
i

Sudan University of Science and Technology

College of Engineering

School of Electrical and Nuclear

Engineering

DESIGN AND IMPLEMENTATION OF TWO

WHEELED SELF BALANCING ROBOT

USING PID CONTROLLER

A Project Submitted In Partial Fulfillment for the Requirements

of the Degree of B.Sc. (Honor) In Electrical Engineering (Control)

Prepared By:

 Osman Mohammed Elamin Khidir Ahmed

 El-Amin Omer Mohammed El-Amin

 Asaad Salem Abdurraheem Salem

 Ahmed Mohammed Osman Mohammed

Supervised By:

Dr. Awadalla Taifour Ali

October 201

i

 الآية

 قال تعالى :

ii

DEDICATIONS

This study is lovingly dedicated to our parents for their emotional

and financial support, our brothers, our sisters and our friends

whose has been constant source of inspiration for us. They have

given us the drive and discipline to tackle any task with enthusiasm

and determination. Without their love and support this project

would not have been made possible.

iii

ACKNOWLEDGEMENT

We wish to express our profound gratitude to our Supervisor

assistant professor Awadalla Taifour Ali for his valuable

guidance, continues encouragement, worthwhile suggestions

and constructive ideas throughout this project. His support,

pragmatic analysis and understanding made this study a success

and knowledgeable experience for us.

iv

Abstract

The dynamics of the two-wheeled self-balancing robot system is similar to that of

the inverted pendulum, which is unstable and prone to tip over. The inverted

pendulum is a classic problem in dynamics and control theory, and is used as a

benchmark for testing control strategies and algorithms. The system includes an

angle sensor, two geared DC motors, two motor drivers and an Arduino. The

basic idea is to use the torque generated by the motors to maintain the structure’s

vertical equilibrium state.

In this project the model is obtained by employing physical laws. This model

despite its simplicity can represent a typical real system such as Segway Personal

Transporter. The system is nonlinear and unstable, but can be linearized for small

angles.

The Arduino microcontroller acquires the readings from the angle sensor and

compare it with the desired angle. A PID algorithm computes the exact pulse

width modulated signal which is fed to the motors.

The instant response of the system has been plotted using MATLAB software, by

interfacing Arduino with computer. System response to different values of

controller parameters were obtained and the parameters that gave the best

performance of the system were chosen in the final implementation. The results

showed that the model is not yet reliable. The reasons for this are discussed and

recommendations for future development are list.

v

vi

TABLE OF CONTENTS

Title Page No.
 i الآية

DEDICATION ii

ACKNOWLEDGEMENT iii

ABSTRACT iv

 v مستخلص

TABLE OF CONTENTS vi

LIST OF FIGURES viii

LIST OF TABLES x

LIST OF SYMBOLS xi

LIST OF ABBREVIATIONS xiii

CHAPTER ONE

INTRODUCTION
General Concepts
Problem Statement
Objectives
Methodology
Layout

CHAPTER TWO

THEORETICAL BACKGROUND AND LITERATURE REVIEW

 Control System

2.2 Controllers

2.3 Robot Overview
2.4 Inertia Measurement Unit (IMU) Sensor

2.5 Microcontroller

2.6 Arduino Microcontroller

2.7 Lithium Polymer (LiPo) Battery

2.8 Electric Motor

CHAPTER THREE

SYSTEM MODELING AND DESIGN
 System Dynamics

 System Mathematical Model

3.3 Linearized Model of the System

3.4 Permanent Magnet DC Motor Dynamics

3.5 System Controller Design

vii

CHAPTER FOUR

SYSTEM IMPLEMENTATION AND EXPEREMENTAL RESULTS

4.1 System Practical Model

4.2 Real Time Response

CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS
5.1 Conclusion
5.2 Recommendations

REFERENCES

APPENDIX A

APPENDIX B

viii

LIST OF FIGURES

Figure Title Page No.

 Open loop control system

 Closed-loop system

 Simple proportional controller

 Characteristics of a proportional controller

 Non-zero control signal when error is zero

 Interpretation of derivative action as predictive control

 Air robots

 Water robots

 Land robots

 Legged robots

 Two wheeled self-balancing robot

 Pitch axis

 Inertia Measurement Unit (IMU)

 Gyroscope

 Gyroscope in an airplane

 Microscopic gyroscope

 Microscopic accelerometer

 Arduino UNO

 Arduino parts

ix

 Arduino power configurations

 Arduino digital pins

 Arduino analog pins

 Arduino IDE

 Serial monitor

 Different LiPo battery sizes

 Disassembled permanent magnet DC motor

 Movement of the robot

 Free body diagram

 Schematic and block diagrams of the DC motor

 A typical equivalent mechanical loading on the motor

 SIMULINK block diagram of the system

 Mechanical parts and dimensions

 Motor driver

 Electrical system connections

 System response with

 System response with

 System response with

x

 LIST OF TABLES

Table Title Page No.

 Manual tuning of PID controller

 DC motor specifications

 LiPo battery specifications

 Arduino board specifications

xi

LIST OF SYMBOLS

 Proportional gain

 Integral gain

 Derivative gain

 Signal Error

 Control Signal

 Force applied to cart

 Horizontal reaction force at the pivot point

 Vertical reaction force at the pivot point

 Horizontal displacement

 Vertical displacement

 Horizontal displacement of the center of gravity

 Vertical displacement of the center of gravity

 Mass of the moving cart

 Mass of the pendulum

 Distance between pendulum mass center and pivot point

 Angular displacement

 Force due to friction

 Gravity acceleration

 Viscous friction coefficient

 Moment of inertia of the pendulum

xii

 Magnetic field strength

 Length of the conductor

 The torque developed by the motor

 Armature current

 Electromotive force (back emf)

 Back emf constant

 Angular displacement of the motor

 The applied armature voltage

 Armature resistance

 Motor torque

 Motor torque constant

 Equivalent viscous damping at the armature

 Equivalent inertia at the armature

 Armature inductance

xiii

LIST OF ABBREVIATIONS

LTI Linear Time Invariant

IMU Inertia Measurement Unit

SISO Single Input, Single Output systems

MIMO Multiple Inputs and Multiple Outputs

A/D Analog-to-Digital

P Proportional controller

PD Proportional Derivative controller

PI Proportional Integral controller

PID Proportional Integral Derivative

AUAV Autonomous Unmanned Aerial Vehicle

LQR Linear Quadratic Regulator

ICCA International Conference on Control and Automation

Pot Potentiometer

I/O Input-Output

PWM Pulse Width Modulation

CNC Computer Numerical Cutting

RX Receiver mode

TX Transmitter mode

SCL Serial Clock

SDA Serial Data

IC Integrated Circuit

CHAPTER ONE

INTRODUCTION

1.1 General Concepts

The self-balancing robot is a two wheeled structure. The idea behind it can be put

in this way; when the structure leans forwards or backwards by certain angle, it

should drive both wheels in the same direction (i.e. either forwards or backwards)

in some speed and acceleration that is proportional to that angle to keep itself in

the upright position. The robot can sense tilt with the help of different sensors,

then drives the wheels using a couple of motors. All calculations and processing

is done by some sort of digital device like a microcontroller unit. Another feature

of the self-balancing robot is that it can drive the two wheels independent of each

other. In this case, it can turn left or right or even circle around its own center.

These robots have the ability to carry and balance different objects on top of them

without losing equilibrium. And some other designs may provide wireless

communication for remote control. These robots are commercially available in

the form of man driven vehicles well-known as Segway’s PT (the name Segway

is derived from the word segue, which means smooth transition. PT is an

abbreviation for personal transporter). Another example might be the hover board

for entertainment purposes.

 Problem Statement

The idea of the self-balancing robot is related to the inverted pendulum cart (cart

and pole) which is a classic problem in dynamics and control theory. Whereas a

normal pendulum is stable when hanging downwards, an inverted pendulum is

inherently unstable, and must be actively, precisely and quickly balanced in order

to remain upright. That’s the case in the self-balancing robot. Trying to remain

stable and retrieve its former position when it’s objected to external force (i.e.

