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Abstract 

The dynamics of the two-wheeled self-balancing robot system is similar to that of 

the inverted pendulum, which is unstable and prone to tip over. The inverted 

pendulum is a classic problem in dynamics and control theory, and is used as a 

benchmark for testing control strategies and algorithms. The system includes an 

angle sensor, two geared DC motors, two motor drivers and an Arduino. The 

basic idea is to use the torque generated by the motors to maintain the structure’s 

vertical equilibrium state. 

In this project the model is obtained by employing physical laws. This model 

despite its simplicity can represent a typical real system such as Segway Personal 

Transporter. The system is nonlinear and unstable, but can be linearized for small 

angles. 

The Arduino microcontroller acquires the readings from the angle sensor and 

compare it with the desired angle. A PID algorithm computes the exact pulse 

width modulated signal which is fed to the motors. 

The instant response of the system has been plotted using MATLAB software, by 

interfacing Arduino with computer. System response to different values of 

controller parameters were obtained and the parameters that gave the best 

performance of the system were chosen in the final implementation. The results 

showed that the model is not yet reliable. The reasons for this are discussed and 

recommendations for future development are list. 
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CHAPTER ONE 

INTRODUCTION 

1.1 General Concepts 

The self-balancing robot is a two wheeled structure. The idea behind it can be put 

in this way; when the structure leans forwards or backwards by certain angle, it 

should drive both wheels in the same direction (i.e. either forwards or backwards) 

in some speed and acceleration that is proportional to that angle to keep itself in 

the upright position. The robot can sense tilt with the help of different sensors, 

then drives the wheels using a couple of motors. All calculations and processing 

is done by some sort of digital device like a microcontroller unit. Another feature 

of the self-balancing robot is that it can drive the two wheels independent of each 

other. In this case, it can turn left or right or even circle around its own center. 

These robots have the ability to carry and balance different objects on top of them 

without losing equilibrium. And some other designs may provide wireless 

communication for remote control. These robots are commercially available in 

the form of man driven vehicles well-known as Segway’s PT (the name Segway 

is derived from the word segue, which means smooth transition. PT is an 

abbreviation for personal transporter). Another example might be the hover board 

for entertainment purposes. 

    Problem Statement  

The idea of the self-balancing robot is related to the inverted pendulum cart (cart 

and pole) which is a classic problem in dynamics and control theory. Whereas a 

normal pendulum is stable when hanging downwards, an inverted pendulum is 

inherently unstable, and must be actively, precisely and quickly balanced in order 

to remain upright. That’s the case in the self-balancing robot. Trying to remain 



  
 

stable and retrieve its former position when it’s objected to external force (i.e. 

Nudges, Pokes, etc.). Seeking stability while moving between two points is 

another challenging matter and might cause losing consistency and as a result the 

whole thing will eventually fall. The problem is to ensure fast and precise 

response in order to achieve stability and high performance and also regain its 

previous location reliably. 

    Objectives 

 Development of an approximate mathematical model of the two-wheel robot 

as a Linear Time Invariant (LTI) system for the purpose of design, simulation 

and implementation based on theory of the inverted pendulum. 

 Implement an appropriate filter to get useful readings from the Inertia 

Measurement Unit (IMU) for the feedback signal. 

 Design PID controller to stabilize the system and achieve the desired response. 

 Simulation of proposed system to show whether the system is capable of 

meeting the desired specifications that it has been designed for. 

 Implement the real-time response of the robot. 

 Implementation of the two-wheeled self-balancing robot. 

1.4 Methodology 

 Study of previous related works. 

 Study the nature of the inverted pendulum problem and for the purposes of 

modelling. 

 System simulation; done with MATLAB software package. 

 Analyzing the obtained model to check for stability without a controller and 

feedback. 

 Study and understand the behaviors of the IMU for modeling and simulation. 



  
 

 Design a model of the structure using AutoCAD software and build the two-

wheeled self-balancing robot in the final implementation. 

 PID controller parameters; tuned with trial and error method. . 

 Build an Arduino based controller and write a PID algorithm using the 

Arduino IDE. 

    Layout 

Chapter one provides a brief introduction to self-balancing robot and outlines the 

idea behind the way it balances. Problem statement addresses its relation to the 

inverted pendulum and states the problems that ought to be solved as an outcome 

to this study. Then our main goals are mentioned in the Objectives. The steps to 

achieve these objectives are listed in the Methodology. Chapter Two gives a 

literature review of self-balancing robots. Runs through robots in general 

narrowing down to self-balancing robot. A summarized review of the used parts 

(Arduino, DC Motor, sensors, etc.) is also included. The concept behind the PID 

controller is explained and the reasons of why we preferred it over other 

controllers. Chapter Three shows the fabrication process and the extraction of the 

robot parameters (i.e. mass, length, moment of inertia, etc.).A mathematical 

model of the system is also provided in this chapter. Chapter Four focuses on 

analysis and design, the study of stability, steady-state error and transient 

response of the robot. The software part includes the program flow chart and 

Arduino code. Real-time response of how the system behaves is presented in the 

experimental results. Chapter Five provides the conclusion and recommendations. 

 

 



  
 

CHAPTER TWO 

THEORETICAL BACKGROUND AND LITERATURE 

REVIEW 

 
2.1 System Control 



  
 

Control engineering is concerned with controlling a dynamic system or plant. A 

dynamic system can be a mechanical system, an electrical system, a fluid system, 

a thermal system, or a combination of two or more types of system. The behavior 

of a dynamic system is described by differential equations. Given the model 

(differential equation), the inputs and the initial conditions, we can easily 

calculate the system output. A plant can have one or more inputs and one or more 

outputs. Generally a plant is a continuous-time system where the inputs and 

outputs are also continuous in time. For example, an electromagnetic motor is a 

continuous-time plant whose input (current or voltage) and output (rotation) are 

also continuous signals. A control engineer manipulates the input variables and 

shapes the response of a plant in an attempt to influence the output variables such 

that a required response can be obtained. A plant is an open-loop system where 

inputs are applied to drive the outputs. For example, a voltage is applied to a 

motor to cause it to rotate. In an open-loop system there is no knowledge of the 

system output. The motor is expected to rotate when a voltage is applied across its 

terminals, but we do not know by how much it rotates since there is no 

knowledge about the output of the system. If the motor shaft is loaded and the 

motor slows down there is no knowledge about this. A plant may also have 

disturbances affecting its behavior and in an open-loop system there is no way to 



  
 

know, or to minimize these disturbances. Figure 2.1 shows an open-loop system 

where the system input is expected to drive the system output to a known point 

(e.g. to rotate the motor shaft at a specified rate). This is a Single-Input, Single-

Output (SISO) system, since there is only one input and also only one output is 

available In general, systems can have Multiple Inputs and Multiple 

Figure 2.1: Open loop control system 

Outputs (MIMO). Because of the unknowns in the system model and the effects 

of external disturbances the open-loop control is not attractive. There is a better 

way to control the system, and this is by using a sensor to measure the output and 

then comparing this output with what we would like to see at the system output. 

The difference between the desired output value and the actual output value is 

called the error signal. The error signal is used to force the system output to a 

point such that the desired output value and the actual output value are equal. This 

is termed closed-loop control, or feedback control. Figure 2.2 shows a typical 

closed-loop system. One of the advantages of closed-loop control is the ability to 

compensate for disturbances and yield the correct output even in the presence of 

disturbances. A controller (or a compensator) is usually employed to read the 

error signal and drive the plant in such a way that the error tends to zero. Closed-

loop systems have the advantage of greater accuracy than open-loop systems. 



