NADEAU, T. D. August 2013. SDN: Software Defined

Networks O'Reilly Media.

HALEPLIDIS, E., PENTIKOUSIS, K., DENAZIS, S. & SALIM, J. H.

January 2015. Software-Defined Networking (SDN): Layers and

Architecture Terminology.

HOANG, S. 28/5/2017. Open Networking Foundation (ONF) [Online].

Available:

https://www.opennetworking.org/images/stories/downloads/sdn-

resources/technical-reports/SDN-architecture-overview-1.0.pdf.

HUMAYUNKABIR, M. Augest 2013. Software Defined Networking

(SDN): A Revolution in Computer Network.

HUMAYUNKABIR, M. December , 2014. The Evolution of SDN and

OpenFlow: A Standards Perspective.

https://openflow.stanford.edu/display/Beacon/Home
http://www.estinet.com/ns/?page_id=21140
http://www.projectfloodlight.org/
https://www.opennetworking.org/sdn-resources/sdn-definition
https://www.gns3.com/software
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/SDN-architecture-overview-1.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/SDN-architecture-overview-1.0.pdf

67

JAIN, S. 2013. Experience with a Globally-Deployed Software Defined

WAN.

JAMMAL, M., SINGH, T. & SHAMI, A. October 2014. Software defined

networking: State of the art and research challenges.

KHURSHID, A., ZHOU, W., CAESAR, M. & GODFREY, P. 2012.

Veriflow: verifying network-wide invariants in real time.

KOPONEN, T. 2010. A Distributed Control Platform for Large scale

Production Networks.

LEVIN, D., WUNDSAM, A., HELLER, B., HANDIGOL, N. &

FELDMANN, A. 2012. Logically centralized: state distribution trade-

offs in software defined networks.

MININET. 15/3/2017. Mininet [Online]. Available:

http://mininet.org/download. .

NS-3. 28/5/2017. NS-3 [Online]. Available: https://www.nsnam.org/.

ODL. 3/9/2017. OpenDayLight website : [Online]. Available:

https://www.opendaylight.org/.

OVERVIEW, M. 28/5/2017. Mininet [Online]. Available:

http://mininet.org/overview/.

PHEMIUS, K. E., BOUET, M. & LEGUAY, J. E. E. 2014. Distributed Multi-

domain SDN Controllers.

RYU. 28/5/2017. Ryu SDN Framework [Online]. Available:

https://osrg.github.io/ryu/.

S.H. YEGANEH & GANJALI, Y. 2012. Kandoo: A Framework for Efficient

and Scalable Offloading of Control Applications.

SEZER, S., SCOTT-HAYWARD, S. & CHOUHAN, P. K. July 2013. Are

We Ready for SDN.

TANENBAUM, A. & STEEN, M. V. 2007. Distributed systems.

http://mininet.org/download
https://www.nsnam.org/
https://www.opendaylight.org/
http://mininet.org/overview/
https://osrg.github.io/ryu/

1

Appendix

Appendix A

Topology generation code

#!/usr/bin/python

from mininet.net import Mininet

from mininet.node import Controller, RemoteController, OVSController

from mininet.node import CPULimitedHost, Host, Node

from mininet.node import OVSKernelSwitch, UserSwitch

from mininet.node import IVSSwitch

from mininet.cli import CLI

from mininet.log import setLogLevel, info

from mininet.link import TCLink, Intf

from subprocess import call

import time

from time import sleep

def myNetwork():

 net = Mininet(topo=None,

 build=False,

 ipBase='10.0.0.0/8',

 link=TCLink)

2

 info('*** Adding controller\n')

 con1=net.addController(name='con1',

 controller=RemoteController,

 ip='127.0.0.1',

 protocol='tcp',

 port=6633)

 con2=net.addController(name='con2',

 controller=RemoteController,

 ip='127.0.0.2',

 protocol='tcp',

 port=6634)

 info('*** Add switches\n')

 s1 = net.addSwitch('s1', cls=OVSKernelSwitch)

 s0 = net.addSwitch('s0', cls=OVSKernelSwitch)

 h=[]

 info('*** Add hosts\n')

 for x in range(1,65):

 h.append(net.addHost('h'+str(x), cls=Host, ip='10.0.0.'+str(x), defaultRoute=None))

