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Chapter One 

Introduction 

Importance of studying the nonlinear dynamic of Homoclinic chaos using 

semiconductor lasers and opt couplers is to obtain synchronization in devices 

that match with current telecommunication technologies and to investigate 

analogies with collective brain dynamics. The synchronization of spike trains of 

many individual neurons is the basis of coherent perception. In presence of 

different external stimuli, different clusters of synchronized neurons are present 

within the same cortical area. The crucial fact is the dissipation of information. 

This means that a reading sensitive to (m) collective clusters has lost the 

detailed information of the (N) components. Information loss means that coding 

at a higher hierarchical level is not just a computational task, but it violates the 

procedure of a Turing machine. So we study theoretically the existence of slow 

chaotic spiking sequences in the dynamics of semiconductor devices with 

coupled optoelectronic feedback. The detected timescale of this dynamic is 

fully determined by the high-pass filter in the feedback loop and their erratic, 

though deterministic, nature is proved by means of the inter-spike interval (ISI) 

probability distribution. The introduction of an AC-feedback optoelectronic 

loop adds both third degree of freedom and third much slower time-scale.  

The expected result of an incomplete Homoclinic scenario that a saddle-focus 

could be occurred. For technological applications semiconductor lasers are 

promising systems to implement secure communication schemes using chaos 

synchronization, because they exhibit fast dynamics, cheap and one could 

utilize the existing telecommunication infrastructure for these lasers. However, 
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due to the fast dynamics of lasers, propagation distances of already a few 

meters introduce non-negligible delay times in the coupling.  

The synchronization of delay-coupled systems in general and delay-coupled 

lasers in particular has therefore been a focus of research in nonlinear dynamics 

in recent decades. When lasers are coupled all optically, not only the delay 

effect is important, but also the optical coupling phases of coherently coupled 

electric fields are important. Coherent coupling may result in constructive or 

destructive interference of incoming signals. When the lasers are synchronized, 

this interference can occur even if the coupling distance is much larger than the 

coherence length of the beams. 

1.1 Literature review 

Many efforts of the scientists in the field of chaos generation and nonlinear 

dynamic of laser had been demonstrated in decade. Fischer, A.P. et al,(2000) 

illustrated solution to control the dynamical space that is available to the laser, 

providing a mechanism for controlling its dynamical behavior. Through the use 

of filters which achieved via a suitable choice of only two parameters. Allaria, 

E. et al, (2001) reported Homo clinic chaos characterization by regular 

geometric orbits occurring at erratic times. Phase synchronization at the 

average repetition frequency was achieved by a tiny periodic modulation of a 

control parameter. An experiment has been carried on a (CO2) laser with 

feedback, set in a parameter range where Homoclinic chaos occurs. Any offset 

of the modulation frequency from the average induces phase slips over long 

times. Tang, S. and Liu, J.M. (2003) published experimentally the chaos 

synchronization in semiconductor laser with delayed optoelectronic feedback. 

He driven oscillation was not observed in that optoelectronic feedback system 
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when the coupling strength was increased to a level higher than the feedback 

strength. Larger, L. et al, (2005) demonstrated a new transition scenario for the 

general class of delay differential dynamics, from continuous to discrete time 

behavior. This transition scenario differs from the singular limit map, or 

adiabatic approximation model that usually considered. The transition from the 

map to the flow was observed when increasing the pulse repetition rate. The 

mechanism of that transition opens the way to new interpretations of the 

general properties of delay differential dynamics, which are universal features 

of many other scientific domains. From this work the nonlinear delay oscillator 

architecture presented, will have significant applications in chaotic 

communication systems. Sprott, J.C. (2007) the simplest chaotic delay 

differential equation with a sinusoidal non linearity, including the route to 

chaos, Lyapunov exponent spectrum, and chaotic diffusion. It is prototypical of 

many other high-dimensional chaotic systems have shown. Arecchi, F.T. et 

al,(1987) published Successive transitions from Hopf bifurcation to Shilnikov 

chaos where regular spiking are observed in a laser with feedback when 

increasing a control parameter.  K.Lu and Q.Wang, (2008) presented the chaotic 

behavior of ordinary differential equations with a homo clinic orbit to a 

dissipative saddle point under an unbounded random forcing driven by a 

Brownian motion. The result is then applied to the randomly forced Duffing 

equation and the pendulum equation.  AL-Naimee, K. et al, (2009) 

demonstrated experimentally and theoretically the existence of slow chaotic 

spiking sequences in the dynamics of a semiconductor laser with ac-coupled 

optoelectronic feedback. The timescale of these dynamics was fully determined 

by the high-pass filter in the feedback loop and their erratic, they found that this 
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was leads of an incomplete homo clinic scenario to a saddle-focus, where an 

exact homo clinic connection does not occur. Li, Y., et al, (2010) reported 

experimentally the time-delay signature (TDS) of chaos in the variable 

polarization fiber Bragg grating feedback (VPFBGF)- vertical cavity surface 

emitting laser(VCSEL) is evaluated and then the influences of the operation 

parameters on the TDS of chaos are analyzed. The results show that the TDS of 

chaos can be suppressed efficiently through selecting suitable coupling 

coefficient and feedback rate of the fiber Bragg grating (FBG), and is weaker 

than that of chaos generated by traditional variable-polarization mirror 

feedback VCSELs (VPMF-VCSELs) or polarization-preserved FBG feedback 

VCSELs (PPFBGF-VCSELs). Al-Naimee, K. et al, (2010) published 

theoretically the dynamics of a semiconductor laser with AC-coupled nonlinear 

optoelectronic feedback has been experimentally studied. A period doubling 

sequence of small periodic and chaotic attractors was observed, each of them 

displaying excitable features. That scenario was found also in a simplified 

physical model of the system, thus extending the concept of excitability, usually 

associated to fixed points, also to the case of higher-dimensional attractors. El-

