

Sudan University of Science and Technology

College of Graduate Studies

A secure Low Power Implementation of

Internet of Things Health Monitoring System

تنفيذ آمن ذو طاقة منخفضة لنظام مراقبة صحية تابع لإنترنت

 الأشياء

A Research Submitted In Partial fulfillment for the Requirements of the

Degree of M.Sc. degree in Electronics Engineering (Communications)

Prepared By:

Akram Mobarak Mohammed Ahmed Osman.

Supervisor:

Dr. Fath Elrhman Ismael Khalifa Ahmed

AUG 2017

ii

 الآية

 قال تعالى :

ى ﴿
َ
حَقُّ ۗ فَتَعَال

ْ
مَلِكُ ال

ْ
ُ ال مًا اللَّه

ْ
ِ زِدْنِي عِل ب يْكَ وَحْيُهُ ۖ وَقُل ره

َ
نِ مِن قَبْلِ اَن يُقْضَىٰ اِل

قُرْا

ْ
 تَعْجَلْ بِال

َ
 ﴾وَلَ

 (114طه)سورة

iii

DEDICATION

For my loving parents,

For my brothers and sisters

For all friends, especially Mustafa.

For the amazing girl that I loved her

I thank my God day and night for having me you in my life

iv

AKNOWLEDGMENT

First, we need to thank our god (Allah) that without his blessing this

work will not complete.

Then I thank my supervisor Dr. Fath Elrhman Ismael for his patience

and countless hours and valuable efforts to guide and advise me to complete

the work in his fair way.

Lastly, I need to thank our teachers in department of electronic

engineering for their efforts in help and support.

v

ABSTRACT

The Internet of Things (IoT) makes smart objects the ultimate building

blocks in the development of cyber-physical smart pervasive frameworks.

The IoT has a variety of application domains, including health care. The IoT

revolution is redesigning modern health care with promising technological,

economic, and social prospects. Sometimes doctors need to periodically

monitor patient’s status of body and visualize, although patients may be

somewhere out of the medical centers, the information’s of patients are very

important such that it must be keep from hacking by unauthorized persons.

In this thesis, a human health-monitoring platform is designed and developed

under the application framework of body sensor network of IoT. The

platform can collect the physical information of user by constructing the

human state acquisition system. Then the collected human physiological data

is transmitted to data processing platform through ZigBee wireless network

for further data processing, preservation and display, with which real-time

rescue and treatment can be sent out by guardian, doctors and healthcare

caregivers. In addition, this project analyzes distinct IoT security and privacy

features, including security requirements, threat models, and attack

taxonomies from the health care perspective.

vi

 المستخلص

ان انترنت الاشياء لعب دوراً مهما في وضع لبنات البناء للكثير من الحقول الذكية. ويتواجد

ما م انترنت الاشياء في الكثير من الحقول والتطبيقات ومن هذه التطبيقات هو حقل الرعاية الصحية.

 تماعيا.تصاديا وتقنيا واجانترنت الاشياء كرائد ثوري في جعل حياة المجتمعات اكثر تطورا اقمن جعل

، تم تصميم وتطوير منصة لمراقبة صحة الإنسان باستخدام نموذج شبكات التحسس البحثفي هذا

في بعض الاحيان يحتاج الطبيب الى مراقبة حالات بعض المرضى بصورة دورية، اللاسلكية.

رضى تجب حمايتها وهؤلاء المرضى قد يتواجدون خارج الوحدة الصحية كما ان بيانات هؤلاء الم

. في هذا البحث تم تصميم نظام امن الاعتداءت بواسطة اي شخص غير مسموح له بالاطلاع عليه

حيث تقوم هذه المنصة بتجميع البيانات الطبيعية للشخص بواسطة حساسات مراقبة صحية للمرضى

ى وحدة ثم ارسالها الة ومن عانات الطبيعية المجميملامسة للانسان وبعد ذلك يقوم النظام بتشفير الب

معالجة هذه البيانات لا سلكيا من اجل استخلاصها ومعالجتها وعرضها وبالتالي يمكن الاستفادة منها

ضافة الى ذلك قمنا بدراسة لين ووحدات الرعاية الصحية المختلفة.بالإوبواسطة الاطباء والمسؤ

تم بناء نظام تشفيري بسيط المحددات الامنية لخصوصية المريض ومهدداتها وعلى هذا الاساس

 .الاعتداء وتقليل استهلاك الطاقة لحماية بيانات المريض من

vii

TABLE OF CONTENTS

 ii الإستهلال

 DECLARATION ii

 DEDICATION iii

 ACKNOWLEDGEMENT iv

 ABASTRACT v

 vi المستخلص

 TABLE OF CONTENTS vii

 LIST OF TABLES x

 LIST OF FIGURES xi

 LIST OFABBREVIATION xiv

Chapter 1 INTRODUCTION 1

 1.1 Preface 2

 1.3 Problem Statement 4

 1.4 Proposed Solution 4

 1.5 Aim and Objectives 4

 1.6 Methodology 5

 1.6 Thesis Outlines 5

Chapter 2 LITERATURE REVIEW 7

 2.1 Background 8

 2.1.1 History and industrial drivers of

WSNs

9

 2.1.1.1 Characteristic features of WSNs 10

 2.1.2 Cloud infrastructure attacks 11

 2.1.3 Systemic Approach for IoT Security 13

viii

 2.1.4 Machine to Machine 16

 2.1.5 Embedded Security Solution 18

 2.1.6 RFID and the EPC network 19

 2.2 Related Work 21

Chapter 3 SECURE IOT NETWORK USING

RASPBERRY PI AND ARDUINO

24

 3.1 Introduction 25

 3.2 Acquisition of Sensory data 26

 3.2.1 Specification of Blood pressure sensor 26

 3.2.2 Specification of Temperature sensor 27

 3.2.3 Specification of SPO2 sensor 29

 3.3 Description of Arduino Nano Board 30

 3.3.1 Power of Arduino Nano 31

 3.3.2 Memory of AVR Atmega328P 32

 3.3.3 Input and Output of Arduino Nano 32

 3.3.4 Communication between Arduino Nano

with host computer

33

 3.3.5 Automatic (Software) Reset 34

 3.4 APC220 RF Module Specifications 34

 3.4.1 Connect APC220 to PC 35

 3.4.2 Connect APC220 to MCU 36

 3.5 Raspberry Pi Specification 36

 3.5.1 Raspberry Pi hardware specifications 38

 3.6 System implementation, and operation 40

 3.7 Implementation of Sensors Node 40

 3.7.1 Reading Sensors Values 41

 3.7.2 Sensors Data encryption 43

 3.7.3 System Operation 46

 3.8 Wireless Interface 47

Chapter 4 RESULTS AND DISCUSSION 49

 4.1 Introduction 50

 4.2 Installing Apache server on Raspberry Pi 56

ix

 4.3 Writing the Raspbian image 58

Chapter 5 CONCLUSION AND

RECOMMENDATIONS

64

 5.1 Conclusion 65

 5.2 Recommendations 65

References 66

Appendix A 67

Appendix B 68

Appendix C 71

Appendix D 74

Appendix E 75

Appendix F 77

Appendix G 78

x

LIST OF TABLES

2.1 Evolving features of the IoT today, in the past and

future

17

3.1 Human Pressure Range 27

3.2 Human Temperature Range 28

3.3 Specifications of Arduino Nano 31

4.1 Specification of RF Sensor 52

xi

LIST OF FIGURES

FIGURE NO. TITLE PAGE

1.1 IoT system architecture 3

2.1 Wireless sensor networks 11

2.2 An illustration of IoT including cloud services (IoT-

Cloud)