Nudges, Pokes, etc.). Seeking stability while moving between two points is

another challenging matter and might cause losing consistency and as a result the

whole thing will eventually fall. The problem is to ensure fast and precise

response in order to achieve stability and high performance and also regain its

previous location reliably.

 Objectives

 Development of an approximate mathematical model of the two-wheel robot

as a Linear Time Invariant (LTI) system for the purpose of design, simulation

and implementation based on theory of the inverted pendulum.

 Implement an appropriate filter to get useful readings from the Inertia

Measurement Unit (IMU) for the feedback signal.

 Design PID controller to stabilize the system and achieve the desired response.

 Simulation of proposed system to show whether the system is capable of

meeting the desired specifications that it has been designed for.

 Implement the real-time response of the robot.

 Implementation of the two-wheeled self-balancing robot.

1.4 Methodology

 Study of previous related works.

 Study the nature of the inverted pendulum problem and for the purposes of

modelling.

 System simulation; done with MATLAB software package.

 Analyzing the obtained model to check for stability without a controller and

feedback.

 Study and understand the behaviors of the IMU for modeling and simulation.

 Design a model of the structure using AutoCAD software and build the two-

wheeled self-balancing robot in the final implementation.

 PID controller parameters; tuned with trial and error method. .

 Build an Arduino based controller and write a PID algorithm using the

Arduino IDE.

 Layout

Chapter one provides a brief introduction to self-balancing robot and outlines the

idea behind the way it balances. Problem statement addresses its relation to the

inverted pendulum and states the problems that ought to be solved as an outcome

to this study. Then our main goals are mentioned in the Objectives. The steps to

achieve these objectives are listed in the Methodology. Chapter Two gives a

literature review of self-balancing robots. Runs through robots in general

narrowing down to self-balancing robot. A summarized review of the used parts

(Arduino, DC Motor, sensors, etc.) is also included. The concept behind the PID

controller is explained and the reasons of why we preferred it over other

controllers. Chapter Three shows the fabrication process and the extraction of the

robot parameters (i.e. mass, length, moment of inertia, etc.).A mathematical

model of the system is also provided in this chapter. Chapter Four focuses on

analysis and design, the study of stability, steady-state error and transient

response of the robot. The software part includes the program flow chart and

Arduino code. Real-time response of how the system behaves is presented in the

experimental results. Chapter Five provides the conclusion and recommendations.

CHAPTER TWO

THEORETICAL BACKGROUND AND LITERATURE

REVIEW

2.1 System Control

Control engineering is concerned with controlling a dynamic system or plant. A

dynamic system can be a mechanical system, an electrical system, a fluid system,

a thermal system, or a combination of two or more types of system. The behavior

of a dynamic system is described by differential equations. Given the model

(differential equation), the inputs and the initial conditions, we can easily

calculate the system output. A plant can have one or more inputs and one or more

outputs. Generally a plant is a continuous-time system where the inputs and

outputs are also continuous in time. For example, an electromagnetic motor is a

continuous-time plant whose input (current or voltage) and output (rotation) are

also continuous signals. A control engineer manipulates the input variables and

shapes the response of a plant in an attempt to influence the output variables such

that a required response can be obtained. A plant is an open-loop system where

inputs are applied to drive the outputs. For example, a voltage is applied to a

motor to cause it to rotate. In an open-loop system there is no knowledge of the

system output. The motor is expected to rotate when a voltage is applied across its

terminals, but we do not know by how much it rotates since there is no

knowledge about the output of the system. If the motor shaft is loaded and the

motor slows down there is no knowledge about this. A plant may also have

disturbances affecting its behavior and in an open-loop system there is no way to

know, or to minimize these disturbances. Figure 2.1 shows an open-loop system

where the system input is expected to drive the system output to a known point

(e.g. to rotate the motor shaft at a specified rate). This is a Single-Input, Single-

Output (SISO) system, since there is only one input and also only one output is

available In general, systems can have Multiple Inputs and Multiple

Figure 2.1: Open loop control system

Outputs (MIMO). Because of the unknowns in the system model and the effects

of external disturbances the open-loop control is not attractive. There is a better

way to control the system, and this is by using a sensor to measure the output and

then comparing this output with what we would like to see at the system output.

The difference between the desired output value and the actual output value is

called the error signal. The error signal is used to force the system output to a

point such that the desired output value and the actual output value are equal. This

is termed closed-loop control, or feedback control. Figure 2.2 shows a typical

closed-loop system. One of the advantages of closed-loop control is the ability to

compensate for disturbances and yield the correct output even in the presence of

disturbances. A controller (or a compensator) is usually employed to read the

error signal and drive the plant in such a way that the error tends to zero. Closed-

loop systems have the advantage of greater accuracy than open-loop systems.

They are also less sensitive to disturbances and changes in the environment. The

time response and the steady-state error can be controlled in a closed-loop system

Figure 2.2: Closed-loop system

Sensors are devices which measure the plant output. For example, a thermistor is

a sensor used to measure the temperature. Similarly, a tachogenerator is a sensor

used to measure the rotational speed of a motor, and an accelerometer is used to

measure the acceleration of a moving body. Most sensors are analog devices and

their outputs are analog signals (e.g. voltage or current). These sensors can be

used directly in continuous-time systems. For example, the system shown in

Figure 2.2 is a continuous-time system with analog sensors, analog inputs and

analog outputs. Analog sensors cannot be connected directly to a digital

computer. An Analog-to-Digital (A/D) converter is needed to convert the analog

output into digital form so that the output can be connected to a digital computer.

Some sensors (e.g. accelerometer sensors) provide digital outputs and can be

directly connected to a digital computer. With the advent of the digital computer

and low-cost microcontroller processing elements, control engineers began to use

these programmable devices in control systems. A digital computer can keep

track of the various signals in a system and can make intelligent decisions about

the implementation of a control strategy [1].

2.2 Controllers

The concept of a control system is to sense deviation of the output from the

desired value and correct it, till the desired output is achieved. The deviation of

the actual output from its desired value is called an error. The measurement of

error is possible because of feedback. The feedback allows us to compare the

actual output with its desired value to generate the error. The error is denoted

as . The desired value of the output is also called reference input or a set

point. The error obtained is required to be analyzed to take the proper corrective

action. The controller is an element which accepts the error in some form and

decides the proper corrective action. The output of the controller is then applied

to the process or final control element. This brings the output back to its desired

set point value. The controller is the heart of a control system. The accuracy of

the entire system depends on how sensitive is the controller to the error detected

and how it is manipulating such an error. The controller has its own logic to

handle the error. Now a days for better accuracy, the digital controllers such as

microprocessors, microcontrollers, and computers are used. Such controllers

execute certain algorithm to calculate the manipulating signal [2].

2.2.1 Classification of controllers

The classification of the controllers is based on the response of the controller and

mode of operation of the con

troller. For example, in a simple temperature control of a room, the heater is to be

controlled. It should be switched on or off by the controller when temperature

crosses its set point. Such an operation of the controller is called discontinuous

operation and the mode of operation is called discontinuous mode of controller.

But in some process control systems, simple on/off decision is not sufficient. For

example, controlling the steam flow by opening or closing the valve. In such case

is said to be operating in a continuous mode. Thus, the controllers are basically

classified as discontinuous controllers and continuous controllers. The

discontinuous mode controllers are further classified as ON-OFF controllers and

multi-position controllers. The continuous mode controllers are further classified

as proportional controllers, integral controllers and derivative controllers. Some

continuous mode controllers can be combined to obtain composite controller

mode. The examples of such controllers are Proportional plus Integral (PI),

Proportional plus Derivative (PD) and Proportional plus Integral plus Derivative

(PID) controllers. The most of the controllers are placed in the forward path of

control system. But in some cases, input to the controller is controlled through a

feedback path. The example of such a controller is rate feedback controller [2].

