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 قال تعالي :

ُ لَكُمْ اياَ أيَُّهَا الَّذِينَ آمَنوُا إِذاَ قِيلَ لَكُمْ تفَسََّحُوا فِي }  وَإِذاَ قيِلَ  لْمَجَالِسِ فاَفْسَحُوا يفَْسَحِ اللََّّ

ُ الَّذِينَ آمَنوُا مِنْكُمْ وَ  ُ انْشُزُوا فَانْشُزُوا يرَْفَعِ اللََّّ مَا تعَْمَلوُنَ  بِ الَّذِينَ أوُتوُا الْعِلْمَ درََجَاتٍ وَاللََّّ
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Abstract 

 

 

Motivated by the internet of the future, which will likely be considerably 

larger in size as well as highly decentralized, the trending research topic in 

the field of Software Defined Networking is the distribution of the control 

plane in order to meet the needs of the internet. In this research the concept 

of dynamic controllers is introduced into Software Defined Networking, 

these controllers can tune their own configurations in real-time in order to 

enhance the performance of the network. We used the consistency models in 

the context of distributed Software Defined Networks controllers as our 

tunable configuration. The project uses Mininet emulation environment, and 

POX as a controller to control this environment, the output of this research is 

a performance comparison of a proof-of-concept distributed load-balancing 

application when it runs on top of our proposed dynamic controller versus 

the usual static controller. The results showed that using dynamic consistency 

over the traditional static consistency is more beneficial in terms in network 

efficiency. 
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Abstract in Arabic 

 

 

ركزي بدافع من إنترنت المستقبل والذي من المرجح أن يكون أكبر بكثير في الحجم وكذلك غير م

 ات , هوالشبكات المعرفه بالبرمجي اهم مواضيع البحث في الوقت الحالي في مجال سيصبحللغاية , 

دات وح في هذا البحث يتم إدخال مفهوم توزيع مستوى التحكم للتماشى  مع احتياجات الإنترنت , 

 الخاص بها التحكم الديناميكية في الشبكات المعرفه بالبرمجيات , يمكن لهذه الوحدات تعديل الضبط

ه بالبرمجيات استخدمنا  انواع التطابق  في سياق الشبكات المعرف .ظياً من أجل تعزيز أداء الشبكةلح

 ً سيتم فيها   كالبيئة التي Mininet يستخدم المشروع محاكي .كالضبط الذي سيتم التحكم فيه ديناميكا

هو مقارنة  كوحدة تحكم للسيطرة على هذه ألبيئة. ناتج هذا البحث   POX عملية المحاكاة ،والمتحكم

لتطابق الإستاتيكي أداء تطبيق "موازنة التحميل" عندما يتم استخدام التطابق الديناميكي مقابل استخدام ا

قليدي هو أكثر الديناميكي على التطابق الإستاتيكي التوأظهرت النتائج أن استخدام التطابق  المعتاد.

 .فائدة من حيث كفاءة الشبكة
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Chapter 1 

 

Introduction 

 

 

1.1.   Introduction: 

 This chapter provides a brief overview of the literature review, 

problem definition, proposed solution, aim and objectives, in addition to the 

thesis outline. 

 "Software-Defined Networking (SDN)" is a term of the programmable 

networks paradigm. In short, SDN refers to the ability of software 

applications to program individual network devices dynamically and 

therefore control the behavior of the network as a whole. SDN is a set of 

techniques used to facilitate the design, delivery, and operation of network 

services in a deterministic, dynamic, and scalable manner,(Haleplidis et al., 

January 2015) its common deployment model is by employing a point of 

logically centralized network control which then orchestrates, mediates, and 

facilitates communication between applications wishing to interact with 

network elements and wishing to convey information to those applications. 

The controller then exposes and abstracts network functions and operations 

via modern, application friendly and bidirectional programmatic interfaces. 

(Gray and Nadeau, August 2013) 
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 Among many benefits, SDN eliminates the rigidity present in 

traditional network and make it easier to build application for enterprise 

networks, data centers, internet exchange points, home networks and 

backbone/WAN. basically because it enables customizing the data plane to 

perform functions other than match-action like traffic shaping.  

SDN changes the way of designing, configuring and managing networks. By 

decoupling the control plane from the data plane the chance of creating secure 

network is increased, and with a centralized controller the overall view and 

management of a network is becoming much easier. While this simplifies the 

implementation of the control logic, it has scalability limitations as the size 

and dynamics of the network increase. To overcome these limitations, several 

approaches have been proposed that fall into two categories, hierarchical and 

fully distributed approaches. In hierarchical solutions,(S.H. Yeganeh and 

Ganjali, 2012) distributed controllers operate on a partitioned network view, 

while decisions that require network-wide knowledge are taken by a logically 

centralized root controller. In distributed approaches,(Koponen, 2010) 

controllers operate on their local view or they may exchange synchronization 

messages to enhance their knowledge. Distributed solutions are more suitable 

for supporting dynamic SDN applications. 

1.2.   Problem statement: 

 The design of SDN applications that run on top of distributed 

controllers is a non-trivial task due to the complexity of handling controllers’ 

state synchronization which in-turn can affect the applications’ performance. 

Inconsistency between these distributed controllers can significantly degrade 

the performance of SDN applications. 
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 Furthermore, beside application performance degradation, 

inconsistency can create other severe problems in the network such as 

forwarding loops, black holes and isolation and reachability violation. 

 Performance degradation can also be caused by using inappropriate 

consistency policies because certain network states need certain consistency 

policies. That’s why using static consistency policies become inappropriate 

when the network state changes.  

1.3.   Proposed solution: 

 The solution to this problem is to emulate a SDN with multi-controllers 

using Mininet network emulator and then implement a dynamic mechanism 

for maintaining a consistent view of the network among all controllers and 

altering the consistency policies according to the network state, and then a 

proof-of-concept distributed load balancing SDN application is implemented 

and finally compare its performance when run on-top of: (1) static 

consistency controllers and (2) dynamic consistency controllers. 

1.4.   Objectives: 

The main objectives of this research are to: 

o Emulate a testbed topology with two controllers. 

o Implement an interface between the controllers. 

o Design and test the load balancing application that supports 

static and dynamic consistency. 

o Run a performance test on the load balancing application 

when applying static and dynamic consistency then compare 

the results. 
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1.5.   Thesis outlines: 

The rest of this thesis is organized as follows:  

Chapter 2: A theoretical background of the proposed work is presented. Also 

this chapter presents some SDN-related concepts that is relevant to this thesis, 

it also explores some technologies and concepts that forms the road map of 

SDN. Then a review of the limitations of multi-controller architectures is 

discussed and an overview of the related work is performed on those aspects.  

Chapter 3: Describes the tools and technologies used in the implementation 

phase. Both network virtualization and SDN tools were used. In this chapter, 

all the steps taken to implement the network are explained, and a step by step 

description for the design of static consistency and dynamic consistency 

modules. 

Chapter 4: Shows the results obtained from testing scenarios. This chapter 

verifies benefits of using dynamic consistency over static consistency to the 

proposed network topology.  

Chapter 5: Aims to draw the final remarks and conclusions of the presented 

work. Proposed optimizations and complementary future work are also 

presented.   
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Chapter 2 

 

Literature Review 

 

 

2.1.   Introduction: 

          Software defined networking is a promising network Architecture. 

SDN has emerged as an efficient network technology capable of supporting 

the dynamic nature of future network functions and intelligent applications 

while lowering operating costs through simplified hardware, software, and 

management. The term software-defined networking (SDN) has been coined 

in recent years. However, the concept behind SDN has been evolving since 

1996. 

          SDN implementation opens up a means for new innovation and new 

applications. Dynamic topology control (i.e., adjusting switch usage 

depending on load and traffic mapping) becomes possible with the global 

network view. (Sezer et al., July 2013) 

          In SDN it is possible to use distributed-central controllers to achieve 

high efficiency and scalability. Using multi-controller without achieving 

consistency between controllers can cause problems. Our research will focus 

on how to achieve consistency between multi-controllers. 
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          In this chapter we define the software Defined Network and present the 

architecture of SDN, as well as network management and control. We discuss 

previous researches related to the context of this thesis and covering the 

benefits and limitations of SDN. 

2.2.   Software-Defined Networking: 

 Software Defined Networking (SDN) is an emerging network 

architecture where network control is decoupled from forwarding and is 

directly programmable. This migration of control, formerly tightly bound in 

individual network devices, into accessible computing devices enables the 

underlying infrastructure to be abstracted for applications and network 

services, which can treat the network as a logical or virtual entity.  

By centralizing network state in the control layer, SDN gives network 

managers the flexibility to configure, manage, secure, and optimize network 

resources via dynamic, automated SDN programs. Moreover, they can write 

these programs themselves and not wait for features to be embedded in 

vendors’ proprietary and closed software environments in the middle of the 

network. 

 In addition to abstracting the network, SDN architectures support a set 

of APIs that make it possible to implement common network services, 

including routing, multicast, security, access control, bandwidth 

management, traffic engineering, quality of service, processor and storage 

optimization, energy usage, and all forms of policy management, custom 

tailored to meet business objectives. For example, an SDN architecture 

makes it easy to define and enforce consistent policies across both wired and 

wireless connections.(Jammal et al., October 2014) 
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2.3.   Traditional Network vs. SDN 

2.3.1.   Traditional Network 

Network Devices in traditional network consists of Control plane and 

Data plane. The control plane provides information used to build a 

forwarding table. The data plane consults the forwarding table to make a 

decision on where to send frames or packets entering the device. Both of 

these planes are exist directly on the networking device. (HumayunKabir, 

Augest 2013)

2.3.2.   Software Defined Network 

 According to the Open Networking Foundation (ONF) the definition 

of SDN is an emerging network architecture where network control is 

decoupled from forwarding and is directly programmable. (Foundation, 

28/5/2017) 

 Control Plane functions are removed from individual networking 

devices and hosted on a centralized server (Controller). The SDN controller 

can be a server running SDN software. The Controller communicates with a 

physical or virtual switch Data Plane through a protocol called OpenFlow. 