  
 

They are also less sensitive to disturbances and changes in the environment. The 

time response and the steady-state error can be controlled in a closed-loop system 

     

 

Figure 2.2: Closed-loop system 

Sensors are devices which measure the plant output. For example, a thermistor is 

a sensor used to measure the temperature. Similarly, a tachogenerator is a sensor 

used to measure the rotational speed of a motor, and an accelerometer is used to 

measure the acceleration of a moving body. Most sensors are analog devices and 

their outputs are analog signals (e.g. voltage or current). These sensors can be 

used directly in continuous-time systems. For example, the system shown in 

Figure 2.2 is a continuous-time system with analog sensors, analog inputs and 

analog outputs. Analog sensors cannot be connected directly to a digital 

computer. An Analog-to-Digital (A/D) converter is needed to convert the analog 

output into digital form so that the output can be connected to a digital computer. 

Some sensors (e.g. accelerometer sensors) provide digital outputs and can be 

directly connected to a digital computer. With the advent of the digital computer 

and low-cost microcontroller processing elements, control engineers began to use 

these programmable devices in control systems. A digital computer can keep 



  
 

track of the various signals in a system and can make intelligent decisions about 

the implementation of a control strategy [1]. 

 

 

2.2 Controllers 

The concept of a control system is to sense deviation of the output from the 

desired value and correct it, till the desired output is achieved. The deviation of 

the actual output from its desired value is called an error. The measurement of 

error is possible because of feedback. The feedback allows us to compare the 

actual output with its desired value to generate the error. The error is denoted 

as     . The desired value of the output is also called reference input or a set 

point. The error obtained is required to be analyzed to take the proper corrective 

action. The controller is an element which accepts the error in some form and 

decides the proper corrective action. The output of the controller is then applied 

to the process or final control element. This brings the output back to its desired 

set point value. The controller is the heart of a control system. The accuracy of 

the entire system depends on how sensitive is the controller to the error detected 

and how it is manipulating such an error. The controller has its own logic to 

handle the error. Now a days for better accuracy, the digital controllers such as 

microprocessors, microcontrollers, and computers are used. Such controllers 

execute certain algorithm to calculate the manipulating signal [2]. 

2.2.1 Classification of controllers 

The classification of the controllers is based on the response of the controller and 

mode of operation of the con 

troller. For example, in a simple temperature control of a room, the heater is to be 

controlled. It should be switched on or off by the controller when temperature 



  
 

crosses its set point. Such an operation of the controller is called discontinuous 

operation and the mode of operation is called discontinuous mode of controller. 

But in some process control systems, simple on/off decision is not sufficient. For 

example, controlling the steam flow by opening or closing the valve. In such case 

is said to be operating in a continuous mode. Thus, the controllers are basically 

classified as discontinuous controllers and continuous controllers. The 

discontinuous mode controllers are further classified as ON-OFF controllers and 

multi-position controllers. The continuous mode controllers are further classified 

as proportional controllers, integral controllers and derivative controllers. Some 

continuous mode controllers can be combined to obtain composite controller 

mode. The examples of such controllers are Proportional plus Integral (PI), 

Proportional plus Derivative (PD) and Proportional plus Integral plus Derivative 

(PID) controllers. The most of the controllers are placed in the forward path of 

control system. But in some cases, input to the controller is controlled through a 

feedback path. The example of such a controller is rate feedback controller [2]. 

2.2.2 Continuous controller modes 

In the discontinuous controller mode, the output of the controller is discontinuous 

and not smoothly varying. But in the continuous controller mode, the controller 

output varies smoothly proportional to the error or to some form of the error. 

Depending upon which form of the error is used as the input to the controller to 

produce the continuous controller output, these controllers are classified as 

proportional control mode, integral control mode, and derivative control mode 

     

          A. PID controller 

The PID controller has three terms. The proportional term P corresponds to 

proportional control. The integral term I gives a control action that is 



   
 

proportional to the time integral of the error. This ensures that the steady 

state error becomes zero. The derivative term D is proportional to the time 

derivative of the control error. This term allows prediction of the future 

error [3]. 

 

           B. Proportional control mode 

Figure 2.3: Simple proportional controller 

 

The reason why on-off control often gives rise to oscillations is that the 

system overreacts because a small change in the error will make the 

manipulated variable change over the full range. This effect is avoided in 

proportional control where the characteristic of the controller is 

proportional to the control error for small errors. Figure 2.4 shows the 

characteristic of a proportional controller. The controller is thus 

characterized by the nonlinear function          Shown in Figure 2.4. 

The proportional controller can be suitable where: Manual reset of the 

operating point is possible, Load changes are small, and the dead time 

exists in the system is small [3].  



   
 

 

Figure 2.4:  Characteristics of a proportional controller 

         C. Integral control mode 

In the proportional control of a plant whose transfer function does not 

possess an integrator 1s, there is a steady-state error, or offset, in the 

response to a step input. Such an offset can be eliminated if the integral 

control action is included in the controller. In the integral control of a plant, 

the control signal—the output signal from the controller—at any instant is 

the area under the actuating-error-signal curve up to that instant. The 

control signal      can have a nonzero value when the actuating error 

signal      is zero, as shown in Figure 2.5. This is impossible in the case of 

the proportional controller, since a nonzero control signal requires a 

nonzero actuating error signal. (A nonzero actuating error signal at steady 

state means that there is an offset). Note that integral control action, while 

removing offset or steady-state error, may lead to oscillatory response of 

slowly decreasing amplitude or even increasing amplitude, both of which 

are usually undesirable [4]. 

 



   
 

               

Figure 2.5: Non-zero control signal when error is zero 

          D. Derivative control mode 

The purpose of the derivative action is to improve the closed-loop stability. 

The instability mechanism can be described intuitively as follows. Because 

of the process dynamics, it will take some time before a change in the 

control variable is noticeable in the process output. Thus, the control 

system will be late in correcting for an error. The action of a controller with 

proportional and derivative action may be interpreted as if the control is 

made proportional to the predicted process output, where the prediction is 

made by extrapolating the error by the tangent to the error curve in Figure 

2.6. The basic structure of a PD controller is [3]: 

      (       
     

  
)                                                     (     

Figure 2.6: Interpretation of derivative action as predictive control 



   
 

2.3 Robot Overview 

There are many definitions of robot and no real consensus has been attained so 

far. Loosely define a robot as an electromechanical device which is capable of 

reacting in some way to its environment, and take autonomous decisions or 

actions in order to achieve a specific task. This means that a blender, a lamp, or a 

car would not be considered as robots since they have no way of perceiving their 

environment. On the other hand, a vacuum cleaner that can navigate around a 

room, or a solar panel that seeks the sun, can be considered as a robotic system. 

Building a robot incorporates aspects of many disciplines including engineering 

(mechanical, electrical, computer), sciences (mathematics and physics) and arts 

(aesthetics) and users are free to use their imagination. It also requires 

understanding of motors, sensors, microcontrollers and programming. 

Robots can be used in almost any situation and are primarily intended to help 

humans in some way.  Robots help liberate people from unpleasant or dangerous 

tasks and give them more liberty and security. Also they are used in a variety of 

applications at work, in public, in hazardous environments, in locations such as 

deep-sea, battlefields and space, just to name a few. In addition to the service 

areas such as cleaning, surveillance, inspection and maintenance, we utilize these 

robots where manual task execution is dangerous, impossible or unacceptable.  