2.2.2 Continuous controller modes

In the discontinuous controller mode, the output of the controller is discontinuous

and not smoothly varying. But in the continuous controller mode, the controller

output varies smoothly proportional to the error or to some form of the error.

Depending upon which form of the error is used as the input to the controller to

produce the continuous controller output, these controllers are classified as

proportional control mode, integral control mode, and derivative control mode

 A. PID controller

The PID controller has three terms. The proportional term P corresponds to

proportional control. The integral term I gives a control action that is

proportional to the time integral of the error. This ensures that the steady

state error becomes zero. The derivative term D is proportional to the time

derivative of the control error. This term allows prediction of the future

error [3].

 B. Proportional control mode

Figure 2.3: Simple proportional controller

The reason why on-off control often gives rise to oscillations is that the

system overreacts because a small change in the error will make the

manipulated variable change over the full range. This effect is avoided in

proportional control where the characteristic of the controller is

proportional to the control error for small errors. Figure 2.4 shows the

characteristic of a proportional controller. The controller is thus

characterized by the nonlinear function Shown in Figure 2.4.

The proportional controller can be suitable where: Manual reset of the

operating point is possible, Load changes are small, and the dead time

exists in the system is small [3].

Figure 2.4: Characteristics of a proportional controller

 C. Integral control mode

In the proportional control of a plant whose transfer function does not

possess an integrator 1s, there is a steady-state error, or offset, in the

response to a step input. Such an offset can be eliminated if the integral

control action is included in the controller. In the integral control of a plant,

the control signal—the output signal from the controller—at any instant is

the area under the actuating-error-signal curve up to that instant. The

control signal can have a nonzero value when the actuating error

signal is zero, as shown in Figure 2.5. This is impossible in the case of

the proportional controller, since a nonzero control signal requires a

nonzero actuating error signal. (A nonzero actuating error signal at steady

state means that there is an offset). Note that integral control action, while

removing offset or steady-state error, may lead to oscillatory response of

slowly decreasing amplitude or even increasing amplitude, both of which

are usually undesirable [4].

Figure 2.5: Non-zero control signal when error is zero

 D. Derivative control mode

The purpose of the derivative action is to improve the closed-loop stability.

The instability mechanism can be described intuitively as follows. Because

of the process dynamics, it will take some time before a change in the

control variable is noticeable in the process output. Thus, the control

system will be late in correcting for an error. The action of a controller with

proportional and derivative action may be interpreted as if the control is

made proportional to the predicted process output, where the prediction is

made by extrapolating the error by the tangent to the error curve in Figure

2.6. The basic structure of a PD controller is [3]:

 (

) (

Figure 2.6: Interpretation of derivative action as predictive control

2.3 Robot Overview

There are many definitions of robot and no real consensus has been attained so

far. Loosely define a robot as an electromechanical device which is capable of

reacting in some way to its environment, and take autonomous decisions or

actions in order to achieve a specific task. This means that a blender, a lamp, or a

car would not be considered as robots since they have no way of perceiving their

environment. On the other hand, a vacuum cleaner that can navigate around a

room, or a solar panel that seeks the sun, can be considered as a robotic system.

Building a robot incorporates aspects of many disciplines including engineering

(mechanical, electrical, computer), sciences (mathematics and physics) and arts

(aesthetics) and users are free to use their imagination. It also requires

understanding of motors, sensors, microcontrollers and programming.

Robots can be used in almost any situation and are primarily intended to help

humans in some way. Robots help liberate people from unpleasant or dangerous

tasks and give them more liberty and security. Also they are used in a variety of

applications at work, in public, in hazardous environments, in locations such as

deep-sea, battlefields and space, just to name a few. In addition to the service

areas such as cleaning, surveillance, inspection and maintenance, we utilize these

robots where manual task execution is dangerous, impossible or unacceptable.

2.3.1 Types of Robots

The types of robots possible are numerous, the major robot types are:

A. Air robot

An Autonomous Unmanned Aerial Vehicle (AUAV) is very appealing and is

entirely within the capability of many robot enthusiasts. However, the advantages

of building an autonomous unmanned aerial vehicles, especially if you are a

beginner, have yet to outweigh the risks. When considering an aerial vehicle,

http://www.robotshop.com/Categories.aspx?cc=uav

most hobbyists still use existing commercial remote controlled aircraft. On the

professional side, aircraft such as the US military Predator were initially semi-

autonomous though in recent years Predator aircraft have flown missions

autonomously.

Figure 2.7: Air robots

B. Water robot

An increasing number of hobbyists, institutions and companies are developing

unmanned underwater vehicles. There are many obstacles yet to overcome to

make underwater robots attractive to the wider robotic community though in

recent years, several companies have commercialized pool cleaning ―robots‖.

Underwater vehicles can use ballast (compressed air and flooded compartments),

thrusters, tail and fins or even wings to submerge. Other aquatic robots such

as pool cleaners are useful commercial products.

Figure 2.8: Water robots

http://en.wikipedia.org/wiki/General_Atomics_MQ-1_Predator
http://www.robotshop.com/Categories.aspx?cc=336634a1
http://www.robotshop.com/robot-pool-cleaners.html
http://www.robotshop.com/blog/en/files/mobile-aerial-robot.jpg
http://www.robotshop.com/blog/en/files/mobile-underwater-robot.jpg
http://www.robotshop.com/blog/en/files/mobile-aerial-robot.jpg
http://www.robotshop.com/blog/en/files/mobile-underwater-robot.jpg

C. Land robot

Especially the wheeled ones, are the most popular mobile robots as they usually

require the least investment while providing significant exposure to robotics. On

the other hand, the most complex type of robots is the humanoid (akin to a

human), as it requires many degrees of freedom and synchronizing the motion of

many motors, and uses many sensors. Tracks (or treads) might be another choice

for land robots. These are what tanks use. Although tracks do not provide added

―force‖ (torque , they do reduce slip and more evenly distribute the weight of the

robot, making them useful for loose surfaces such as sand and gravel. Also, a

track system with some flexibility can better conform to a bumpy surface. On the

other hand, implementing tracks may increase the mechanical complexity and

connections.

Figure 2.9: Land robots

An increasing number of robots use legs for mobility. Legs are often preferred for

robots that must navigate on very uneven terrain. Most amateur robots are

designed with six legs, which allow the robot to be statically balanced (balanced

at all times on 3 legs); robots with fewer legs are harder to balance. The latter

require ―dynamic stability‖, meaning that if the robot stops moving mid-stride, it

might fall over. The downside is that it might involve increased mechanical,

electronic and coding complexity.

http://www.robotshop.com/blog/en/files/mobile-tracked-robot.jpg

Figure 2.10: Legged robots

Wheels are by far the most popular method of providing mobility to a robot and

are used to propel many different sized robots and robotic platforms. Because it

has low cost and it is simple to design wheels can be just about any size, from a

few centimeters up to 30 cm and more. Robots can have just about any number of

wheels, although 3 and 4 are the most common. Normally a three-wheeled robot

uses two wheels and a caster at one end. Four and six wheeled robots have the

advantage of using multiple drive motors (one connected to each wheel) which

reduces slip. Wheels has the weakness of that it may lose traction (slip). Also the

small contact area underneath each wheel makes the robot more susceptible to

external disturbances.