OpenFlow conveys the instructions to the data plane on how to forward data. 

The network device must run the OpenFlow protocol for this to be 

possible.(HumayunKabir, Augest 2013) 
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(HumayunKabir, Augest 2013) 

Figure 2-1 Traditional and software-defined network 

2.4.   SDN Architecture: 

 The aim of SDN is to provide open interfaces enabling development 

of software that can control the connectivity provided by a set of network 

resources and the flow of network traffic though them, along with possible 

inspection and modification of traffic that may be performed in the network. 

 Figure 2-2 depicts a logical view of the SDN architecture. Network 

intelligence is (logically) centralized in software-based SDN controllers, 

which maintain a global view of the network. As a result, the network appears 

to the applications and policy engines as a single, logical switch. 
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Figure 2-2 Logical view of the SDN architecture 

The Figure is a graphical representation of the architectural components and 

their interactions.(hoang, 28/5/2017) 

2.5.   Architectural components 

2.5.1.   SDN Application: 

 SDN Applications are programs that explicitly, directly, and 

programmatically communicate their network requirements and desired 

network behavior to the SDN Controller via a Northbound Interface (NBI).  

2.5.2.   SDN controller: 

 The control plane is placed at a central device called the Controller 

(sometimes a distributed-central controllers). The controller is responsible 

for translating the requirements from the SDN Application layer down to the 

SDN Data paths, providing the SDN Applications with an abstract view of 
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the network, building the forwarding base and figuring out how a packet 

should be forwarded through a network. 

2.5.3.   Data plane: 

 Represents the forwarding devices on the network (routers, switches, 

etc.). It uses the southbound APIs to interact with the control plane by 

receiving the forwarding rules and policies to apply them to the 

corresponding devices. 

2.5.4.   SDN Control to Data-Plane Interface (CDPI): 

 The SDN CDPI (also called Southbound API) is the interface defined 

between an SDN Controller and an SDN Data path, which provides at least 

(i) programmatic control of all forwarding operations, (ii) capabilities for 

advertisement, (iii) statistics reporting, and (iv) event notification. One value 

of SDN lies in the expectation that the CDPI is implemented in an open, 

vendor-neutral and interoperable way. A common open standard SDN 

protocol, and one of the most popular options for southbound APIs is 

OpenFlow.  

2.5.5.   SDN Northbound Interface (NBI):  

 SDN NBI is the interface between SDN Application and SDN 

Controller and typically provide abstract network views and enable direct 

expression of network behavior and requirements.  

2.6.   SDN Controllers: 

 The control plane (Controller) presents an abstract view of the 

complete network infrastructure, enabling the administrator to apply custom 
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policies/protocols across the network hardware. SDN controllers are based 

on protocols, such as OpenFlow, that allow servers to tell switches where to 

send packets.(Jammal et al., October 2014) 

 Open source SDN controllers have evolved over the years. Some 

examples of this controllers, 

2.6.1.   NOX 

 NOX was developed by Nicira and donated to the research community 

and hence becoming open source in 2008.The first highly popular OpenFlow 

controller was NOX. NOX is often used in academic network research to 

develop SDN applications. NOX being programmed primarily in C++. (Gray 

and Nadeau, August 2013) 

2.6.2.   POX 

 NOX's successor, POX, was built as a friendlier alternative and has 

been used and implemented by a number of SDN developers and engineers. 

Compared to NOX, POX performs well compared to NOX applications 

written in Python, POX has an easier development environment to work with 

and a reasonably well written API and documentation it's also provides a web 

based GUI and is written in Python.(Gray and Nadeau, August 2013) 

2.6.3.   Beacon 

 Beacon has been in development since early 2010, and has been used 

in several research projects, networking classes, and trial deployments. 

Beacon is a very well written and organized SDN controller written in Java 

and it’s also runs on many platforms.(Beacon, 3/9/2017) 
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2.6.4.   Floodlight 

 Floodlight is a very popular SDN controller contribution from Big 

Switch Networks to the open source community. Floodlight is based on 

Beacon from Stanford University. Floodlight is an Apache-licensed, Java-

based OpenFlow controller. Floodlight has a very active community and has 

a large number of features that can be added to create a system that best meets 

the requirements of a specific organization.(Gray and Nadeau, August 2013) 

2.6.5.   RYU  

 RYU is an open source controller. The name comes from a Japanese 

word meaning "flow”. Ryu provides software components with well-defined 

API that make it easy for developers to create new network management and 

control applications. RYU controller written in python programming 

language. (Ryu, 28/5/2017) 

2.6.6.   OpenDayLight 

 OpenDayLight is a Linux Foundation collaborative project that has 

been highly supported by Cisco, Big Switch, and several other networking 

companies. The goal of the project is to promote software defined network 

(SDN) and network function virtualization (NFV).  Like Floodlight, 

OpenDayLight is written in Java programming language and is a popular, 

well-supported SDN controller. (ODL, 3/9/2017) 
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2.7.   SDN Emulators: 

 We can use multiple emulators to implement SDN networks like: 

2.7.1.   GNS3 

 Graphical Network Simulator-3 (GNS3) GNS3 offers an easy way to 

design, build and test networks of any size in a virtual environment without 

the need for hardware.(GNS-3, 16/7/2017) 

2.7.2.   NS3 

 Network Simulator3 (NS3) is a network simulator for Internet systems, 

targeted primarily for research and educational use. ns-3 is free software and 

is publicly available for research, development, and use.(NS-3, 28/5/2017) 

2.7.3.   Mininet  

 Mininet is a network emulator which creates a network of virtual hosts, 

switches, controllers, and links. Mininet hosts run standard Linux network 

software, and its switches support OpenFlow for highly flexible custom 

routing and Software-Defined Networking. Mininet supports research, 

development, learning, testing, debugging, and any other tasks that could 

benefit from having a complete experimental network on a laptop or other 

PC. (overview, 28/5/2017) 

2.7.4.   EstiNet 

 EstiNet network simulator and emulator It became a commercial 

software on 2011 EstiNet's user-friendly GUI provides users a convenient 

way to construct a simulated network and a visual display for simulation 

result observation and debugging. (EstiNet, 28/5/2017) 
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2.8.   SDN Elements: 

2.8.1.   Separation of control plane 

 Separation of control plane means that the decision about how to 

handle traffic is not made by the entity handling the traffic, and all policy 

decisions in the network are made by a centralized controller. 

 Separation of control requires a well--‐defined and standard API 

Between the controller and the network device, so that the two can be 

logically separated.  

 OpenFlow Is defined as a network protocol so that the physical 

separation can also be achieved on top of the logical separation. 

 The Controller owns all the network policies, and uses the mechanisms 

in the API to enforce those policies. The OpenFlow Protocol must therefore 

offer enough control and visibility to enforce those policies. The Split of 

responsibility between the controller and the network device is 

evolving. Complex Processing may be offloaded to the data path 

however; the policy decision must rest in the control function.  

(HumayunKabir, December , 2014) 

2.8.2.   Logical centralization  

 A Logically centralized control plane is a departure from traditional 

network protocols which are mainly distributed. However, Experience has 

shown that some traffic engineering problems, such as QoS and load 

balancing, can better be solved with a global view of the network and its 

policies. Many Other aspects of networking can also benefit from global 

optimization.  
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 This Centralization means that the controller needs to be able to fully 

control all network devices within the policy domain. This Also means that 

the network devices must offer APIs for the controller to derive the topology, 

and to implement the monitoring and control of network resources across 

multiple devices. 

2.8.3.   Programmability 

 Programmability enables automation software that can react and 

reprogram the network without involving humans in the critical path. 

Previous Interfaces to network devices were mostly designed for human 

interaction (the CLI) or narrow management functions (SNMP: Simple 

Network Management Protocol). 

 The SDN Framework must be flexible enough to handle all kinds of 

network devices, rather than one API per device type. This Means dealing 

with both hardware and software devices, simple forwarding devices and 

devices with rich and complex behavior. 

 Having a common framework means that programs which are complex 

to build can be more easily repurposed to a different context. This Also means 

that a lot of developments and management tools, such as inspection and 

debugging tools, can be common. 

2.8.4.   Flow entries 

 A Key principle of network design has been the separation of network 

layers, where the operation of each layer is done without using information 

from other layers. However, more and more products violate those 

assumptions and now operate in a cross-layer manner. 
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 The OpenFlow API Needs to offer flexible control and visibility of 

packet processing which is decoupled from the protocol definitions. The API 

should enable the collapsing of network layers as needed. Packet Processing 

should be enabled at any granularity desired, as fine or as coarse as desired 

and suitable for the deployment. 

 The Solution adopted by OpenFlow Was the concept of a flow entry. 

The Flow entry match describes a pattern of header values, though some 

header fields may be omitted (wildcard) or bit-masked. Flow entries enable 

to select related packets with flexible granularity and across protocol layers, 

and unrelated flow patterns can be used. In OpenFlow, most processing is 

attached to flow entries, and therefore flow entries are one of the most 

important concepts of the API. 

2.9.   OpenFlow: 

 OpenFlow is the first standard communications interface defined 

between the controls and forwarding layers of an SDN architecture. 

OpenFlow allows direct access to and manipulation of the forwarding plane 

of network devices such as switches and routers, both physical and virtual 

(hypervisor-based).  

 It is the absence of an open interface to the forwarding plane that has 

led to the characterization of today’s networking devices as monolithic, 

closed, and mainframe-like. No other standard protocol does what OpenFlow 

does, and a protocol like OpenFlow is needed to move network control out 

of the networking switches to logically centralized control software. 

 OpenFlow can be compared to the instruction set of a CPU. As shown 

in Figure 2-3, the protocol specifies basic primitives that can be used by an 
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external software application to program the forwarding plane of network 

devices, just like the instruction set of a CPU would program a computer 

system. 