 #h2 = net.addHost('h2', cls=Host, ip='10.0.0.2', defaultRoute=None)

 #h3 = net.addHost('h3', cls=Host, ip='10.0.0.3', defaultRoute=None)

 #h4 = net.addHost('h4', cls=Host, ip='10.0.0.4', defaultRoute=None)

 #h5 = net.addHost('h5', cls=Host, ip='10.0.0.5', defaultRoute=None)

 #h6 = net.addHost('h6', cls=Host, ip='10.0.0.6', defaultRoute=None)

 info('*** Add links\n')

 for x in range(0,32):

 net.addLink(s0, h[x], bw=100)

 for x in range(32,64):

3

 net.addLink(s1, h[x], bw=100)

 net.addLink(s0, s1, bw=1000)

 info('*** Starting network\n')

 net.build()

 info('*** Starting controllers\n')

 for controller in net.controllers:

 controller.start()

 info('*** Starting switches\n')

 net.get('s1').start([con2])

 net.get('s0').start([con1])

 info('*** Post configure switches and hosts\n')

 s1.cmd('ifconfig s1 10.0.0.201')

 s0.cmd('ifconfig s0 10.0.0.200')

 #time.sleep(5) # delays for 5 seconds

 info('\n\n*** Starting ping\n')

 while True:

 testtype=raw_input("Press Enter To Start The Test")

 if testtype == "1":

 time100s=time.time() + 30

 x=0

 y=0

 while time.time() <= time100s :

 if time.time() > time100s:

4

 break

 info(time100s-time.time())

 info('\n')

 h[x].cmd('ping 10.1.1.3 -c 1 -s 1 &')

 time.sleep(0.4)

 h[(x+1)%31].cmd('ping 10.1.1.3 -c 1 -s 1 &')

 x=(x+2)%32

 h[y+32].cmd('ping 10.1.1.4 -c 1 -s 1 &')

 y=(y+1)%32

 time.sleep(0.4)

 elif testtype == "2":

 time100s=time.time() + 30

 x=0

 y=0

 while time.time() <= time100s :

 if time.time() > time100s:

 break

 ts=time.time()

 h[x%32].cmd('ping 10.1.1.3 -c 1 -s 1 &')

 h[y+32].cmd('ping 10.1.1.4 -c 1 -s 1 &')

 sleep(0.08)

 h[(x+1)%31].cmd('ping 10.1.1.3 -c 1 -s 1 &')

 h[(y+1+32)%63].cmd('ping 10.1.1.4 -c 1 -s 1 &')

 sleep(0.08)

 h[(x+2)%31].cmd('ping 10.1.1.3 -c 1 -s 1 &')

 h[(y+2+32)%63].cmd('ping 10.1.1.4 -c 1 -s 1 &')

5

 sleep(0.08)

 h[(x+3)%31].cmd('ping 10.1.1.3 -c 1 -s 1 &')

 h[(y+3+32)%63].cmd('ping 10.1.1.4 -c 1 -s 1 &')

 sleep(0.08)

 h[(x+4)%31].cmd('ping 10.1.1.3 -c 1 -s 1 &')

 h[(y+4+32)%63].cmd('ping 10.1.1.4 -c 1 -s 1 &')

 sleep(0.08)

 h[(x+5)%31].cmd('ping 10.1.1.3 -c 1 -s 1 &')

 h[(y+5+32)%63].cmd('ping 10.1.1.4 -c 1 -s 1 &')

 sleep(0.08)

 h[(x+6)%31].cmd('ping 10.1.1.3 -c 1 -s 1 &')

 h[(y+6+32)%63].cmd('ping 10.1.1.4 -c 1 -s 1 &')

 sleep(0.08)

 h[(x+7)%31].cmd('ping 10.1.1.3 -c 1 -s 1 &')

 h[(y+7+32)%63].cmd('ping 10.1.1.4 -c 1 -s 1 &')

 sleep(0.08)

 h[(x+8)%31].cmd('ping 10.1.1.3 -c 1 -s 1 &')

 h[(y+8+32)%63].cmd('ping 10.1.1.4 -c 1 -s 1 &')

 sleep(0.08)

 h[(x+9)%31].cmd('ping 10.1.1.3 -c 1 -s 1 &')

 h[(y+9+32)%63].cmd('ping 10.1.1.4 -c 1 -s 1 &')

 sleep(0.08)