2.3.2 The Two Wheeled Self-Balancing Robot

 As the name suggests this robot stands on two wheels which makes it unstable as

shown in Figure 2.11. Thus it is imperative to involve a feedback system in order

to maintain the upright position. The two wheels must be driven together to

produce useful actions and ensure stability. It is a traditional problem similar to

the well-known (inverted pendulum) found extensively in the literature of control

systems and dynamics. The inverted pendulum is basically a rod with its pivot

point mounted on a moving cart that moves horizontally. The rod can moves

freely around its pivot point. This arrangement is inherently unstable and hence

http://www.robotshop.com/Categories.aspx?cc=222145a1
http://www.robotshop.com/Categories.aspx?cc=222145a1
http://www.robotshop.com/Categories.aspx?cc=327411a1
http://www.robotshop.com/blog/en/files/mobile-legged-robot.jpg

the cart should be moving back and forth to keep the rod in equilibrium. Besides,

the old position of the cart also must be restored without losing or compromising

the rod stability. Although the self-balancing robot is inherently unstable, it has

several advantages over the statically stable multi-wheeled robots since it has

only two wheels (two points touching the ground) it requires less space, since it is

based on dynamic stability (it constantly needs to correct its tilt angle to remain

stable) it exhibits improved dynamic behavior and mobility. This additional

maneuverability allows easy navigation on various terrains, turning sharp corners

(it can turn on the spot) and traversing small steps or curbs.

Figure 2.11: Two wheeled self-balancing robot

2.3.3 Literature Review

Mrs. Lekshmy.S, Aleesha George and Athira C.V presented a paper of a balance

model as a two wheeled self-balancing robot that is capable of adjusting itself

with respect to changes in weight and position. They developed the Balance

System from a single gyroscope and a single accelerometer. The stability of the

system is to show the capabilities of the ATmega328P in doing PID loops even

with limited accuracy in position readings. PID control system is designed to

monitor the motors so as to keep the system in equilibrium. It should be easily

reproducible given the right parts and code. They managed to make the robot

balance by using an Arduino microcontroller, hobby grade servos, and a six-

degree of freedom (axis) accelerometer and gyroscope have been used to create

the controlled platform. The controller has been designed to maintain the platform

at an initially selected angle when the support structure orientation changes.

Kalman filter is used for the fusion of outputs of two sensor [5].

Back in 2012, a group of students namely: Tomislav Tomašić, Andrea Demetlika

and Mladen Crneković managed to model, design, built and Control a remotely

controlled self-balancing mobile robot. The mechanical structure was first

modelled using SolidWorks software. Incremental magnetic encoders, a two-axis

accelerometer and a one-axis gyroscope were used to get information about the

robot’s position and the tilt angle, and a Kalman filter was designed to combine

the reading of the gyro and accelerometer to have an accurate values of the

robot’s tilt angle and position They first used a PID controller algorithm using

only one feedback variable – the tilt angle to stable the robot but simulations and

testing showed that even though the robot is stable in regard to the tilt rotation,

small disturbances eventually cause big changes in the position. In order to

overcome these problems they designed a Linear Quadratic Regulator (LQR)

controller, Unlike the PID, the LQR controller uses all state variables (tilt angle,

angular velocity, position and linear velocity) to calculate the control value. This

allows the robot to hold the position and the tilt angle at desired values. The use

of the LQR controller made it possible for the robot to balance even while

climbing a slope, while the PID controller didn’t achieve that because although

the PID controller stabilizes the tilt angle, the robot soon starts to drive down the

slope and increases its speed until the control value eventually saturates and the

robot falls. They also designed a fuzzy controller successfully and simulated it,

but due to the increased complexity of its application in the microcontroller

environment (in relation to other controllers) it was not implemented and tested

on a real platform [6].

Hau-Shiue Juang and Kai-Yew Lum presented a paper for the IEEE International

Conference on Control and Automation (ICCA) in 2013 explaining how they

designed and controlled a two-wheel self-balancing robot using the Arduino

microcontroller board. Two control designs based on the linearized equations of

motion were adopted for this project: a proportional-integral-differential (PID)

control, and a proportional-integral proportional-differential control based on

linear-quadratic regulator (LQR) design. The approaches were found to be robust

to modeling errors which can be incurred during experimental determination of

such electrical and kinematic parameters as moments of inertia and motor gains.

They designed a complementary filter to solve the noise problem which the gyro

and accelerometer has. They also designed a wheel synchronizer controller

consisting of a simple PI controller to make sure that the robot’s right and left

wheels rotates at the same speed, avoiding problems like motors defects, terrain

and hindrance on the ground. This controller adjusts the Pulse Width Modulation

(PWM) inputs to the motors so that the difference between the left and right

encoders tracks zero [7].

Mikael Arvidsson and Jonas Karlsson from Chalmers University of Technology

developed what is known commercially as the Segway personal transporter from

scratch. The main objective was to build a vehicle capable of transporting a

person weighing up to 100 Kg for 30 minutes or a distance of 10 Km, whichever

comes first. The rider controls are supposed to be natural movements; leaning

forward or backwards in combination with tilting the handlebar sideways should

be the only rider input required to ride the vehicle. It was built using a model-

based control design with a linear quadratic controller. The electrical system

allows for simple recharging by connecting a Direct Current (DC) adapter

between the charging plug and a wall socket. The vehicle has been tested by a

number of different people, with and without previous experience of riding this

kind of vehicle. All were able to ride the vehicle [8].

Mahadi Hasan and Chanchal Saha, Md. Mostafizur Rahman and Md. Rabiual

Islam Sarker, and Subrata K. Aditya from Asian Institute of Technology,

Rajshahi University of Engineering & Technology and Dhaka University had a

project named Balancing of an Inverted Pendulum Using PD Controller. The

main idea behind this control process is the use of PD (Proportional and

Derivative) controller to generate signal to control the speed and direction of the

motor. The only sensor used in this project was a potentiometer which was

attached to the pendulum rod. The variation in its resistance causes change in

voltage and afterward, it was compared with the reference voltage to generate the

appropriate control signal. PROTEUS software was used for circuit simulation,

and frequency response of the system were analyzed in MATLAB with different

values of KP and KD. Finally, to represent the system stability, root locus

diagram was drawn using MATLAB [9].

2.4 Inertia Measurement Unit (IMU) Sensor

The self-balancing robot uses a sensor for angular displacement in the Pitch axis

as shown in Figure 2.12, the sensor is called Inertial Measurement Unit (IMU).

Figure 2.12: Pitch axis

It has six Degrees of Freedom or 6-DoF, as it contains an accelerometer and a

gyroscope that both take measurements in three axis. It also contains a

temperature sensor to compensate for errors in readings with the temperature

variations, for this particular IMU MPU6050 the temperature limits where -40°C

to + °C, but it wasn’t used because the robot was working in fairly consisting

temperature ranges. The data was obtained from the sensors via Inter Integrated

Circuit serial protocol, for power the IMU has a 5 volt pin and a ground

pin.

Figure 2.13: Inertia Measurement Unit (IMU)

A. Gyroscope

A gyroscope is a sphere like device that has a wheel in its center free to rotate as

shown in Figure 2.14 it measures angular rate (i.e. degrees/sec or º/s), when the

wheel is not rotating and we attempt to balance the gyroscope on its needle it

would behave as we expected, fall. A dramatic change in this behavior happens

when the wheel is rotating in a relevantly high speed, the gyroscope will fight any

force applied to it, including gravity This means that whenever the gyroscope’s

wheel is spinning and the gyroscope was held firmly to a, let’s say an airplane

like in Figure 2.15 it will remain still even if the airplane is tilting, thus measuring

the angular displacement.

Figure 2.14: Gyroscope Figure 2.15: Gyroscope in an airplane

 In this sensor, (i.e. IMU) the concept of the gyroscope is applied but rather in a

different, more convenient way. As shown in Figure 2.16, the wheel of the

gyroscope is replaced with an oscillating mass, when an external angular rate is

applied a flexible part of the mass would move and make the perpendicular

displacement, by measuring the change in capacitance between the oscillating

mass and the fixed plates the angular rate could be calculated.

Figure 2.16: Microscopic gyroscope

B. Accelerometer

Another method to measure the angle of the robot is by using an accelerometer,

which measures acceleration compared to the earth acceleration which is

approximately 9.81 , so if an accelerometer is free falling it would measure

 or 0g (zero-g).