 

Figure 2-3 Example of OpenFlow 

 The OpenFlow protocol is implemented on both sides of the interface 

between network infrastructure devices and the SDN control software. As 

shown in the Figure 2-3.(Foundation, April 2012)  

 OpenFlow uses the concept of flows to identify network traffic based 

on pre-defined match rules that can be statically or dynamically programmed 

by the SDN control software. It also allows IT to define how traffic should 

flow through network devices based on parameters such as usage patterns, 

applications, and cloud resources. Since OpenFlow allows the network to be 

programmed on a per-flow basis, an OpenFlow-based SDN architecture 

provides extremely granular control, enabling the network to respond to real-

time changes at the application, user, and session levels. Current IP-based 

routing does not provide this level of control, as all flows between two 
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endpoints must follow the same path through the network, regardless of their 

different requirements. 

 The OpenFlow protocol is a key enabler for software-defined networks 

and currently is the only standardized SDN protocol that allows direct 

manipulation of the forwarding plane of network devices. While initially 

applied to Ethernet-based networks, OpenFlow switching can extend to a 

much broader set of use cases. OpenFlow-based SDNs can be deployed on 

existing networks, both physical and virtual. Network devices can support 

OpenFlow-based forwarding as well as traditional forwarding, which makes 

it very easy for enterprises and carriers to progressively introduce OpenFlow-

based SDN technologies, even in multi-vendor network environments. 

 The Open Networking Foundation is chartered to standardize 

OpenFlow and does so through technical working groups responsible for the 

protocol, configuration, interoperability testing, and other activities, helping 

to ensure interoperability between network devices and control software from 

different vendors. OpenFlow is being widely adopted by infrastructure 

vendors, who typically have implemented it via a simple firmware or 

software upgrade. OpenFlow-based SDN architecture can integrate 

seamlessly with an enterprise or carrier’s existing infrastructure and provide 

a simple migration path for those segments of the network that need SDN 

functionality the most.(Foundation, April 2012) 

2.10.   Challenges of adopting a Single controller network 

architecture: 

 Three critical requirements are not achievable in an SDN-enabled 

centralized network, which was the main tendency for early proposed SDN 
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architectures, using just one controller: first, efficiency that is not enough 

established with just one centralized controller, second, scalability that is one 

of the most issues that pushes network architects to consider the idea of multi-

controllers, and, third, high availability, which has two items, redundancy 

and security. Redundancy is one of the most significant aspects of any design. 

One controller could fail anytime and, for this reason, abandon the network 

without its control plane. Security is considered an important item. If an 

attacker compromises the controller, subsequently it loses the entire 

management over the network. Clearly, if we have multiple controllers, we 

can certainly minimize the issue, because they will team up to identify that 

another one is misbehaving and for that reason separate the attacker from the 

network.(Blial et al., April 2016) 

2.11.   Single Controller versus huge networks: 

 The majority of current SDN architectures, relies on this single or 

master/slave controllers that is a physically centralized control plane. This 

centralization, adapted for datacenters, is not suitable for wide multi-

technology multi-domain networks. Because the centralized SDN controller 

represents a Single Point of Failure (SPOF), which makes SDN architectures 

highly vulnerable to disruptions and attacks. 

 Also recent studies conducted on the networks of many real-world data 

centers showed that such networks necessitate the handling of about 150 

million flows per second. On the other hand, today's OpenFlow controllers 

are known handle at most 6 million flows per second on a high end dedicated 

server with 4 cores. Therefore, implementation of SDN for one of such data 

center networks requires a controller running either on an appropriate 
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mainframe computer with sufficiently many cores or a server cluster where 

each server is composed of limited cores.  Implementation of the controller 

on a cluster offers a number of benefits. First, this platform is scalable, as an 

increasing load on the controller is easily handled by introducing new servers 

to the cluster. Second, the cluster offers more reliability than an 

implementation on a single mainframe.        

 

Figure 2-4 Connecting Switches to the controller 

2.12.   A distributed Multi-domain SDN network 

architecture: 

2.12.1.   Multi-domain networks:  

 Are generally decomposed into administrative or geographical 

domains interconnected with a large variety of network technologies from 

high-capacity leased lines to limited-bandwidth satellite links, or from costly 

but highly secured links to cheap but unsecured ones. The distributed and 

heterogeneous nature of these environments call for a distributed multi-

domain network control plane which should be lightweight, adaptable to user 

or network requirements, and robust to failures. Current state of the art 
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distributed SDN solutions are not suitable, as they do not provide a fine grain 

mean to control and adapt inter-controller information exchanges. (A. Dixit 

et al., 2013) 

2.12.2.   Distributed SDN control plane for multi-domain SDN 

networks: 

 It relies on a per domain organization, where each controller is in 

charge of an SDN domain, and communicates with neighbor domains using 

inter-domain channel to exchange aggregated network-wide information for 

end-to-end flow management purposes. This can be seen in the figure: 

 

Figure 2-5 Multi-domain SDN network 

2.12.3.   Trade-offs of distributing the control plane: 

 The design of SDN applications that run on top of distributed 

controllers is a non-trivial task due to the complexity of handling controllers’ 

state synchronization which in-turn can affect the application’s performance. 

Levin et al. studied the impact of the inconsistent controllers on the SDN 

application performance, they found that inconsistency can significantly 

degrade the performance of SDN applications.(Levin et al., 2012) 
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 Brewer theorem (also known as CAP theorem) stated that it is 

impossible for a distributed system to simultaneously provide the following 

guarantees: Consistency, Availability, and Partition tolerance, and that there 

is always a trade-off between the system’s consistency and availability in the 

presence of network partitions. For example, in the case of a data store cluster 

that is comprised of a set of distributed nodes. At one point of time, those 

nodes got partitioned due to a network failure, while new data update requests 

continued to arrive at some of the nodes. If those nodes continued to handle 

the requests, the stored data might become inconsistent but the cluster will 

still be available. Otherwise the data would remain consistent but it would be 

said that the cluster is unavailable. As the CAP theorem applies to any 

distributed system, we believe that in SDN that would imply that designing 

an SDN application that runs on top of physically distributed controllers 

encounters a trade-off between consistency and availability, in case of 

network partitions. Panda and et al., investigated how these trade-offs apply 

to software-defined networks. They concluded that availability and partition 

tolerance are identical in networks and data stores, however the notion of 

consistency may differ. In data store systems, the consistency of data across 

replicas is the primary concern, but in SDN it is the consistent application of 

policies across the network. (Brewer, 2000) 

2.13.   Consistency in Software-Defined Networks: 

2.13.1.   Consistency Models 

 In distributed systems, the consistency of data among different nodes 

(different nodes holding copies of same data are known as replicas) is 

governed by the consistency model being employed. Tanenbaum and Van 



25 

 

Steel, presented different consistency models for distributed data stores. They 

defined the consistency model as a contract between the applications and the 

data store, which embodies that if applications agree to obey certain rules, 

the store promises to work correctly. In the light of their work, the main 

consistency models of many distributed systems can be categorized into: 

strong, weak or eventual. In the presence of network partitioning, a strong 

consistency model would favor consistency to availability, a weak 

consistency model would favor availability to consistency. While an eventual 

consistency model, would be in the favor of availability, relax its consistency 

requirements so that replicas will eventually converge to the same state (i.e. 

become consistent) in case of no further updates were served. To the best of 

our knowledge, we believe that most of the research conducted in the area of 

distributed controllers can be categorized as either strong or eventually 

consistent controllers.(Tanenbaum and Steen, 2007) 

2.13.2.   Impact of Inconsistency in Networks 

 As aforesaid, Levin et al. studied the impact of inconsistency among 

distributed controllers on the SDN(Levin et al., 2012)application 

performance, the less consistent the controllers become, and the lower the 

application performs. Levin et al. only studied the impact of inconsistency on 

application performance. We also confirm that the inconsistent state 

information among the controllers or between the controllers and switches 

had an impact on the application performance.(Aslan and Matrawy, 

2015)However, beside application performance degradation, inconsistency 

can create other severe problems in the network such as forwarding loops, 

black holes and isolation and reachability violation, which we discuss later 

in this subsection. Guo et al. identified some of these problems. An example 
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of an application that would employ strong consistency is a security-sensitive 

firewall application. Such application would probably employ a strong 

consistency model as it must ensure certain policies are met, and any 

inconsistency in such policies could led to illegitimate traffic traversing 

restricted links. On the other hand, an application that would tolerate using a 

weaker consistency model is a load-balancing application. Such application 

could tolerate some inconsistency between the controllers, as long as they 

agree on the least-loaded server in order to avoid creating forwarding loops 

which we discuss in details next. In such case, non-strongly consistent load-

balancers must develop techniques to ensure that all the controllers agree on 

the least-loaded server, or to be designed in a way to avoid such conflicts. 

Indeed, this can complicate the design of such SDN application. 

 Further, it is of great importance to highlight the following critical 

problems that can occur as result of inconsistency between the SDN 

controllers. It is worth noting that those problems can also be caused by other 

means e.g. implementation or misconfiguration bugs (even in case of non-

distributed controllers). However, in this paper we are only considering the 

case where those problems were caused as result of controllers’ 

inconsistency. 

1) Forwarding loops. 

2) Black holes. 

3) And Isolation and Reachability Violation.(Khurshid et al., 2012) 
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2.14.   Related work: 

 Parallel open source initiatives such as NOX, Beacon, Floodlight, Ryu 

etc. Researchers mainly focused on improving the performance of a specific 

controller, like Maestro and NOX or demonstrating the improvement offered 

by OpenFlow against a classic L2 paradigm.(Koponen, 2010) 

 Several attempts have been done to tackle the problem of scaling 

SDNs. A first class of solutions, such as DIFANE and DevoFlow, address 

this problem by extending data 

 Plane mechanisms of switches with the objective of reducing the load 

towards the controller. DIFANE tries to partly offload forwarding decisions 

from the controller to special switches, called authority switches. Using this 

approach, network operators can reduce the load on the controller and the 

latencies of rule installation. DevoFlow, similarly, introduces new 

mechanisms in switches to dispatch far fewer ‘important’ events to the 

control plane. 