2.3.1 Types of Robots 

The types of robots possible are numerous, the major robot types are: 

A. Air robot   

An Autonomous Unmanned Aerial Vehicle  (AUAV) is very appealing and is 

entirely within the capability of many robot enthusiasts. However, the advantages 

of building an autonomous unmanned aerial vehicles, especially if you are a 

beginner, have yet to outweigh the risks. When considering an aerial vehicle, 

http://www.robotshop.com/Categories.aspx?cc=uav


   
 

most hobbyists still use existing commercial remote controlled aircraft. On the 

professional side, aircraft such as the US military Predator were initially semi-

autonomous though in recent years Predator aircraft have flown missions 

autonomously. 

 
 

Figure 2.7: Air robots 

 

B. Water robot 

An increasing number of hobbyists, institutions and companies are developing 

unmanned underwater vehicles. There are many obstacles yet to overcome to 

make underwater robots attractive to the wider robotic community though in 

recent years, several companies have commercialized pool cleaning ―robots‖. 

Underwater vehicles can use ballast (compressed air and flooded compartments), 

thrusters, tail and fins or even wings to submerge. Other aquatic robots such 

as pool cleaners are useful commercial products. 

 

 

Figure 2.8: Water robots 

 

http://en.wikipedia.org/wiki/General_Atomics_MQ-1_Predator
http://www.robotshop.com/Categories.aspx?cc=336634a1
http://www.robotshop.com/robot-pool-cleaners.html
http://www.robotshop.com/blog/en/files/mobile-aerial-robot.jpg
http://www.robotshop.com/blog/en/files/mobile-underwater-robot.jpg
http://www.robotshop.com/blog/en/files/mobile-aerial-robot.jpg
http://www.robotshop.com/blog/en/files/mobile-underwater-robot.jpg


   
 

C. Land robot 

Especially the wheeled ones, are the most popular mobile robots as they usually 

require the least investment while providing significant exposure to robotics. On 

the other hand, the most complex type of robots is the humanoid (akin to a 

human), as it requires many degrees of freedom and synchronizing the motion of 

many motors, and uses many sensors. Tracks (or treads) might be another choice 

for land robots. These are what tanks use. Although tracks do not provide added 

―force‖ (torque , they do reduce slip and more evenly distribute the weight of the 

robot, making them useful for loose surfaces such as sand and gravel. Also, a 

track system with some flexibility can better conform to a bumpy surface. On the 

other hand, implementing tracks may increase the mechanical complexity and 

connections. 

 

 

Figure 2.9: Land robots 

 

An increasing number of robots use legs for mobility. Legs are often preferred for 

robots that must navigate on very uneven terrain. Most amateur robots are 

designed with six legs, which allow the robot to be statically balanced (balanced 

at all times on 3 legs); robots with fewer legs are harder to balance. The latter 

require ―dynamic stability‖, meaning that if the robot stops moving mid-stride, it 

might fall over. The downside is that it might involve increased mechanical, 

electronic and coding complexity. 

http://www.robotshop.com/blog/en/files/mobile-tracked-robot.jpg


   
 

 

Figure 2.10: Legged robots 

Wheels are by far the most popular method of providing mobility to a robot and 

are used to propel many different sized robots and robotic platforms. Because it 

has low cost and it is simple to design wheels can be just about any size, from a 

few centimeters up to 30 cm and more. Robots can have just about any number of 

wheels, although 3 and 4 are the most common. Normally a three-wheeled robot 

uses two wheels and a caster at one end. Four and six wheeled robots have the 

advantage of using multiple drive motors (one connected to each wheel) which 

reduces slip. Wheels has the weakness of that it may lose traction (slip). Also the 

small contact area underneath each wheel makes the robot more susceptible to 

external disturbances. 

2.3.2 The Two Wheeled Self-Balancing Robot 

 As the name suggests this robot stands on two wheels which makes it unstable as 

shown in Figure 2.11. Thus it is imperative to involve a feedback system in order 

to maintain the upright position. The two wheels must be driven together to 

produce useful actions and ensure stability. It is a traditional problem similar to 

the well-known (inverted pendulum) found extensively in the literature of control 

systems and dynamics. The inverted pendulum is basically a rod with its pivot 

point mounted on a moving cart that moves horizontally. The rod can moves 

freely around its pivot point. This arrangement is inherently unstable and hence 

http://www.robotshop.com/Categories.aspx?cc=222145a1
http://www.robotshop.com/Categories.aspx?cc=222145a1
http://www.robotshop.com/Categories.aspx?cc=327411a1
http://www.robotshop.com/blog/en/files/mobile-legged-robot.jpg


   
 

the cart should be moving back and forth to keep the rod in equilibrium. Besides, 

the old position of the cart also must be restored without losing or compromising 

the rod stability. Although the self-balancing robot is inherently unstable, it has 

several advantages over the statically stable multi-wheeled robots since it has 

only two wheels (two points touching the ground) it requires less space, since it is 

based on dynamic stability (it constantly needs to correct its tilt angle to remain 

stable) it exhibits improved dynamic behavior and mobility. This additional 

maneuverability allows easy navigation on various terrains, turning sharp corners 

(it can turn on the spot) and traversing small steps or curbs. 

 

Figure 2.11: Two wheeled self-balancing robot 

2.3.3 Literature Review 

Mrs. Lekshmy.S, Aleesha George and Athira C.V presented a paper of a balance 

model as a two wheeled self-balancing robot that is capable of adjusting itself 

with respect to changes in weight and position. They developed the Balance 

System from a single gyroscope and a single accelerometer. The stability of the 

system is to show the capabilities of the ATmega328P in doing PID loops even 

with limited accuracy in position readings. PID control system is designed to 



   
 

monitor the motors so as to keep the system in equilibrium. It should be easily 

reproducible given the right parts and code. They managed to make the robot 

balance by using an Arduino microcontroller, hobby grade servos, and a six-

degree of freedom (axis) accelerometer and gyroscope have been used to create 

the controlled platform. The controller has been designed to maintain the platform 

at an initially selected angle when the support structure orientation changes. 

Kalman filter is used for the fusion of outputs of two sensor [5]. 

Back in 2012, a group of students namely: Tomislav Tomašić, Andrea Demetlika 

and Mladen Crneković managed to model, design, built and Control a remotely 

controlled self-balancing mobile robot. The mechanical structure was first 

modelled using SolidWorks software. Incremental magnetic encoders, a two-axis 

accelerometer and a one-axis gyroscope were used to get information about the 

robot’s position and the tilt angle,  and a Kalman filter was designed to combine 

the reading of the gyro and accelerometer to have an accurate values of the 

robot’s tilt angle and position  They first used a PID controller algorithm using 

only one feedback variable – the tilt angle to stable the robot but simulations and 

testing showed that even though the robot is stable in regard to the tilt rotation, 

small disturbances eventually cause big changes in the position. In order to 

overcome these problems they designed a Linear Quadratic Regulator (LQR) 

controller, Unlike the PID, the LQR controller uses all state variables (tilt angle, 

angular velocity, position and linear velocity) to calculate the control value. This 

allows the robot to hold the position and the tilt angle at desired values. The use 

of the LQR controller made it possible for the robot to balance even while 

climbing a slope, while the PID controller didn’t achieve that because although 

the PID controller stabilizes the tilt angle, the robot soon starts to drive down the 

slope and increases its speed until the control value eventually saturates and the 

robot falls. They also designed a fuzzy controller successfully and simulated it, 

but due to the increased complexity of its application in the microcontroller 



   
 

environment (in relation to other controllers) it was not implemented and tested 

on a real platform [6].  