Dessoky, M.M. and Yassenl, M.T. (2012) presented and investigated the 

problem of chaos control and synchronization for new chaotic dynamical 

system and proposes a simple adaptive feedback control method for chaos 

control and synchronization under a reasonable assumption. Numerical 

simulations were shown to verify the analytical results. Flunkert, V. (2012) 

explained the variety of synchronized motion in coupled chaotic systems 

applications; for example to increase the power of lasers, to synchronize the 

output of electronic circuits, to control oscillations in chemical reactions or to 
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encode electronic messages to secure communications. 

1.2 Aims of the study 

The objectives of this work are: To present a theoretical model, explaining the 

existence of chaotic spiking sequences in the dynamics of semiconductor 

devices with ac-coupled optoelectronic feedback (OEFB) with amplitude 

modulation. To generate chaos by using directly amplitude modulation 

optoelectronic feedback. To produce fixed spiral dynamic state, periodic state, 

double periodic state, chaotic state. To find instability of the chaotic system or 

(Bifurcation diagram). To control synchronization in unidirectional and 

bidirectional configurations. To investigate the sensitivity of the configuration 

(unidirectional and bidirectional). 

1.3 Thesis Outlines 

In chapter one, we gave a brief introduction, literature review and aims of our 

study. In chapter two, we demonstrated the theoretical back ground, the basic 

definitions of laser chaos and synchronization, also we discussed the dynamical 

model and methodology of the case of study and we suggested 

Berkeley Madonna and origin software for simulating the chaos generation and 

synchronization. In chapter three, we demonstrated our results and discussed 

them. In chapter four gives the conclusion with some recommendations for the 

future work. 
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Chapter Two 

Theoretical Background 

2.1 Lasers 

The laser can be considered as one of the most important inventions in the 

twentieth century. The important characteristic of the laser is coherence, which 

implies that the photons oscillate similarly in phase. Coherent light sources 

have outstanding characteristics compared with natural incoherent light, bright 

intensity output, high photon energy, good directionality, single wavelength, 

and narrow spectrum bandwidth in order to enable interference (Uchida, A. 

(2012)). Laser communications offer a viable alternative to radio frequency 

(RF) communications for inter satellite links and other applications where high-

performance links are necessary. High data rate, small antenna size, narrow 

beam divergence, and a narrow field of view are characteristics of laser 

communication that offer a number of potential advantages for system design. 

The high data rate and large information throughput available with laser 

communications are many times greater than in radio frequency (RF) systems. 

The small antenna size requires only a small increase in the weight and volume 

of host vehicle. In addition, this feature substantially reduces blockage of fields 

of view of the most desirable areas on satellites. The smaller antennas create 

less momentum disturbance to any sensitive satellite sensors. The narrow beam 

divergence of affords interference free and secure operation. 

2.2 Ikeda Scenario 

A laser system with many interacting degree of freedom can be conveniently 

realized with time delayed feedback, the nonlinear dynamical behavior of  
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system with time delayed feedback was first investigated theoretically by Ikeda 

et al in late(1970)(Fischer, I. et al,(1994). Modeling a passive nonlinear ring 

resonator, externally pumped by laser. Their investigation based on numerical 

modeling were the generalized to simple delay equation applicable to whole 

class of delay system. Ikeda Scenario turned out to be paradigm for dynamical 

behavior of delayed feedback system. The key features of the Ikeda scenario 

are the occurrence of multistability of periodic or chaotic attractors and the 

onset of high-dimensional deterministic chaos via attractor merging. Recently, a 

semiconductor laser (SL) system has been demonstrated to show 

experimentally the characteristic phenomena of this scenario. The 

characterization and modeling of high-dimensional states (N >5) with the help 

of embedding techniques is a fundamental problem due to the requirements on 

the amount of data and its precision. 

2.3 Chaos 

From the beginning of laser history, instabilities of laser output are inevitable 

due to its inherent non linearity (Maiman, (1960); Maiman et al., (1961)), even 

though many efforts have been made to stabilize laser output for many 

engineering applications. Most lasers including semiconductor, fiber, solid 

state, and gas lasers produce temporal and spatial instabilities of laser output at 

certain operating conditions or with an additional external perturbation. It has 

been known that these instabilities can be derived from a deterministic rule of 

laser dynamics, which can be described by using a set of differential rate 

equations. These types of instabilities have been known as (Deterministic 

Chaos) and can be distinguished from instabilities due to stochastic or quantum 

noise (Uchida, A., (2012)). Chaos is generally used to describe disturbance or 
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turbulence in many situations. The most acceptable definitions of chaos in 

science is the instabilities derived from a (Deterministic) rule. The term chaos 

has been used to describe fluctuations or time-varying or (space-varying) 

irregular phenomena that are governed by a deterministic rule, which can be 

described by using a set of mathematical equations. Chaos is a counter intuitive 

concept in the sense that one may find a mathematical rule in irregular 

fluctuations of complex dynamics. One of the important characteristics of 

deterministic chaos is known as (sensitive dependence on initial conditions) 