 A second class of solutions proposes to distribute controllers. 

HyperFlow, Onix, and Devolved controllers try to distribute the control plane 

while maintaining a logically 

 Centralized using a distributed file system, a distributed hash table and 

a pre-computation of all possible combinations Respectively. These 

approaches, despite their ability to distribute the SDN control plane, impose 

a strong requirement: a consistent network-wide view in all the 

controllers.(Koponen, 2010) 

 On the contrary, Kandoo proposes a hierarchical distribution of the 
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Controllers based on two layers of controllers: 

1. the bottom layer, a group of controllers with no interconnection, and 

no knowledge of the network-wide state, and 

2. The top layer, a logically centralized controller that maintains the 

network wide state.(S.H. Yeganeh and Ganjali, 2012) 

 Google has presented their experience with B4 (Jain, 2013), a global 

SDN deployment interconnecting their datacenters with a centralized Traffic 

Engineering service and clusters of controllers in each data center. In 

addition, the work of D. Levin et al(Levin et al., 2012) analyzes the trade-off 

between centralized and distributed control states in SDN, while the work of 

B. Heller et al proposes a method to optimally place a single controller in an 

SDN network.  

 Distributed SDN Control plane (DISCO)(Phemius et al., 2014) is a 

distributed controllers’ platform that was designed for multi domain SDN 

networks, it is built on top of Floodlight(Floodlight, 15/6/2015)SDN 

controllers, and employs an AMQP-based publish/subscribe messaging 

module. To support other functionalities such as QoS, DISCO uses agents 

that can be dynamically be added at the different controllers. 
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Chapter 3 

 

Methodology 

 

 

3.1.   Introduction: 

This chapter demonstrates how to implement a dynamic mechanism 

on software defined networks for maintaining a consistent view of the 

network among all controllers and allowing the controllers to tune their own 

configurations in real-time according to the network state in order to enhance 

the performance of the applications running on top of them. This could 

alleviate some of the emerging challenges in SDN that could have an impact 

on the performance, security, or scalability of the network. The development 

and testing environment will be Mininet emulator. Mininet is an emulator 

which works based on Linux operating system used for network simulation 

and testing. Also we will use Pox controller this controller will be 

programmed using python programming language.  

To give a better understanding of how this project works this chapter 

is divided into five sections, the first section abstracts a short brief about our 

proposed solution to solve the research problem, the second section gives an 

abstraction of what was done throughout the project, the third section gives 

the proposed topology, the fourth section describes the environment tools and 

technology in which the project is implemented, the last section contains the 

configuration and software. 
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3.2.   Proposed Dynamic Consistency: 

The problem of inconsistency between different controllers in SDN 

network can degrade the performance of SDN applications, also 

inconsistency can create other severe problems in the network such as 

forwarding loops, black holes and isolation and reachability violation. To 

overcome this problem, we will implement a dynamic mechanism for 

maintaining a consistent view of the network among all controllers this will 

let the controllers to be Dynamic Controllers. The dynamic controller is the 

controller that can autonomously and dynamically tune its configuration in 

order to achieve a certain level of performance measured in predefined 

metrics and based on its requirements. In the case where the tunable 

configuration is the consistency level, we call it a dynamically consistent 

controller. In other words, a dynamically consistent controller is one that can 

tune its level of consistency in order to reach the desired level of performance 

based on specific metrics. 

There are a number of reasons, which we believe are enough, for 

justifying and implementing the concept of dynamic consistency in SDN 

controllers. Dynamically consistent controllers can:  

1) Reduce the complexity at the applications. Without dynamic consistency, 

application developers would need to implement application-specific 

consistency models directly into their applications as every application has 

different requirements. In turn this could contribute to a lower application 

implementation cost. Nevertheless, the need for dynamically consistent 

controllers becomes more apparent in case of deploying multiple applications 

with different requirements where application developers ought to implement 

multiple consistency models. 
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2) React rapidly to the changing network conditions. By tracking the 

applications’ performance in real time, dynamically consistent controllers 

can tune the consistency level in order to maintain a certain performance level 

based on pre-defined metrics. In other words, dynamically consistent 

controllers could provide the applications with robustness and reliability 

against sudden changes in network conditions. 

3) Reduce the overhead of controller’s state distribution by eliminating 

unnecessary state distribution messages without compromising the 

application performance, especially in case strong consistency is not a 

requirement, or network states do not have to be replicated to all the 

controllers. 

3.3.   Research Activities: 

1. Studying literatures and related works. 

2. Determining an appropriate testbed topology. 

3. Installing Ubuntu as the operating system by using VM. 

4. Representing the topology by using mininet emulator. 

5. Configure and using Pox controller. 

6. Implement an interface between the controllers. 

7. Design and test the load balancing application with static consistency 

8. Implement the dynamic consistency module and integrate it with the 

load balancing application. 

9. Run a performance test on the load balancing application when 

applying static and dynamic consistency then compare the results.   
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3.4.   The Design structure for the Dynamic Controllers: 

 At the core of a dynamic controller, lies down the adaptation module. 

The dynamic module is one that is given a current state for the network, 

calculates application-specific performance indicators and apply a dynamic 

strategy in order to find suitable values for the tunable parameters that would 

maintain the required level of application performance. 

The tunable consistency module is one that implements the tunable 

consistency model and provides a configurable consistency level. In other 

words, this module encapsulates the complexity of maintaining distributed 

information across multiple controllers and provides other modules with a 

uniform interface that can be used to change the consistency of such 

information in between strong and weak consistency levels. 

3.5.   Studying SDN Concept: 

In this part enough information has been gathered in order to start the 

implementation of the project by studying courses and reading books and 

papers. 

Based on this literature review both emulator, controller and other 

necessary tools has been selected, these tools will be discussed later. 

3.5.1.   Choosing the topology: 

A suitable network topology was chosen for testing the load balancing 

application and to clarify our idea about the concept of the dynamic 

consistency, the network will consist of two domains each domain has a 

controller, 32 clients and a server, all connected to a single switch, and the 

two domains are connected together using a cable between the switches. Each 
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switch will forward the traffic it receives according to the application running 

on the controller connected to it.  

This topology was implemented in Mininet emulator as shown in the 

figure:  

 

 

Figure 3-1 Our Topology 

3.5.2.   Choosing the suitable environment: 

Ubuntu was chosen to run the virtual topology using Mininet (the 

emulator) because it's stable and reliable operating system.  

3.5.3.   Choosing the emulator: 

Mininet was chosen because it allows the user to create, interact with, 

customize and share a software-defined network (SDN) prototype to 

simulate a network topology that uses OpenFlow switches, in addition to 
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that is widely used in research.  Mininet is an SDN emulator that runs 

virtual switches that support OpenFlow protocol. 

3.5.4.   Choosing the controller: 

There is a collection of SDN controllers available to implement 

OpenFlow protocol to control the switches and act as the aggregated control 

plane, this collection includes NOX, POX, OpenDayLight, Floodlight… Etc.  

POX controller was chosen because it has an easier development 

environment to work with and a reasonably well written API and 

documentation. 

3.6.   Environment tools and technology: 

Here a brief information about tools and technologies that used in this 

project: 

3.6.1.   Oracle VM VirtualBox: 

VirtualBox is a cross-platform virtualization application. It can be 

installed on our existing Intel or AMD-based computers, whether they are 

running Windows, Mac, Linux or Solaris operating systems. This 

virtualization software actually create a special environment called Virtual 

Machine by using system resources like disk space & memory from our 

existing operating system (Host OS) in which entire operating system (Guest 

OS) could run. It can run multiple operating systems in our existing computer 

at the same time. For Example, we can run Linux on our Windows system or 

run Windows & Linux on our Mac system. 

 Here Oracle VM VirtualBox is used to run Ubuntu operating system 

in our Laptop that represent the whole topology. 
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3.6.2.   Mininet network emulator: 

 Mininet is a software emulator for prototyping a large network on a 

single machine. Mininet can be used to quickly create a realistic virtual 

network running actual kernel, switch and software application code on a 

personal computer. Mininet allows the user to quickly creates a network of 

virtual hosts, switches, controllers, and links. Mininet hosts run standard 

Linux network software, and its switches support OpenFlow. 

One feature of Mininet is Miniedit; it allows editing and configuring 

the topology through graphical user interface (GUI). 

Mininet is used in the project as the emulation environment, it installed 

in our laptop and acts as the emulation of the topology. 

3.6.3.   POX Controller: 

  POX is an open source development platform for Python-based 

software-defined networking (SDN) control applications. The project goal 

for POX controller is to use it to create “an archetypal, modern SDN 

controller.” 

 POX acts as the controller that is able to configure the switches, 

it can manipulate and redirect the flows on each switch using OpenFlow 

protocol, which enables rapid development and prototyping. the controller 

can be thought of as an aggregation of all the control planes of the switches.

  The official Mininet emulator come with POX installed. 

3.6.4.   PuTTY: 

 PuTTY is a free and open-source terminal emulator, serial console and 

network file transfer application. It supports several network protocols, and 

raw socket connection. It can also connect to a serial port. PuTTY was 
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originally written for Microsoft Windows, but it has been ported to various 

other operating systems. 

 PuTTY will allow us to easily access the VM through the host 

machine. 

3.6.5.   Xming: 

 Xming is an X display server (X is the windowing capability of Unix, 

Linux, etc.  It is the graphical user interface of most operating systems but 

not Microsoft's operating systems.) for Microsoft Windows operating 

systems, including Windows XP or later. 

3.6.6.   RabbitMQ: 

 Is an open source message broker software (sometimes called 

message-oriented middleware) that implements the Advanced Message 

Queuing Protocol (AMQP). The RabbitMQ server is written in the Erlang 

programming language and is built on the Open Telecom Platform 

framework for clustering and failover. Client libraries to interface with the 

broker are available for all major programming languages. 

