الآيـــة

قال تعالى:

بسم الله الرحمن الرحيم

(إِنَّ فِي خَلْقِ السَّمَوَاتِ وَالأَرْضِ وَاخْتِلافِ اللَّيْلِ وَالنَّهَارِ وَالْفُلْكِ الَّتِي تَجْرِي فِي الْبَحْرِ بِمَا يَنفَعُ النَّاسَ وَمَا أَنزَلَ اللَّهُ مِنْ السَّمَاءِ مِنْ مَاءٍ فَأَحْيَا بِهِ الأَرْضَ بَعْدَ مَوْتِهَا وَبَثَّ فِيهَا مِنْ كُلِّ دَابَّةٍ السَّمَاءِ مِنْ مَاءٍ فَأَحْيَا بِهِ الأَرْضَ بَعْدَ مَوْتِهَا وَبَثَّ فِيهَا مِنْ كُلِّ دَابَّةٍ وَتَصْرِيفِ الرِّيَاحِ وَالسَّحَابِ الْمُسَخَّرِ بَيْنَ السَّمَاءِ وَالأَرْضِ لآيَاتٍ وَتَصْرِيفِ الرِّيَاحِ وَالسَّحَابِ الْمُسَخَّرِ بَيْنَ السَّمَاءِ وَالأَرْضِ لآيَاتٍ لِقَوْمِ يَعْقِلُون (164))

سورة الْبَقَرة

Dedication

To

Endless love

Our mothers

To

The man who teach me to be man

Our fathers

To

All classmate in Sudan University of Sciences and Technology

To

Every one interesting to spend priceless & trisagion to favor verily

To

Every one educated me to attaining knowledge

To

My second family school of electrical Unuclear engineering

to

Our teacher & our colleagues

ACKNOWLEDGMENTS

First of all, giving thanks of Allah. Word fail to describe our gratitude of our supervisor Ust. Abdelsalam Abdelaziz Abugrain . For his guidance and help during our research at Sudan University of science and technology.

Finally we are gratefully acknowledges the support of the lectures and all the staff of Sudan university's school of Electrical Engineering for all what they offered throughout our educational path in university.

ABSTRACT

Wind energy, as an alternative to fossil fuels, is plentiful, renewable, widely distributed, clean, and produces no greenhouse gas emissions during operation. Wind electrical generation systems are the most cost competitive of all the environmentally clean and safe renewable energy sources in the world.

Wind system uses squirrel cage induction generators and fed power to utility grids or autonomous loads.

The system requires external reactive power source to support grid voltage and it can keep the output power at the nominal level by pitch control.

المستخلص

طاقة الرياح كبديل للوقود الأحفوري , أكثر وفرة , متجددة, منتشرة ,نظيفة, وليس بها أي أنبعاثات للغازات إثناء العمل , وتعتبر طاقة الرياح اقل تكلفة مقارنة مع جميع الطاقات المتجددة النظيفة في العالم. في هذا البحث تمت دراسة أنظمة الرياح التي تستخدم المولد الحثي ذو القفص السنجابي بحيث تعمل على أمداد الطاقة الكهربائية للشبكة أو مجموعة من الأحمال الكهربائية .

ولقد وجدنا أن هذا النظام يحتاج لمصدر قدرة ردية من اجل أمداد الشبكة بالطاقة , وبحاجة للتحكم في مساحة السطح المعرض للرياح من اجل الحفاظ علي طاقه الخرج في الحدود المسموح بها.

TABLE OF CONTENTS

Title	Page NO.
الآية	I
DEDICATION	Ii
ACKNOWLEDGEMENT	Iii
ABASTRACT	Iv
مستخلص	V
TABLE OF CONTENTS	Vi
LIST OF FIGURES	Vii
LIST OF TABLES	Viii
LIST OFABBREVIATION	Ix
LIST OF SYMBOLS	X
CHAPTER ONE	
GENERAL CONSEPTS	
1.1 general consept	1
1.2 Problem statement	2
1.3 Objectives	2
1.4 Methodology	2
1.5 Thesis layout	
CHAPTER TWO	1
RENEWABLE ENERGY	
2.1 Introduction	3
2.2 Wind Power	6
2.3 Solar Power	7
2.3 Hydroelectric Power	9
2.4 Geothermal	11
2.5 Ocean Energies	13
2.5.1 Ocean thermal energy	13

2.5.2 Waves power	14
2.5.3 Tidal power	16
2.6 Biomass	17
2.7 Ethanol	19
2.8 Conclusion	19
CHAPTER THREE	
WIND ENERGY	
3.1 Introduction	20
3.2 History of Wind Energy	22
3.3 Wind Generation	25
3.3.1 Uneven solar heating	26
3.3.2 Coriolis force	27
3.3.3 Local geography	27
3.4 Wind Characteristics	28
3.4.1 Wind speed	28
3.4.2 Weibull distribution	28
3.4.3 Wind turbulence	28
3.4.4 Wind gust	29
3.4.5 Wind direction	29
3.4.6 Wind shear	29
3.5 Advantages and Disadvantages of Wind Energy	29
3.5.1 Advantages	30
3.5.2 Disadvantages	30
3.6 Wind Applications	31
3.6.1 Windmill	31
3.6.2 Wind turbines	32
3.7 Wind Turbine Classification	33
3.7.1 Horizontal Axis WTGs (HA-WTGs)	34
3.7.2 Vertical Axis WTGs (VA-WTGs)	34