12

2.3 A systemic approach for IoT security 13

2.4 SSL protocol, with an expanded view of the SSL

record protocol

19

2.5 RFID Telecommunication 21

3.1 The proposed Health treatment system 25

3.2 pressure Sensor

26

3.3 Temperature Sensor

27

3.4 SPO2 Sensor 29

3.5 Arduino Nano 30

3.6 Arduino Nano Layout 33

3.7 RF Module 35

3.8 RF Module Layout 35

3.9 TTL interface board Layout 36

xii

3.10 Raspberry pi V2 Board

38

3.11 Raspberry pi Layout 39

3.12 Raspberry pi Arduino Peripherals Connections 39

3.13 Sensor Station Circuit 41

3.14 Secure System with all goals satisfied

43

3.15 Flow off learning Session 44

3.16 Secret Key Transfer Session 45

3.17 Overview of Transmitter and Receiver lifecycle 46

3.18 Serial Port Configuration 47

4.1 RF Transmitter Setting 50

4.2 APC220 connection with PC 51

4.3 RF Receiver Setting 51

4.4 Image File Burn at SD Card 53

4.5 Raspberry Pi Configuration Tool 54

4.6 Option for Raspberry Pi 55

4.7 Raspberry Pi Desktop 56

4.8 Apache Default Page 57

4.9a Sensors Node

59

4.9b Transmit Data from Sensor Node to Analysis 60

4.10 Transmitting Data to MATLAB and Raspberry 60

xiii

4.11a Data at Excel and analysis data 61

4.11b Excel data analysis data 62

4.12 the received data at the MATLAB 62

4.13 Sensors data plot using Matlab 63

xiv

LIST OF ABBREVIATIONS

2FA Two-Factor Authentication

3D Three Dimension

3DES Three Dimension Encryption Scheme

ADC Analog to Digital Convertor

AES Advance Encryption Scheme

AREF Analog Voltage Reference

ARM Advance RISC Micro-Controller

ARPANET Advanced Research Projects Agency Network

AVR-MCU Allen Vargin Reduced Instruction Set Micro-Controller Unit

BCM Broad-Com Microprocessor

BIST`

CMOS Complementary Metal Oxide Semiconductor

GPS Global Positioning System

CPU Central Processing Unit

CRC Cyclic Redundancy Check

DARPA Defense Advanced Research Projects Agency

DC Direct Current

DIP Dual In-Line Package

DMA Direct Memory Access

DNS Domain Name Service

DSP Digital Signal Processor

DTR Data Terminal Ready

DVD Digital Video Disk

ECC Error Correction Code

xv

EDAC

EEPROM Electrically Erasable Programmable Read Only Memory

EPC

FEC Forward Error Correction

FFIEC Federal Financial Institutions Examination Council’s

GPIO General Purpose input output

GPU Graphical Processing Unit

HD High Definition

HDMI High Definition Multi Interface

HH Home to Home

HTML Hyper Text Mark-able Language

HTTP Hyper Text Transfer Protocol

I2C Inter interconnection

ICSP In Chip System Programmer

ID Identity

IoT Internet of Things

ISO International Standardization Organization

KEK key encryption key

LED Light Emitting Diode

M2M Machine to Machine

MISO Master In Slave Out

MOSI Master Out Slave In

PC Programmable Counter

PCB Printed Circuit Board

RCA Radio Corporation of America

RFID Radio Frequency Identification

RISC Reduce Instruction Set

RX Reciver

xvi

SCK Shift Clock

SD Storage Disk

SDRAM Storage Disk Random Access Memory

SoC System on Chip

SRAM Static Random Access Memory

SS Slave Select

SSL Secure Socket Layer

TCP Transferee Control Protocol

TTL Transistor Transistor Logic

TV Television

TWBR Two Wire Bitrate Register

TWCR Two Wire Control Register

TWI Two Wire Interface

TX Transmitter

UART Universal Asynchronous Receiver Transmitter

USART Universal synchronous Receiver Transmitter

USB Universal Serial Bus

WSNs Wireless Sensor Network

CHAPTER ONE

INTRODUCTION

 2

Chapter One

Introduction

1.1 Preface

The term IoT refers to an interactive connection with low power, low

cos short-range radio devices to allow more man touch independent for the

modern society by allowing sensors that may be attached to a small digital

node for the data collection from the environment[1]. The main features of

the Internet of Things first are comprehensive perception, using RFID,

sensor, two-dimensional code to access to the information of the object

anytime, anywhere. Scope of data collection terminal connected through the

Internet of Things is very broad, involving hundreds of millions of

heterogeneous devices ubiquitous access, including mobile phones,

computers that already have powerful computing, storage and

communication capabilities of the terminal; appliances, railways, bridges,

buildings such as the embedded sensor device; radio frequency identification

(RFID) devices, infrared sensors, global positioning systems, laser scanners.

Followed by a reliable transfer, through the wide variety of data collection

terminal including the Internet, mobile Internet and other network

interconnection, to achieve real-time acquisition of external environment

information, the dynamic information of the object is convert it into a data

format suitable for network transmission, and transfer to the data center

through network. Finally the collected data is intelligent processing, using

cloud computing, fuzzy identify and other intelligent computing technology

to analyze and process vast amounts of data and information to achieve

intelligent control for objects [2]. The huge increase in the amount of

available data, as well as the urgent need to link these data sources together

 3

directly affects the process of information exchange. Internet of things (IoT)

is not only interested in connecting devices with each other but it means

connecting devices together with the possibility of interaction between them

in an innovative way Machine to Machine M2M. These peripherals are often

of different functions, as well as from various sources such as sensors collect

data on natural disasters, earthquakes and hurricanes indicators, or you may

have medical devices attached to collect the status of patients that are

distributes in distant areas, it can also be a range of sensors to control

peripheral devices in an industrial institution or a smart home. From the

previous narrative it is clear that the network in this way must contain

millions of absolutely different hardware functions and that should work in

harmony with each other [2]. The IoT is increased rapidly in academia,

industry as well as government that has the potential to bring significant

personal, professional and economic benefits.

Figure 1.1 IoT system architecture[1]

 4

1.2 Problem Statement

In some medical cases, doctors need to monitor the status of patient’s

body periodically and visually, these patients may be somewhere out of the

medical centers, the information’s of patients are very important such that it

must be keep from hacking by unauthorized persons.

1.3 Proposed Solution

A small Arduino Nano connected with a number of sensors is attached

to the human body representing the sensor node, this node collects the

sensory data from sensor, random unique cryptographic keys are used for the

encryption of scenery data and then transmitted via wireless module. A

raspberry Pi based local server is responsible for the collection and

classification of patient health information’s and then visualized the result to

be used for diagnoses of the patients.

1.4 Aims and Objectives

The aims of this project is to design IoT based health treatment application

to achieve the following goals:

- To Design and implement a low power, short range health treatment

sensor nodes.

- To design raspberry Pi based local server that managing the

transmission , collection and analysis of raw health treatment data

- To Exchange the health information with Raspberry Pi based local

server using simple encryption scheme.

- To Maintains the consumed power and bandwidth in tolerable level

with cost.

 5

1.5 Methodology

- Design a sensor node that implement a health treatment using SPIO2

sensor, blood-pressure sensor and temperature sensor using proteus

simulator.

- Writing C code that collect the sensory data from the various sensors,

and to implement an encryption scheme using cryptographic scheme.

- Emulate this data by transmission of information’s using computer

COM port to insure that the transmission is done properly.

- Batch a Raspbian OS on an SD card and then insert the SD card in

raspberry Pi to complete the installation of the OS.

- Install and configure the raspberry Pi as apache server to exchange the

transmission with IP networks.

- Connect both the raspberry pi and the sensor node with RF module

using USART transmission protocol.

- Configure the raspberry pi to allow the exchanging of data with public

server.

- After collect the data received by the raspberry Pi, it then analyzed and

visualized using numerical tools I used Matlab and .ods systems.

1.6 Thesis Outline:

In chapter one: an introduction about the concept of IoT is presented

in addition to the problem and the proposed solution, also the objectives and

the methodology is stated.

In chapter two: a broad background is discussed, also a brief discussion about

related work to the thesis is discussed.

 6

In chapter three: the system design will be described in addition to the

operation of whole system.

In chapter four: a variety system results are discussed and approved.

In chapter five: a brief conclusion is presented in addition to the

recommendations.

CHAPTER TWO

LITERATURE REVIEW

 8

Chapter Two

Literature Review

2.1 Background

Smart devices. Smart-phones. Smart cars. Smart homes. Smart cities.

A smart world. These notions have been espoused for many years. Achieving

these goals has been investigated, to date, by many diverse and often disjoint

research communities. Five such prominent research communities are:

Internet of Things (IoT), Mobile Computing (MC), Pervasive Computing

(PC), Wireless Sensor Networks (WSN), and most recently, Cyber Physical

Systems (CPS). However, as technology and solutions progress in each of

these fields there is an increasing overlap and merger of principles and

research questions. Narrow definitions of each of these fields are no longer

appropriate. Further, research in IoT, PC, MC, WSN and CPS often relies on

underlying technologies such as real-time computing, machine learning,

security, privacy, signal processing, big data, and others. Consequently, the

smart vision of the world involves much of computer science, computer

engineering, and electrical engineering. Greater interactions among these

communities will speed the progress [1].

Current industrial trends and initiatives aim to connect the

unconnected." Today, millions of embedded devices are used in safety and

security of critical applications such as industrial control systems, modern

vehicles, and critical infrastructure. In the last decades, classical production

engineering, automation, and intelligent computation systems merged into

the industrial Internet of Things (IoT). The number of computation

components integrated into industrial control systems, production systems,

and factories is steadily increasing. Programmable logic controllers are

 9

replaced by more advanced cyber physical systems (CPS), which are freely

programmable embedded devices that control physical processes. CPS

typically communicate over closed industrial communication networks but

are often also connected to the Internet [2].

Apart from benefits of IoTs, there are several security and privacy

concerns at different layers viz; Front end, Back end and Network. the survey

in several security and privacy concerns related to Internet of Things (IoTs)

defining some open challenges. Then, discussion on some applications of

IoTs in real world [3].

 The introduction of IPv6 and web services as fundamental building

blocks for IoT applications promises to bring a number of basic advantages

including, a homogeneous protocol ecosystem that allows simple integration

with Internet hosts; simplified development of very different appliances; a

unified interface for applications, removing the need for application-level

proxies.

Such features greatly simplify the deployment of the envisioned

scenarios ranging from building automation to production environments to

personal area networks, in which very different things such as a temperature

sensor, a luminaire, or an RFID tag might interact with each other, with a

human carrying a smart phone, or with backend services [4].

2.1.1 History and industrial drivers of WSNs

The development of WSNs was inspired by military applications,

notably surveillance in conflict zones. Today, they consist of distributed

independent devices that use sensors to monitor the physical conditions with

their applications extended to industrial infrastructure, automation, health,

traffic, and many consumer areas[1][7].

 10

Research on WSNs dates back to the early 1980s when the United

States Defense Advanced Research Projects Agency (DARPA) carried out

the distributed sensor networks (DSNs) program for the US military. At that

time, the Advanced Research Projects Agency Network (ARPANET) had

been in operation for a number of years, with about 200 hosts at universities

and research institutes [4]. DSNs were assumed to have many spatially

distributed low-cost sensing nodes, collaborating with each other but

operated autonomously, with information being routed to whichever node

that can best use the information. Even though early researchers on sensor

networks had the vision of a DSN in mind, the technology was not quite

ready. More specifically, the sensors were rather large (i.e. the size of a shoe

box and bigger), and the number of potential applications was thus limited.