  The Advanced Message Queuing Protocol (AMQP) is an open 

standard application layer protocol for message-oriented middleware. The 

defining features of AMQP are message orientation, queuing, routing 

(including point-to-point and publish-and-subscribe), reliability and security 

3.7.   Preparation of Virtual Machine and Network 

Emulator 

 In this part all steps to build and integrate the system will be explained 

in details. 

https://en.wikipedia.org/wiki/Message_broker
https://en.wikipedia.org/wiki/Message-oriented_middleware
https://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol
https://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol
https://en.wikipedia.org/wiki/Erlang_(programming_language)
https://en.wikipedia.org/wiki/Erlang_(programming_language)
https://en.wikipedia.org/wiki/Open_Telecom_Platform
https://en.wikipedia.org/wiki/Open_standard
https://en.wikipedia.org/wiki/Open_standard
https://en.wikipedia.org/wiki/Application_layer
https://en.wikipedia.org/wiki/Message-oriented_middleware
https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe
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3.7.1.   Set up the Mininet network simulator: 

The easiest way to get started using the Mininet network simulator is 

to use the Mininet virtual machine. It is based on the Ubuntu Linux Server 

operating system and comes with all the software and tools required to 

support Mininet already installed. 

 The Mininet virtual machine is downloaded from the Mininet site 

(Mininet, 15/3/2017). This file is a compressed ZIP archive containing two 

files so, after downloading it, the files are decompressed to import them to 

VirtualBox in the next step. 

 The decompression process will create a folder named mininet-2.1.0-

130919-ubuntu-13.04-server-amd64-ovf. The folder will contain the 

following files: 

mininet-vm-x86_64.vmdk 
mininet-2.1.0-130919-ubuntu-13.04-server-amd64.ovf 

 

3.7.2.   Import the virtual machine into VirtualBox: 

Next, a version of the Mininet virtual machine that will run in 

VirtualBox is created by importing the Mininet virtual machine into the 

VirtualBox program. 

Start the VirtualBox manager application on your host system, to import the 

Mininet virtual machine, use the VirtualBox menu command: 
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Figure 3-2 Virtual box main window 

File → Import Appliance 

 

 

Figure 3-3 Importing the Mininet-vm 
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Navigate to the folder containing the mininet-2.1.0-130919-ubuntu-13.04-

server-amd64.ovf file and select it. 

Then, click the “Next” button to get to the Appliance Settings screen. Use the 

default settings. Finally click on the “Import” button and the Mininet VM 

will appear in the VirtualBox window. 

3.7.3.    Add a Host-only Adapter in VirtualBox 

To use Mininet in the way recommended by the Mininet setup notes, 

a “host only” network interface must be created in VirtualBox. This creates 

a loopback interface on the host computer that can be used to connect the 

virtual machine to the host computer (or to other virtual machines). This is 

needed so that the host computer can run remote X11 sessions on the virtual 

machine in the later steps. 

Open the VirtualBox preferences panel. Use the VirtualBox menu command: 

VirtualBox → Preferences. 

 

Click on the “Network” icon in the Preferences panel. Then. click on the 

small green “plus” sign on the right side of the window to add a new network 

adapter. An adapter called Virtual Host-Only Ethernet Adapter will be 

created 

 

. 

http://mininet.org/vm-setup-notes/
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Check the settings by clicking on the small “screwdriver” icon on the right 

side of the window to edit the adapter’s configuration. Make a note of the IP 

address. 

In this case the default IP address used by VirtualBox for the first host-only 

adapter is 192.168.56.1/24. 

Figure 3-4 Creating a host-only adaptor 
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Figure 3-5 Configuring the host-only adaptor 

 The DHCP server is enabled on the interface and we see that the Lower 

Address Bound is 192.168.56.101/24. So, we know that the IP address of the 

virtual interface connected to the host-only network on the virtual machine 

will be assigned that IP address. 

 

Figure 3-6 Configuring the DHCP server 

 

 



43 

 

3.7.4.   Adding a Network Adapter to Mininet virtual machine 

 In the VirtualBox Manager window, click on the Mininet virtual 

machine and then click on the “Settings” icon on the top of the window. Click 

on the “Network” icon in the settings panel that appears. 

 Click on the “Adapter 2” tab and, in the “Attached to:” field, select 

“Host-only network”. This allows other programs running on your host 

computer to connect to the VM using SSH. Since only one host-only network 

is currently created, VirtualBox will automatically select the “Virtual Host-

Only Ethernet Adapter” host-only network. 

 

Click the “OK” button. 

Now the network settings are configured for the Mininet virtual machine. 

 

Figure 3-7 Adding the created adaptor to Mininet 
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3.7.5.   Start the Mininet virtual machine 

In the VirtualBox manager, select the Mininet virtual machine and then 

click the “Start” button to start the Mininet VM. 

The VM will boot up and present a login prompt, log in with 

userid=mininet and password=mininet 

 The first step is to configure the new host-only interface to request an 

IP from the DHCP every time the machine is booted, by editing the 

/etc/network/interfaces file. 

sudo vi /etc/network/interfaces 

 

Then add the following lines to the file: 

auto eth1 
iface eth1 inet dhcp 
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Save and restart the VM and changes will be applied. 

For future use, we note the following information: 

-Host-only network address: 192.168.56.0/24 

 -Virtual Machine’s virtual interface IP address on host-only    

   network:192.168.56.101/24 

3.7.6.   Using SSH to connect to the Mininet VM: 

Putty the SSH client software on the host computer will be used to 

connect to the Mininet virtual machine. This accomplishes two things: 

 From the host computer, we can connect to remote X applications 

running on the Mininet VM, such as xterm and wireshark.  

Figure 3-8 Editing mininet interface file 
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 We can use an easier-to-use terminal window or xterm window to 

interact with the Mininet virtual machine. Working with the VirtualBox 

console window is difficult because:  

 The VirtualBox console window captures your mouse whenever you 

use it and you have to use the appropriate “host key” to escape from the 

virtual machine and return control to your host computer.  

 You cannot cut-and-paste text from the virtual machine console 

window to a program on your host computer.  

 We need to set up an SSH connection to the virtual machine with X11 

forwarding enabled so that we can run X applications on the Mininet virtual 

machine but display the applications on the X Server running on our host 

computer. Then we can set up an Xterm and stop using the virtual machine 

console window. 

3.7.7.   SSH and X11 configuration 

On the Mininet VM, SSH forwarding is already enabled (in the 

/etc/ssh/sshd_config file). So you do not need to make any SSH configuration 

changes on the virtual machine. 

On the host computer we run Putty and use the Virtual Machine’s virtual 

interface IP address as the session ip then enable X11 forwarding from the 

SSH tap 

Finally, Xming which is our X11 application is launched and the open button 

is clicked to start the SSH session. 
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3.8.   Configuration of Dynamic Load Balancing in the 

Testbed 

 In this step we set up the Mininet virtual machine on our host computer 

and we verified that we can communicate properly with it. We are ready to 

work with Mininet. 

3.8.1.   The Topology: 

 A suitable network topology for testing the load balancing application 

is simulated, the network consists of two domains each domain has a 

Figure 3-9 Putty SSH configuration 
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controller, 32 clients and a server, all connected to a single switch, and the 

two domains are connected together using a cable between the switches. As 

shown in Figure 3-1 

 Each switch will forward the traffic it receives according to the 

application running on the controller connected to it. 

 Topology generation will be done in two steps, the first one is to 

simulate a simplified version of the proposed topology using MiniEdit which 

is a simple GUI editor for Mininet. 

 It works by dragging and dropping network elements, then an 

executable Python file representing the topology will be generated to be 

edited in the second step. 

 MiniEdit is launched using the command 

Sudo python mininet/examples/miniedit.py 

 

 The simplified network consists of two domains each domain has a 

controller, 2 clients and a server. 
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Figure 3-10 Creating the topology using MiniEdit 

the executable Python file is generated by clicking: 

File → Export level 2 script 

and then saving it for further editing, the file was saved in the directory  

“mininet/examples” under the name “firsttopo.py” 

The second step is editing the python code to simulate our proposed topology, 

we will use Gedit as our python coding environment, the command to install 

Gedit is: 

Sudo apt-get install gedit 

After installation is complete the topology is edited using the   

Sudo gedit mininet/examples/firsttopo.py   
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Figure 3-11 Editing topology code using Gedit 

 The code is edited to generate all 64 clients, start the servers and 

generate the traffic. (As shown in appendix A) 

3.8.2.   The testing scenario: 

The characteristics of the traffic generated by the clients, which 

consists of ICMP packets, is as follows: 

 Flow arrival rates at the switches are 2 and 1 flows/sec. In order to 

simulate a sudden network change, we change the parameters of traffic 

shortly after 30 secs to 10 flows/sec from each domain.  

 This test will be run on the network when applying static and dynamic 

consistency and the captured results will be analyzed and compared 
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3.8.3.   The controller: 

The controllers handling the switches are Pox controllers, Pox 

controllers are pre-installed in mininet and to start a controller first you have 

to navigate to “/pox” directory. 

 The command to run any program over a pox controller has three 

common attributes: 

--port: Specifies the TCP port the controller will use to listen for connections 

on  

--log.LEVEL :  Specifies the level of logging the controller will operate 

according to. 

Openflow.of_0X : Specifies the version of Openflow . 

 The rest of the command varies according to the attributes needed by 

the program running on the controller.  

 Communication between the two controllers will be accomplished 

using RabbitMQ which is a messaging broker. It gives applications a 

common platform to send and receive messages. 

3.8.4.   The Program “load balancing”: 

The basic concept of load balancing is that when a flow arrives at the 

switch with no rules to match, the switch will notify its controller which in-

turn decides where to assign the flow (i.e. which server should handle it).  

 The decision is based on the controllers’ network view of the least-

loaded server. Each controller will negotiate the number of flows assigned to 

its domain server with the other controller and they both agree on the least 
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loaded server; the negotiation process is done over a logical “RabbitMQ” 

channel connecting the controllers. 