(Lorenz, 1963). If two chaotic temporal sequences start from very close but 

slightly different initial conditions, the two sequences behave similarly at the 

beginning, however, they start to diverge exponentially in time and never show 

the same behavior again. This characteristic can be quantitatively measured by 

using the maximum Lyapunov exponent, and the Existence of the positive 

maximum Lyapunov exponent is a proof of deterministic chaos. A tiny error of 

the initial conditions makes chaotic irregular sequences unpredictable. This fact 

implies that chaos is unpredictable for a long-term duration due to the sensitive 

dependence on initial conditions, although chaos is predictable for a short-term 

period due to the existence of deterministic rules (Uchida, A., 2012). Chaotic 

behavior of a dynamic system has a very large (possibly infinite) number of 

attractors and is sensitive to initial conditions. Sensitivity to initial conditions 

means that each point in such a system is arbitrarily closely approximated by 

other points with significantly different future trajectories. Thus, an arbitrarily 

small perturbation of the current trajectory may lead to significantly different 

future behavior. The necessary conditions for chaos (n > 2, nonlinear, bounded 

trajectories, continuous-time systems) (n refer to the degree of freedom). 
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2.4 Chaotic time series in a system 

A time series is a sequence of scalar values over time (Zhang, J., et al, 2008) 

describe a time series as a sequence of regularly sampled quantities out of an 

observed system. (Kantz, H. and Schreiber,T., 1997) define a time series as a set 

of scalar values which measures the status of a certain system over time. A time 

series is the historical record of a system, with the measurements taken at 

regular intervals with a consistency in the method of measurement and the 

system (Camiller, M., 2004). It is a useful source of information to analyze and 

investigate the characteristics and behaviors of a system (Zhang et al, 2008). 

Being aperiodic, bounded, deterministic and sensitive to initial conditions 

differentiates chaotic time series from other types of time series (Wilding, R. 

D., 1998). Time series analysis consists of the techniques to manipulate, 

characterize and perform quantitative and qualitative analysis to understand the 

underlying characteristics of a system (Camiller, M., 2004). In analyzing time 

series, an important step is to determine the characteristics of the data. The 

following methods have been used to differentiate chaotic data from non-

chaotic data. The Lyapunov exponent method which looks for the main 

characteristics of chaotic systems, sensitivity to initial conditions, is the most 

preferable method in the literature. 

2.4.1 Lyapunov exponent 

An important characteristic of chaotic systems which is defined as the butterfly 

effect, it is the high sensitivity of the system to the initial conditions (A. Wolf, 

1985). The largest Lyapunov exponent is the most practical method to identify 

chaotic behavior in a system. The Lyapunov exponent quantifies the 

convergence and divergence of neighboring trajectories. If there exists a 
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function which maps (x (t) to x (t + 1)), x (t) R(x (t)) = x (t + 1), for two nearby 

initial points at x0 and (x0+△x0) after one iteration the separation of the points 

can be calculated by equation (2.3) 

x (1) = R(x(0)) +△x(0) − R(x(0))              (2.1) 

�̇� =
𝑑𝑅

𝑑𝑥
                                                   (2.2) 

The Lyapunov exponent at x (0) can be defined such that: 

e 
λ
 = | x(1)/x(0)|                               (2.3) 

Or can be rearranged as shown in Eq. (2.6) 

λ = ln |△x (1)/△x(0)|                         (2.4)  

ln |
∆𝑥(1)

∆𝑥(0)
⁄ | ≅ ln|�̇�(𝑥(0)|                   (2.5) 

The quantity (△x (1)/△x (0)) is the Lyapunov exponent or the measurement of the 

stretching at x = x0. If (△x (1)/△x (0)) is negative, it means the two nearby points 

interchange their order (the larger becomes smaller, and vice versa) upon 

iteration. To obtain the global Lyapunov exponent, the average of Eq. (2.5) over 

a large number of iterations is calculated as presented in equation (2.6). 

𝜆 = lim𝑥→∞
1

𝑁
∑ ln|�̇�(𝑥(0))|𝑁−1

𝑡=0                    (2.6) 

The value zero is interpreted as cyclic behavior, a negative exponent means non 

chaotic behavior, and a positive Lyapunov exponent proves the existence of 

chaos in the system (Addison, P.S (1997) and Wolf, A., et al(1985). 

2.4.2 Fourier transform 

Fourier transform can be used to identify chaos in a given time series. The 

Fourier transform calculates the present frequencies in a time series. Fourier 

transforms of the time series, x (t), t = 0, 1, 2... N − 1, where N is the number of 
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points can be calculated by equation (2.7). 

𝑥(𝑘) =
1

𝑁
∑ 𝑥(𝑡)𝑒−2𝜋𝑖(𝑘𝑇/𝑁)   𝑘 = 0,1,2, … . 𝑁 − 1𝑁−1

𝑡=0     (2.7) 

Where (i) is the imaginary number.  The power spectrum is the square of the  

X (k) and can be calculated by equation (2.8).  

𝑝(𝑘) =
1

𝑁2 |∑ 𝑥(𝑡)𝑒−2𝜋𝑖(𝑘𝑇/𝑁)𝑁−1
𝑡=0 |

2
𝑘 = 0,1,2, … . 𝑁 − 1 (2.8) 

Plotting the power spectrum of the time series can assist in determining the 

nature of the time series. The spectrum for chaotic time series will be 

broadband, meaning that the difference between the highest power value and 

the lowest value in the power spectrum plot is considerable, with a broad peak, 

i.e. that a wide range of frequencies are available in the power spectrum plot. 