Furthermore, the earliest DSNs were not tightly associated with wireless

connectivity [5].

2.1.1.1 Characteristic features of WSNs

A WSN in figure 2-1 can generally be described as a network of nodes

that cooperatively sense and control the environment, enabling interaction

between persons or computers and the surrounding environment. WSNs

nowadays usually include sensor nodes, actuator nodes, gateways and clients.

A large number of sensor nodes deployed randomly inside of or near the

monitoring area (sensor field), form networks through self-organization.

Sensor nodes monitor the collected data to transmit along to other sensor

nodes by hopping [5][11]. During the process of transmission, monitored data

may be handled by multiple nodes to get to gateway node after multi hop

routing, and finally reach the management node through the internet or

satellite. It is the user who configures and manages the WSN with the

management node, publish monitoring missions and collection of the

 11

monitored data. As related technologies mature, the cost of WSN equipment

has dropped dramatically, and their applications are gradually expanding

from the military areas to industrial and commercial fields. Meanwhile,

standards for WSN technology have been well developed, such as Zigbee®1,

Wireless Hart, ISA 100.11a, wireless networks for industrial automation –

process automation (WIA-PA), etc. Moreover, with new application modes

of WSN emerging in industrial automation and home applications, the total

market size of WSN applications will continue to grow rapidly [5].

Figure 2.1: Wireless sensor networks[1]

2.1.2 Cloud infrastructure attacks

A smart home device may include a back-end cloud service, depending

on the category of the device. In our tests, 68 percent of the devices offered

a cloud service. Such a service could be used for statistical purposes, such as

logging the home’s electricity usage or CO2 levels over a number of months.

Other cloud systems allow the remote management of IoT devices, such as

light bulbs or heating. Some vendors even force the user to connect to their

cloud back-end system and do not provide users with the option of locally

 12

managing their devices [6]. The companies either provide access to the cloud

service through a smartphone application or a web portal, where users can

log in.

Unfortunately, nearly all of the tested IoT cloud services in figure 2-2

allow the user to choose weak passwords, such as “1234”. Even worse, many

services prevent the user from using strong passwords with a sufficient level

of complexity, due to unreasonable restrictions. One service, for example,

restricted the user to a PIN code with a maximum length of four numbers.

This makes it easy for any attacker that knows the user’s email address to

brute-force their PIN code and take over their account.

Most of the analyzed services don’t lock users out of their accounts

after a number of failed login attempts, further allowing attackers to brute-

force accounts. None of the analyzed back-end cloud services provided the

option of two-factor authentication (2FA) [6].

Figure 2.2: An illustration of IoT including cloud services (IoT-Cloud) [7].

 13

2.1.3 Systemic Approach for IoT Security

Here will present the main actors of the systemic approach to security

in IoT, introduced in figure 2-3. It is worth to note that the real novelty of the

scheme is the introduction of the “Intelligent Object” at the center of the

interactions among Person, Process and Technological Ecosystem. In the

following we will introduce each of the mentioned actors and their functions

in the scheme.

Figure 2.3: A systemic approach for IoT security[3]

 14

A. Person

The first node plays a fundamental role in the IoT security framework.

The human resources are responsible for security rules management, which

includes:

• Defining security practices and rules.

• Auditing practices and rules efficiency.

• Applying practices and rules when into operational mode.

Due to the complex environment of the IoT, this node is a vital

component in security management and enhancement. To this purpose, the

human component should be able to analyses the context of IoT, individuate

its advantages and limitations, and exploit the technology evolution to bring

adequate solutions.

B. Process

The second node refers to a means to accomplishing tasks in the IoT

environment according to some security requirements. The process is

required to be compliant with the security policies in order to keep the

environment secure at different levels. Furthermore, due to the complexity of

the model and the presence of different interactions originating from this

node, security processes are difficult to implement.

The Federal Financial Institutions Examination Council’s (FFIEC) of

USA presented a first classification of standard areas to deal with when

considering security processes:

• Information Security Risk Assessment.

• Information Security Strategy.

• Security Controls Implementation.

• Security Monitoring.

 15

• Security Process Monitoring and Updating.

In practices, security process need to meet requirements of standards,

strategies, policies, procedures and other afferent documents. Thus, an

adequate compromise must be found between complexity of security process

practices and the needed security level.

C. Intelligent Object

This node is the heart of the new approach. It refers to an “object”

augmented by the electronic features needed to let it communicate with other

objects in the surrounding environment. These objects will become active

participants in business, information and social processes. In fact, objects in

the IoT framework will be able to cooperate, share and exchange information

about the environment, and respond to events happened in the environment

by accomplishing adequate operations. Due to their expected pervasively, the

correct design and development of security practices within the conception

of intelligent objects is fundamental to ensure the right level of security to

the whole environment surrounding them.

D. Technological ecosystem

This node refers to technological choices made to ensure IoT security.

According to, information security technology falls into several broad

categories:

• Security Design and Configuration

• I&A: Identification and Authorization

• Enclave internal

• Enclave boundary

• Physical and environmental

The choices related to each of these elements may include system

architecture, communications protocols, implemented algorithms, access

 16

control methods, performance, etc. It is evident that a trade-off among

security requirements, feasibility and technology evolution should be found

in order to ensure the appropriate level of security without degrading the

performance of the system [8].

2.1.4 Machine to Machine

Describes a set of interconnected devices that allow both wireless and

wire line systems to communicate with other devices, mostly in vertical

segments, i.e., the plumbing/connectivity that enables the IoT ecosystem.

The M2M world of today seems limited only by the imaginations of

application developers, device manufacturers, operating systems developers,

infrastructure vendors and service providers.

The virtuous cycle of innovation and investment in M2M development

embraces both wire line and wireless connectivity, but mobile uses are

predominant. By 2018, M2M devices are projected to account for more than

40 percent of connected devices in the United States, as compared to 19.7

percent globally.13 Wireless connectivity is frequently the most efficient,

flexible and cost-effective option, especially in geographies lacking reliable

wire line access. The result is that this growing segment of the IoT is made

possible by mobile connectivity.

To ensure that society realizes future benefits of the IoT, the wireless

industry is committed to continuing efforts to develop best practices and

create solutions that will support security, transparency and data integrity,

including the protection of sensitive and personally identifiable information.

As interest in this expansion of the IoT has grown, so has attention to the

cyber security and data privacy implications of M2M devices [9].

 17

Table 2-1: Evolving features of the IoT today, in the past and future [10]

 2000 2013 2020 Uncertainty

Technology RFID Sensors, cloud

phones.

ICT inside

things, New

technologies.

Invisibility,

ubiquity.

Size Millions Billions Billions to

trillions

Billions to

trillions

Interconnection Wired

stationary

Wireless

mobile H2M

E2E, all IP,

M2M,

interoperability

Ubiquity

standards

Data collection Identifier Sensory,

limited areas,

Active humans

increasing

coverage,

passive

humans.

Extent

penetration

Things

interaction

None Button, touch

Displays haptic

Web interface Prevalence of

web interface

System

interaction

None Smartphone,

gestures,

speech

Web interfaces

,Haptic using

the

environment

Using all

human senses

Lifecycle Ownership

transfer

Ownership

transfer

Product history

log,

exchangeable

Dynamic-ness

Vertical Vs

horizontal

None Mainly vertical both Central

solution prevail

 18

2.1.5 EMBEDDED SECURITY SOLUTION

There are many existing solutions to counter different attacks.

Encryption of information is used for confidentiality. The most popular

cipher algorithms are: RSA, ECC, AES, 3DES.The hash of information is

used to check the integrity of a message by providing a signature which is

unique for each message. The most known algorithms are MD5 and SHA. In

addition, non-repudiation, availability and authenticity are guaranteed by

communication protocols like IPsec for example. Most of these algorithms

and processes are very much computationally intensive. So, we require

dedicated hardware or Digital Signal Processors (DSP).

System designs for embedded devices are complicated, including

multiple independent processor cores, secondary bus masters such as DMA

engines, and large numbers of memory and peripheral bus slaves. In addition

to these functional components there is typically a parallel system

infrastructure that provides invasive and non-invasive debug capabilities, as

well as component boundary scan and Built-In-Self-Test (BIST) facilities [8].

Due to this kind of importance, complexity as well as the pervasive

deployment of embedded devices from home to big enterprises, embedded

device security becomes a big issue. Many research initiatives have been

undertaken to counter the issues of security in embedded systems. We find

great treatment on the issues of embedded system security in [10], where

authors have described security requirements, design challenges, basic

concepts, different security protocols like Secure Socket Layer (SSL), open

SSL, architectures. The SSL protocol is typically layered on top of the

transport layer of the network protocol stack, and is either embedded in the

protocol suite or is integrated with applications such as web browsers. This

is shown in figure 2-4 [11].

 19

Figure-2-4: SSL protocol, with an expanded view of the SSL record protocol

2.1.6 RFID and the EPC Network

RFID (Radio Frequency Identification) in figure 2-5 is primarily used

to identify objects from a distance of a few meters, with a stationary reader

typically communicating wirelessly with small battery-free transponders

(tags) attached to objects [1]. As well as providing two important basic

functions for an Internet of Things – identification and communication –

RFID can also be used to determine the approximate location of objects

provided the position of the reader is known. At the end of the 1990s, RFID

technology was restricted to niche applications such as animal identification,

access control and vehicle immobilizers. High transponder prices and a lack

of standards constituted an obstacle to the wider use of the technology[5][1].