 The programs implemented to achieve load balancing receives two 

attributes: 

--ip: which is the IP of the load balancing service that will 

be requested by the clients. 

10.1.1.3 for domain 1      

10.1.1.4 for domain 2 

--servers: which is a list of two IPs the first is the 

domains’ server IP and the other is the other domains’ service 

IP. 

10.0.0.32 for server 1 

10.0.0.64 for server 2 

--operation mode: 1 for static load balancing and 2 for 

dynamic load balancing    

3.8.5.    Static load balancing: 

 When applying static consistency, the controllers will negotiate every 

4 seconds to agree on the least loaded server 

 The commands used for running the two controllers are: 

sudo ./pox.py log.level --ERROR  openflow.of_01 --port=6633 misc.newiploadbalancer --
ip=10.1.1.3 --servers=10.0.0.32,10.1.1.4 --operation_mode=1 
sudo ./pox.py log.level --ERROR  openflow.of_01 --port=6634 misc.newiploadbalancer --
ip=10.1.1.4 --servers=10.0.0.64,10.1.1.3 --operation_mode=1 
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The following flow chart describes the operation of the static load balancing 

program: 

 

Figure 3-12 Static load balancing Flow chart 

The controllers exchange the flow count assigned to their local domain server 

using the RabbitMQ logical channel connecting them, then they decide the 

least loaded server accordingly. 

This process is repeated every synchronization period of four seconds. 
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3.8.6.    Dynamic load balancing: 

 When applying dynamic consistency, the controllers will negotiate 

every X seconds to agree on the least loaded server 

 The synchronization period X is determined by the adaption module 

every two seconds.  

The commands used for running the two controllers are: 

 sudo ./pox.py log.level --ERROR  openflow.of_01 --port=6633 misc.newiploadbalancer --
ip=10.1.1.3 --servers=10.0.0.32,10.1.1.4 --operation_mode=2 

 

sudo ./pox.py log.level --ERROR  openflow.of_01 --port=6634 misc.newiploadbalancer --

ip=10.1.1.4 --servers=10.0.0.64,10.1.1.3 –operation_mode=2 

  

 The following flow charts describe the operation of the dynamic load 

balancing program and the adaptation module: 

[The adaptation module (figure 3-13) is responsible for determining the 

synchronization period used by the controllers, every two seconds the module 

calculates the relative difference in flows between the two servers and then 

decides whether do keep, increase or decrease the synchronization period, 

according to a pre-defined acceptable relative difference region ] 
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Figure 3-13 Adaptation module flow chart 
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Figure 3-14 Dynamic load balancing flow chart 
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[The controllers exchange the flow count assigned to their local domain 

server using the RabbitMQ logical channel connecting them, then they decide 

the least loaded server accordingly. 

This process is repeated every synchronization period which is determined 

by the adaptation module.] 
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Chapter 4 

 

Results and Discussion 

 

 

4.1.   Introduction 

 This chapter verifies the previous setup and check the efficiency of the 

proposed technology. The testing process will start with generating low 

traffic from the clients to their domain service IP for a period of time, this 

test will be performed twice, once when the controllers are behaving in a 

static manner and second when the controllers are running our proposed 

dynamic consistency module then the results will be logged and compared. 

After that the same process will be repeated but with high traffic generating 

from the clients and the results will be captured and compared. Finally, a fail 

over test will be done by disconnecting a server from the topology when high 

traffic is applied and see how will the load balancing service perform in both 

conditions. 

 The relative difference is used as a control and a performance 

parameter, it is calculated using the following equation: 

Relative difference = 
|𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑙𝑜𝑤𝑠 𝑜𝑛 𝑠𝑒𝑟𝑣𝑒𝑟 1 – 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑙𝑜𝑤𝑠 𝑜𝑛 𝑠𝑒𝑟𝑣𝑒𝑟 2 |

number of flows on server 1+ number of flows on server 2 
 

 The result value is between 0 and 1, 0 means no difference and 1 means 

complete difference  
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 To control the dynamic consistency module a relative difference 

threshold region of 0.07 to 0.15 is set to define the normal region, this region 

is tunable to achieve different levels of performance, the more the readings 

of the relative difference stay inside this region the more efficient the load 

balancing application is. 

4.2.   The performance when applying low traffic: 

 Requests arrival rates at the two switches are 2 AND 1 respectively the 

relative difference between the two servers was logged every 2 secs, the 

following plots show the results of the two technologies: 

 

Figure 4-1 Static at low traffic 

 

Figure 4-2 Dynamic at low traffic 
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 The results indicate clearly that both techniques are performing 

excellently but there is one down side to applying dynamic consistency when 

the network is facing low traffic time, the relative difference gets lower than 

the normal region more frequently which means that the frequency of 

changing between the servers is more than needed. This is caused by the tries 

of the adaptation module to stay inside the threshold region after facing a rise 

in the relative difference.                    

4.3.   The performance when applying high traffic: 

 Requests arrival rates at the two switches are 10 flows/sec from each 

domain, the relative difference between the two servers was logged every 2 

secs, the following plots show the results of the two technologies: 

 

Figure 4-3 Static at high traffic 

 

Figure 4-4 Dynamic at high traffic 
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 The results prove that the proposed dynamic consistency technique is 

more efficient and more flexible to network state changes than using the static 

consistency technique, the static 4 seconds synchronization period became 

too much when the network was flooded with high traffic. 

4.4.   Fail over test: 

 The fail over test was done by inspecting the ping from one client to 

the load balancing service after flooding the network with high traffic then 

dropping the link to the server that’s serving the clients at the moment, the 

following screen captures shows the ping statistics from the client terminal: 

 

Figure 4-5 Fail over test 

the statistics showed a packet loss of 60% until the requests where redirected 

to the other server when using static consistency against 12% packet loss 

when applying dynamic consistency, because the service checks for server 

aliveness every synchronization period, that’s why the dynamic consistency 

module behaved faster than the static consistency module.     
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Chapter 5 

 

Conclusion and Recommendations 

 

 

5.1.   Conclusion 

 Results are captured live and plotted for further analysis, the plots are 

compared to insure that using dynamic consistency over the traditional static 

consistency is more beneficial in terms in network efficiency. 

 Our results showed that dynamic controllers were more resilient to 

sudden changes in the network conditions than the static ones. 

 This thesis proposed a new way of achieving consistency in multi 

controller SDN topologies and proved that the proposed technique is better 

than the traditional technique being used, 

5.2.   Recommendations for Future work 

 We believe that future work should include implementing the 

distributed load balancing application over different types of controllers 

which has advantages over the POX to compare which type is better. 

 Another important addition is distributing the topology on multiple 

devices to notice the effect of network delays on the results.  
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 Also a great addition would be running other services on the servers 

(HTTP, FTP). 

Implementation on a real operational network 
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Appendix  

 

 

Appendix A 

Topology generation code 

 

#!/usr/bin/python 

 

from mininet.net import Mininet 

from mininet.node import Controller, RemoteController, OVSController 

from mininet.node import CPULimitedHost, Host, Node 

from mininet.node import OVSKernelSwitch, UserSwitch 

from mininet.node import IVSSwitch 

from mininet.cli import CLI 

from mininet.log import setLogLevel, info 

from mininet.link import TCLink, Intf 

from subprocess import call 

import time 

from time import sleep 

 

def myNetwork(): 

 

    net = Mininet( topo=None, 

                   build=False, 

                   ipBase='10.0.0.0/8', 

     link=TCLink ) 
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    info( '*** Adding controller\n' ) 

    con1=net.addController(name='con1', 

                      controller=RemoteController, 

                      ip='127.0.0.1', 

                      protocol='tcp', 

                      port=6633) 

 

    con2=net.addController(name='con2', 

                      controller=RemoteController, 

                      ip='127.0.0.2', 

                      protocol='tcp', 

                      port=6634) 

 

    info( '*** Add switches\n') 

    s1 = net.addSwitch('s1', cls=OVSKernelSwitch) 

    s0 = net.addSwitch('s0', cls=OVSKernelSwitch) 

    h=[] 

    info( '*** Add hosts\n') 

    for x in range(1,65): 

     h.append(net.addHost('h'+str(x), cls=Host, ip='10.0.0.'+str(x), defaultRoute=None)) 

    #h2 = net.addHost('h2', cls=Host, ip='10.0.0.2', defaultRoute=None) 

    #h3 = net.addHost('h3', cls=Host, ip='10.0.0.3', defaultRoute=None) 

    #h4 = net.addHost('h4', cls=Host, ip='10.0.0.4', defaultRoute=None) 

    #h5 = net.addHost('h5', cls=Host, ip='10.0.0.5', defaultRoute=None) 

    #h6 = net.addHost('h6', cls=Host, ip='10.0.0.6', defaultRoute=None) 

 

    info( '*** Add links\n') 

    for x in range(0,32):     

     net.addLink(s0, h[x], bw=100 ) 

    for x in range(32,64):     
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     net.addLink(s1, h[x], bw=100 ) 

 

    net.addLink(s0, s1, bw=1000 )  

 

    info( '*** Starting network\n') 

    net.build() 

    info( '*** Starting controllers\n') 

    for controller in net.controllers: 

        controller.start() 

 

    info( '*** Starting switches\n') 

    net.get('s1').start([con2]) 

    net.get('s0').start([con1]) 

 

    info( '*** Post configure switches and hosts\n') 

    s1.cmd('ifconfig s1 10.0.0.201') 

    s0.cmd('ifconfig s0 10.0.0.200') 

    #time.sleep(5) # delays for 5 seconds 

 

    info( '\n\n*** Starting ping\n') 

 

    while True: 

 

     testtype=raw_input("Press Enter To Start The Test") 

     if testtype == "1": 

      time100s=time.time() + 30 

      x=0 

      y=0 

      while time.time() <= time100s : 

       if time.time() > time100s: 
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        break 

       info(time100s-time.time()) 

       info('\n') 

       h[x].cmd('ping 10.1.1.3 -c 1 -s 1 &') 

       time.sleep(0.4) 

       h[(x+1)%31].cmd('ping 10.1.1.3 -c 1 -s 1 &') 