Random data should have a constant valued power spectrum. For periodic data, 

the power spectrum spikes at frequencies that characterize the system and 

remain close to zero for the others (Addison, P.S., (1997) and Frazier, C. and 

Kockelman, K., (2004). 

2.4.3 Attractor 

An attractor is a set of values in the phase space to which a system migrates 

over time, or iterations. It need more than two dimensional s. Attractors can 

have as many dimensions as the number of variables that influence its system 

(Abraham, R. and Ueda, Y.eds (2001). The chaotic attractor in phase space is 

densely sampled by an infinite number of unstable periodic orbits (Liu, Y. and 

Ohtsubo, J., (1994). A range of possible attractors can be shown in fig.2.1 (J. 

Mork, et al, (1992). 

2.4.3.1 Attractor types 

 The attractors can either be: fixed point, which represents a stable constant 
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output which is a point of a function that does not change under some 

transformation.  A limit cycle is an attractor that is periodic in time, that cycle 

periodically through an ordered sequence of states, which represents a periodic 

oscillation. A torus, is an attractor consisting of (N) independent oscillations, 

plotted in phase space which represent a quasi-periodic output power and 

chaos, which represents output power fluctuating chaotically called sometimes 

a strange attractor, is an attractor which it has non-integer dimension , or the 

dynamics on it are chaotic. The chaotic attractor behaves in a rather different 

way from fixed state or periodic oscillations. At chaotic oscillations, the state 

goes around points within the closed compact space in the attractor; it never 

visits the same point in the space. The trajectory crosses in the attractor  

 

Figure 2.1: The schematic of attractor’s type  

 The chaotic trajectory goes around in a multidimensional space and never 

crosses in such a space. A chaotic attractor is quite different from other periodic 

oscillations and looks very strange. Therefore, it is sometimes called a complex 

or (strange) attractor. 

2.4.4 Bifurcation Diagram 

A bifurcation is a period doubling change from an (N) point to (2N) point 
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attractor, which occurs when the control parameter is changed. It is a qualitative 

change in the behavior (attractor) of a dynamic system associated with a change 

in control parameter (a control parameter, is a parameter in the equations of a 

dynamic system), if control parameters are allowed to change, the dynamic 

system would also change, changes beyond certain values can lead to 

bifurcations. There are many different bifurcations: saddle-node, Hopf, 

 

Figure 2.2: The schematic of the logistic map 

Bifurcation diagram period doubling and torus. The saddle- node bifurcation is 

the basic mechanism by which fixed points are created and destroyed, as a 

parameter is varied. 

2.4.5 Shilnikov Homoclinic Chaos and Saddle-focus 

Shilnikov Homoclinic orbits are trajectories that depart from a fixed saddle 

focus point, with specific eigenvalues, and return to it after an infinity time (that 

is also true to time reversal evolution) (Medrano-T, R.O.,et al (2005).  
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Figure 2.3: Homoclinic loop of a saddle-focus in the Rossler system. 

We consider such a saddle-focus at the origin in a 3D system. 

�̇� = −𝜌𝑥 − 𝜔𝑦 + 𝑓1(𝑥, 𝑦, 𝑧)         (2.1a) 

�̇� = 𝜔𝑥 − 𝜌𝑦 + 𝑓2(𝑥, 𝑦, 𝑧)          (2.9b) 

                                �̇� = 𝛾𝑧 + 𝑓3(𝑥, 𝑦, 𝑧)                      (2.9c) 

Here its Lyapunov characteristic exponents are: 

λ1,2 = −ρ ± i𝜔                       (2.10) 

 ρ > 0, 𝜔 = 0 and W
u
 is 1D. The manifold W

u
 is the union of O and two 

separatists that tend to  

λ3 = γ > 0                                        (2.11) 

 Smooth functions Fi, along with their first partials, vanish at the origin. The 

stable manifold W
s
 of the saddle-focus O is 2D then, whereas the unstable one 

W
u
 is 1D. The manifold W 

u
 is the union of O and two separatists that tend to O 

as t → ∞. A homoclinic loop Γ of the saddle-focus is a trajectory bi-asymptotic 

to O as t → ±∞, Fig.2.3. In other words, Γ ∈ W
s
 ∩ W

u
. 

2.4.6 Distribution of Inter-Spike Intervals (ISI) 

The Inter-Spike Intervals is a model for studying the properties of irregular 

spiking Homoclinic chaos and the dynamics of spiking and bursting in a neuron 

model.  ISI measures time between consecutive spikes. The discrete distribution 

of ISI decays exponentially and have peaks located at all natural (Reich, D.S.,et 
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al (2000). 

2.5 Lasers and Chaos 

The connection between lasers and chaos was made in (1975) (Haken, (1975)), 

where it was shown that a set of nonlinear differential equations from Maxwell 

Bloch equations for a laser model resembles Lorenz equations which are the 

basic model for deterministic chaos. Since then, many observations have been 

reported in experiments and numerical simulation in the (1980s). It was found 

that most lasers produce chaotic fluctuations of laser intensity (Uchida, A., 

(2012). 