Since then, however, its field of application has broadened

significantly, mainly thanks to MIT’s Auto-ID Center, which was founded in

1999. The Auto-ID Center and its successor organization EPC global have

systematically pursued a vision of cheap, standardized transponders

identifying billions of everyday objects, and they have developed the

necessary technology jointly with commercial partners. The use of RFID

technology in the supply chains of retail giants such as Wal-Mart and Metro

is the result of these efforts. While the adoption by major retailers represents

 20

a remarkable success, the evolution of RFID and its associated infrastructure

technologies in recent years also highlights challenges involved in realizing

an Internet of Things in the broader sense of the term [2].

The development of RFID over recent years is reflected not only in

technical progress but also in cost reductions and standardization. For

example, the power consumption of the latest generation of transponders is

less than 30 μW, with reading distances of up to ten meters possible under

favorable conditions. Increasing miniaturization has also led to a unit price

of close to five cents for bulk orders of simple RFID transponders. Major

progress has also been made in the field of standardization, with the ISO

18000-6C RFID protocol – also referred to as EPC global Gen2 – being

supported by several manufacturers, dominating the market and guaranteeing

interoperability[12].

 High cost pressure and the absence of batteries in transponders means

that RFID communications protocols cannot be based on established Internet

protocols due to a scarcity of resources. For example, a typical RFID

microchip merely consists of a few hundred thousand transistors, contains no

microcontroller and has minimal storage capacity – usually just a few bytes.

Instead of using a battery, passive RFID microchips are supplied with power

remotely from a reading device. Since the power supply can frequently be

interrupted due to “field nulls”, the transmission of large data packets is

avoided – at 128 bits, these are typically much shorter than IP packets.

Everyday objects that are to be addressed in an Internet of Things using RFID

technology will therefore not behave in exactly the same way as Internet

nodes. Instead, it is likely that a highly optimized wireless protocol will be

used over the last few meters due to scarce resources and the adverse

conditions encountered in the physical world. The RFID reader would act as

 21

a gateway between the two different protocols. TCP and HTTP-based

protocols have been developed for use in RFID environments, where they are

used to configure readers and distribute the data captured via the Internet

[12].

Figure 2.5: RFID Telecommunication [7]

2.2 Related Works

 The authors of [2] introduced Industrial IoT systems, the related

security and privacy challenges, and outlook possible solutions towards a

holistic security framework for Industrial IoT systems. Cyber-attacks on IoT

systems are very critical since they may cause physical damage and even

threaten human lives. The complexity of these systems and the potential

impact of cyber-attacks bring upon new threats.

 In addition, authors in [3] introduced Internet of Things (IoTs), which

offers capabilities to identify and connect worldwide physical objects into a

unified system. As a part of IoTs, serious concerns are raised over access of

personal information pertaining to device and individual privacy.

 Direct interpretation of the term Internet of Things refers to the use of

standard Internet protocols for the human-to-thing or thing-to-thing

 22

communication in embedded networks. Although the security needs are well-

recognized in this domain, it is still not fully understood how existing IP

security protocols and architectures can be deployed. In this paper, we

discuss the applicability and limitations of existing Inter-net protocols and

security architectures in the context of the Internet of Things [4].

 While in [13] a general survey of all the security issues existing in the

Internet of Things (IoT) along with an analysis of the privacy issues that an

end user may face as a consequence of the spread of IoT. The majority of the

survey is focused on the security loopholes arising out of the information

exchange technologies used in Internet of Things. No counter measure to the

security drawbacks has been analyzed.

 But in [14] creates by itself an interesting challenge when adding new

things and enabling new services on the Internet. Without public IP

addresses, the Internet of Things capabilities would be greatly reduced. Most

discussions about IoT have been based on the illusionary assumption that the

IP address space is an unlimited resource or it is even taken for granted that

IP is like oxygen produced for free by nature. Hopefully, the next generation

of Internet Protocol, also known as IPv6 brings a solution.

In [15] after outlining key challenges in data security and privacy, we

summarize research directions for securing IoT data, including efficient and

scalable encryption protocols, software protection techniques for small

devices, and fine-grained data packet loss analysis for sensor networks.

The Internet-of-Things (IoT) has quickly moved from the realm of

hype to reality with estimates of over 25 billion devices deployed by 2020.

While IoT has huge potential for societal impact, it comes with a number of

key security challenges—IoT devices can become the entry points into

critical infrastructures and can be exploited to leak sensitive information.

 23

Traditional host-centric security solutions in today’s IT ecosystems (e.g.,

antivirus, software patches) are fundamentally at odds with the realities of

IoT (e.g., poor vendor security practices and constrained hardware) [16].

 In the recent years, people need to use Internet at anytime and

anywhere. Internet of Things (IOT) allows people and things to be connected

Anytime, Anyplace, with anything and anyone, ideally using any

path/network and Any service. IOT can be distinguished by various

technologies, which provide the creative services in different application

domains. This implies that there are various challenges present while

deploying IOT. The traditional security services are not directly applied on

IOT due to different communication stacks and various standards. So flexible

security mechanisms are need to be invented, which deal with the security

threats in such dynamic environment of IOT. In [17] survey we present the

various research challenges with their respective solutions. Also, some open

issues are discovered and some hints for further research direction are

advocated.

As IoT is built on the basis of the Internet, security problems of the

Internet will also show up in IoT. And as IoT contains three layers: perception

layer, transportation layer and application layer, also analyzes the cross-layer

heterogeneous integration issues and security issues in detail and discusses

the security issues of IoT as a whole and tries to find solutions to them [18].

 We propose to have a device which is the integration of multiple

devices, hardware comprises of a wearable “Smart band” which continuously

communicates with Smart phone that has access to the internet. The

application is programmed and loaded with all the required data which

includes Human behavior and reactions to different situations like anger, fear

and anxiety [19].

CHAPTER THREE

DESIGN OF HEALTH TREATMENT SYSTEM

USING RASPBERRY PI AND ARDUINO

 25

Chapter Three

Design of Health Treatment System Using Raspberry

Pi and Arduino

3.1 Introduction

The figure 3.1 represent the proposed health treatment IoT system

include various stages of the signal road map from entry of the data up to

visualization of the collected data.

Figure 3-1: The proposed Health treatment system

Here the sensors data is to be collected by the AVR microcontroller,

thus the AVR microcontroller can be named as the brain of the sensor node,

the AVR then add a simple encryption algorithm to the collected sensory

data and then the data is transmitted via serial port to APC220 wireless

module, the wireless module broadcast the information into space, at the

right hand side locate the receiver that receives the information and then

handoffs the received data to the raspberry Pi via serial port, the raspberry

pi writes these information’s to a file and then it can analyzed and

visualized using appropriate numerical tools.

AVR

Blood

pressur

e

sensor

Temper

ature

sensor

SPO2

TX RX
Raspberr

y Pi

 26

3.2 Acquisition of Sensory data

At this part three type of sensors are introduced beginning by pressure

sensor, temperature sensor and SPO2 sensor as it illustrated below in detail.

3.2.1 Blood pressure sensor

Blood pressure is the pressure of the blood in the arteries as it is

pumped around the body by the heart. When your heart beats, it contracts and

pushes blood through the arteries to the rest of your body. This force creates

pressure on the arteries. Blood pressure is recorded as two number the

systolic pressure and over the diastolic pressure.

Figure 3-2: pressure Sensor

The blood pressure does not stay the same all the time. It changes to meet

your body’s needs. It is affected by various factors including body position,

breathing or emotional state, exercise and sleep. It is best to measure blood

pressure when you are relaxed and sitting or lying down.

https://www.cooking-hacks.com/media/cooking/images/documentation/e_health_v2/blood_pressure_sensor_e_health_big.png

 27

Table 3-1: Human Pressure Range

Human Situation Systolic(mm Hg) Diastolic(mm Hg)

Hypotension <90 <60

Desired 90-119 60-79

Prehypertension 120-139 80-89

Stage1 Hypertension 140-159 90-99

Stage2 Hypertension 160-179 100-109

Hypertensive Crisis >= 180 >=110

High blood pressure (hypertension) can lead to serious problems like

heart attack, stroke or kidney disease. High blood pressure usually does not

have any symptoms, so you need to have your blood pressure checked

regularly.

3.2.2 Temperature sensor

Body temperature depends upon the place in the body at which the

measurement is made, and the time of day and level of activity of the person.

Different parts of the body have different temperatures.

Figure 3-3: Temperature Sensor

The commonly accepted average-core body-temperature is 37.0°C

(98.6°F). In healthy adults, body temperature fluctuates about 0.5°C (0.9°F)

https://www.cooking-hacks.com/media/cooking/images/documentation/e_health_v2/elementos_pulsometro_big.png

 28

throughout the day, with lower temperatures in the morning and higher

temperatures in the late afternoon and evening, as the body's needs and

activities change.

It is of great medical importance to measure body temperature. The

reason is that a number of diseases are accompanied by characteristic changes

in body temperature. Likewise, the course of certain diseases can be

monitored by measuring body temperature, and the physician can evaluate

the efficiency of a treatment initiated.

Table 3-2: Human Temperature Range

Human Situation Temperature

Hypothermia <35.0 ℃ (95.0 ℉)

Normal 36.5-37.5 ℃ (97.7-99.5 ℉)

Fever Or Hyperthermia >37.5-38.3 ℃ (99.5-100.9 ℉)

Hyperpyrexia >40.0-41.5 ℃ (104.0-106.7 ℉)

The precision of the Body Temperature Sensor can improved by a

calibration process. Calibration is a process of measuring voltage and

resistance real values.