 

       x=(x+2)%32 

       h[y+32].cmd('ping 10.1.1.4 -c 1 -s 1 &') 

       y=(y+1)%32 

       time.sleep(0.4) 

 

     elif testtype == "2": 

      time100s=time.time() + 30 

      x=0 

      y=0 

      while time.time() <= time100s : 

       if time.time() > time100s: 

        break 

       ts=time.time() 

       h[x%32].cmd('ping 10.1.1.3 -c 1 -s 1 &') 

       h[y+32].cmd('ping 10.1.1.4 -c 1 -s 1 &') 

 

       sleep(0.08)  

       h[(x+1)%31].cmd('ping 10.1.1.3 -c 1 -s 1 &') 

       h[(y+1+32)%63].cmd('ping 10.1.1.4 -c 1 -s 1 &') 

 

       sleep(0.08) 

       h[(x+2)%31].cmd('ping 10.1.1.3 -c 1 -s 1 &') 

       h[(y+2+32)%63].cmd('ping 10.1.1.4 -c 1 -s 1 &') 
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       sleep(0.08) 

       h[(x+3)%31].cmd('ping 10.1.1.3 -c 1 -s 1 &') 

       h[(y+3+32)%63].cmd('ping 10.1.1.4 -c 1 -s 1 &') 

 

       sleep(0.08) 

       h[(x+4)%31].cmd('ping 10.1.1.3 -c 1 -s 1 &') 

       h[(y+4+32)%63].cmd('ping 10.1.1.4 -c 1 -s 1 &') 

 

       sleep(0.08) 

       h[(x+5)%31].cmd('ping 10.1.1.3 -c 1 -s 1 &') 

       h[(y+5+32)%63].cmd('ping 10.1.1.4 -c 1 -s 1 &') 

 

       sleep(0.08) 

       h[(x+6)%31].cmd('ping 10.1.1.3 -c 1 -s 1 &') 

       h[(y+6+32)%63].cmd('ping 10.1.1.4 -c 1 -s 1 &') 

 

       sleep(0.08) 

       h[(x+7)%31].cmd('ping 10.1.1.3 -c 1 -s 1 &') 

       h[(y+7+32)%63].cmd('ping 10.1.1.4 -c 1 -s 1 &') 

 

       sleep(0.08) 

       h[(x+8)%31].cmd('ping 10.1.1.3 -c 1 -s 1 &') 

       h[(y+8+32)%63].cmd('ping 10.1.1.4 -c 1 -s 1 &') 

 

       sleep(0.08) 

       h[(x+9)%31].cmd('ping 10.1.1.3 -c 1 -s 1 &') 

       h[(y+9+32)%63].cmd('ping 10.1.1.4 -c 1 -s 1 &') 

 

       sleep(0.08) 
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       x=(x+10)%32 

       y=(y+10)%32 

       info(time.time()-ts) 

       info('\n') 

 

     else: 

       break 

    #h[0].cmd('iperf -c 10.1.1.3 -k 2') 

    #time.sleep(6) # delays for 5 seconds 

 

    #h[40].cmd('iperf -c 10.1.1.4 -l 20B &')  

    CLI(net) 

    net.stop() 

 

if __name__ == '__main__': 

    setLogLevel( 'info' ) 

    myNetwork() 
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Appendix B 

The load balancing application running on the controllers 

 

 

#-*- coding:utf-8 -*- 

 

from pox.core import core    # the POX core object 

import pox.openflow.libopenflow_01 as of 

from pox.lib.revent import *    # event system 

from pox.lib.util import dpidToStr 

from pox.lib.packet.ethernet import ethernet, ETHER_BROADCAST    # handle ethernet 

from pox.lib.packet.arp import arp    # handle arp 

from pox.lib.packet.ipv4 import ipv4 

from pox.lib.addresses import IPAddr    # ip address 

from pox.lib.addresses import EthAddr    # ethernet address 

import time 

import pika 

import math 

import csv 

ThisController='' 

OtherController='' 

 

log = core.getLogger() 

 

IDLE_TIMEOUT = 0    # in seconds 

HARD_TIMEOUT = 2  # infinity     

 

class LoadBalancer (EventMixin):     

 

  class Server:     
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    def __init__ (self, ip, mac, port): 

      self.ip = IPAddr(ip)    # set the ip address 

      self.mac = EthAddr(mac)    # set the mac address 

      self.port = port 

 

    def __str__(self): 

      return','.join([str(self.ip), str(self.mac), str(self.port)]) 

 

  def __init__ (self, connection, service_ip,Sender,Reciver, operation_mode,servers = [] ):     

    self.connection = connection 

    self.listenTo(connection) 

    self.mac = self.connection.eth_addr 

    self.service_ip = IPAddr(service_ip) 

    self.serversip = [IPAddr(a) for a in servers] 

    self.sender=Sender 

    self.reciver=Reciver  

    self.sync=4 

    self.opmode=operation_mode 

    w=self.sender+"finaldhigh" 

#    print(w) 

    fo = open(w,"w") 

    fo.close() 

    self.lasts=0 

    self.lasto=0 

    try: 

      self.log = log.getChild(dpid_to_str(self.connection.dpid)) 

    except: 

      # Be nice to Python 2.6 (ugh) 

      self.log = log 
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    self.log.warning("serevers %s ",[str(a) for a in servers]) 

    self.c=0 

    # Initialize the server list 

    self.live_servers = {}    

    if self.sender=="TX3": 

     self.last_server = 0 

    else: 

     self.last_server = 1 

    self.counter=0 

    self.StaticCounter=0 

    self.OtherCounter=0 

          

    self.adaptation_module() 

    self.outstanding_probes = {} # IP -> expire_time 

    self.SendArps() 

    self.change=1 

  

    core.callDelayed(self.sync,self.set_next_server) 

         

    self.reset=0 

 

  def _do_expire (self): 

    t = time.time() 

    #print(".") 

    # Expire probes 

    for ip,expire_at in self.outstanding_probes.items(): 

      #print(ip) 

      if t > expire_at: 

        #print("Server %s down", ip) 

        self.outstanding_probes.pop(ip, None) 
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        if ip in self.live_servers: 

         if ip==self.serversip[0]: 

            self.counter=1000000000 

            del self.live_servers[ip] 

  """ 

  def _do_probe (self): 

    self._do_expire() 

 

    server = self.serversip.pop(0) 

    self.serversip.append(server) 

 

    r = arp() 

    r.hwtype = r.HW_TYPE_ETHERNET 

    r.prototype = r.PROTO_TYPE_IP 

    r.opcode = r.REQUEST 

    r.hwdst = ETHER_BROADCAST 

    r.protodst = server 

    r.hwsrc = self.mac 

    r.protosrc = self.service_ip 

    e = ethernet(type=ethernet.ARP_TYPE, src=self.mac, 

                 dst=ETHER_BROADCAST) 

    e.set_payload(r) 

    #self.log.debug("ARPing for %s", server) 

    msg = of.ofp_packet_out() 

    msg.data = e.pack() 

    msg.actions.append(of.ofp_action_output(port = of.OFPP_FLOOD)) 

    msg.in_port = of.OFPP_NONE 

    self.connection.send(msg) 
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    core.callDelayed(self.sync, self._do_probe) 

  """ 

 

  def SendArps (self): 

   self._do_expire() 

   for a in self.serversip:  

    server = a 

       

    r = arp() 

    r.hwtype = r.HW_TYPE_ETHERNET 

    r.prototype = r.PROTO_TYPE_IP 

    r.opcode = r.REQUEST 

    r.hwdst = ETHER_BROADCAST 

    r.protodst = server 

    r.hwsrc = self.mac 

    r.protosrc = self.service_ip 

    e = ethernet(type=ethernet.ARP_TYPE, src=self.mac, 

          dst=ETHER_BROADCAST) 

    e.set_payload(r) 

    #self.log,warning("ARPing for %s", server) 

    msg = of.ofp_packet_out() 

    msg.data = e.pack() 

    msg.actions.append(of.ofp_action_output(port = of.OFPP_FLOOD)) 

    msg.in_port = of.OFPP_NONE 

    self.connection.send(msg) 

    self.outstanding_probes[server] = time.time() + 0.5 

   core.callDelayed(self.sync,self.SendArps) 

 

  def get_next_server (self):     
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    #print("we choose %s" % self.serversip[self.last_server]) 

    return self.serversip[self.last_server] 

 

  def set_next_server (self):     

     

    rconnection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost')) 

     

    channel = rconnection.channel() 

 

    channel.queue_declare(queue='TX3') 

    channel.queue_declare(queue='TX4') 

    #print("hi %s   %s" % (self.sender,self.reciver)) 

    def callback(ch, method, properties, body): 

      #print(" [x] Received %s" % body) 

      self.StaticCounter=self.counter 

      self.OtherCounter=int(body) 

       

      if int(body) > self.counter: 

         if self.last_server != 0: 

            self.resetcounter() 

         self.last_server=0 

          

         print(" [X] agreed on this domains' server %i" %(self.sync)) 

      elif int(body) < self.counter: 

         self.last_server=1 

          

         print(" [X] agreed on the other domains' server %i" %(self.sync)) 

      #print("we choose %s" % self.live_servers.keys()[self.last_server])    

      rconnection.close() 
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      core.callDelayed(self.sync,self.set_next_server) 

  

    channel.basic_consume(callback, 

                     queue=self.reciver, 

                      no_ack=True) 

   

    #print(' [*] Waiting for messages. To exit press CTRL+C') 

    channel.basic_publish(exchange='', 

                      routing_key=self.sender, 

                      body=str(self.counter)) 

     

    channel.start_consuming()   

        

  def resetcounter(self): 

       self.counter=self.counter-self.reset 

       self.reset=self.counter 

   

  def adaptation_module(self): 

    rconnection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost')) 

     

    channel = rconnection.channel() 