2.6 The synchronization of chaotic systems 

2.6.1 Introduction 

Synchronization mean share the common time. The original meaning of 

synchronization has been maintained up to now in the colloquial use of this 

word, as agreement or correlation in time of different processes. Historically, 

the analysis of synchronization phenomena in the evolution of dynamical 

systems has been a subject of active investigation since the earlier days of 

physics. It started in the 17
th
 century with the finding of Huygens that two very 

weakly coupled pendulum clocks (hanging at the same beam) become 

synchronized in phase (Hugenii, C., et al (1986) Other early found examples 

are the synchronized lightning of fireflies, or the peculiarities of adjacent organ 

pipes which can almost reduce to one another to silence or speak in absolute 

unison. For an exhaustive overview of the classic examples of synchronization 

of periodic systems we address the reader (Blekman,I.I.,((1988). Recently, the 

search for synchronization has moved to chaotic systems. In this latter 

framework, the appearance of collective (synchronized) dynamics is, in general, 
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not trivial. Indeed, a dynamical system is called chaotic whenever its evolution 

sensitively depends on the initial conditions. It is implies that two trajectories 

emerging from two different closely initial conditions separate exponentially in 

the course of the time. As a result, chaotic systems intrinsically defy 

synchronization, because even two identical systems starting from slightly 

different initial conditions would evolve in time in an unsynchronized manner. 

This is a relevant practical problem, in so far as experimental initial conditions 

are never known perfectly. The setting of some collective (synchronized) 

behavior in coupled chaotic systems has therefore a great importance and 

interest. The study of synchronization in coupled chaotic systems, As we will 

see, not always the word synchronization will be taken as having the same 

colloquial meaning, and we will need to specify what synchrony means in all 

particular contexts in which we will describe its emergence. As a preliminary 

definition, we will refer to synchronization of chaos as a process where in two 

(or many) chaotic systems (either equivalent or nonequivalent)adjust a given 

property of their motion to a common behavior, due to coupling or forcing. This 

ranges from complete agreement of trajectories to locking of phases. The first 

thing to be highlighted is that there is a great difference in the process leading 

to synchronized states, depending upon the particular coupling configuration. 

Namely, one should distinguish two main cases: unidirectional coupling and 

bidirectional coupling. In the former case, other names were given in the 

literature of this type of synchronization, such as one-way diffusive coupling, 

drive-response coupling, and master-slave coupling or negative feedback 

control. This implies that one subsystem evolves freely and drives the evolution 

of the other. As a result, the response system is slaved to follow the dynamics of 
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the drive system, which, instead, purely acts as an external but chaotic forcing 

for the response system. In such a case external synchronization is produced. 

Typical examples are communication with chaos (chaos communication). A 

very different situation is the one described by a bidirectional coupling. Here 

both subsystems are coupled with each other, and the coupling factor induces 

an adjustment of the rhythms on to a common synchronized manifold, thus 

inducing a mutual synchronization behavior. This situation typically occurs in 

physiology, e.g. between cardiac and respiratory systems or between interacting 

neurons or in nonlinear optics, e.g. coupled laser systems with feedback. These 

two processes are very different not only from a philosophical point of view: up 

to now no way has been discovered to reduce one process to another, or to link 

formally the two cases. 

2.6.2 Types of synchronization 

Many different synchronization states have been studied in the past (10)years, 

namely complete or identical synchronization (CS) (Fujisaka, H., and Yamada, 

T.,(1983) and Pecora, Louis M., and Carroll, Thomas L.,(1990) phase (PS) 

(Rosenblum, M. G.,et al (1996) and Rosa,E. R., et al (1998) and lag (LS) 

synchronization (Rosenblum,M.G., et al (1997) generalized synchronization 

(GS) (Rulkov,N.F., et al (1995) and Kocarev,L., Parlitz, U.,(1996), intermittent 

lag synchronization (ILS) ( Rosenblum, M.G., et al (1997) and Boccaletti, S., 

Valladares,D.L.,(2000), imperfect phase synchronization (IPS)(Zaks,M.A.,et al 

(1999), and almost synchronization (AS)(Femat, R. and Solis-Perales, 

G.,(1999). (GS) goes further in using completely different systems and 

associating the output of one system to a given function of the output of the 

other system (Rulkov,N.F., et al (1995) and Kocarev,L., Parlitz, U.,(1996). 
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Coupled non identical oscillatory or rotatory systems can reach an intermediate 

regime (PS), where in a locking of the phases is produced, while correlation in 

the amplitudes remain weak (Rosa,E.R., et al (1998). The transition to (PS) for 

two coupled oscillators has been firstly characterized with reference to the 

Rossler system (Rosa, E.R., et al(1998). (LS) is a step between (PS)and(CS).  It 

implies the asymptotic bounded ness of the difference between the output of 

one system at time (t) and the output of the other shifted in time of a lag time 

(τ) lag. This implies that the two outputs lock their phases and amplitudes, but 

with the presence of a time lag (Rosa, E.R., et al (1998). (ILS)Simplifies that 

the two systems are most of the time verifying (LS), but intermittent bursts of 

local non synchronous behavior may occur in correspondence with the passage 

of the system trajectory in particular attractor regions wherein the local 

Lyapunov exponent along a globally contracting direction is positive 

(Rosenblum, M.G.,et al (1997) and Boccaletti, S., and Valladares, D.L.,(2000). 

Analogously, (IPS) is a situation where phase slips occur within a (PS) regime 

(Zaks,M.A., et al (1999). Finally, (AS) results in the asymptotic bounded ness 

of the difference between a subset of the variables of one system and the 

corresponding subset of variables of the other system (Femat, R. and Solis-

Perales, G.,(1999). The first scenario of transition among different types of 

synchronization was described for symmetrically coupled non identical systems 

and consisted in successive transitions between (PS, LS) and a regime similar 

to(CS)when increasing the strength of the coupling (Boccaletti, S.,Valladares, 

D.L.,(2000). 