6

 x=(x+10)%32

 y=(y+10)%32

 info(time.time()-ts)

 info('\n')

 else:

 break

 #h[0].cmd('iperf -c 10.1.1.3 -k 2')

 #time.sleep(6) # delays for 5 seconds

 #h[40].cmd('iperf -c 10.1.1.4 -l 20B &')

 CLI(net)

 net.stop()

if __name__ == '__main__':

 setLogLevel('info')

 myNetwork()

1

Appendix B

The load balancing application running on the controllers

#-*- coding:utf-8 -*-

from pox.core import core # the POX core object

import pox.openflow.libopenflow_01 as of

from pox.lib.revent import * # event system

from pox.lib.util import dpidToStr

from pox.lib.packet.ethernet import ethernet, ETHER_BROADCAST # handle ethernet

from pox.lib.packet.arp import arp # handle arp

from pox.lib.packet.ipv4 import ipv4

from pox.lib.addresses import IPAddr # ip address

from pox.lib.addresses import EthAddr # ethernet address

import time

import pika

import math

import csv

ThisController=''

OtherController=''

log = core.getLogger()

IDLE_TIMEOUT = 0 # in seconds

HARD_TIMEOUT = 2 # infinity

class LoadBalancer (EventMixin):

 class Server:

2

 def __init__ (self, ip, mac, port):

 self.ip = IPAddr(ip) # set the ip address

 self.mac = EthAddr(mac) # set the mac address

 self.port = port

 def __str__(self):

 return','.join([str(self.ip), str(self.mac), str(self.port)])

 def __init__ (self, connection, service_ip,Sender,Reciver, operation_mode,servers = []):

 self.connection = connection

 self.listenTo(connection)

 self.mac = self.connection.eth_addr

 self.service_ip = IPAddr(service_ip)

 self.serversip = [IPAddr(a) for a in servers]

 self.sender=Sender

 self.reciver=Reciver

 self.sync=4

 self.opmode=operation_mode

 w=self.sender+"finaldhigh"

print(w)

 fo = open(w,"w")

 fo.close()

 self.lasts=0

 self.lasto=0

 try:

 self.log = log.getChild(dpid_to_str(self.connection.dpid))

 except:

 # Be nice to Python 2.6 (ugh)

 self.log = log

3

 self.log.warning("serevers %s ",[str(a) for a in servers])

 self.c=0

 # Initialize the server list

 self.live_servers = {}

 if self.sender=="TX3":

 self.last_server = 0

 else:

 self.last_server = 1

 self.counter=0

 self.StaticCounter=0

 self.OtherCounter=0

 self.adaptation_module()

 self.outstanding_probes = {} # IP -> expire_time

 self.SendArps()

 self.change=1

 core.callDelayed(self.sync,self.set_next_server)

 self.reset=0

 def _do_expire (self):

 t = time.time()

 #print(".")

 # Expire probes

 for ip,expire_at in self.outstanding_probes.items():

 #print(ip)

 if t > expire_at:

 #print("Server %s down", ip)

 self.outstanding_probes.pop(ip, None)

4

 if ip in self.live_servers:

 if ip==self.serversip[0]:

 self.counter=1000000000

 del self.live_servers[ip]

 """

 def _do_probe (self):

 self._do_expire()

 server = self.serversip.pop(0)

 self.serversip.append(server)

 r = arp()

 r.hwtype = r.HW_TYPE_ETHERNET

 r.prototype = r.PROTO_TYPE_IP

 r.opcode = r.REQUEST

 r.hwdst = ETHER_BROADCAST

 r.protodst = server

 r.hwsrc = self.mac

 r.protosrc = self.service_ip

 e = ethernet(type=ethernet.ARP_TYPE, src=self.mac,

 dst=ETHER_BROADCAST)

 e.set_payload(r)

