

Sudan University of Science & Technology

Collage of Engineering

School of Electrical Engineering

Speed Control Of Induction Motor Using Variable Speed Drive

التحكم في سرعة الماكينة الحثية بواسطة متحكم السرعة المتغيره

A Project Submitted In Partial Fulfillment for the Requirement of the Degree of B.Sc. (Honor) In Electrical Engineering

Preparing by:

- 1. Anas Mohammed Mohyaldeen
- 2. Mujahid Ali Khalaf-Alah
- 3. Mustafa Elrabea Mohammed Eltahir
- 4. Rania Mohammed Saddeg

Supervisor:

Dr. Nagmaldeen Abdo Mustafa

October 2017

الأية:

قال تعالى:

(إِنَّا عَرَضْنَا الْأَمَانَةَ عَلَى السَّمَاوَاتِ وَالْأَرْضِ وَالْجِبَالِ فَأَبَيْنَ أَن يَحْمِلْنَهَا وَأَشْفَقْنَ مِنْهَا وَحَمَلَهَا الْإِنسَانُ الْأَمَانَ ظُلُومًا جَهُولًا)

سورة الأحزاب الأيه (72)

DEDICATION

To our families , friends and everyone who support us

ACKNOWLEDGMENT

We would like to express our special thanks to our supervisor Dr.Nagmaldeen Abdo Mustafa as well as school of electrical engineering which gave us a golden opportunity to do this wonderful project, and helped us doing a lot of researches and we came to know about so many new things, we really thankful of them.

Abstract

Industrial applications require variable speed motors, Squirrel cage induction motors are simpler in structure than DC motors. They are robust and reliable. They require little maintenance and are available at very competitive prices. They can be designed with totally enclosed motors to operate in dirty and explosive environments. Their initial cost is substantially less than that of commutator motors and their efficiency is comparable. All these features make them attractive for use in industrial drives. To control the speed of induction motor variable speed drive is the best choice, because of it's great advantages.

Variable speed drive simulated and analyzed with matlab -simulink .and from the simulation results it showed that variable frequency drive is the best solution for fixing inherent motor issues and energy saving can be best tackled by this drive.

مستخلص

التطبيقات الصناعية تتطلب تحكم متغير في سرعة المحركات ، المحرك الحثي ذو القفص السنجابي ابسط في التركيب من محركات التيار المستمر ويمتاز بالمتانة والموثوقية العالية . تكلفة الصيانة اقل وبأسعار مناسبة وتنافسية، ويمكن تصميم هذه المحركات بحيث تكون مصمتة وتعمل في ظروف قاسية ومليئة بالاتربة وايضا تمتاز بتكلفة ابتدائية اقل من نظيراتها من المحركات بالاضافة الى كفاءة جيدة و للتحكم في سرعة المحرك الحثي يفضل إستخدام متحكم السرعة المتغيرة ، وذلك لمميزاته المتعددة .

تمت محاكاة متحكم السرعة المتغيرة باستخدام أداة الماتلاب – سيمولينك ، ووضحت النتائج أن متحكم السرعة المتغيرة هو افضل حل لمعالجة المشاكل الملازمة للمحرك. و حفظ الطاقة يكون افضل ما يمكن بواسطة هذا المتحكم.

TABLE OF CONTENTS

TITLE	Page No.
الأية	I
DEDICATION	Ii
AKNOWLEDGRMENT	Iii
ABSTRACT	Iv
مستخلص	V
TABLE OF CONTENTS	Vi
LIST OF FIGURES	Xi
LIST OF TABLES	Xiv
INTRODUCTION 1.1 Historical Packground	1
1.1 Historical Background	1
1.2 Problem Statement	3
1.3 Objectives	4
1.4 Methodology	
1.5 Ducingt lowerst	4
1.5 Project layout	4
CHAPTER TWO	
CHAPTER TWO	

2.2 Working Principle	8	
2.2.1 Rectifier	8	
2.2.2 DC bus	9	
2.2.3 Microcontroller based PWM	9	
2.2.4 Software and Hardware based	10	
2.2.5 Inverters	10	
2.3 Advantages of VSD	12	
2.4 Disadvantages of VSD	12	
2.4.1 Acoustic Noise	12	
2.4.2 Motor Heating	13	
2.4.3 Supply Harmonics	13	
2.4.4 Problem of Fast Switching	14	
2.5 VSD As Energy Saving Device	14	
2.6 VSD Versus Other Techniques	15	
2.7 Drive Types And specifications	15	
2.8 Drive Classifications And Characteristics	15	
2.8.1 Classification By Application	16	
2.8.2 Classification By Type Of Power Device	17	
2.9 Load Profiles And Characteristics	20	
2.9.1 Load Profile Types	21	
2.9.2 Motor Duty	21	
2.10 Drive Requirement And Specifications	22	
2.10.1 General Market Requirement	22	
2.10.2 Drive Specifications	24	
CHAPTER THREE		
MATHEMATICAL MODEL		
3.1 Introduction	25	
3.2 Steady State Representation Of Induction Motor	26	