When using temperature sensor, you are actually measuring a voltage,

and relating that to what the operating temperature of the sensor must be. If

you can avoid errors in the voltage measurements, and represent the

relationship between voltage and temperature more accurately, you can get

better temperature readings.

http://www.cooking-hacks.com/index.php/body-temperature-sensor-ehealth-medical.html

 29

3.2.3 SPO2 sensor

Pulse oximetry a noninvasive method of indicating the arterial oxygen

saturation of functional hemoglobin.

Oxygen saturation is defined as the measurement of the amount of

oxygen dissolved in blood, based on the detection of Hemoglobin and

Deoxyhemoglobin. Two different light wavelengths are used to measure the

actual difference in the absorption spectra of HbO2 and Hb. The bloodstream

is affected by the concentration of HbO2 and Hb, and their absorption

coefficients are measured using two wavelengths 660 nm (red light spectra)

and 940 nm (infrared light spectra). Deoxygenated and oxygenated

hemoglobin absorb different wavelengths.

Figure 3-4 SPO2 Sensor

Deoxygenated hemoglobin (Hb) has a higher absorption at 660 nm and

oxygenated hemoglobin (HbO2) has a higher absorption at 940 nm . Then a

photo-detector perceives the non-absorbed light from the LEDs to calculate

the arterial oxygen saturation.

https://www.cooking-hacks.com/media/cooking/images/documentation/e_health_v2/pulse_and_oxygen_in_blood_sensor_big.png

 30

A pulse oximeter sensor is useful in any setting where a patient's

oxygenation is unstable, including intensive care, operating, recovery,

emergency and hospital ward settings, pilots in unpressurized aircraft, for

assessment of any patient's oxygenation, and determining the effectiveness

of or need for supplemental oxygen.

Acceptable normal ranges for patients are from 95 to 99 percent, those with

a hypoxic drive problem would expect values to be between 88 to 94 percent,

values of 100 percent can indicate carbon monoxide poisoning.

3.3 Description of Arduino Nano Board

Arduino is an open-source electronics prototyping platform based on

flexible, easy-to-use hardware and software. Arduino can sense the

environment by receiving input from a variety of sensors and can affect its

surroundings by controlling lights, motors, and other actuators. The

microcontroller on the board in the figure 3.8 is programmed with many

programming languages such as assembly, C as well Arduino development

programming language.

Figure 3.5: Arduino Nano[7]

http://www.cooking-hacks.com/index.php/pulse-and-oxygen-in-blood-sensor-spo2-ehealth-medical.html

 31

Arduino Nano is a surface mount breadboard embedded version with

integrated USB. It is a smallest, complete, and breadboard friendly. It has

everything that Diecimila/Duemilanove has (electrically) with more analog

input pins and onboard +5V AREF jumper. Physically, it is missing power

jack. The Nano is automatically sense and switch to the higher potential

source of power, there is no need for the power select jumper.

Table 3-3: Specifications of Arduino Nano

Microcontroller Atmel ATmega328
Operating Voltage (logic level) 5 V

Input Voltage (recommended) 7-12 V

Input Voltage (limits) 6-20 V

Digital I/O 14 Pins

Analog Input 8 Pins

DC Current per I/O Pins 40 mA

Flash Memory 32 KB

SRAM 2 KB

EEPROM 1 KB

Clock Speed 16 MHz

3.3.1 Power of Arduino Nano

The Arduino Nano can be powered via the Mini-B USB connection, 6-

20V unregulated external power supply, or 5V regulated external power

supply. The power source is automatically selected to the highest voltage

source.

3.3.2 Memory of AVR Atmega328P

The ATmega328 has 32 KB, (also with 2 KB used for the bootloader.

The ATmega328 has 2 KB of SRAM and 1 KB of EEPROM.

 32

3.3.3 Input and Output of Arduino Nano

Each of the 14 digital pins on the Nano can be used as an input or

output. They operate at 5 volts. Each pin can provide or receive a maximum

of 40 mA and has an internal pull-up resistor (disconnected by default) of 20-

50 KOhms. Figure 3.9 shows the layout pf Arduino Nano. Some pins have

specialized functions:

 Serial: 0 (RX) and 1 (TX). Used to receive (RX) and transmit (TX)

TTL serial data. These pins are connected to the corresponding pins of

the FTDI USB-to-TTL Serial chip.

 External Interrupts: 2 and 3. These pins can be configured to trigger an

interrupt on a low value, a rising or falling edge, or a change in value.

 PWM: 3, 5, 6, 9, 10, and 11. Provide 8-bit PWM output.

 SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). These pins support

SPI communication, which, although provided by the underlying

hardware, is not currently included in the Arduino language.

 LED: 13. There is a built-in LED connected to digital pin 13. When

the pin is HIGH value, the LED is on, when the pin is LOW, it's off.

 The Nano has 8 analog inputs, each of which provide 10 bits of

resolution. By default, they measure from ground to 5 volts. Analog

pins 6 and 7 cannot be used as digital pins. Additionally, some pins

have specialized functionality:

 33

Figure 3-6: Arduino Nano Layout

 I2C: A4 (SDA) and A5 (SCL). Support I2C (TWI) communication.

There are a couple of other pins on the board:

 AREF. Reference voltage for the analog inputs.

 Reset. Bring this line LOW to reset the microcontroller. Typically used

to add a reset button to shields, which block the one on the board.

3.3.4 Communication between Arduino Nano with host computer

The Arduino Nano has a number of facilities for communicating with

a computer, another Arduino, or other microcontrollers. The ATmega328

provide UART TTL (5V) serial communication, which is available on digital

pins 0 (RX) and 1 (TX). An FTDI FT232RL on the board channels this serial

communication over USB and the FTDI drivers provide a virtual com port to

software on the computer. The Arduino software includes a serial monitor

which allows simple textual data to be sent to and from the Arduino board.

 34

The RX and TX LEDs on the board will flash when data is being transmitted

via the FTDI chip and USB connection to the computer Programming the

Arduino Nano can be programmed with the Arduino software. The

ATmega328 on the Arduino Nano comes preboned with a boot loader that

allows you to upload new code to it without the use of an external hardware

programmer. It communicates using the original STK500 protocol.

 You can also bypass the boot loader and program the microcontroller

through the ICSP (In-Circuit Serial Programming) header using Arduino ISP

or similar.

3.3.5 Automatic (Software) Reset

Rather than requiring a physical press of the reset button before an

upload, the Arduino Nano is designed in a way that allows it to be reset by

software running on a connected computer. One of the hardware flow control

lines (DTR) of the FT232RL is connected to the reset line of the ATmega328

via a 100nf capacitor. When this line is asserted (taken low), the reset line

drops long enough to reset the chip. The Arduino software uses this capability

to allow you to upload code by simply pressing the upload button in the

Arduino environment. This means that the boot loader can have a shorter

timeout, as the lowering of DTR can be well.

3.4 APC220 RF Module Specifications

The APC220 radio module provides a simple and economic solution

for wireless data communications. Figure 3.4 show an APC220 Integrates an

embedded high speed microprocessor and high performance IC that creates

a transparent UART/TTL interface, and eliminates any need for packetizing

and data encoding. If you are looking for a low-cost solution with better range

performance, this has been our customer choice for a long time now.

 35

It inventively uses efficient cycle cutting and EDAC which can correct

maximum of 24 bits’ continuous burst error with coding gain nearly 3dBm,

this scheme is much higher than FEC. The anti-burst interference capability

and sensitivity are greatly improved. Therefore, this module is suitable and

powerful for use in harsh environment.

Figure 3-7: RF Module AP220

3.4.1 Connect APC220 to PC

To connect APC220 to Raspberry, a TTL to RS232 or TTL to USB

converter is required.

Figure 3-8: RF Module Layout

 36

The block diagram in the figure 3.5 the UART to TTL converter used to

achieve the data level transmission between the host computer and the

APC220 module. The USB to TTL converter combine the USB-232-1 and

TTL-232-1 allows you to convert USB to TTL/CMOS compatible levels

and vice versa.

3.4.2 Connect APC220 to MCU

Any MCU which has TTL port is able to talk to APC220. A diagram

is shown below for easy connection. In figure 3.6 The GPIO pins of the

Arduino Nano are connected to corresponding pins in the RF module.

Figure 3-9: TTL interface board Layout

3.5 Raspberry Pi Specification

 A Raspberry Pi is a credit card-sized computer originally designed for

education, inspired by the 1981 BBC Micro. It uses a many different kinds

of processors, so can’t install Microsoft Windows on it. But can install

several versions of the Linux operating system that appear and feel very much

like Windows. Raspberry Pi is also used to surf the internet, to send an email

to write a letter using a word processor, but you can to do so much more.

Simple to use but powerful, affordable and in addition difficult to break,

Raspberry Pi is the perfect device for aspiring computer scientists [1].

 37

 This small computer features amazing HD (high-definition) quality,

video playback, also sports high quality audio and has the capability to play

3D games. The device use the ARM processor which does nearly all of the

hard work in order to run the Raspberry Pi. RASPBIAN, PIDORA,

OPENELEC, RASPBMC, RISC OS, and ARCH LINUX these are few

software’s which are used. All this software’s can be downloaded easily and

these are free from the official forum under the NOOBS (new out of the box

software) category. It supports Python as the main programming language

for functioning and coding. It also supports BASIC, C, C++, JAVA, and Perl

and Ruby languages [2].

The Raspberry Pi is slower than a modern laptop or desktop but is still

a complete Linux computer and can provide all the expected abilities that

implies, at a low-power consumption level. The Raspberry Pi is open

hardware, with the exception of the primary chip on the Raspberry Pi, the

Broadcom SoC (System on a Chip), which runs many of the main

components of the board–CPU, graphics, memory, the USB controller,

etc. Many of the projects made with a Raspberry Pi are open and well-

documented as well and are things you can build and modify yourself.