 

    channel.queue_declare(queue='TX3') 

    channel.queue_declare(queue='TX4') 

    #print("hi %s   %s" % (self.sender,self.reciver)) 

    def callback(ch, method, properties, body): 

      #print(" [x] Received %s" % body) 

      self.StaticCounter=self.counter 

      self.OtherCounter=int(body) 
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      rconnection.close() 

    

    channel.basic_consume(callback, 

                     queue=self.reciver, 

                      no_ack=True) 

   

    #print(' [*] Waiting for messages. To exit press CTRL+C') 

    channel.basic_publish(exchange='', 

                      routing_key=self.sender, 

                      body=str(self.counter)) 

     

    channel.start_consuming()  

   

    self.lasts=self.StaticCounter 

    self.lasto=self.OtherCounter 

         

    x=abs(self.lasts-self.lasto) 

    y=self.lasts + self.lasto 

    if y==0: 

     RDiff=0.25 

    else: 

     RDiff= x/float(y) 

    RDiffTh=0.1 

    eplus=0.05 

    eminus=0.03 

    w=self.sender+"finaldhigh" 

#    print(w) 

    fo = open(w,"a") 

    wr=csv.writer(fo, quoting=csv.QUOTE_ALL) 

    wr.writerow([self.c,RDiff])  
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    fo.close() 

    self.c=self.c+2 

    if self.opmode==str(2): 

     if 0 <= RDiff and RDiff < RDiffTh - eminus: 

      self.sync=pow(2,min(math.log(self.sync,2)+1,2)) 

      print(1) 

     elif RDiffTh - eminus <= RDiff and RDiff <= RDiffTh + eplus: 

      self.sync=self.sync 

      print(2) 

     elif RDiffTh + eplus < RDiff and RDiff <= 1: 

      self.sync=pow(2,max(math.log(self.sync,2)-1,0)) 

      print(3) 

    print("\n %i %f %i %i %i" % (abs(x),RDiff,self.lasts,self.lasto,self.sync)) 

    core.callDelayed(2,self.adaptation_module) 

       

  def handle_arp (self, packet, in_port):    # function No.2 

 

    # Get the ARP request from packet 

    arp_req = packet.next 

    #if arp_req.protosrc != self.serversip[1]: 

      #print("req :  %s is asking whos is %s from port %s" %(arp_req.protosrc,self.service_ip,in_port)) 

    # Create ARP reply 

    arp_rep = arp() 

    arp_rep.opcode = arp.REPLY 

    arp_rep.hwsrc = self.mac    # hardware source 

    arp_rep.hwdst = arp_req.hwsrc    # hardware destination 

    arp_rep.protosrc = self.service_ip    # software source 

    arp_rep.protodst = arp_req.protosrc    # software destination 

 

    # Create the Ethernet packet 
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    eth = ethernet() 

    eth.type = ethernet.ARP_TYPE 

    eth.dst = packet.src 

    eth.src = self.mac 

    eth.set_payload(arp_rep) 

 

    # Send the ARP reply to client 

    msg = of.ofp_packet_out() 

    msg.data = eth.pack() 

    msg.actions.append(of.ofp_action_output(port = of.OFPP_IN_PORT)) 

    msg.in_port = in_port 

    self.connection.send(msg) 

 

  def handle_request (self, packet, event):    # function No.3 

 

    # Get the next server to handle the request 

    serverip = self.get_next_server()  

    if serverip == self.serversip[0]: 

       self.counter=self.counter+1 

        

    mac,sport=self.live_servers[serverip] 

    "First install the reverse rule from server to client" 

    #print("%s %s" %(serverip , sport)) 

    msg = of.ofp_flow_mod() 

    msg.idle_timeout = IDLE_TIMEOUT 

    msg.hard_timeout = HARD_TIMEOUT 

    msg.buffer_id = None 

 

    # Set packet matching 

    # Match (in_port, src MAC, dst MAC, src IP, dst IP) 
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    msg.match.in_port = sport 

    msg.match.dl_src = mac 

    msg.match.dl_dst = packet.src 

    msg.match.dl_type = ethernet.IP_TYPE 

    msg.match.nw_src = serverip 

    msg.match.nw_dst = packet.next.srcip 

     

    # Append actions 

    # Set the src IP and MAC to load balancer's 

    # Forward the packet to client's port 

    msg.actions.append(of.ofp_action_nw_addr.set_src(self.service_ip)) 

    msg.actions.append(of.ofp_action_dl_addr.set_src(self.mac)) 

    msg.actions.append(of.ofp_action_output(port = event.port)) 

 

    self.connection.send(msg) 

 

    "Second install the forward rule from client to server" 

    msg = of.ofp_flow_mod() 

    msg.idle_timeout = IDLE_TIMEOUT 

    msg.hard_timeout = HARD_TIMEOUT 

    msg.buffer_id = None 

    msg.data = event.ofp # Forward the incoming packet 

 

    # Set packet matching 

    # Match (in_port, MAC src, MAC dst, IP src, IP dst) 

    msg.match.in_port = event.port 

    msg.match.dl_src = packet.src 

    msg.match.dl_dst = self.mac 

    msg.match.dl_type = ethernet.IP_TYPE 

    msg.match.nw_src = packet.next.srcip 
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    msg.match.nw_dst = self.service_ip 

     

    # Append actions 

    # Set the dst IP and MAC to load balancer's 

    # Forward the packet to server's port 

    msg.actions.append(of.ofp_action_nw_addr.set_dst(serverip)) 

    msg.actions.append(of.ofp_action_dl_addr.set_dst(mac)) 

    msg.actions.append(of.ofp_action_output(port = sport)) 

 

    self.connection.send(msg) 

    #log.warning("Installing %s <-> %s : %i" % (packet.next.srcip, serverip,self.counter)) 

 

  def _handle_PacketIn (self, event):    # function No.4 内部函数 

    packet = event.parse() 

    inport = event.port 

    

    if packet.type == packet.LLDP_TYPE or packet.type == packet.IPV6_TYPE: 

      # Drop LLDP packets  

      # Drop IPv6 packets 

      # send of command without actions 

 

      msg = of.ofp_packet_out() 

      msg.buffer_id = event.ofp.buffer_id 

      msg.in_port = event.port 

      self.connection.send(msg) 

 

    elif packet.type == packet.ARP_TYPE: 

      # Handle ARP request for load balancer 

      arpp = packet.find('arp')  

      #print("%s is asking whos is %s from port %s" %(arpp.protosrc,self.service_ip,inport)) 
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      if packet.next.protodst == self.service_ip: 

       

        if arpp.opcode != arpp.REPLY and self.counter < 1000000000: 

         self.handle_arp(packet, event.port) 

 

      if arpp.protosrc in self.serversip: 

        # Handle replies to our server-liveness probes 

        if arpp.opcode == arpp.REPLY: 

            if arpp.protosrc in self.outstanding_probes : 

             # A server is (still?) up; cool. 

             #print("reply from " + str(arpp.protosrc)) 

              del self.outstanding_probes[arpp.protosrc] 

            if arpp.protosrc in self.live_servers: 

              # Ah, nothing new here. 

              pass 

            else: 

              # Ooh, new server. 

              if arpp.protosrc==self.serversip[0] : 

               if self.counter>=1000000000: 

                self.counter=0 

                self.reset=0 

              print("Server %s %s" % (arpp.protosrc,inport)) 

 

              self.live_servers[arpp.protosrc] = arpp.hwsrc,inport 

         

            return 

         

      # Only accept ARP request for load balancer 

       

    elif packet.type == packet.IP_TYPE: 



14 

 

      # Handle client's request 

 

      # Only accept ARP request for load balancer 

      if packet.next.dstip != self.service_ip: 

        return 

       

      #log.warning("flow %i" % (self.counter)) 

 

      #log.warning("Receive an IPv4 packet from %s" % packet.next.srcip) 

      self.handle_request(packet, event) 

 

class load_balancer (EventMixin):    # my component 

 

  global ThisController 

  global OtherController 

 

  def __init__ (self, service_ip,operation_mode, servers = []): 

    self.listenTo(core.openflow) 

    self.service_ip = IPAddr(service_ip) 

    self.servers = [IPAddr(a) for a in servers] 

    self.opmode=operation_mode 

 

  def _handle_ConnectionUp (self, event): 

 

    rconnection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost')) 

     

    channel = rconnection.channel() 

 

    if self.service_ip==IPAddr('10.1.1.3'): 

      OtherController='TX4' 
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      ThisController='TX3' 

      channel.queue_delete(queue='TX3') 

   

    else: 

      OtherController='TX3' 

      ThisController='TX4' 

      channel.queue_delete(queue='TX4') 

    log.warning("  %s " %ThisController) 

     

    state='notready' 

 

    channel.queue_declare(queue='TX30') 

    channel.queue_declare(queue='TX40') 

    print("Connection %s" % event.connection) 

    def callback(ch, method, properties, body): 

      print(" [x] Received %s" % body) 

      if body=='Ready':    

         state='ready'   

         log.warning("%s is ready" % OtherController) 

  rconnection.close() 

         LoadBalancer(event.connection, 

self.service_ip,OtherController,ThisController,self.opmode,self.servers) 

       

    channel.basic_consume(callback, 

                     queue=OtherController+'0', 

                      no_ack=True) 

   

    print(' [*] Waiting for messages. To exit press CTRL+C') 

    channel.basic_publish(exchange='', 

                      routing_key=ThisController +'0', 

                      body='Ready') 
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    channel.start_consuming()   

    

  

def launch (ip,operation_mode, servers):    # registering component 

  # Start load balancer 

  servers = servers.replace(","," ").split() 

  servers = [IPAddr(x) for x in servers] 

  ip = IPAddr(ip) 

  from proto.arp_responder import launch as arp_launch 

  arp_launch(eat_packets=False,**{str(ip):True}) 

  import logging 

  logging.getLogger("proto.arp_responder").setLevel(logging.WARN) 

   

  core.registerNew(load_balancer,ip, operation_mode,servers)    # 

 

   

   

 