Hau-Shiue Juang and Kai-Yew Lum presented a paper for the IEEE International 

Conference on Control and Automation (ICCA) in 2013 explaining how they 

designed and controlled a two-wheel self-balancing robot using the Arduino 

microcontroller board. Two control designs based on the linearized equations of 

motion were adopted for this project: a proportional-integral-differential (PID) 

control, and a proportional-integral proportional-differential control based on 

linear-quadratic regulator (LQR) design. The approaches were found to be robust 

to modeling errors which can be incurred during experimental determination of 

such electrical and kinematic parameters as moments of inertia and motor gains. 

They designed a complementary filter to solve the noise problem which the gyro 

and accelerometer has. They also designed a wheel synchronizer controller 

consisting of a simple PI controller to make sure that the robot’s right and left 

wheels rotates at the same speed, avoiding problems like motors defects, terrain 

and hindrance on the ground. This controller adjusts the Pulse Width Modulation 

(PWM) inputs to the motors so that the difference between the left and right 

encoders tracks zero [7]. 

Mikael Arvidsson and Jonas Karlsson from Chalmers University of Technology 

developed what is known commercially as the Segway personal transporter from 

scratch. The main objective was to build a vehicle capable of transporting a 

person weighing up to 100 Kg for 30 minutes or a distance of 10 Km, whichever 

comes first. The rider controls are supposed to be natural movements; leaning 

forward or backwards in combination with tilting the handlebar sideways should 

be the only rider input required to ride the vehicle. It was built using a model-

based control design with a linear quadratic controller. The electrical system 

allows for simple recharging by connecting a Direct Current (DC) adapter 

between the charging plug and a wall socket. The vehicle has been tested by a 



   
 

number of different people, with and without previous experience of riding this 

kind of vehicle. All were able to ride the vehicle [8]. 

Mahadi Hasan and Chanchal Saha, Md. Mostafizur Rahman and Md. Rabiual 

Islam Sarker, and Subrata K. Aditya from Asian Institute of Technology, 

Rajshahi University of Engineering & Technology and Dhaka University had a 

project named Balancing of an Inverted Pendulum Using PD Controller. The 

main idea behind this control process is the use of PD (Proportional and 

Derivative) controller to generate signal to control the speed and direction of the 

motor. The only sensor used in this project was a potentiometer which was 

attached to the pendulum rod. The variation in its resistance causes change in 

voltage and afterward, it was compared with the reference voltage to generate the 

appropriate control signal. PROTEUS software was used for circuit simulation, 

and frequency response of the system were analyzed in MATLAB with different 

values of KP and KD. Finally, to represent the system stability, root locus 

diagram was drawn using MATLAB [9]. 

2.4 Inertia Measurement Unit (IMU) Sensor 

The self-balancing robot uses a sensor for angular displacement in the Pitch axis 

as shown in Figure 2.12, the sensor is called Inertial Measurement Unit (IMU). 

 

  



   
 

Figure 2.12: Pitch axis 

It has six Degrees of Freedom or 6-DoF, as it contains an accelerometer and a 

gyroscope that both take measurements in three axis. It also contains a 

temperature sensor to compensate for errors in readings with the temperature 

variations, for this particular IMU MPU6050 the temperature limits where -40°C 

to +  °C, but it wasn’t used because the robot was working in fairly consisting 

temperature ranges. The data was obtained from the sensors via Inter Integrated 

Circuit       serial protocol, for power the IMU has a 5 volt pin and a ground 

pin. 

 

Figure 2.13: Inertia Measurement Unit (IMU) 

A. Gyroscope 

A gyroscope is a sphere like device that has a wheel in its center free to rotate as 

shown in Figure 2.14 it measures angular rate (i.e. degrees/sec or º/s), when the 

wheel is not rotating and we attempt to balance the gyroscope on its needle it 

would behave as we expected, fall. A dramatic change in this behavior happens 

when the wheel is rotating in a relevantly high speed, the gyroscope will fight any 

force applied to it, including gravity  This means that whenever the gyroscope’s 

wheel is spinning and the gyroscope was held firmly to a, let’s say an airplane 



   
 

like in Figure 2.15 it will remain still even if the airplane is tilting, thus measuring 

the angular displacement.  

 

Figure 2.14: Gyroscope                      Figure 2.15: Gyroscope in an airplane 

 

 In this sensor, (i.e. IMU) the concept of the gyroscope is applied but rather in a 

different, more convenient way. As shown in Figure 2.16, the wheel of the 

gyroscope is replaced with an oscillating mass, when an external angular rate is 

applied a flexible part of the mass would move and make the perpendicular 

displacement, by measuring the change in capacitance between the oscillating 

mass and the fixed plates the angular rate could be calculated. 

 

Figure 2.16: Microscopic gyroscope 

B. Accelerometer  



   
 

Another method to measure the angle of the robot is by using an accelerometer, 

which measures acceleration compared to the earth acceleration which is 

approximately 9.81     , so if an accelerometer is free falling it would measure 

       or 0g (zero-g). 

Figure 2.17 demonstrates a microscopic accelerometer, which is the one used in 

this robot, is constructed. The mass is attached to springs which allow it to move 

in one axis when there is an acceleration applied in that axis, this movement 

changes the capacitance between the mass and the fixed plates, this change of 

capacitance will be measured, processed and will correspond to a particular 

acceleration value. 

Figure 2.17: Microscopic accelerometer 

2.5 Microcontroller 

A microcontroller is a single-chip computer, including most of a computer’s 

features, but in limited sizes. Today, there are hundreds of different types of 

microcontrollers, ranging from 8-pin devices to 40-pin, or even 64- or higher pin 

devices  It’s a microprocessor system which contains data and program memory, 

serial and parallel Inputs and Outputs (I/O), timers, and external and internal 

interrupts all integrated into a single chip that can be purchased for a relatively 

cheap price. The term microcomputer is used to describe a system that includes at 

minimum a microprocessor, program memory, data memory, and an Input-Output 



   
 

(I/O) device. Some microcomputer systems include additional components such 

as timers, counters, and analog-to-digital converters. Thus, a microcomputer 

system can be anything from a large computer having hard disks, floppy disks, 

and printers to a single-chip embedded controller. Therefore a microcontroller is 

meant to perform a specific task unlike the general-purpose computer which can 

do multiple tasks at once [10]. 

2.6 Arduino Microcontroller 

Arduino is an open source electronics prototyping platform composed of a 

microcontroller, a programming language, and an IDE. Arduino is a tool for 

making interactive applications, designed to simplify this task for beginners but 

still flexible enough for experts to develop complex projects. It has a number of 

connection sockets that can be wired up to external electronics, such as motors, 

relays, light sensors, laser diodes, loudspeakers, microphones, etc. They can 

either be powered through the USB connection from the computer or from a 9V 

battery. They can be controlled from the computer or programmed by the 

computer and then disconnected and allowed to work independently [11].  