The Raspberry Pi Foundation has just recently released a new model,

the Raspberry Pi 3, which supersedes some of the previous boards, although

the older boards will still be produced as long as there is a demand for them.

It is generally backwards compatible with previous versions of the board.

There are a two Raspberry Pi models, the A and the B, named after the

aforementioned BBC Micro, which was also released in a Model A and a

Model B. The A comes with 256MB of RAM and one USB port. It is cheaper

http://www.raspberrypi.org/documentation/hardware/raspberrypi/

 38

and uses less power than the B. The current model B comes with a second

USB port, an Ethernet port for connection to a network, and 512MB of RAM.

The Raspberry Pi A and B boards been upgraded to the A+ and B+

respectively. These upgrades make minor improvements, such as an

increased number of USB ports and improved power consumption,

particularly in the B+. The A+ and B+ have been reviewed on

Opensource.com here.

Figure 3-10: Raspberry pi V2 Board

3.5.1 Raspberry Pi hardware specifications

We will briefly go over some of the core components that make up the

Raspberry Pi to give you a better feel for what it is capable of. The Raspberry

Pi is built off the back of the Broadcom BCM2835. The BCM2835 is a

multimedia application processor geared towards mobile and embedded

devices. On top of this, several other components have been included to

support USB, RCA, and SD card storage.

We will now look at some of the core-components of the Raspberry Pi

board. The following figure highlights some of these with a description of

each provided:

 39

Figure 3-11: Raspberry pi Layout

The Raspberry Pi is a small device coming in at 85.60mm x 53.98mm x

17mm and weighing only 45g. This makes it perfect for home automation,

where a small device can be placed in a case and mounted inside an electrical

box, or replace an existing thermostat device on a wall. boards such as the

Arduino.

Figure 3-12: Raspberry pi Arduino Peripherals Connections

 40

As the name suggests, the GPIO pins can accept input and output

commands and thus can be programmed on the Raspberry Pi. The Arduino

shields will be attached to the GPIO via a bridge shield allowing us to transfer

data from sensors soldered to the device back to the Raspberry Pi. This is

especially useful in home automation projects, where we may wish to store

sensor data or manipulate motors based upon a program running on the

Raspberry Pi's operating system. Having touched upon the technical

capabilities of the Raspberry Pi, we will now look at the Arduino and the

Raspberry Pi to Arduino shield, a way to connect the two technologies via

the GPIO pins.

3.6 System implementation, and operation

In this chapter, we are going to describe the system implementation

including design, operation as well as discussing results that achieves to aims

of the project. The proposed health treatment system is constructed from two

subsystems, one which is attached to the human body and is call Sensor

Station (SS) and the Home station (HS) which coordinate the collection,

analysis and transmission of information between the Sensor Station and the

public server.

3.7 Implementation of Sensors Node

The Sensor Station is responsible of reading the human body sensing

status like the blood pressure, body temperature and the level of hemoglobin

of the patient and then encrypt this information in a simple lightweight

cryptographic scheme. The encrypted collected information is then send

serially to a low cost, short range wireless module APC220.

 41

Figure 3-13: Sensor Station Circuit

3.7.1 Reading Sensors Values

The MAX30205 temperature sensor accurately measures temperature

and provide an over- temperature alarm/interrupt/shutdown output. This

device converts the temperature measurements to digital form using a high-

resolution, sigma-delta, analog-to-digital converter (ADC). Communication

is through an I2C-compatible 2-wire serial interface.

The communication between MAX30205 sensor and the Arduino is

going through I2C communication bus, the SDA pin of the MAX30205 is

connected to the SDA of the atmega328p and the while the SCL pin of the

sensor is connected to the SCL of the MCU. The MCU in appendix A

initializes the operation of the tow wire interface TWI to allow the sensors to

stablish a valid connection with the MCU. This initialization can be done by

setting up the Two Wire Bitrate Register TWBR and Two Wire Control

Register TWCR.

The I2C serial interface accepts standard write byte, read byte, send

byte, and receive byte commands to read the temperature data and configure

the behavior of the open-drain over-temperature shutdown output. Therefore,

the TWI bus line check whether there is incomplete operation, this operation

 42

can be either an ongoing transmission of SPO2 data or previous reading from

MAX30205. The check could be done by continuously monitoring if there is

an interrupt is occurring on the TWIE bit on TWCR. At appendix B the

function is return 1 if operation is successful else it will return 0.

The MAX30205 features three address select lines with 32 available

addresses. The sensor has a 2.7V to 3.3V supply voltage range, low 600µA

supply current, and a lockup-protected I2C-compatible interface that make

them ideal for wearable fitness and medical applications.

The MCU will send the address of the MAX30205 using unsigned char

TWI_drvr_writeregister (); This function accesses the MAX30205 slave at

slave address and writes REG_DATA to its internal register at REG_ADDR.

The function returns 1 if successful, else, it returns 0.

Now the sensor has been ready to send the scenery data to the Arduino

board, the microcontroller receives the data using unsigned char

TWI_readregister (). This function accesses the slave at slave address, reads

its internal register at REG_ADDR, and stores the data in received Data

pointer. The function returns 1 if successful, else, it returns 0

The same procedure is done with MAX30100 oxygen sensor since it’s

also a two wire interface module.

In order to read the data from a blood pressure sensor we must allow

the ADC of the microcontroller by setting the sampling rate, the reference

voltage as well as to insure that the selected channel is configured as analogue

input pin.

Here channel 0 in DIDR0 register is select as analogue input channel

while the reference value is set to 5V as the AVCC value so the AREF pin of

the Atmega328P must be connected to the ground via coupling capacitor.

 43

When the ADC channel detect an analogue signal the MCU start the

conversion by sampling this signal and the quantize it into a finite level, and

then coded the quantized levels into 10-bit resolution digital form stored in

ADC data register (ADH and ADL). During the conversion of the analogue

signal the MCU remains busy until ADIF bit in the ADSR is set to 1 after

that the MCU is going through next conversion.

3.7.2 Sensors Data encryption

The sensing data is encrypted by advanced encryption standard (AES)

using a Secure Rolling Code Algorithm transmission protocol and its cipher-

based message authentication code (CMAC) mode of operation for

transmitter authentication supporting 128-bit key size with less than 30ms

response time. The transmission protocol can be used in a system consisting

of one receiver and a limited number of associated transmitters.

Figure 3-14: Secure System with all goals satisfied

The transmitters are preprogrammed with a unique identification

number and a secret encryption key. To be able to recognize and accept a

new transmitter, the secret key must be transferred to the receiver in a secure

manner. It is important that the transmission from the transmitter is

unreadable for all but the receivers belonging to the same system. It is also

important that the receiver only accept transmitters belonging to the same

system.

 44

Figure 3-15: Flow off learning Session

The key transfer process is initiated by putting the receiver into a

special learn mode using an external signal, e.g., a switch hidden inside the

car. On the transmitter side, the learning process is initiated by e.g., a special

key combination. The transmitter encrypts its secret key using the shared key

and transmits it to the receiver together with the serial number and optionally

 45

the sequential counter state. Due to this scheme, the shared key is often

referred to as a key encryption key (KEK)

Figure 3-16: Secret Key Transfer Session

If one can assume that the transmitter is not operated before it is used

in a key transfer session, the counter state can be omitted from the

transmission, resulting in a shorter transmission. Even if the transmitter has

been operated a few times, it will be accepted as long as the counter has not

counted past the rolling window size. The implementation in this application

note includes the counter value in the transmission. To ensure message

integrity, a CRC code generated from the whole message frame is also

appended to the message.

 46

Figure 3-17: Overview of Transmitter and Receiver lifecycle

3.7.3 Operation

The transmitter spends most of its time in Power Down Sleep Mode,

waiting for the user to press a button. When a Pin Change Interrupt wakes up

the ATmega328p, the button selection is compared to a defined Teach

Command button. (In the appendix C) If it matches, the transmitter encrypts

and transmits its secret key using the system's shared key. Before entering

Power Down Sleep Mode again, the sequential counter value is incremented.

 47

3.8 Wireless Interface

After the sensors information’s are encrypted now this information’s are

ready for transmission through air interface using APC220 wireless module.

For the first time we need to initiate by setting up the baud rate, the

number of bits per and the buffer size of the USART module inside the AVR-

MCU.

The configuration at appendix D allows the transmission of 9600bps

baud-rate with CPU frequency equal to 16Mhz and 8bit data per frame while

enabling the transmitter and the receiver as well as receive interrupt is

enabled also. Now the microcontroller is ready to transmit the information to

the raspberry by using APC220 wireless module; the following code at

appendix E is responsible for the establishment of the transmission.

Configuring APC220 wireless module Download and install the

configuration software for the USB to TTL converter and then go to the

device manager in the windows computer check if the software was install

successfully.

Figure 3-18: Serial Port Configuration

 48

Figure 3.18 show the final configuration of the RF module APC220,

after installation of the driver is completed, go the device manager of your

windows computer by write click on computer icon then choose mange, the

above navigation list will be open, go to port setting and find what is the

preferred port for the module, its optional and can be changed.

CHAPTER FOUR

RESULTS AND DISCUSSIONS

50

Chapter Four

Results and Discussions

Now by running the RF-Magic executable file by write click on

ap22x.exe application and then choose open as administrator, the window in

the figure 4.7 will immediately opened, this allows the programmer to select

the desired configuration for his own project by choosing the bandwidth of

transmission, the network ID as well as node ID and also the user has to

choose the physical and air baud rate of transmission.