2.6.3 Synchronization of identical systems (CS) 

Complete synchronization (CS) was the first discovered and is the simplest 
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form of synchronization in chaotic systems. It consists in a perfect hooking of 

the chaotic trajectories of two systems which is achieved by means of a 

coupling signal, in such a way that they remain in step with each other in the 

course of the time. This mechanism was first shown to occur when two 

identical chaotic systems are coupled unidirectional, provided that the 

conditional Lyapunov exponents of the subsystem to be synchronized are all 

negative (Pecora, Louis M. and Carroll, Thomas L., (1990). Chaotic systems 

are dynamical systems that defy synchronization, due to their essential feature 

of displaying high sensitivity to initial conditions. As a result, two identical 

chaotic systems starting at nearly the same initial points in phase space develop 

onto trajectories which become uncorrelated in the course of the time. 

Nevertheless, it has been shown that it is possible to synchronize these kinds of 

systems, to make them evolving on the same chaotic trajectory (Pikovsky, A.S., 

(1984) and Pecora,L.M., Carroll, T.L.,(1991). 

When one deals with coupled identical systems, synchronization appears as the 

equality of the state variables while evolving in time. This referred to a 

complete synchronization (CS). Other names were given in the literature, such 

as conventional synchronization or identical synchronization. In this section, 

we will discuss main properties of this kind of synchronization. Most of the 

exposed ideas can be easily extended to discrete systems, such as chaotic 

mappings. As for the coupling, one has to distinguish between two different 

situations. When the evolution of one of the coupled systems is unaltered by the 

coupling, the resulting configuration is called unidirectional coupling or drive 

response coupling. On the contrary we will refer to bidirectional coupling when 

both systems are connected in such a way that they mutually influence each 
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other’s behavior. Inside this classification, the appearance and robustness of 

synchronization states have been established by means of several different 

coupling schemes, such as the Pecora and Carroll method(Pecora, L.M. and 

Carroll, T.L.,(1990) and He,R.,Vaidya,P.V.,(1992), the negative feedback 

(Kapitaniak,T.,(1994), the sporadic driving, (Amritkar,R.E., Gupte,N., (1993), 

the active passive decomposition (Kocarev,L., Parlitz,U.(1995) and Parlitz,U., 

et al (1996), the diffusive coupling and some other hybrid methods (Gmez,J., 

and Matas, M. A.,(1995). A description and analysis of some different coupling 

schemes is given in (Wu, C.W. and Chua, L.O.,(1994) a single mathematical 

framework. When one deals with coupled identical systems, synchronization 

appears as the equality of the state variables while evolving in time. The two 

synchronization schemes described here and several other drive response 

configurations have been used into the design of communication devices, which 

is perhaps the most promising application of synchronized chaotic behavior 

(Carroll, T.L.,and Pecora, L.M.,(1993) and Carroll, T.L.,(1994). For example, 

one can have two remote systems behaving chaotically, but synchronized with 

each other through only one driving signal. A sender can add a given message 

to the drive, thus masking the information from any third party who wants to 

intercepts it. The receiver can extract the message by using the synchronization 

error between the drive and the regenerated signal, where the message appears 

as De synchronization episodes. Other promising applications with chaotic 

lasers have been proposed. Remote sensing applications with chaotic lasers 

have been reported as chaotic lider and radar systems. Blind signal separation 

using independent component analysis has been applied to chaotic temporal 

waveforms of laser output for the purpose of multiplexing communications. In 
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addition, fractal optics have been used for wireless optical communication 

applications as a chaos mirror (Uchida, A., (2012). 

2.6.4 Optical Communication with Synchronized Chaotic Lasers 

Synchronization of chaos leads to an important application to optical chaos 

communications (Uchida, A., 2012). Standard optical communication utilizes 

optical periodic carrier for encoding and decoding the message and there is no 

consideration for security in hardware level. Optical chaos communication 

leads to an additional layer of security or privacy in optical communication by 

using chaotic temporal carriers. These hardware-dependent optical 

communication systems have been developed and there have been international 

projects to implement optical chaos communication systems in real-world 

optical networks (Uchida, A., 2012). 

The technique of synchronization of chaos is used to reproduce the original 

chaos carrier in the receiver. The message can be recovered by subtracting the 

synchronized chaos carrier from the transmission signal. The quality of chaos 

synchronization strongly affects the degree of the recovered message signal. 

Let us look at the procedure of the chaos communication in detail. The chaotic 

system in the transmitter produces a chaotic carrier to mask the message signal. 

The encoded signal is sent to the receiver and it is used for both decoding the 

message and achieving synchronization of chaos. In the receiver, a similar 

chaotic system can reproduce a nearly identical chaotic carrier by adjusting 

with a set of the static parameter values that are considered as static keys to be 

shared beforehand. If the receiver succeeds in synchronizing chaos by using the 

chaotic hardware and the static keys, it can reproduce a similar chaotic carrier 

and can succeed in decoding the original message. The main purpose of chaos 
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communication is to hide the (existence) of a message by a chaotic carrier 

waveform, which is known as steganography, compared with the technique of 

hiding the (meaning) of the message, known as cryptography. One of the most 

important techniques in chaos communication is to share the same chaotic 

carrier between the distant users by using synchronization of chaos. To achieve 

synchronization of chaos, similar hardware systems as well as similar 

parameter values are required in the transmitter and the receiver. The tolerance 

of synchronization against parameter mismatch is one of the measures for the 

level of privacy in chaos communication, that is, narrow parameter regions for 

achieving synchronization result in more privacy since it is difficult for 

eavesdroppers to achieve synchronization of chaos. Recent advances on 

practical implementation of optical chaos communications will be described, 

including the demonstration of chaos communication in commercial optical-

fiber networks at 2.5-10 Gb /s over a 100-km distance with low BER (Uchida, 

A., 2012). Several advanced techniques including photonic integrated circuits 

and forward error correction have been implemented in chaos communications. 