 

 
 

Figure 2.18: Arduino UNO 

 



   
 

Arduino came up with an easy-to-learn programming language (derived from 

C++) that incorporates various complex programming functions into simple 

commands. The Arduino got its start at the Interaction Design Institute in the city 

of Ivrea, Italy, in 2005. Professor Massimo Banzi was looking for a low-cost way 

to make it easier for the design students there to work with technology. He 

discussed his problem with David Cuartielles, a researcher visiting from Malmö 

University in Sweden who was looking for a similar solution, and Arduino was 

born. A typical Arduino Uno is shown in Figure 2.18       

    

 

 

Figure 2.19: Arduino parts 

 

The current revision of the Arduino board is known as the Arduino Uno. This 

board is based on the ATmega328 microcontroller. It has fourteen digital 



   
 

input/output pins, six of which can be used as Pulse Width Modulation (PWM) 

outputs, along with six more analog input pins. Figure 2.19 illustrates the parts of 

the Arduino Uno. Table 2.1contains the technical specifications of the Arduino 

board [13]. 

 

2.6.1 Atmel AVR ATmega328 

This microcontroller comes from a company called Atmel and the chip is known 

as an AVR. It is slow in modern terms, running at only 16 MHz with an 8-bit 

core, and has a very limited amount of available memory, with 32 kilobytes of 

storage and   kilobytes of random access memory  Still it’s more than enough to 

handle a lot of useful projects [13]. 

2.6.2 Powering the Board 

The Arduino Uno can be powered via the USB connection or with an external 

power supply. The board can operate on an external supply of 6 to 20 volts. The 

easiest option is to use a 9V battery or power adaptor, as these are commonly 

available. This layout is shown in Figure 2.20 [13]. 

 

Figure 2.20: Arduino power configurations 



   
 

 
 

      Inputs and Outputs 

A. Digital pins: 

 Each of the 14 pins on the Uno can be used as an input or output. They operate at 

5 V with a maximum current of 40 mA. Each pin also has an internal pull-up 

resistor of 20–50 kOhms, although this is disconnected by default. Some pins 

have specialized functions. Pin 0 and 1 can be used to Receive (RX) and Transmit 

(TX) Transistor Transistor Logic (TTL) serial data. These pins are connected to 

the corresponding pins of the ATmega8U2 and hence to the USB Serial 

connection to your PC. Figure 2.21 shows these pins [13].   

 

                  

 

Figure 2.21: Arduino digital pins 

B. Analog Pins 

The Arduino has 6 analog pins. These pins are by default inputs, and can take up 

to 5 v which is divided to 1024 steps. Sensors which give an analog readings are 

connected to these pins such as, temperature sensors, light-intensity sensors, etc. 

Figure 2.22 shows these pins on the board [13]. 



   
 

 

Figure 2.22: Arduino analog pins 

2.6.4 Communicating with the Board: 

The ATmega328 provides UART TTL serial communication at 5 V, which is 

available on digital pins 0 (RX) and 1 (TX). The Arduino Uno has an 

ATmega8U2 chip on board that redirects this serial communication over USB, 

allowing the Arduino to appear as a virtual serial port to software on your PC 

      

2.6.5 Arduino Software 

Arduino C is used to program the Arduino this language is derived from the well-

known programming language the C++ and another language called Processing. 

The Arduino IDE in Figure 2.23 is equipped with a Serial Monitor which allows 

for debugging and communication with the Arduino board while it’s working on 

real-time, Figure 2.24 shows the Serial Monitor. The Serial Monitor can transmit 

and receive data with several baud rates up to 115200 bits-per-second [13]. 

2.7 Lithium Polymer (LiPo) Battery 

Lithium Polymer batteries are one of the newer battery types used for their high 

power to weight ratio. With a typical cell voltage of 3-7v, these batteries are 

lightweight yet powerful and are able to deliver large amounts of current very 

quickly. LiPo batteries have recently become much more affordable, making 

them a viable option for many robotic projects, though proper charging and 



   
 

discharging is required to prevent overheating. They are typically arranged in 

series packs with up to six cells, totaling 22.2v,  Figure 2.25 shows different sizes 

of LiPo Batteries [14]. 

 

Figure 2.23: Arduino IDE 
 

 



   
 

 

Figure 2.24: Serial monitor 
 

 

 

Figure 2.25: Different LiPo battery sizes 

2.8 Electric Motor 

An electric motor is a machine used to convert electrical energy into mechanical 

energy in the form of a rotational motion using a carefully arranged set of 

magnets and coil windings. Its action is based on the principle that when a current 

carrying-conductor is placed in a magnetic field it experiences a mechanical force 

whose direction is given by Fleming’s left hand rule  When its armature 



   
 

conductors are supplied with current from the supply mains, they experience a 

force tending to rotate the armature. Electric motors have two main types, Direct 

Current (DC) or Alternative Current (AC), according to the supply current it 

designed to work on. A permanent magnet brushed DC motor have brushes that 

physically touch a set of spinning electrical contacts, called commutators that are 

electrically connected to the armature coil winding, commutators and metal or 

carbon brushes transfer energy from the supply to the rotating armature coils. The 

typical permanent magnet DC motor has only one armature coil with two wires 

for operation, it have two magnets attached to the inside of the motor casing and 

the armature and commutator mounted to the output shaft the brushes are 

typically spring loaded to keep them securely mated to the commutator contacts 

while spinning. A motor typically has an output shaft attached to the armature, for 

mounting a wheel or gear on the end. Figure 2.26 shows a small permanent 

magnet DC motor 

      

 
 
 
 
 
 
 
 
 

Figure 2.26: Disassembled permanent magnet DC motor 

 

 



   
 

CHAPTER THREE 

SYSTEM MODELING AND DESIGN 

3.1 System Dynamics 

The precise and effective modelling of rolling contact between the two bodies 

(including longitudinal slip) is a rather difficult task. However, in this case, the 

slipping is neglected and we can use a simple solution shown in Figure 3.1. 

Rolling is reduced to translation along the   axis. 

 

 

 

Figure 3.1: Movement of the robot 

Using this configuration the problem of the self-balancing robot becomes exactly 

analogous to the inverted pendulum problem, i.e. the rod represents the robot 

structure and the cart represents the wheels. Thus, they can be analyzed similarly. 

A pendulum rod is free to oscillate around a fixed pivot point attached to a cart 

which is constrained to move in the horizontal movement. The rod is placed in the 



   
 

upright vertical position, which is an unstable equilibrium point. The control 

objective is to apply a force to move the cart so that the pendulum remains in the 

vertical unstable position. The system of interest is shown in Figure 3.2, where   

is the force in newton,   is the mass of the pendulum rod in kilograms,   is the 

mass of the moving cart in kilograms,    is the force applied to the cart in newton, 

   is the force due to friction in newton, g is the acceleration due to gravity 

in     , and   is the angle of the inverted pendulum measured from the vertical 

y-axis in radians. 