Figure 2.17 demonstrates a microscopic accelerometer, which is the one used in

this robot, is constructed. The mass is attached to springs which allow it to move

in one axis when there is an acceleration applied in that axis, this movement

changes the capacitance between the mass and the fixed plates, this change of

capacitance will be measured, processed and will correspond to a particular

acceleration value.

Figure 2.17: Microscopic accelerometer

2.5 Microcontroller

A microcontroller is a single-chip computer, including most of a computer’s

features, but in limited sizes. Today, there are hundreds of different types of

microcontrollers, ranging from 8-pin devices to 40-pin, or even 64- or higher pin

devices It’s a microprocessor system which contains data and program memory,

serial and parallel Inputs and Outputs (I/O), timers, and external and internal

interrupts all integrated into a single chip that can be purchased for a relatively

cheap price. The term microcomputer is used to describe a system that includes at

minimum a microprocessor, program memory, data memory, and an Input-Output

(I/O) device. Some microcomputer systems include additional components such

as timers, counters, and analog-to-digital converters. Thus, a microcomputer

system can be anything from a large computer having hard disks, floppy disks,

and printers to a single-chip embedded controller. Therefore a microcontroller is

meant to perform a specific task unlike the general-purpose computer which can

do multiple tasks at once [10].

2.6 Arduino Microcontroller

Arduino is an open source electronics prototyping platform composed of a

microcontroller, a programming language, and an IDE. Arduino is a tool for

making interactive applications, designed to simplify this task for beginners but

still flexible enough for experts to develop complex projects. It has a number of

connection sockets that can be wired up to external electronics, such as motors,

relays, light sensors, laser diodes, loudspeakers, microphones, etc. They can

either be powered through the USB connection from the computer or from a 9V

battery. They can be controlled from the computer or programmed by the

computer and then disconnected and allowed to work independently [11].

Figure 2.18: Arduino UNO

Arduino came up with an easy-to-learn programming language (derived from

C++) that incorporates various complex programming functions into simple

commands. The Arduino got its start at the Interaction Design Institute in the city

of Ivrea, Italy, in 2005. Professor Massimo Banzi was looking for a low-cost way

to make it easier for the design students there to work with technology. He

discussed his problem with David Cuartielles, a researcher visiting from Malmö

University in Sweden who was looking for a similar solution, and Arduino was

born. A typical Arduino Uno is shown in Figure 2.18

Figure 2.19: Arduino parts

The current revision of the Arduino board is known as the Arduino Uno. This

board is based on the ATmega328 microcontroller. It has fourteen digital

input/output pins, six of which can be used as Pulse Width Modulation (PWM)

outputs, along with six more analog input pins. Figure 2.19 illustrates the parts of

the Arduino Uno. Table 2.1contains the technical specifications of the Arduino

board [13].

2.6.1 Atmel AVR ATmega328

This microcontroller comes from a company called Atmel and the chip is known

as an AVR. It is slow in modern terms, running at only 16 MHz with an 8-bit

core, and has a very limited amount of available memory, with 32 kilobytes of

storage and kilobytes of random access memory Still it’s more than enough to

handle a lot of useful projects [13].

2.6.2 Powering the Board

The Arduino Uno can be powered via the USB connection or with an external

power supply. The board can operate on an external supply of 6 to 20 volts. The

easiest option is to use a 9V battery or power adaptor, as these are commonly

available. This layout is shown in Figure 2.20 [13].

Figure 2.20: Arduino power configurations

 Inputs and Outputs

A. Digital pins:

 Each of the 14 pins on the Uno can be used as an input or output. They operate at

5 V with a maximum current of 40 mA. Each pin also has an internal pull-up

resistor of 20–50 kOhms, although this is disconnected by default. Some pins

have specialized functions. Pin 0 and 1 can be used to Receive (RX) and Transmit

(TX) Transistor Transistor Logic (TTL) serial data. These pins are connected to

the corresponding pins of the ATmega8U2 and hence to the USB Serial

connection to your PC. Figure 2.21 shows these pins [13].

Figure 2.21: Arduino digital pins

B. Analog Pins

The Arduino has 6 analog pins. These pins are by default inputs, and can take up

to 5 v which is divided to 1024 steps. Sensors which give an analog readings are

connected to these pins such as, temperature sensors, light-intensity sensors, etc.

Figure 2.22 shows these pins on the board [13].

Figure 2.22: Arduino analog pins

2.6.4 Communicating with the Board:

The ATmega328 provides UART TTL serial communication at 5 V, which is

available on digital pins 0 (RX) and 1 (TX). The Arduino Uno has an

ATmega8U2 chip on board that redirects this serial communication over USB,

allowing the Arduino to appear as a virtual serial port to software on your PC

2.6.5 Arduino Software

Arduino C is used to program the Arduino this language is derived from the well-

known programming language the C++ and another language called Processing.

The Arduino IDE in Figure 2.23 is equipped with a Serial Monitor which allows

for debugging and communication with the Arduino board while it’s working on

real-time, Figure 2.24 shows the Serial Monitor. The Serial Monitor can transmit

and receive data with several baud rates up to 115200 bits-per-second [13].

2.7 Lithium Polymer (LiPo) Battery

Lithium Polymer batteries are one of the newer battery types used for their high

power to weight ratio. With a typical cell voltage of 3-7v, these batteries are

lightweight yet powerful and are able to deliver large amounts of current very

quickly. LiPo batteries have recently become much more affordable, making

them a viable option for many robotic projects, though proper charging and

discharging is required to prevent overheating. They are typically arranged in

series packs with up to six cells, totaling 22.2v, Figure 2.25 shows different sizes

of LiPo Batteries [14].

Figure 2.23: Arduino IDE

Figure 2.24: Serial monitor

Figure 2.25: Different LiPo battery sizes

2.8 Electric Motor

An electric motor is a machine used to convert electrical energy into mechanical

energy in the form of a rotational motion using a carefully arranged set of

magnets and coil windings. Its action is based on the principle that when a current

carrying-conductor is placed in a magnetic field it experiences a mechanical force

whose direction is given by Fleming’s left hand rule When its armature

conductors are supplied with current from the supply mains, they experience a

force tending to rotate the armature. Electric motors have two main types, Direct

Current (DC) or Alternative Current (AC), according to the supply current it

designed to work on. A permanent magnet brushed DC motor have brushes that

physically touch a set of spinning electrical contacts, called commutators that are

electrically connected to the armature coil winding, commutators and metal or

carbon brushes transfer energy from the supply to the rotating armature coils. The

typical permanent magnet DC motor has only one armature coil with two wires

for operation, it have two magnets attached to the inside of the motor casing and

the armature and commutator mounted to the output shaft the brushes are

typically spring loaded to keep them securely mated to the commutator contacts

while spinning. A motor typically has an output shaft attached to the armature, for

mounting a wheel or gear on the end. Figure 2.26 shows a small permanent

magnet DC motor

Figure 2.26: Disassembled permanent magnet DC motor

CHAPTER THREE

SYSTEM MODELING AND DESIGN

3.1 System Dynamics

The precise and effective modelling of rolling contact between the two bodies

(including longitudinal slip) is a rather difficult task. However, in this case, the

slipping is neglected and we can use a simple solution shown in Figure 3.1.

Rolling is reduced to translation along the axis.

Figure 3.1: Movement of the robot

Using this configuration the problem of the self-balancing robot becomes exactly

analogous to the inverted pendulum problem, i.e. the rod represents the robot

structure and the cart represents the wheels. Thus, they can be analyzed similarly.

A pendulum rod is free to oscillate around a fixed pivot point attached to a cart

which is constrained to move in the horizontal movement. The rod is placed in the

upright vertical position, which is an unstable equilibrium point. The control

objective is to apply a force to move the cart so that the pendulum remains in the

vertical unstable position. The system of interest is shown in Figure 3.2, where

is the force in newton, is the mass of the pendulum rod in kilograms, is the

mass of the moving cart in kilograms, is the force applied to the cart in newton,

 is the force due to friction in newton, g is the acceleration due to gravity

in , and is the angle of the inverted pendulum measured from the vertical

y-axis in radians.