For chaos communications, it is necessary for two legitimate users to share a 

common secret key prior to the communication process. The system parameters 

provide a private key because the two communicating lasers must have nearly 

identical parameters, otherwise synchronization is failed. The distribution of a 

private key is the main weakness of any secure communication system, which 

is known as a secure key distribution problem (Uchida, A., 2012). Chaotic 

lasers could be useful for the physical implementation of secure key 

distribution based on information theory. The architecture based on chaotic 

lasers offers large key-establishing rates at long communication ranges. In 
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addition, optical transmitters and receivers used for conventional optical 

communication systems, including erbium-doped fiber amplifiers (EDFAs) and 

dispersion compensation fibers (DCFs), can be used for chaos-based secure key 

distribution without using specially designed hardware. Several schemes for 

chaos-based secure key distribution systems have been proposed and 

demonstrated as a new way of secure key distribution. 

2.6.5 Random Number Generation with Chaotic Lasers 

Another promising application with chaotic lasers is random number 

generation. The output of chaotic lasers provides fast temporal dynamics of 

Chaos with large spectral bandwidth. Typical bandwidth of semiconductor 

lasers is a few GHz, which is determined by the relaxation oscillation 

frequency. The speed of lasers is advantageous for the applications of physical 

random number generation. The combination of the characteristics of the 

complexity in chaos and large bandwidth in lasers could open up a new 

research field of fast physical random number generation. The output of chaotic 

devices could be both unpredictable as well as statistically random because they 

generate large-amplitude random signals from microscopic noise by nonlinear 

amplification and mixing mechanisms. The concept of random number 

generation is shown in a chaotic signal of laser output is detected by a photo 

detector and converted to a binary digital signal by an analog-to-digital 

converter (ADC). The ADC converts the input analog signal into a binary 

digital signal by comparing with the threshold voltage. The output binary 

random signal is a stream of bits. Random number generation with chaotic 

lasers has been intensively investigated since the first demonstration was 

published in 2008 (Uchida et al., 2008a). Many schemes have been 
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demonstrated and random-bit generation rates from 1.7 to 400 GB/s have been 

reported with verified randomness. 

2.6.6 Controlling Chaos and Other Applications 

Another direction of the research with chaotic lasers is controlling chaos, which 

is a natural way for engineering applications. Chaos needs to be avoided in 

many engineering systems, and the research on control and stabilization of 

chaos has strong motivation in nonlinear dynamical systems that are used for 

engineering applications. The research field on controlling chaos grew rapidly 

during the 1990s, where a chaotic temporal signal can be stabilized onto an 

unstable periodic orbit in a chaotic attractor based on control theory (Uchida, 

A., 2012). The aim of chaos control is to obtain a stable or periodic temporal 

waveform by adding a small external perturbation. The techniques for 

controlling chaos have been applied to many interdisciplinary research fields, 

because there have been many dynamical systems that are required to stabilize 

chaotic instabilities and fluctuations. 

Other promising applications with chaotic lasers have been proposed. Remote 

sensing applications with chaotic lasers have been reported as chaotic lider and 

radar systems. Blind signal separation using independent component analysis 

has been applied to chaotic temporal waveforms of laser output for the purpose 

of multiplexing communications. In addition, fractal optics have been used for 

wireless optical communication applications as a chaos mirror. Three research 

directions for engineering applications with chaotic lasers. 
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Figure2.4.Three research directions for engineering applications with chaotic lasers. 

The research directions with chaotic lasers for engineering applications are 

summarized in Figure 2.4 There are three main research directions treated in 

this book, related to the concepts of how to harness chaos. For chaos 

communication applications, the characteristics of chaos are used in a 

straightforward way, that is, the determinism of chaos results in synchronization 

ability of chaos, and the middle degrees of complexity are suitable to hide a 

message signal. By contrast, for the applications of random number generation, 

the randomness of chaos needs to be maximized and determinism of chaos 

needs to be eliminated by converting analog chaos signals to binary signals. 

The important technique is how to extract and distill the randomness from 

deterministic chaos for this application. The research on random number 

generation requires a new engineering approach of chaos for maximizing the 

randomness of chaos. By contrast, control and stabilization of chaos is a 

technique to completely avoid complexity and instability of chaos. To design 

and establish ultrastable lasers, chaos control techniques may be useful for the 

suppression of chaotic instabilities. The features of deterministic chaos 

including unstable periodic orbits can be utilized for controlling chaos. The 
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research on controlling chaos is the opposite direction of the research on 

random number generation, depending on minimizing or maximizing the 

complexity of chaos, respectively.  

2.7 cross-Spectra and Coherence function 

Coherence is a measure of the degree of relationship, as a function of 

frequency, between two time series, Xm and Xs. The concept can be motivated 

in many of ways. Power spectral density is the Fourier transform of correlation. 