 3.2 System Mathematical Model  

Consider the free body diagrams shown in Figure 3.2. Furthermore, assume that 

the co-ordinates of the centroid (center of gravity) of the pendulum       , are 

given by  

                                                                                                                               

(     

                                                                                                                (     

 

Where   is the distance along the pendulum to the center of gravity and   is the x-

co-ordinate of the cart’s position  

Figure 3.2: Free body diagram 

 

 

For the horizontal motion of the cart, Newton’s second law of motion: 
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Can be written as: 
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Assume that the friction force can be written as 
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The horizontal motion of the pendulum can be written as 
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The derivative on the right in Equation (3.6) can be simplified by determining the 

derivative of    using Equation (3.1).The first derivative can be found as follows: 
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The second order derivative can be found by differentiating Equation (3.7), that 

is, 
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Combining Equation (3.8) with Equation (3.6) gives: 
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Using Equation (3.9), Equation (3.4) can be simplified to give: 
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The final form for the horizontal motion of the card can be given as: 
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For the vertical motion of the pendulum, Equation (3.2) can be written as: 
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Similarly to the horizontal case, the derivative on the right in Equation (3.12) can 

be written as follows: 
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Using Equation (3.14), Equation (3.12) can be rewritten to give: 
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Thus, the vertical reaction force,    , can be written as: 
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For any object, the relationship between the moment applied on an object and its 

angular acceleration is given by the following relationship: 

∑ ̅   
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Where    is the moment due to a given force and defined as: 

 ̅   ̅   ̅                                                                                                           

(      

where is the force vector, r is the position vector of the object with respect to the 

point about which the moments are being summed, and I is the angular 

momentum of the object. For the pendulum, summing the moment around its 

center of gravity, Equation (3.17) can be written as: 
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Substituting Equation (3.16) for    and Equation (3.9) for    into Equation (3.19) 

gives: 
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Simplifying Equation (3.20) gives: 
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Since: 
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Equation (3.21) can be simplified to give: 
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Thus, the final equation for the angular position is given as: 
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Therefore the equations of motion for the inverted pendulum on a moving cart 

can be written as: 
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3.3 Linearized Model of the System 



   
 

The model of the system given by Equation (3.25) is nonlinear and must be 

linearized in order to obtain a reasonable model for control purposes. 

Linearization will be performed about the point x = 0 m and θ = 0 radians. 

Furthermore, it will be assumed that since   is small (This is justifiable when 

controlling an object as it should not deviate greatly from the assumed steady-

state value), also by neglecting the friction constant we get 
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Under these assumptions, Equation (3.25) can be rewritten as: 
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Using the Laplace transform: 
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3.4 Permanent Magnet DC Motor Dynamics 

A motor is an electromechanical component that yields a torque output for a 

voltage input, that is, a mechanical output generated by an electrical input. The 



   
 

mathematical model of the DC PM motor is derived and the transfer function is 

evaluated. The schematic of the DC motor is shown in the following diagram.

 

Figure 3.3: Schematic and block diagrams of the DC motor 

 
In figure 3.3, a magnetic field is developed by stationary permanent magnets. A 

rotating circuit called the armature, through which current       flows, passes 

through this magnetic field at right angles and feels a force  

                                                                                                                

(      

Where B is the magnetic field strength and    is the length of the conductor. The 

resulting torque turns the rotor, the rotating member of the motor. 

There is another phenomenon that occurs in the motor: A conductor moving at 

right angles to a magnetic field generates a voltage at the terminals of the 

conductor equals  

                                                                                                                       

(      

Where    is the voltage and   is the velocity of the conductor normal to the 

magnetic field. Since the current-carrying armature is rotating in a magnetic field, 

its voltage is proportional to speed. Thus, 



   
 

         
      

  
                                                                                                      

(      

We call       the back electromotive force (back    ),    is a constant of 

proportionality called the back     constant; and               is the 

angular velocity of the motor. Taking the Laplace transform, we get 
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The relationship between the armature current      , the applied armature 

voltage        and the back           is found by writing a loop equation around 

the Laplace transformed armature circuit in figure 3.3. 
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The torque developed by the motor is proportional to the armature current; thus 
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Where    is the torque developed by the motor and    is a constant of 

proportionality, called the motor torque constant, which depends on the motor and 

magnetic field characteristics. In a consistent set of units, the value of    is equal 

to the value of   . Rearranging equation (3.36) yields 
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To find the transfer function of the motor, we first substitute equations (3.34) and 

(3.37) into (3.35), yielding 
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Now we must find       in terms of       if we are to separate the input and 

output variables and obtain the transfer function      /     . 

Figure 2.36 shows a typical equivalent mechanical loading on a motor.    is the 

equivalent inertia at the armature and includes the armature inertia and might also 

include, the load inertia reflected to the armature. 

 

 

 

 

 

Figure 3.4: A typical equivalent mechanical loading on the motor 

   is the equivalent viscous damping at the armature and includes both the 

armature viscous damping and might also include the load viscous damping 

reflected to the armature. 
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Rearranging equation (3.39) yields 
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Substituting equation (3.40) in Eq. (3.38) we get  
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Eventually we get  
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By neglecting    we get      
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3.5 System Controller Design 

To simulate the impulse response of the transfer function, SIMULINK is used. 

The tuning of the PID controller was done manually using SIMULINK PID 

Controller block, as shown in Figure 3.5: 

 

Figure 3. : SIMULINK block diagram of the system 

Manual tuning of the gain settings is the simplest method for setting the PID 

controls. However, this procedure is done actively (the PID controller turned on 

and properly attached to the system) and requires some amount of experience to 

fully integrate. To tune PID controller manually, first the integral and derivative 

gains are set to zero. Increase the proportional gain until observing oscillation in 

the output. After the proportional gain is set, the derivative gain can then be 

increased. Derivative gain will reduce overshoot and damp the system quickly to 

the set point value or near it. If the derivative gain increased too much, large 

overshoot will be seen. Once the derivative gain is set, increase the integral gain 

until any offset is corrected for on a time scale appropriate for the system. If the 

gain increased too much, significant overshoot of the set point value and 

instability in the circuit will be observed. 



   
 

 

Table 3.1: Manual tuning of PID controller 
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CHAPTER FOUR 

SYSTEM IMPLEMENTATION AND 

EXPEREMENTAL RESULTS 

4.1 System Practical Model 

The system’s practical model is divided into two parts; the mechanical part 

which consists of wooden shelves, Teflon wheels, iron poles and nuts, and the 

electrical part which consists of DC geared motor, LiPo battery, Arduino 

microcontroller, IMU sensor, and Motor Driver.  

4.1.1 Mechanical part 

The mechanical part of the robot consists of the body and two wheels as shown 

in Figure 4.1. The material used to make the body is wood. It was cut into 

three shelves using CNC machine. The shelves were connected together using 

iron poles and nuts. Zippers were used to fasten the electrical parts to the 

shelves. The wheels were made of a material called Teflon, it is a white solid 

material similar to plastic in shape and density which is easy to machine. The 

wheels were cut by a lathe with an 80mm diameter. The dimensions of the 

physical model is shown in Figure 4.1.  



   
 

 

Figure 4.1: Mechanical parts and dimensions 

   .2 Electrical part 

The electrical part of the robot consists of DC geared motor with encoder, 

LiPo battery, Arduino microcontroller, IMU, and Motor Driver. 



   
 

A. DC Geared Motor  

The motors used for this robot are normal 12 volts DC motors. They are 

coupled with a gear box to reduce their speed and increase the torque. The 

encoder is mounted on the shaft of the motor to measure the speed and 

direction of the motor shaft. The specifications of the motor is listed in Table 

     The encoder connectors are hall sensor    , hall sensor GND, hall sensor 

A     , and Hall sensor B     . It works on voltage from 4.5V to 24V with 

20mA. 

Table    : DC motor specifications 

Rated voltage 12VDC 

No load speed 300r/min 

No load current 140mA 

Rated torque 190gf.cm 15.7mN.m 

Rated current 800mA 

Rated speed 2200r/min 

Stall torque 640gf.cm 62.7mN.m 

Stall current 3000mA 

 

B. Lithium Polymer Battery 

The battery used to power the robot as shown in Figure 4.5 is a Lithium-

Polymer (LiPo) battery, which is a rechargeable battery. Table 4.2 lists the 

battery specifications. 