 #self.log.debug("ARPing for %s", server)

 msg = of.ofp_packet_out()

 msg.data = e.pack()

 msg.actions.append(of.ofp_action_output(port = of.OFPP_FLOOD))

 msg.in_port = of.OFPP_NONE

 self.connection.send(msg)

5

 core.callDelayed(self.sync, self._do_probe)

 """

 def SendArps (self):

 self._do_expire()

 for a in self.serversip:

 server = a

 r = arp()

 r.hwtype = r.HW_TYPE_ETHERNET

 r.prototype = r.PROTO_TYPE_IP

 r.opcode = r.REQUEST

 r.hwdst = ETHER_BROADCAST

 r.protodst = server

 r.hwsrc = self.mac

 r.protosrc = self.service_ip

 e = ethernet(type=ethernet.ARP_TYPE, src=self.mac,

 dst=ETHER_BROADCAST)

 e.set_payload(r)

 #self.log,warning("ARPing for %s", server)

 msg = of.ofp_packet_out()

 msg.data = e.pack()

 msg.actions.append(of.ofp_action_output(port = of.OFPP_FLOOD))

 msg.in_port = of.OFPP_NONE

 self.connection.send(msg)

 self.outstanding_probes[server] = time.time() + 0.5

 core.callDelayed(self.sync,self.SendArps)

 def get_next_server (self):

6

 #print("we choose %s" % self.serversip[self.last_server])

 return self.serversip[self.last_server]

 def set_next_server (self):

 rconnection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))

 channel = rconnection.channel()

 channel.queue_declare(queue='TX3')

 channel.queue_declare(queue='TX4')

 #print("hi %s %s" % (self.sender,self.reciver))

 def callback(ch, method, properties, body):

 #print(" [x] Received %s" % body)

 self.StaticCounter=self.counter

 self.OtherCounter=int(body)

 if int(body) > self.counter:

 if self.last_server != 0:

 self.resetcounter()

 self.last_server=0

 print(" [X] agreed on this domains' server %i" %(self.sync))

 elif int(body) < self.counter:

 self.last_server=1

 print(" [X] agreed on the other domains' server %i" %(self.sync))

 #print("we choose %s" % self.live_servers.keys()[self.last_server])

 rconnection.close()

7

 core.callDelayed(self.sync,self.set_next_server)

 channel.basic_consume(callback,

 queue=self.reciver,

 no_ack=True)

 #print(' [*] Waiting for messages. To exit press CTRL+C')

 channel.basic_publish(exchange='',

 routing_key=self.sender,

 body=str(self.counter))

 channel.start_consuming()

 def resetcounter(self):

 self.counter=self.counter-self.reset

 self.reset=self.counter

 def adaptation_module(self):

 rconnection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))

 channel = rconnection.channel()

 channel.queue_declare(queue='TX3')

 channel.queue_declare(queue='TX4')

 #print("hi %s %s" % (self.sender,self.reciver))

 def callback(ch, method, properties, body):

 #print(" [x] Received %s" % body)

 self.StaticCounter=self.counter

 self.OtherCounter=int(body)

8

 rconnection.close()

 channel.basic_consume(callback,

 queue=self.reciver,

 no_ack=True)

 #print(' [*] Waiting for messages. To exit press CTRL+C')

 channel.basic_publish(exchange='',

 routing_key=self.sender,

 body=str(self.counter))

 channel.start_consuming()

 self.lasts=self.StaticCounter

 self.lasto=self.OtherCounter

 x=abs(self.lasts-self.lasto)

 y=self.lasts + self.lasto

 if y==0:

 RDiff=0.25

 else:

 RDiff= x/float(y)

 RDiffTh=0.1

 eplus=0.05

 eminus=0.03

 w=self.sender+"finaldhigh"

print(w)

 fo = open(w,"a")

 wr=csv.writer(fo, quoting=csv.QUOTE_ALL)

 wr.writerow([self.c,RDiff])