Figure 4-1: RF Transmitter Setting

In the figure 4.18 we connect the APC220 to the windows computer

through USB to TTL converter, then select the appeared COM port, the

module will appear in the status bar along with the port number and the model

series of the RF Module. Figure 4.7 shows the selected node parameters as

an example, the demonstration in my thesis is worked under 434 Mhz band,

the network ID can be any number between 0-0xFFFF, but the network ID

must be unique number in each network because it tells that all nodes have

the

51

Figure 4-2: APC220 connection with PC

same network ID are allowed to be communicate with each other but

not with the same nodes having different network ID, while the node

Figure 4-3: RF Receiver Setting

52

The node id is an optional 32-bit number to define the node

of the sensor, also we use a baud rate of 9600 bps for both the

physical and air baud rates.

Table 4-1: Specification of RF Sensor

Parameter Range Default

RF

frequency

Resolution 1KHz，Accuracy ±100Hz 434MHz

RF TRx

Rate

1200，2400，4800，9600，19200bps 9600bps

RF power 0-9 9

Series Rate 1200，2400，4800，9600，19200，

38400，57600bps

9600bps

Net ID 0-65535（16 bit） 12345

Node ID 123456789012

Series

Parity

Disable，Odd Patity，Even Patity Disable

4.1 Writing the Raspbian image

Insert the SD card into the laptop/pc and run the image writer. Once open,

browse and select the downloaded Raspbian image file. Select the correct

device, that is the drive representing the SD card. If the drive (or device)

selected is different from the SD card, then the other selected drive will

become corrupted. After that, click on the "Write" button in the bottom.

53

Figure 4-4: Image File Burn at SD Card

 Once the write is complete, eject the SD card, insert it into the

Raspberry Pi, and turn it on. It should start booting up. Setting up the Pi

Raspberry Pi comes with a default user name and password and so always

use it whenever it is being asked.

login: pi

password: raspberry

54

 When the Pi has been booted for the first time, a configuration screen

called the "Setup Options" should appear and it will look like the image

below.

Figure 4-5: Raspberry Pi Configuration Tool

 Now that the Setup Options window is up, we will have to set a few

things. After completing each of the steps below, if it asks to reboot the Pi,

please do so. After the reboot, if you do not get the "Setup Options" screen,

then follow the command given above to get the screen/window.

 Select the first option in the list of the setup options window, that is

select the "Expand Filesystem" option and hit the enter key. We do this to

make use of all the space present on the SD card as a full partition. All this

does is, expand the OS to fit the whole space on the SD card which can then

be used as the storage memory for the Pi.

 Select the third option in the list of the setup options window, that is

select the "Enable Boot To Desktop/Scratch" option and hit the enter key. It

55

will take you to another window called the "choose boot option" window that

looks like the figure 4-6 below.

Figure 4-6: Option for Raspberry Pi

 In the "choose boot option window”, select the second option, that is,

"Desktop Log in as user 'pi' at the graphical desktop" and hit the enter button.

Once done you will be taken back to the "Setup Options" page, if not select

the "OK" button at the bottom of this window and you will be taken back to

the previous window. We do this because we want to boot into the desktop

environment which we are familiar with. If we don't do this step, then the

Raspberry Pi boots into a terminal each time with no GUI options.

 Once, both the steps are done, select the "finish" button at the bottom

of the page and it should reboot automatically. If it does not, then use the

following command in the terminal to reboot.

sudo reboot

56

 After the reboot from the previous step, if everything went right, then

you will end up on the desktop, which looks like the image below.

Figure 4.7 Raspberry Pi Desktop

 Once you are on the desktop, open a terminal and enter the following

command to update the firmware of the Pi.

sudo rpi-update

 Updating the firmware is necessary because certain models of the Pi

might not have all the required dependencies to run smoothly or it may have

some bug. The latest firmware might have the fix to those bugs, thus it’s very

important to update it in the beginning itself.

4.2 Installing Apache server on Raspberry Pi

 Apache is a popular web server application you can install on the

Raspberry Pi to allow it to serve web pages. First install the apache2 package

by typing the following command in to the Terminal:

sudo apt-get install apache2 -y

57

 By default, Apache puts a test HTML file in the web folder. This default

web page is served when you browse to http://localhost/ on the Pi itself, or

http://192.168.1.13 from another computer on the network. To find the Pi's

IP address, type hostname -I at the command line.

 Browse to the default web page either on the Pi or from another

computer on the network and you should see the following:

Figure 4-8: Apache Default Page

 This means you have Apache working. This default web page is just a

HTML file on the file system. It is located at

/var/www/html/index.html.

 Navigate to this directory in a terminal window and have a look at what

is inside

58

cd /var/www/html

ls -al

This will show you:

total 12

drwxr-xr-x 2 root root 4096 Jan 8 01:29 .

drwxr-xr-x 12 root root 4096 Jan 8 01:28 ..

-rw-r--r-- 1 root root 177 Jan 8 01:29 index.html

4.3 Pi Sensor Node

The proposed model allows Arduino and Raspberry Pi users to perform

biometric and medical applications where body monitoring is needed by

using different kinds of bio-sensors. This information can be used to monitor

in real time the state of a patient or to get sensitive data in order to be

subsequently analyzed for medical diagnosis. Biometric information

gathered can be wirelessly sent using any of the 6 connectivity options

available: Wi-Fi, 3G, GPRS, Bluetooth, 802.15.4 and ZigBee depending on

the application.

59

Figure 4-9a: Sensors Node

In figure 4.14a the Arduino NANO sensor node connected to the RF

module using COM4 with baud rate of 9600 bps, at the same time it

connected to COM2 to visualize the physical data from the terminal, the

sensor node collects all sensors data from the ADC channel as well as I2C

data, this collected data will have stored in a buffer and then performs the

encryption process for the gathered data, the collected data is then being

transferred in 9600bps baud rate. In the figure 4.14b we show that this

information’s are absolutely secure and safe to be transferred to APC220

wireless module.

60

Figure 4-9b: Transmit Data from Sensor Node to Analysis

In the window of figure 4.14b it shows that the encrypted sensors

before transmission, this includes headers, counter and tail of the transmitted

frame. While the window in figure 4.14c shows that the air transmitted data

is exactly the as the data at the microcontroller terminal thus the transmission

speed is no effected by extra redundancy. This information can be used to

monitor in real time the state of a patient or to get sensitive data in order to

be subsequently analyzed for medical diagnosis at the raspberry Pi side.

The data is received by the raspberry pi serial port and then the

raspberry pi goes to extract the real data from the received frame.

Figure 4.10 Transmitting Data to MATLAB and Raspberry

61

The received data is forwarded by the raspberry Pi to an excel file, in

the figure 14.5a the received data as mentioned is extracted from the burst

frame and then and then reported in its origin as temperature of the patient

body, the blood pressure and the oxygen concentration in the blood

respectively, the monitored data is represent the real time value of the human

body status of all time thus these data has to be averaged over the scale and

then it can be visualized using excel or other numerical technique.

Figure 4-11a: Data at Excel and analysis data

Here the data is visualized in figure 14.15b using drawing technique embedded with

excel sheet.

62

Figure 4-11b: Excel data analysis data

The figure 14.15b represent the visualization of three sensors, the

blue one represent the temperature sensory data read from the terminal,

while the gray and orange curves represent the pressure of the blood as well

as oxygen sensory data.

On the other hand, the Matlab is also used to analyzed the received

data, the figure 14.6 shows that the data is received by Matlab and then the

received data is extracted using appendix F, the data is then plotted in the

computer screen.

Figure 14-12: the received data at the MATLAB

63

The data is then plotted using Matlab, this data can be then used by

the doctors for diagnosis purpose and can be archived to a data base in the

public server.

Figure 4-17: Sensors data plot using Matlab

Data can be sent to the Cloud in order to perform permanent

storage or visualized in real time by sending the data directly to a

laptop or Smartphone. iPhone and Android applications have been

designed in order to easily see the patient's information.

CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

65

Chapter Five

Conclusion and Recommendations

5.1 Conclusion

As the conclusion, in this project a prototype of raspberry pi based health

treatment system is represented. Where the sensory data is collected with

small size, low power consumption and low cost Arduino NANO node

achieving the first goal. Where the body temperature data is collected using

analogue to digital converter of the atmega328P while the blood pressure data

and the oxygen’s is captured via two-wire communication. The collected

sensors information is then encrypted via simple encryption scheme and

transferred wirelessly via APC220 ZigBee wireless module, this data is then

captured, analyzed, and stored and visualized using raspberry Pi. The

patients’ temperature signal, blood pressure and O2 can be monitored

remotely anywhere and anytime. This information also can be send to a cloud

server to be permanently stored and can be used for future requirements.

5.2 Recommendations

We recommend that to use real life sensors to demonstrate this prototype,

and analyze this data in a real network case, also we recommend that to use

Wi-Fi network instead of RF module that increase the level of security and

keeps the consuming levels of power as low as possible [look at the

datasheet].

66

References

[1] L. F. John A. Stankovic, "Research Directions for the Internet of," 2014.

[2] S. S. D. R. P. P. D. o. C. E. S. J. Sathish Kumar Department of Computer Engineering, "A

Survey on Internet of Things: Security and Privacy Issues," international Journal of

Computer Applications, vol. 90 –No 11, p. 0975 –8887, 2014.

[3] C. W. Ahmad-Reza Sadeghi and M. Waidner, "Security and Privacy Challenges in Industrial

Internet of Things," Technische Universität Darmstadt, Germany Intel CRI-SC at TU

Darmstadt, GermanyFraunhofer Institute for Secure Information Technology,

Darmstadt,Germany, no. text book, pp. 7-11, 2015.