3.8 The Structure of a Wind Turbine	35
3.9 Characteristics Of Wind Turbine	41
2.9.1 Solidity	42
2.9.2 Tip Speed Ratio	42
2.9.3 Specified Rated Capacity	42
2.9.4 Power-Speed Characteristics	43
2.9.5 Torque –Speed Characteristics	44
3.10 Conclusion	45
CHAPTER FOUR	
USING OF INDUCTION GENERATOR IN	
WIND ENERGY	
4.1 Introduction	46
4.2 Equivalent Circuit of an Induction Machine	47
4.2.1 Transformer Model of an Induction Machine	47
4.2.2 Rotor Circuit Model	48
4.2.3 Final Equivalent Circuit	50
4.3 Induction Generator Operation	51
4.4 Induction in wind	52
4.5 Model of wind power and wind turbine	54
4.6 Model and control of SCIG	56
4.7 STATCOM Operation	61
4.8 Generator control schemes in wind power systems	67
4.8.1 Pitch Angle Control	62
4.8.2 Blade Pitch Control	64
4.8.3 Blade Pitch Mechanism	65
4.8.4 Electrically Driven Blade Pitch Systems	65
4.8.5 Redundancy and Safety Issues	66
4.9 Control Strategy	67
4.10 Induction Generator versus Synchronous Generator	68

4.11 Conclusion	69
CHAPTER FIVE	
CONCLOCION& RECOMMENDATIONS	
Conclusion	70
Recommendation	71
REFERENCES	72
APPENDICES	73

LIST OF FIGURES

Figure	Title	Page No.
2.1	Average annual growth rates of renewable energy	4
	capacity and bio fuels production	
2.2	Estimated renewable energy share of global	5
	electricity production	
2.3	Wind energy conversion system for Fair Isle,	7
	Scotland	
2.4	Solar radiation by regions of the world	8
2.5	hydroelectric dam	9
2.6	Section through the Earth	11
2.7	ermal station	12
2.8	Schematic diagram of an OTEC system	14
2.9	Schematic diagram of a wave power system	15
	operate on the island of Islay	
2.11	Location of major world tidal power sites,	16
2.12	al and managed biomass systems	18
3.1	Actual WTG output power with the wind speed	22
3.2	The world's energy potential for land-based wind	24
	turbines	
3.3	Idealized atmospheric circulations.	27
3.4	Dutch windmill (gallery type)	32
3.5	Nacelle and teetered hub of Growian of wind	33
	turbine	
3.6	The HA-WTG configuration	34
3.7	The VA-WTGs Configurations	35

3.8	Tower and Foundation	39
3.9	Rotor blade	37
3.10	Drive Train	37
3.11	Three-stage gearbox for wind turbines with fixed	38
	hollow wheel	
3.12	Induction machine	39
3.13	Coupling shaft between gearbox and generator	39
3.14	Wind Turbine Element	40
3.15	Typical Power versus speed characteristics of a	43
	wind turbine	
3.16	Typical curves of power coefficient (Cp) Versus	43
	Tip speed ratio (λ)	
3.17	Torque versus speed characteristics	44
4.1	Induction generator inside WES.	46
4.2	The induction machine with rotor and stator	47
	connected by an ideal transformer	
4.3	The rotor circuit model of an induction machine	49
4.4	The rotor circuit model with slip effects	50
	concentrated in resistance R_r	
4.5	The per-phase equivalent circuit of induction	50
	machine	
4.6	Induction machine characteristics	52
4.7	Power coefficients versus tip speed ratio	56
4.8	Power versus generator speed curve for wind	57
	turbine	
4.9	SCIG wind power system configuration	58
4.10	Pitch angle control	58

4.11	Pitch angle control for SCIG system	59
4.12	Grid voltages comparison between SCIG w/o.	60
	STACOM, SCIG w. STACOM and DFIG	
4.13	Compensated reactive power from STATCOM	60
4.14	STATCOM configuration	61
4.15	Typical power profiles for pitch control	63
4.16	Influence of blade pitch control on the smoothing	64
	of the electric power output	
4.17	Electrical blade pitch system inside the rotor hub	66
	(Rexroth)	
4.18	Electrical power supply with batteries for	67
	emergency pitching in the case of electrical pitch	
	control systems	

LIST OF TABLES

Table No.	Title	Page NO.
2.1	gives outline data of ethanol production	19
3.1	Comparison between HA-WTGs and VA-WTGs	35
4.1	Comparison among different wind power systems	53

LIST OF ABBREVIATIONS

SCIG	Squirrel-Cage Induction Generator
DFIG	Doubly-Fed Induction Generator
PV	Photovoltaic
DC	Direct current
kW h	kilowatt hours
HDR	Hot dry rock technology
OTEC	Ocean thermal energy conversion
Н	Hydrogen
Не	Helium
WTGs	wind turbine generation
HA-WTGs	Horizontal Axis WTGs
VA-WTGs	Vertical Axis WTGs
SRC	Specified Rated capacity
TSR	Tip speed ratio
WES	Wind energy system
FRT	Faults Ride Through
p.u	Per unit
Kva	kilowatt amber
VA	Volte amber

LIST OF SYMOBLES

ρ	Air density, kg/m ³
A	Cross sectional area of wind parse, m ² .
V	The wind speed, m/sec.
	power contained in wind (in watts)
	the wind velocity without rotor interference
	power coefficient
	Tip speed ratio
	rotational speed (rpm)
	radius of the swept area (meter)
	Mechanical Power transmitted to the shaft is
	Mechanical Torque
	Tidal power
g	Speedy gravity
	Rotor magnetic field
	Rotor voltage at locked-rotor conditions
	Slip
	Rotor resistance
	Rotor reactance
	Rotor inductance
	Frequency of the voltage and current in the rotor
	Blocked-rotor reactance
	Rotor current
	Equivalent rotor impedance
	Primary voltage
	Secondary voltage

	turns ratio of an induction motor
	turns ratio
	mass of the wind
	wind speed
	kinetic energy
	Power wind
В	blade pitch angle