9

 fo.close()

 self.c=self.c+2

 if self.opmode==str(2):

 if 0 <= RDiff and RDiff < RDiffTh - eminus:

 self.sync=pow(2,min(math.log(self.sync,2)+1,2))

 print(1)

 elif RDiffTh - eminus <= RDiff and RDiff <= RDiffTh + eplus:

 self.sync=self.sync

 print(2)

 elif RDiffTh + eplus < RDiff and RDiff <= 1:

 self.sync=pow(2,max(math.log(self.sync,2)-1,0))

 print(3)

 print("\n %i %f %i %i %i" % (abs(x),RDiff,self.lasts,self.lasto,self.sync))

 core.callDelayed(2,self.adaptation_module)

 def handle_arp (self, packet, in_port): # function No.2

 # Get the ARP request from packet

 arp_req = packet.next

 #if arp_req.protosrc != self.serversip[1]:

 #print("req : %s is asking whos is %s from port %s" %(arp_req.protosrc,self.service_ip,in_port))

 # Create ARP reply

 arp_rep = arp()

 arp_rep.opcode = arp.REPLY

 arp_rep.hwsrc = self.mac # hardware source

 arp_rep.hwdst = arp_req.hwsrc # hardware destination

 arp_rep.protosrc = self.service_ip # software source

 arp_rep.protodst = arp_req.protosrc # software destination

 # Create the Ethernet packet

10

 eth = ethernet()

 eth.type = ethernet.ARP_TYPE

 eth.dst = packet.src

 eth.src = self.mac

 eth.set_payload(arp_rep)

 # Send the ARP reply to client

 msg = of.ofp_packet_out()

 msg.data = eth.pack()

 msg.actions.append(of.ofp_action_output(port = of.OFPP_IN_PORT))

 msg.in_port = in_port

 self.connection.send(msg)

 def handle_request (self, packet, event): # function No.3

 # Get the next server to handle the request

 serverip = self.get_next_server()

 if serverip == self.serversip[0]:

 self.counter=self.counter+1

 mac,sport=self.live_servers[serverip]

 "First install the reverse rule from server to client"

 #print("%s %s" %(serverip , sport))

 msg = of.ofp_flow_mod()

 msg.idle_timeout = IDLE_TIMEOUT

 msg.hard_timeout = HARD_TIMEOUT

 msg.buffer_id = None

 # Set packet matching

 # Match (in_port, src MAC, dst MAC, src IP, dst IP)

11

 msg.match.in_port = sport

 msg.match.dl_src = mac

 msg.match.dl_dst = packet.src

 msg.match.dl_type = ethernet.IP_TYPE

 msg.match.nw_src = serverip

 msg.match.nw_dst = packet.next.srcip

 # Append actions

 # Set the src IP and MAC to load balancer's

 # Forward the packet to client's port

 msg.actions.append(of.ofp_action_nw_addr.set_src(self.service_ip))

 msg.actions.append(of.ofp_action_dl_addr.set_src(self.mac))

 msg.actions.append(of.ofp_action_output(port = event.port))

 self.connection.send(msg)

 "Second install the forward rule from client to server"

 msg = of.ofp_flow_mod()

 msg.idle_timeout = IDLE_TIMEOUT

 msg.hard_timeout = HARD_TIMEOUT

 msg.buffer_id = None

 msg.data = event.ofp # Forward the incoming packet

 # Set packet matching

 # Match (in_port, MAC src, MAC dst, IP src, IP dst)

 msg.match.in_port = event.port

 msg.match.dl_src = packet.src

 msg.match.dl_dst = self.mac

 msg.match.dl_type = ethernet.IP_TYPE

 msg.match.nw_src = packet.next.srcip

12

 msg.match.nw_dst = self.service_ip

 # Append actions

 # Set the dst IP and MAC to load balancer's

 # Forward the packet to server's port

 msg.actions.append(of.ofp_action_nw_addr.set_dst(serverip))

 msg.actions.append(of.ofp_action_dl_addr.set_dst(mac))

 msg.actions.append(of.ofp_action_output(port = sport))

 self.connection.send(msg)