[4] O. G.-M. R. H. ,. L. K. S. K. a. K. W. C. G. R. A. G. a. P. R. Tobias Heer, "Security Challengesin

the IP-based Internet of Things," Journal on Wireless Personal Communications, 2012.

[5] International Electro technical Commission, "Inrenet of Things: Wireless Sensor

Networks," Registered trademark of the International Electro technical Commission,

Copyright © IEC, Geneva, Switzerland 2014..

[6] M. B. B. C. Wueest, "Insecurity in the Internet of," vol. Version 1.0, March 12, 2015.

[7] T. P. J. B. H. K. a. D. E. Jatinder Singh, "Twenty security considerations for cloud-supported

Internet of Things," IEEE 1http://www.rfidjournal.com/articles/view?4986,, 2015.

[8] Y. C. ,. E. N. Z. C. B. Arbia Riahi, "A systemic approach for IoT security," Université de

Technologie de Compiègne, Compiègne, France., 2015.

[9] M. C. a. t. I. o. T. E. M. Communication.

[10] O. G. M. a. K. W. Jan Henrik Ziegeldorf1, "Privacy in the Internet of Things: Threats and

Challenges," SECURITY AND COMMUNICATION NETWORKS Security Comm., 2013.

[11] J. S. S. K. Arijit Ukil, "Embedded Security for Internet of Things," 2010.

[12] F. M. a. C. Floerkemeier, "From the Internet of Computers to the Internet of Things,"

Distributed Systems Group, Institute for Pervasive Computing, no. ETH Zurich, 2011.

[13] T. B. D. o. I. Engineering, "Corresponding author “Survey of Security and Privacy Issues of

Internet of Things," 2015.

[14] L. L. a. A. S. V.-c. C. I. E. U. o. A. S. W. S. (.-S. S. V. S. j. C. Antonio J. Jara, "The Internet of

Everything through IPv6: An Analysis of Challenges, Solutions and Opportunities," Journal

of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, vol. 4,

pp. 97-118, 2014.

67

[15] E. B. D. o. C. S. P. U. W. Lafatette, "Data Security and Privacy in the IoT," in 19th

International Conference on Extending Database Technology, Bordeaux, France, March

15-18 2016.

[16] V. S. S. S. Y. A. C. X. C. M. U. P. U. Tianlong Yu, "Handling a trillion (unfixable) flaws on a

billion devices: Rethinking network security for the Internet-of-Things," Philadelphia, PA

USA, 15 November 16.

[17] A. K. B. P. C. E. &. P. Ashvini Balte, "Security Issues in Internet of Things (IoT): A Servey,"

International Journal of Advanced Research in Computer Science and Software

Engineering, vol. 5, p. 450, 2015.

[18] Q. J. •. A. V. V. •. J. W. •. J. L. •. Q. Dechao, "Security of the Internet of Things:

perspectives and challenges," in Springer Science+Business Media , New York, 2014.

[19] M. S. S. E. D. G C Harikiran Karthik, "Smart Security Solution for Women based on Internet

Of Things(IOT)," in International Conference on Electrical, Electronics, and Optimization

Techniques (ICEEOT), 2016.

Appendix A

void twi_initial(void)

{

 TWBR = TWI_TWBR;

 TWSR = TWI_TWPS;

 TWDR = 0xFF;

 TWCR = (1<<TWEN)|

 (0<<TWIE)|(0<<TWINT)|

 (0<<TWEA)|(0<<TWSTA)|(0<<TWSTO)|

 (0<<TWWC);

 }

Appendix B

unsigned char TWI_drvr_writeregister(unsigned char slave_address, unsigned char REG_ADDR, unsigned

char REG_DATA)

{

 twi_start_transceiver_with_data(®_DATA, 1, ((slave_address<<TWI_ADR_BITS) |

(FALSE<<TWI_READ_BIT)), REG_ADDR);

 switch(twi_get_state_info())

 {

 case TWI_MTX_ADR_NACK:

 case TWI_MRX_ADR_NACK:

 case TWI_MTX_DATA_NACK:

 case TWI_BUS_ERROR:

 return 0;

 default:

 return 1;

 }

}

Read Data at Raspberry:

unsigned char TWI_drvr_readregister(unsigned char slave_address, unsigned char REG_ADDR, unsigned

char* receivedData)

{

 unsigned char outData[TWI_BUFFER_SIZE];

 twi_start_transceiver_with_data(0, 0, (slave_address<<TWI_ADR_BITS) |

(FALSE<<TWI_READ_BIT), REG_ADDR);

 twi_start_transceiver_with_data(0, 0, ((slave_address<<TWI_ADR_BITS) |

(TRUE<<TWI_READ_BIT)), REG_ADDR);

 twi_get_data_from_transceiver(outData, 2);

 *receivedData = outData[1];

 switch(twi_get_state_info())

 {

 case TWI_MTX_ADR_NACK:

 case TWI_MRX_ADR_NACK:

 case TWI_MTX_DATA_NACK:

 case TWI_BUS_ERROR:

 return 0;

 default:

 return 1;

 }

}

Initial_ADC:

void InitADC()

{

 DIDR0 = 1<<ADC0D;

 ADMUX |= (1<<REFS0);

 ADCSRA |= (1<<ADSC);

 ADCSRA |= (1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0)|(1<<ADEN);

}

Read ADC:

uint16_t ReadADC(uint8_t ADCchannel)

{

 ADMUX = (ADMUX & 0xF0) | (ADCchannel & 0x0F);

 _delay_us(10);

 ADCSRA |= (1<<ADSC);

 while(ADCSRA & (1<<ADSC));

 return ADC;

}

Appendix C

unsigned char twi_busy(void)

{

 return (TWCR & (1<<TWIE));

}

Appendix D

static void mixColumn(byte * column)

{

 byte result0, result1, result2, result3;سيب

 byte column0, column1, column2, column3;

 byte xor;

 column0 = column[0];

 column1 = column[1];

 column2 = column[2];

 column3 = column[3];

 result0 = column1 ^ column2 ^ column3;

 result1 = column0 ^ column2 ^ column3;

 result2 = column0 ^ column1 ^ column3;

 result3 = column0 ^ column1 ^ column2;

 xor = 0;

 if (column0 & 0x80) {

 xor = BPOLY;

 }

 column0 <<= 1;

 column0 ^= xor;

 xor = 0;

 if (column1 & 0x80) {

 xor = BPOLY;

 }

 column1 <<= 1;

 column1 ^= xor;

 xor = 0;

 if (column2 & 0x80) {

 xor = BPOLY;

 }

 column2 <<= 1;

 column2 ^= xor;

 xor = 0;

 if (column3 & 0x80) {

 xor = BPOLY;

 }

 column3 <<= 1;

 column3 ^= xor;

 column[0] = result0 ^ column0 ^ column1;

 column[1] = result1 ^ column1 ^ column2;

 column[2] = result2 ^ column2 ^ column3;

 column[3] = result3 ^ column0 ^ column3;

}

Appendix E

void USART1_Init()

{

 #include<util/setbaud.h>

 unsigned cshar x;

 UBRR0H = UBRRH_VALUE;

 UBRR0L = UBRRL_VALUE;

 UCSR0B = ((1 << RXCIE0) | (1 << RXEN0) | (1 << TXEN0));

 UCSR0C = (1 << UCSZ01) | (1 << UCSZ00);

 x = 0;

 USART_RxTail = x;

 USART_RxHead = x;

 USART_TxTail = x;

 USART_TxHead = x;

}

Appendix F

int USART_Transmit(char data, FILE *stream)

{

 unsigned char tmphead;

 if(data == '\n')

 USART_Transmit('\r',stream);

 tmphead = (USART_TxHead + 1) & USART_TX_BUFFER_MASK;

 while (tmphead == USART_TxTail);

 USART_TxBuf[tmphead] = data;

 USART_TxHead = tmphead;

 UCSR0B |= (1<<UDRIE0);

 return 0;

}

Appendix G

filename = 'testdata.xlsx';

%A = {'Time','Temperature'; 12,98; 13,99; 14,97};

sheet = 6;

xlRange = 'E1';

% figure(1)

% ylim([-10 260]);

a=0;

ts=0;

Ds=0;

Df=0;

c=0;

rev=0;

RD=0;

%fopen(s)

%%

filename = 'Data_From_Node.xlsx';

sheet = 4;

xlRange = 'E1';

s= serial('COM2');

data={0,0,0,0};

P_S=[0,0,0,0];

while(1)

% Time=clock;

fopen(s)

tline=fgets(s);

pause(1);

T_mat=S_tline(tline,30);

Sensor_Data=extrat_num(T_mat)

if(sum(Sensor_Data(:,4))==0)

% if(sum(Sensor_Data(:,1))/11==sum(Sensor_Data(1,1)) && ...

% sum(Sensor_Data(:,2))/11==sum(Sensor_Data(1,2)) && ...

% sum(Sensor_Data(:,3))/11==sum(Sensor_Data(1,3)))

P_S=[P_S ;Sensor_Data];

plot(P_S);

legend('Body_Temperature','Blood_Pressure','SPO2',' ','Location','NorthEastOutside')

 data=cat(1,data,num2cell(Sensor_Data));

 A = {'Body_Temperature','Blood_Pressure','SPO2',' '};

 A=cat(1,A,data);

 xlswrite(filename,A,sheet,xlRange);

 end

fclose(s);

end

fprintf(s,'AT+CMGF=1');

%plot(int8(tline))

axis