 3.2 System Mathematical Model

Consider the free body diagrams shown in Figure 3.2. Furthermore, assume that

the co-ordinates of the centroid (center of gravity) of the pendulum , are

given by

(

 (

Where is the distance along the pendulum to the center of gravity and is the x-

co-ordinate of the cart’s position

Figure 3.2: Free body diagram

For the horizontal motion of the cart, Newton’s second law of motion:

∑

(

Can be written as:

(

Assume that the friction force can be written as

 (

The horizontal motion of the pendulum can be written as

 (

The derivative on the right in Equation (3.6) can be simplified by determining the

derivative of using Equation (3.1).The first derivative can be found as follows:

(

The second order derivative can be found by differentiating Equation (3.7), that

is,

(

)

(

)

 (

)

 ((

)

)

 (

)

(

Combining Equation (3.8) with Equation (3.6) gives:

 (

 (

)

)

(

Using Equation (3.9), Equation (3.4) can be simplified to give:

 (

 (

)

)

 (

)

 (

The final form for the horizontal motion of the card can be given as:

 (

)

 (

For the vertical motion of the pendulum, Equation (3.2) can be written as:

(

Similarly to the horizontal case, the derivative on the right in Equation (3.12) can

be written as follows:

(

(

) (

)

 ((

)

) (

)

 (

Using Equation (3.14), Equation (3.12) can be rewritten to give:

 ((

)

) (

Thus, the vertical reaction force, , can be written as:

 ((

)

)

(

For any object, the relationship between the moment applied on an object and its

angular acceleration is given by the following relationship:

∑ ̅

(

Where is the moment due to a given force and defined as:

 ̅ ̅ ̅

(

where is the force vector, r is the position vector of the object with respect to the

point about which the moments are being summed, and I is the angular

momentum of the object. For the pendulum, summing the moment around its

center of gravity, Equation (3.17) can be written as:

(

Substituting Equation (3.16) for and Equation (3.9) for into Equation (3.19)

gives:

(((

)

))

((

 (

)

))

(

Simplifying Equation (3.20) gives:

 (

)

 (

)

(

Since:

(

Equation (3.21) can be simplified to give:

(

Thus, the final equation for the angular position is given as:

(

Therefore the equations of motion for the inverted pendulum on a moving cart

can be written as:

{

 (

)

 (

3.3 Linearized Model of the System

The model of the system given by Equation (3.25) is nonlinear and must be

linearized in order to obtain a reasonable model for control purposes.

Linearization will be performed about the point x = 0 m and θ = 0 radians.

Furthermore, it will be assumed that since is small (This is justifiable when

controlling an object as it should not deviate greatly from the assumed steady-

state value), also by neglecting the friction constant we get

(

)

 (

Under these assumptions, Equation (3.25) can be rewritten as:

{

 (

Using the Laplace transform:

 (

(

 (

3.4 Permanent Magnet DC Motor Dynamics

A motor is an electromechanical component that yields a torque output for a

voltage input, that is, a mechanical output generated by an electrical input. The

mathematical model of the DC PM motor is derived and the transfer function is

evaluated. The schematic of the DC motor is shown in the following diagram.

Figure 3.3: Schematic and block diagrams of the DC motor

In figure 3.3, a magnetic field is developed by stationary permanent magnets. A

rotating circuit called the armature, through which current flows, passes

through this magnetic field at right angles and feels a force

(

Where B is the magnetic field strength and is the length of the conductor. The

resulting torque turns the rotor, the rotating member of the motor.

There is another phenomenon that occurs in the motor: A conductor moving at

right angles to a magnetic field generates a voltage at the terminals of the

conductor equals

(

Where is the voltage and is the velocity of the conductor normal to the

magnetic field. Since the current-carrying armature is rotating in a magnetic field,

its voltage is proportional to speed. Thus,

(

We call the back electromotive force (back), is a constant of

proportionality called the back constant; and is the

angular velocity of the motor. Taking the Laplace transform, we get

(

The relationship between the armature current , the applied armature

voltage and the back is found by writing a loop equation around

the Laplace transformed armature circuit in figure 3.3.

(

The torque developed by the motor is proportional to the armature current; thus

(

Where is the torque developed by the motor and is a constant of

proportionality, called the motor torque constant, which depends on the motor and

magnetic field characteristics. In a consistent set of units, the value of is equal

to the value of . Rearranging equation (3.36) yields

 (

To find the transfer function of the motor, we first substitute equations (3.34) and

(3.37) into (3.35), yielding

 (

Now we must find in terms of if we are to separate the input and

output variables and obtain the transfer function / .

Figure 2.36 shows a typical equivalent mechanical loading on a motor. is the

equivalent inertia at the armature and includes the armature inertia and might also

include, the load inertia reflected to the armature.

Figure 3.4: A typical equivalent mechanical loading on the motor

 is the equivalent viscous damping at the armature and includes both the

armature viscous damping and might also include the load viscous damping

reflected to the armature.

 (

Rearranging equation (3.39) yields

 (

Substituting equation (3.40) in Eq. (3.38) we get

(

 *

 +) (

Eventually we get

()

(

By neglecting we get

()

(

3.5 System Controller Design

To simulate the impulse response of the transfer function, SIMULINK is used.

The tuning of the PID controller was done manually using SIMULINK PID

Controller block, as shown in Figure 3.5:

Figure 3. : SIMULINK block diagram of the system

Manual tuning of the gain settings is the simplest method for setting the PID

controls. However, this procedure is done actively (the PID controller turned on

and properly attached to the system) and requires some amount of experience to

fully integrate. To tune PID controller manually, first the integral and derivative

gains are set to zero. Increase the proportional gain until observing oscillation in

the output. After the proportional gain is set, the derivative gain can then be

increased. Derivative gain will reduce overshoot and damp the system quickly to

the set point value or near it. If the derivative gain increased too much, large

overshoot will be seen. Once the derivative gain is set, increase the integral gain

until any offset is corrected for on a time scale appropriate for the system. If the

gain increased too much, significant overshoot of the set point value and

instability in the circuit will be observed.

Table 3.1: Manual tuning of PID controller

The best parameters that gives the best response in real
 .

No. experiment

CHAPTER FOUR

SYSTEM IMPLEMENTATION AND

EXPEREMENTAL RESULTS

4.1 System Practical Model

The system’s practical model is divided into two parts; the mechanical part

which consists of wooden shelves, Teflon wheels, iron poles and nuts, and the

electrical part which consists of DC geared motor, LiPo battery, Arduino

microcontroller, IMU sensor, and Motor Driver.

4.1.1 Mechanical part

The mechanical part of the robot consists of the body and two wheels as shown

in Figure 4.1. The material used to make the body is wood. It was cut into

three shelves using CNC machine. The shelves were connected together using

iron poles and nuts. Zippers were used to fasten the electrical parts to the

shelves. The wheels were made of a material called Teflon, it is a white solid

material similar to plastic in shape and density which is easy to machine. The

wheels were cut by a lathe with an 80mm diameter. The dimensions of the

physical model is shown in Figure 4.1.

Figure 4.1: Mechanical parts and dimensions

 .2 Electrical part

The electrical part of the robot consists of DC geared motor with encoder,

LiPo battery, Arduino microcontroller, IMU, and Motor Driver.

A. DC Geared Motor

The motors used for this robot are normal 12 volts DC motors. They are

coupled with a gear box to reduce their speed and increase the torque. The

encoder is mounted on the shaft of the motor to measure the speed and

direction of the motor shaft. The specifications of the motor is listed in Table

 The encoder connectors are hall sensor , hall sensor GND, hall sensor

A , and Hall sensor B . It works on voltage from 4.5V to 24V with

20mA.