Table 4.2: LiPo battery specifications 

 

 

 

 

 

 

Capacity 2200mAh 

Voltage 3S/11.1V 

Discharge Rate 25C 

Max Cont. Current 55A 

Max Burst Current 110A 

Weight 184g 

Size 106*34*24mm 



   
 

 

C. Arduino UNO 

The Arduino UNO is a microcontroller board based on ATmega328P 

microcontroller, Table 4.3 contains the technical specifications of the Arduino 

board. 

Table 4.3: Arduino board specifications 

Microcontroller ATmega328 

Operating Voltage 5V 

Input Voltage (Recommended) 7 – 12 V 

Input Voltage (Limits) 6 – 20 V 

Digital I/O Pins    (6 provide 

PWM) 

Analog Input Pins   

DC Current per I/O Pin 40 mA 

DC Current for 3.3 V Pin 50 mA 

 

D. The Inertia Measurement Unit: 

The IMU is used to measure the tilted angle of the robot. The pin (AD0) in the 

Arduino selects between     address (0x68) and (0x69). That makes it 

possible to have two of these sensors in a project. The MPU6050 chip needs 

3.3V but a voltage regulator on the GY-521 board allows to give it up to 5V. 

The gyro module communicates with the Arduino through     serial 

communication via the Serial Clock (SCL) and Serial Data (SDA).  

E. Motor Driver 

Figure     shows the pins of the motor driver break-out board, the L298n is an 

Integrated Circuit (IC) used to derive motors, relays and any inductive load, 

the IC is soldered to a break-out board with screw terminals for easy usage. 



   
 

 

Figure 4. : Motor driver 

   DC motor 1 "+" or stepper motor A+ 

   DC motor 1 "-" or stepper motor A- 

   12V jumper - remove this if using a supply voltage greater than 12V 

DC. This enables power to the onboard 5V regulator. 

   Connect your motor supply voltage here, maximum of 35V DC. 

Remove 12V jumper if >12V DC 

   GND 

   5V output if 12V jumper in place, ideal for powering your Arduino 

(etc.) 

   DC motor 1 enable jumper. Leave this in place when using a stepper 

motor. Connect to PWM output for DC motor speed control 

   IN1 

   IN2 

    IN3 

    IN4 

    DC motor 2 enable jumper. Leave this in place when using a stepper 

motor. Connect to PWM output for DC motor speed control. 

    DC motor 2 "+" or stepper motor B+ 

    DC motor 2 "-" or stepper motor B- 

 

F. Electrical System Connections 

IMU is connected to pins A5 (SCL) and pin A4 (SDA) via   C protocol, the 

signals from both gyroscope and accelerometer are fused together by using a 

complementary filter as shown in Figure 4. . The desired ratio of 

gyro/accelerometer readings was found to be: 

                                                                          
(     



   
 

The two geared DC motors are connected to a driver which is connected to 

pins 6,8 and 9 for right motor and pins 10,11 12 for left motor. The difference 

between the angle and the desired set point angle is the PID input and its 

output is send to the motors via the drivers as a PWM signals. 

 

 

 

Figure 4  : Electrical system connections 

4.2 Real Time Plotting Results 

This section demonstrates the results of a real time plotting using 

MATLAB (See Appendix B) and Arduino of two-wheeled self-balance robot 

system using design of PID controller with manual tuning method. These plots 

represents the system’s behavior as the parameters of the PID controller (  , 

   and   ) varies. 

When substituting the values of the controller with                the 

real time plotting as shows in Figure 4. . The robot tries to balance but without 

use. The system is unstable and has poor characteristics, 



   
 

 

 

 

 

 

 

 

 

 

 

Figure 4. : System response with                

By substituting the values of the controller with                   the 

real time plotting as shows in Figure 4. . The system starts to oscillate but still 

fall over and not reaching the desired response. 

 

 

 

 

 

 

 

 

 

 

Figure 4. : System response with                   

 

By substituting the values of the controller with                 the 

real time plotting as shows in Figure 4. . The robot oscillates very fast, but the 

robot doesn’t fall, unless it was pushed hard   

 



   
 

 

Figure 4. : System response with                 

 

 

  



   
 

CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

A mathematical model of the two-wheeled self-balance robot system was 

developed by using physical and electrical laws. A simplified mathematical 

model was derived by system parameters after linearizing the model. The 

controller parameters values (        ) were obtained by using manual tuning 

method from practical model so as to perform best system response. From 

experimental results, it is found that the best controller parameters which gave 

the best response of the system are:                     . 

After observing the robot’s practical experiments, it was noticed that there was 

high oscillation around the set point, and the robot never settles down. It was 

also noticed that when the robot passes a certain angle the system becomes 

unstable and can’t regain its balance  The results obtained from the manual 

tuning were acceptable and as had been expected. 

     Recommendations 

 - Use of fuzzy control or neural networks to adapt the PID parameters. 

 - Design a linear quadratic regulator to maximize performance. 

 - Use of wireless control. 

 - Implementation of a Kalman filter to obtain smoother readings from the 

IMU. 
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APPENDIX A 

Arduino C code for two-wheeled self-balance robot system 

 

#include <Wire.h> 

#define RESTRICT_PITCH  

 

//******************************************************** 

// connect motor controller pins to Arduino digital pins 

// Right motor  

int PWMA = 6; 

int ForwardR = 8; 

int BackwardR = 9; 

// Left motor  

int PWMB = 10; 

int ForwardL = 11; 

int BackwardL = 12; 

//********************************************************* 

 

double accX, accY, accZ; 

double gyroX, gyroY, gyroZ; 

 

double gyroXangle, gyroYangle; // Angle calculate using the gyro only 

double compAngleX, compAngleY; // Calculated angle using a complementary 

filter 

uint32_t timer; 

 

unsigned long dt; 



   
 

unsigned long T=4000; 

double pInput= 0; 

double Input = 0; 

double Output; 

double Kp = 40; 

double Ki = 1; 

double Kd = 1; 

double p, i = 0, d;   

double angle; 

double power; 

uint8_t i2cData[14];  

int A,B,C,D,ea=0,eb=0,ec=0,ed=0,last=1; 

  

void setup() { 

  Wire.begin();             //Start I2C as master 

   

#if ARDUINO >      

  Wire.setClock(400000UL); // Set I2C frequency to 400kHz 

#else 

  TWBR = ((F_CPU / 400000UL) - 16) / 2; // Set I2C frequency to 400kHz 

#endif 

 

  i2cData[0] = 7; // Set the sample rate to 1000Hz - 8kHz/(7+1) = 1000Hz 

  i2cData[1] = 0x00; // Disable FSYNC and set 260 Hz Acc filtering, 256 Hz 

Gyro filtering, 8 KHz sampling 

  i2cData[2] = 0x00; // Set Gyro Full Scale Range to ±250deg/s 

  i2cData[3] = 0x11; // Set Accelerometer Full Scale Range to ±16g 

  while (i2cWrite(0x19, i2cData, 4, false)); // Write to all four registers at once 



   
 

  while (i2cWrite(0x6B, 0x01, true)); // PLL with X axis gyroscope reference 

and disable sleep mode 

  Serial.begin(250000);                                                    

  //********************************************* 

  // set all the motor control pins to outputs 

  pinMode(PWMA, OUTPUT); 

  pinMode(PWMB, OUTPUT); 

  pinMode(ForwardR, OUTPUT); 

  pinMode(BackwardR, OUTPUT); 

  pinMode(ForwardR, OUTPUT); 

  pinMode(BackwardR, OUTPUT);  

  pinMode(2,INPUT); 