3.3 Variable Frequency Drive principles Of Operation		
3.3.1 Rectifier Stage	28	
3.3.2 DC bus Link	29	
3.3.3 Inverter Stage	29	
3.3.3.1 Current Source Inverter	32	
3.3.3.2 Voltage Source Inverter	32	
3.4 Variable Frequency Drive Operation	35	
3.4.1 Constant V/F Ratio Operation	36	
3.5 How Drive Changes Motor Speed	37	
3.6 Mathematical Modeling Of Three Phase Voltage Source	38	
3.6.1 Model Of Induction Motor	39	
CHAPTER FOUR RESULT AND DISCUSSION		
4.1 Introduction	41	
4.2 Induction Machine (Squirrel Cage)	41	
4.2.1 Electrical Defining Equation	41	
4.3 Universal Bridge	44	
4.3.1 Number Of Bridge Arms	45	
4.3.2 Snubber Resistance Rs	45	
4.3.3 Snubber Capacitance Cs	45	
4.4 Power Electronic Device	46	
4.5 Loading And Driving The Motor	52	
4.6 simulation Results	53	
CHAPTER FIVE		
CONCLUSION AND RECOMMENDATIONS		
5.1 Conclusion	61	
5.2 Recommendations	61	
	1	

62
67
67
68
68

LIST OF FIGURES

FIGURE	TITLE	PAGE
NO		NO
2.1	Block Diagram Of VSD	8
2.2	The Circuit Diagram Of AC to DC Converter	9
2.3	PWM Representation	10
2.4	Dead time Representation in PWM wave	11
3.1	Block Diagram Of Typical Motor derive system	26
3.2	Steady State Equivalent Circuit For An Induction	26
	Motor	
3.3	VSD Circuit Diagram	27
3.4	Diode Bridge Rectifier	28
3.5	Full-Bridge Inverter	29
3.6	Variable Torque Load	33
3.7	Constant Torque Load	34
3.8	Constant Power Load Profile	35
3.9	Drive Output Waveform Of Pulse Width Modulator	37
3.10	Induction Motor Equivalent d-q-o Circuit Diagram	38
4.1	IGBT Diode Bridge	44
4.2	Simulation And Analysis Of Variable Speed Drive	52
	Circuit	
4.3	Shows The Stator Current Signal In First Graph,	54
	Fundamental Frequency (60HZ) And Total	
	Harmonic Distortion In The Second Graph. (for	

	400v, 6000HZ Carrier input,60HZoutput)	
4.4	Shows The Bridge Current Signal In First Graph, Fundamental Frequency (60HZ) And THD In Second One. (for 400v, 6000HZCarrier	55
	input,60HZoutput)	
4.5	Shows The Voltage, Stator Current, Electromagnetic Torque And Rotor Speed. (for 400v, 6000HZ Carrier input,60HZ output)	55
4.6	Shows The Full Bridge Inverter Currents For Two Switches.(for 400v, 6000HZ input,60HZ)	56
4.7	Shows Voltage, Current Magnitude And Phase Respectively	56
4.8	Shows The Stator Current Signal In First Graph, Fundamental Frequency (60HZ) And Total Harmonic Distortion In The Second Graph. (for 200v, 6000HZ Carrier input,30HZ output)	57
4.9	Shows The Bridge Current Signal In First Graph, Fundamental Frequency (60HZ) And THD In Second One. (for 200v, 6000HZ Carrier input,30HZoutput)	58
4.10	Shows The Voltage, Stator Current, Electromagnetic Torque And Rotor Speed. For (400v, 3000HZ input)	58

4.11	Shows The Full Bridge Inverter Currents For Two	
	Switches, (for 200v, 6000HZ Carrier input, 30HZ	58
	output)	
Appendix	VSD with optional control panels	67
(A.1)		
Appendix	Large VSD mounted in ventilated enclosure	67
(A.2)		
Appendix	Hardware Results of PWM	68
(B.1)		
Appendix	Dead time Representation in PWM wave	68
(B.2)		

LIST OF TABLES

TABLE NO	TITLE	PAGE NO
2.1	Classification Of Electrical VSDs	16
3.1	Switching States In A Three Phase Inverter	30
4.1	Induction Machine Parameter (initial value)	43
4.2	Universal Bridge Parameter	46
4.3	Pulse Width Generator Parameter	50
4.4	Torque For A 400V 1050HZ input	52
4.5	Speed Output For A 400V 1050HZ input	53
4.6	Torque For AN 400V 3000HZ input	53