Table : DC motor specifications

Rated voltage 12VDC

No load speed 300r/min

No load current 140mA

Rated torque 190gf.cm 15.7mN.m

Rated current 800mA

Rated speed 2200r/min

Stall torque 640gf.cm 62.7mN.m

Stall current 3000mA

B. Lithium Polymer Battery

The battery used to power the robot as shown in Figure 4.5 is a Lithium-

Polymer (LiPo) battery, which is a rechargeable battery. Table 4.2 lists the

battery specifications.

Table 4.2: LiPo battery specifications

Capacity 2200mAh

Voltage 3S/11.1V

Discharge Rate 25C

Max Cont. Current 55A

Max Burst Current 110A

Weight 184g

Size 106*34*24mm

C. Arduino UNO

The Arduino UNO is a microcontroller board based on ATmega328P

microcontroller, Table 4.3 contains the technical specifications of the Arduino

board.

Table 4.3: Arduino board specifications

Microcontroller ATmega328

Operating Voltage 5V

Input Voltage (Recommended) 7 – 12 V

Input Voltage (Limits) 6 – 20 V

Digital I/O Pins (6 provide

PWM)

Analog Input Pins

DC Current per I/O Pin 40 mA

DC Current for 3.3 V Pin 50 mA

D. The Inertia Measurement Unit:

The IMU is used to measure the tilted angle of the robot. The pin (AD0) in the

Arduino selects between address (0x68) and (0x69). That makes it

possible to have two of these sensors in a project. The MPU6050 chip needs

3.3V but a voltage regulator on the GY-521 board allows to give it up to 5V.

The gyro module communicates with the Arduino through serial

communication via the Serial Clock (SCL) and Serial Data (SDA).

E. Motor Driver

Figure shows the pins of the motor driver break-out board, the L298n is an

Integrated Circuit (IC) used to derive motors, relays and any inductive load,

the IC is soldered to a break-out board with screw terminals for easy usage.

Figure 4. : Motor driver

 DC motor 1 "+" or stepper motor A+

 DC motor 1 "-" or stepper motor A-

 12V jumper - remove this if using a supply voltage greater than 12V

DC. This enables power to the onboard 5V regulator.

 Connect your motor supply voltage here, maximum of 35V DC.

Remove 12V jumper if >12V DC

 GND

 5V output if 12V jumper in place, ideal for powering your Arduino

(etc.)

 DC motor 1 enable jumper. Leave this in place when using a stepper

motor. Connect to PWM output for DC motor speed control

 IN1

 IN2

 IN3

 IN4

 DC motor 2 enable jumper. Leave this in place when using a stepper

motor. Connect to PWM output for DC motor speed control.

 DC motor 2 "+" or stepper motor B+

 DC motor 2 "-" or stepper motor B-

F. Electrical System Connections

IMU is connected to pins A5 (SCL) and pin A4 (SDA) via C protocol, the

signals from both gyroscope and accelerometer are fused together by using a

complementary filter as shown in Figure 4. . The desired ratio of

gyro/accelerometer readings was found to be:

(

The two geared DC motors are connected to a driver which is connected to

pins 6,8 and 9 for right motor and pins 10,11 12 for left motor. The difference

between the angle and the desired set point angle is the PID input and its

output is send to the motors via the drivers as a PWM signals.

Figure 4 : Electrical system connections

4.2 Real Time Plotting Results

This section demonstrates the results of a real time plotting using

MATLAB (See Appendix B) and Arduino of two-wheeled self-balance robot

system using design of PID controller with manual tuning method. These plots

represents the system’s behavior as the parameters of the PID controller (,

 and) varies.

When substituting the values of the controller with the

real time plotting as shows in Figure 4. . The robot tries to balance but without

use. The system is unstable and has poor characteristics,

Figure 4. : System response with

By substituting the values of the controller with the

real time plotting as shows in Figure 4. . The system starts to oscillate but still

fall over and not reaching the desired response.

Figure 4. : System response with

By substituting the values of the controller with the

real time plotting as shows in Figure 4. . The robot oscillates very fast, but the

robot doesn’t fall, unless it was pushed hard

Figure 4. : System response with

CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

A mathematical model of the two-wheeled self-balance robot system was

developed by using physical and electrical laws. A simplified mathematical

model was derived by system parameters after linearizing the model. The

controller parameters values () were obtained by using manual tuning

method from practical model so as to perform best system response. From

experimental results, it is found that the best controller parameters which gave

the best response of the system are: .

After observing the robot’s practical experiments, it was noticed that there was

high oscillation around the set point, and the robot never settles down. It was

also noticed that when the robot passes a certain angle the system becomes

unstable and can’t regain its balance The results obtained from the manual

tuning were acceptable and as had been expected.

 Recommendations

 - Use of fuzzy control or neural networks to adapt the PID parameters.

 - Design a linear quadratic regulator to maximize performance.

 - Use of wireless control.

 - Implementation of a Kalman filter to obtain smoother readings from the

IMU.

References:

 - Dogan Ibrahim, ―Microcontroller Based Applied Digital Control‖, John

Wiley & Sons, Ltd., West Sussex, England, .

 - U A Bakshi, V Bakshi, ― odern Control Theory‖, Technical

Publication Pune, India, 2006.

 - KarlJ. Astrom And Tore Hagglund, ―PID Controllers Theory Design and

Tuning‖, USA,
nd

 Edition, 1995.

 - Katsuhiko Ogata, ― odern Control Engineering‖, Prentice-Hall, Inc., New

Jersey, USA,

 - Mrs.LEKSHMY.S, ALEESHA GEORGE, ATHIRA C.V, ―Self Balancing

Robot‖, International Journal of Computer Engineering In Research Trends,

 -Tomislav Tomašić, Andrea Demetlika, laden Crneković, ‖ SELF-

BALANCING MOBILE ROBOT TILTER‖, University of Zagreb,

7-Hau-Shiue Juang and Kai-Yew Lum, ―Design and Control of a Two-Wheel

Self-Balancing Robot using the Arduino Microcontroller Board‖, IEEE

International Conference on Control and Automation (ICCA) Hangzhou, China,

June 12- , .

8- Mikael Arvidsson Jonas Karlsson, ―Design, construction and verification of a

self-balancing vehicle‖, Chalmers University of Technology

Göteborg, Sweden, 2012.

 -Mahadi Hasan, Chanchal Saha, Md. Mostafizur Rahman, Md. Rabiual Islam

Sarker and Subrata K. Aditya, ―Balancing of an Inverted Pendulum Using PD

Controller‖, Asian Institute of Technology, .

 -Dogan Ibrahim,‖ Advanced PIC icrocontroller Projects in C‖, Oxford, UK,

 - Simon onk,‖ Arduino Projects for the Evil Genius”, the McGraw-Hill

Companies, USA, 2010.

 - MARTIN EVANS, JOSHUA NOBLE, JORDAN HOCHENBAUM,

‖Arduino in Action‖, anning Publications Co , Shelter Island, NY,

 -Alasdair Allan, ―iOS Sensor Apps with Arduino‖, O’Reilly edia, Inc ,

USA, 2011

 - John-David Warren, Josh Adams, and Harald Molle, ―Arduino Robotics‖,

New York, USA, 2011.