 #log.warning("Installing %s <-> %s : %i" % (packet.next.srcip, serverip,self.counter))

 def _handle_PacketIn (self, event): # function No.4 内部函数

 packet = event.parse()

 inport = event.port

 if packet.type == packet.LLDP_TYPE or packet.type == packet.IPV6_TYPE:

 # Drop LLDP packets

 # Drop IPv6 packets

 # send of command without actions

 msg = of.ofp_packet_out()

 msg.buffer_id = event.ofp.buffer_id

 msg.in_port = event.port

 self.connection.send(msg)

 elif packet.type == packet.ARP_TYPE:

 # Handle ARP request for load balancer

 arpp = packet.find('arp')

 #print("%s is asking whos is %s from port %s" %(arpp.protosrc,self.service_ip,inport))

13

 if packet.next.protodst == self.service_ip:

 if arpp.opcode != arpp.REPLY and self.counter < 1000000000:

 self.handle_arp(packet, event.port)

 if arpp.protosrc in self.serversip:

 # Handle replies to our server-liveness probes

 if arpp.opcode == arpp.REPLY:

 if arpp.protosrc in self.outstanding_probes :

 # A server is (still?) up; cool.

 #print("reply from " + str(arpp.protosrc))

 del self.outstanding_probes[arpp.protosrc]

 if arpp.protosrc in self.live_servers:

 # Ah, nothing new here.

 pass

 else:

 # Ooh, new server.

 if arpp.protosrc==self.serversip[0] :

 if self.counter>=1000000000:

 self.counter=0

 self.reset=0

 print("Server %s %s" % (arpp.protosrc,inport))

 self.live_servers[arpp.protosrc] = arpp.hwsrc,inport

 return

 # Only accept ARP request for load balancer

 elif packet.type == packet.IP_TYPE:

14

 # Handle client's request

 # Only accept ARP request for load balancer

 if packet.next.dstip != self.service_ip:

 return

 #log.warning("flow %i" % (self.counter))

 #log.warning("Receive an IPv4 packet from %s" % packet.next.srcip)

 self.handle_request(packet, event)

class load_balancer (EventMixin): # my component

 global ThisController

 global OtherController

 def __init__ (self, service_ip,operation_mode, servers = []):

 self.listenTo(core.openflow)

 self.service_ip = IPAddr(service_ip)

 self.servers = [IPAddr(a) for a in servers]

 self.opmode=operation_mode

 def _handle_ConnectionUp (self, event):

 rconnection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))

 channel = rconnection.channel()

 if self.service_ip==IPAddr('10.1.1.3'):

 OtherController='TX4'

15

 ThisController='TX3'

 channel.queue_delete(queue='TX3')

 else:

 OtherController='TX3'

 ThisController='TX4'

 channel.queue_delete(queue='TX4')

 log.warning(" %s " %ThisController)

 state='notready'

 channel.queue_declare(queue='TX30')

 channel.queue_declare(queue='TX40')

 print("Connection %s" % event.connection)

 def callback(ch, method, properties, body):

 print(" [x] Received %s" % body)

 if body=='Ready':

 state='ready'

 log.warning("%s is ready" % OtherController)

 rconnection.close()

 LoadBalancer(event.connection,

self.service_ip,OtherController,ThisController,self.opmode,self.servers)

 channel.basic_consume(callback,

 queue=OtherController+'0',

 no_ack=True)

 print(' [*] Waiting for messages. To exit press CTRL+C')

 channel.basic_publish(exchange='',

 routing_key=ThisController +'0',

 body='Ready')

16

 channel.start_consuming()

def launch (ip,operation_mode, servers): # registering component

 # Start load balancer

 servers = servers.replace(","," ").split()

 servers = [IPAddr(x) for x in servers]

 ip = IPAddr(ip)

 from proto.arp_responder import launch as arp_launch

 arp_launch(eat_packets=False,**{str(ip):True})

 import logging

 logging.getLogger("proto.arp_responder").setLevel(logging.WARN)

 core.registerNew(load_balancer,ip, operation_mode,servers) #