   

  dt = micros() + T;                         

} 

 

void loop(){ 

  // Manual tuning using push-buttons 

 A=digitalRead(A0);    

 B=digitalRead(A1); 

 C=digitalRead(A2); 

 D=digitalRead(2); 

 

if(A)ea=1; 

if(B)eb=1; 

if(C)ec=1; 

if(D)ed=1; 

 



   
 

if(!A && ea) 

{ 

ea=0; 

Kp+=5; 

last=1; 

} 

if(!B && eb) 

{ 

eb=0; 

Ki+=0.2; 

last=2; 

} 

if(!C && ec) 

{ 

ec=0; 

Kd+=0.1; 

last=3; 

} 

if(!D && ed) 

{ 

ed=0; 

if(last==1)Kp-  ; 

if(last==2)Ki-    ; 

if(last==3)Kd-    ; 

} 

 

angle = IMUReading()-5.055;   // Balance angle is 5.055 degree  



   
 

                              // Subtracting it from IMUReading to get PID input 

Serial.println(angle); 

 

Input = angle; 

 

d = (Input - pInput) / T ;    // Derivative term 

 

i = i + Input * T;           // Integral term 

i = constrain(i, -  ,    ; 

 

Output = Kp * Input + Kd * d + Ki * i;   // PID output 

Output = constrain(Output, -   ,     ; 

 

pInput = Input;                         // Previous input for derivative term 

 

 if(abs(Output) < 70)                  // Motors won't start rotating until a certain 

PWM is reached 

 power = 0;                            // To make them more synchronised 

 else power = abs(Output); 

  

if(angle < -2 & angle > -40){         // Don't ballance beyond certain angles 

   

  motor(1,2, power);                  // Backward direction 

  motor(2,2, power); 

} 

else if(angle > 2 & angle < 40){ 

  

  motor(1,1,power);                   // Forward direction 



   
 

  motor(2,1,power); 

} 

else{ 

  motor(1,0,0);                      // Stop motors 

  motor(2,0,0); 

} 

 

while(dt>micros());                 // wait until the loop completes the sampling time  

                                     

dt = micros()+T; 

 

} 

 

 

 

double IMUReading(){ 

  // Update all the values  

  while (i2cRead(0x3B, i2cData, 14)); 

  accX = ((i2cData[0] << 8) | i2cData[1]); 

  accY = ((i2cData[2] << 8) | i2cData[3]); 

  accZ = ((i2cData[4] << 8) | i2cData[5]); 

   

  gyroX = (i2cData[8] << 8) | i2cData[9]; 

  gyroY = (i2cData[10] << 8) | i2cData[11]; 

  gyroZ = (i2cData[12] << 8) | i2cData[13]; 

 

  double dt = (double)(millis() - timer) / 1000; // Calculate delta time 



   
 

  timer = millis(); 

 

  #ifdef RESTRICT_PITCH  

  double roll  = atan2(accY, accZ) * RAD_TO_DEG; // Converting the readings 

to degrees 

  double pitch = atan(-accX / sqrt(accY * accY + accZ * accZ)) * 

RAD_TO_DEG; 

#else  

  double roll  = atan(accY / sqrt(accX * accX + accZ * accZ)) * 

RAD_TO_DEG; 

  double pitch = atan2(-accX, accZ) * RAD_TO_DEG; 

#endif 

 

  double gyroXrate = gyroX / 131.0; // Convert to deg/s 

  double gyroYrate = gyroY / 131.0; // Convert to deg/s 

 

gyroXangle += gyroXrate * dt; // Calculate gyro angle without any filter 

gyroYangle += gyroYrate * dt; 

 

compAngleX = 0.93 * (compAngleX + gyroXrate * dt) + 0.07 * roll; // 

Calculate the angle using a Complimentary filter 

compAngleY = 0.93 * (compAngleY + gyroYrate * dt) + 0.07 * pitch; 

 

#ifdef RESTRICT_PITCH 

  // This fixes the transition problem when the accelerometer angle jumps 

between -180 and 180 degrees 

  if ((roll < -90 && compAngleX > 90) || (roll > 90 && compAngleX < -     { 

   

    compAngleX = roll; 



   
 

  

    gyroXangle = roll; 

  } else 

     

  if (abs(compAngleX) > 90) 

    gyroYrate = -gyroYrate; // Invert rate, so it fits the restriced accelerometer 

reading 

   

#else 

  // This fixes the transition problem when the accelerometer angle jumps 

between - 80 and 180 degrees 

  if ((pitch < -90 && compAngleY > 90) || (pitch > 90 && compAngleY < -     

{ 

   

    compAngleY = pitch; 

   

    gyroYangle = pitch; 

  } else 

     

  if (abs(compAngleY) > 90) 

    gyroXrate = -gyroXrate; // Invert rate, so it fits the restriced accelerometer 

reading 

  

#endif 

 

  // Reset the gyro angle when it has drifted too much 

  if (gyroXangle < -180 || gyroXangle > 180) 

    gyroXangle = compAngleX; 

  if (gyroYangle < -    || gyroYangle > 180) 



   
 

    gyroYangle = compAngleY; 

 

    return compAngleY; 

  

} 

 

 

void motor(int motor , int dir , int sped){ 

  // Motor controlling function 

  switch(motor){ 

    case 1:                     // Right motor        

    if(dir == 0){      

  digitalWrite(ForwardR, LOW);  // No Direction 

  digitalWrite(BackwardR, LOW); 

    } 

    else if(dir == 1){ 

  digitalWrite(ForwardR, HIGH);  // Forward direction 

  digitalWrite(BackwardR, LOW); 

  analogWrite(PWMA, sped);      // PWM for motor speed 

    } 

    else if(dir == 2){           

  digitalWrite(ForwardR, LOW);     // Backward direction 

  digitalWrite(BackwardR, HIGH); 

  analogWrite(PWMA, sped); 

    } 

    break; 

 



   
 

    case 2:                        // Left motor 

    if(dir == 0){ 

  digitalWrite(ForwardL, LOW); 

  digitalWrite(BackwardL, LOW); 

    } 

    else if(dir == 1){ 

  digitalWrite(ForwardL, HIGH); 

  digitalWrite(BackwardL, LOW); 

  analogWrite(PWMB, sped); 

    } 

    else if(dir == 2){ 

  digitalWrite(ForwardL, LOW); 

  digitalWrite(BackwardL, HIGH); 

  analogWrite(PWMB, sped); 

    } 

    break; 

  } 

  

} 

 

  



   
 

APPENDIX B 

MATLAB m.file for real time plotting 

 

%Real time plotting 

clc 

clear all 

prev = 0; 

s = serial('COM4','BaudRate'            create 

serial communication object on port COM3 

 

fopen(s); 

x=0; 

t(1)=0; 

flushinput(s);  

tic; 

while(~isempty(s) && toc <= 30) 

  

   x = x+1; 

   t(x) = toc; 

   y(x) = str2double(fgets(s)) 

   drawnow 

   plot(t,y,'linewidth'    

   title('Real-Time Pitch Angle'); 

   xlabel('time (seconds)'); 

   ylabel('Pitch Angle (Degrees)'); 

   axis([0 30 -         

   flushinput(s);  

   grid on 

    

end 

fclose(s); 

delete(s); 

clear all   % end communication with arduino 

 

 