APPENDIX A

Arduino C code for two-wheeled self-balance robot system

#include <Wire.h>

#define RESTRICT_PITCH

//**

// connect motor controller pins to Arduino digital pins

// Right motor

int PWMA = 6;

int ForwardR = 8;

int BackwardR = 9;

// Left motor

int PWMB = 10;

int ForwardL = 11;

int BackwardL = 12;

//***

double accX, accY, accZ;

double gyroX, gyroY, gyroZ;

double gyroXangle, gyroYangle; // Angle calculate using the gyro only

double compAngleX, compAngleY; // Calculated angle using a complementary

filter

uint32_t timer;

unsigned long dt;

unsigned long T=4000;

double pInput= 0;

double Input = 0;

double Output;

double Kp = 40;

double Ki = 1;

double Kd = 1;

double p, i = 0, d;

double angle;

double power;

uint8_t i2cData[14];

int A,B,C,D,ea=0,eb=0,ec=0,ed=0,last=1;

void setup() {

 Wire.begin(); //Start I2C as master

#if ARDUINO >

 Wire.setClock(400000UL); // Set I2C frequency to 400kHz

#else

 TWBR = ((F_CPU / 400000UL) - 16) / 2; // Set I2C frequency to 400kHz

#endif

 i2cData[0] = 7; // Set the sample rate to 1000Hz - 8kHz/(7+1) = 1000Hz

 i2cData[1] = 0x00; // Disable FSYNC and set 260 Hz Acc filtering, 256 Hz

Gyro filtering, 8 KHz sampling

 i2cData[2] = 0x00; // Set Gyro Full Scale Range to ±250deg/s

 i2cData[3] = 0x11; // Set Accelerometer Full Scale Range to ±16g

 while (i2cWrite(0x19, i2cData, 4, false)); // Write to all four registers at once

 while (i2cWrite(0x6B, 0x01, true)); // PLL with X axis gyroscope reference

and disable sleep mode

 Serial.begin(250000);

 //***

 // set all the motor control pins to outputs

 pinMode(PWMA, OUTPUT);

 pinMode(PWMB, OUTPUT);

 pinMode(ForwardR, OUTPUT);

 pinMode(BackwardR, OUTPUT);

 pinMode(ForwardR, OUTPUT);

 pinMode(BackwardR, OUTPUT);

 pinMode(2,INPUT);

 dt = micros() + T;

}

void loop(){

 // Manual tuning using push-buttons

 A=digitalRead(A0);

 B=digitalRead(A1);

 C=digitalRead(A2);

 D=digitalRead(2);

if(A)ea=1;

if(B)eb=1;

if(C)ec=1;

if(D)ed=1;

if(!A && ea)

{

ea=0;

Kp+=5;

last=1;

}

if(!B && eb)

{

eb=0;

Ki+=0.2;

last=2;

}

if(!C && ec)

{

ec=0;

Kd+=0.1;

last=3;

}

if(!D && ed)

{

ed=0;

if(last==1)Kp- ;

if(last==2)Ki- ;

if(last==3)Kd- ;

}

angle = IMUReading()-5.055; // Balance angle is 5.055 degree

 // Subtracting it from IMUReading to get PID input

Serial.println(angle);

Input = angle;

d = (Input - pInput) / T ; // Derivative term

i = i + Input * T; // Integral term

i = constrain(i, - , ;

Output = Kp * Input + Kd * d + Ki * i; // PID output

Output = constrain(Output, - , ;

pInput = Input; // Previous input for derivative term

 if(abs(Output) < 70) // Motors won't start rotating until a certain

PWM is reached

 power = 0; // To make them more synchronised

 else power = abs(Output);

if(angle < -2 & angle > -40){ // Don't ballance beyond certain angles

 motor(1,2, power); // Backward direction

 motor(2,2, power);

}

else if(angle > 2 & angle < 40){

 motor(1,1,power); // Forward direction

 motor(2,1,power);

}

else{

 motor(1,0,0); // Stop motors

 motor(2,0,0);

}

while(dt>micros()); // wait until the loop completes the sampling time

dt = micros()+T;

}

double IMUReading(){

 // Update all the values

 while (i2cRead(0x3B, i2cData, 14));

 accX = ((i2cData[0] << 8) | i2cData[1]);

 accY = ((i2cData[2] << 8) | i2cData[3]);

 accZ = ((i2cData[4] << 8) | i2cData[5]);

 gyroX = (i2cData[8] << 8) | i2cData[9];

 gyroY = (i2cData[10] << 8) | i2cData[11];

 gyroZ = (i2cData[12] << 8) | i2cData[13];

 double dt = (double)(millis() - timer) / 1000; // Calculate delta time

 timer = millis();

 #ifdef RESTRICT_PITCH

 double roll = atan2(accY, accZ) * RAD_TO_DEG; // Converting the readings

to degrees

 double pitch = atan(-accX / sqrt(accY * accY + accZ * accZ)) *

RAD_TO_DEG;

#else

 double roll = atan(accY / sqrt(accX * accX + accZ * accZ)) *

RAD_TO_DEG;

 double pitch = atan2(-accX, accZ) * RAD_TO_DEG;

#endif

 double gyroXrate = gyroX / 131.0; // Convert to deg/s

 double gyroYrate = gyroY / 131.0; // Convert to deg/s

gyroXangle += gyroXrate * dt; // Calculate gyro angle without any filter

gyroYangle += gyroYrate * dt;

compAngleX = 0.93 * (compAngleX + gyroXrate * dt) + 0.07 * roll; //

Calculate the angle using a Complimentary filter

compAngleY = 0.93 * (compAngleY + gyroYrate * dt) + 0.07 * pitch;

#ifdef RESTRICT_PITCH

 // This fixes the transition problem when the accelerometer angle jumps

between -180 and 180 degrees

 if ((roll < -90 && compAngleX > 90) || (roll > 90 && compAngleX < - {

 compAngleX = roll;

 gyroXangle = roll;

 } else

 if (abs(compAngleX) > 90)

 gyroYrate = -gyroYrate; // Invert rate, so it fits the restriced accelerometer

reading

#else

 // This fixes the transition problem when the accelerometer angle jumps

between - 80 and 180 degrees

 if ((pitch < -90 && compAngleY > 90) || (pitch > 90 && compAngleY < -

{

 compAngleY = pitch;

 gyroYangle = pitch;

 } else

 if (abs(compAngleY) > 90)

 gyroXrate = -gyroXrate; // Invert rate, so it fits the restriced accelerometer

reading

#endif

 // Reset the gyro angle when it has drifted too much

 if (gyroXangle < -180 || gyroXangle > 180)

 gyroXangle = compAngleX;

 if (gyroYangle < - || gyroYangle > 180)

 gyroYangle = compAngleY;

 return compAngleY;

}

void motor(int motor , int dir , int sped){

 // Motor controlling function

 switch(motor){

 case 1: // Right motor

 if(dir == 0){

 digitalWrite(ForwardR, LOW); // No Direction

 digitalWrite(BackwardR, LOW);

 }

 else if(dir == 1){

 digitalWrite(ForwardR, HIGH); // Forward direction

 digitalWrite(BackwardR, LOW);

 analogWrite(PWMA, sped); // PWM for motor speed

 }

 else if(dir == 2){

 digitalWrite(ForwardR, LOW); // Backward direction

 digitalWrite(BackwardR, HIGH);

 analogWrite(PWMA, sped);

 }

 break;

 case 2: // Left motor

 if(dir == 0){

 digitalWrite(ForwardL, LOW);

 digitalWrite(BackwardL, LOW);

 }

 else if(dir == 1){

 digitalWrite(ForwardL, HIGH);

 digitalWrite(BackwardL, LOW);

 analogWrite(PWMB, sped);

 }

 else if(dir == 2){

 digitalWrite(ForwardL, LOW);

 digitalWrite(BackwardL, HIGH);

 analogWrite(PWMB, sped);

 }

 break;

 }

}

APPENDIX B

MATLAB m.file for real time plotting

%Real time plotting

clc

clear all

prev = 0;

s = serial('COM4','BaudRate' create

serial communication object on port COM3

fopen(s);

x=0;

t(1)=0;

flushinput(s);

tic;

while(~isempty(s) && toc <= 30)

 x = x+1;

 t(x) = toc;

 y(x) = str2double(fgets(s))

 drawnow

 plot(t,y,'linewidth'

 title('Real-Time Pitch Angle');

 xlabel('time (seconds)');

 ylabel('Pitch Angle (Degrees)');

 axis([0 30 -

 flushinput(s);

 grid on

end

fclose(s);

delete(s);

clear all % end communication with arduino