From the discrete correlation theorem, we know that the Fourier transform of 

the correlation of two signals is equal to the product of a Fourier transform of 

one signal and a conjugated Fourier transform of the other. Therefore, power 

spectral density can be calculated with a Fourier transform. Additionally, the 

cross power density of two signals, x and y, can be computed as follows: 

Pxy = Y X*                                          (2.12a) 

Pxx = XX*                                           (2.12b) 

Pyy = Y Y
*
                                          (2.12c) 

Can summarize in the form: 

𝑐𝑥𝑦 =
|𝑝𝑥𝑦(𝑓)|

2

𝑝𝑥𝑥(𝑓)𝑝𝑦𝑦(𝑓)
                         (2.13) 

Where Pxy is the cross power spectral density of the two signals, x and y, while 

Pxx and Pyy are the power spectral densities of x and y respectively. Coherence is 

a function of frequency that measures the degree of linear dependency of two 

signals by testing whether they contain similar frequency components. The 

magnitude of coherence ranges from zero to one. At a given frequency, if the 

coherence is equal to (1) the two signals are considered to correspond to each 

other perfectly at that frequency. Conversely, a coherence which is equal to (0) 
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suggests that the signals are totally unrelated at that frequency. For 

computation, the signal is broken down into several sections for frequency 

component analysis using FFT. Adjacent sections can overlap, which helps to 

detect shared frequencies across sections. The size of FFT sections, window 

type and size, and the number of overlapping data points can affect the result. 

These choices should be made according to the nature of the input signals. 
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Chapter Three 

Dynamical model theory 

 3.1 Introduction 

The study of chaos in optical systems has been motivated both by the 

fundamental interest in dynamical systems theory as well as by practical 

applications (e.g., chaotic communications, and optimization of light collection 

systems). Optoelectronic semiconductor devices and, in particular, LD are ideal 

candidates for this kind of investigation. The chaotic spiking regime can be 

understood in terms of excitability of chaotic attractor. The excitable behavior 

is observed also on each of the periodic attractors within the period doubling 

cascade leading to chaos. The aim of study is demonstrate and explain 

theoretical model on chaotic spiking and excitability in semiconductor laser 

with optoelectronic feedback. 

3.2 Chaotic spiking scenarios in DL with AM optoelectronic 

feedback 

In this section we will study numerically the existence of chaotic spiking 

Sequences in the dynamics of a semiconductor laser with ac-coupled 

optoelectronic feedback, and illustrating the basic concepts of the theoretical 

model. The solitary laser dynamics is controlled by two coupled variables 

(intensity and population inversion) evolving with two very different 

characteristic timescales. The introduction of a third degree of freedom (and a 

third timescale) describing the ac-feedback loop, leads to a three-dimensional 

slow-fast system displaying a transition from a stable steady state to periodic 

spiking sequences as the dc-pumping current is varied. For intermediate values 
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of the current, a regime is found where regular large pulses are separated by 

fluctuating time intervals in a scenario resembling Homoclinic chaos (HC) (Al-

Naimee, K., et al (2009). 

3.3 Dynamical model of chaos generation 

The intra-band relaxation within the medium of the SL is fast enough of the 

order of (10
−13

) s compared with the carrier recombination rate of (10
−9

) s. This 

fact makes it possible to use approximately the model of two-level atoms for 

the theoretical investigation of the dynamics of semiconductor lasers (Ohtsubo, 

J., (2008) the approximate model of laser oscillations based on two-level atoms. 

While the population inversion in general laser systems is simply replaced by 

the carrier density produced by electron-hole recombination. The photon 

number (which is equivalent to the absolute square of the field amplitude) and 

the carrier density are frequently used as the variables of the rate equations for 

SLs. However, for the general descriptions of the dynamics in SLs, we must 

employ the complex amplitude of the field (the amplitude and the phase of the 

field) instead of the photon number. The field equation is a function of the time 

dependent carrier density and it is written as (Ohtsubo,J.,(2008)and Rogister, 

F.,et al (2001). 

  

𝑑𝐸(𝑡)

𝑑𝑡
=

1

2
[(1 − 𝑖𝛼)𝑔𝑛(𝑁𝑡 − 𝑁𝑡ℎ)]𝐸𝑡 + 𝐸𝑠𝑝(𝑡)                (3.1) 

where α parameter or line width enhancement factor, 𝑔𝑛 the differential gain, Nt 

the carrier density at transparency, Nth the carrier density at threshold, and Esp(t) 

is the stochastic function corresponding to the zero-mean random field for 

spontaneous emissions, the field has the relation of 



 

 

 

 

30 

 

𝐸𝑠𝑝(𝑡)𝐸∗(𝑡) =
𝑅𝑠𝑝

2
                                   (3.2) 

The term Rsp is usually used for the effect of spontaneous emission in the 

photon number equation and is given by. 

 

𝑅𝑠𝑝 =
𝛽𝑠𝑝 𝜂𝑠𝑝𝑁𝑡

𝑡𝑠
                    (3.3) 

Where βsp is the coefficient of spontaneous emissions, ηsp is the internal 

quantum efficiency for spontaneous emissions, and ts is the carrier lifetime in 

the laser cavity. We frequently omitted the term unless necessary since it is 

usually as small as βsp ≈ (10
−5

). Furthermore, the investigation the fundamental 

dynamics of instability and chaos in nonlinear systems could be treated with 

only the deterministic terms without considering statistical noises. Noise is 

essentially considered as a separate effect from chaotic oscillations in as far as 

it is small. Using the notation of the complex field (Ohtsubo, J.,(2008) and 

Rogister, F., et al (2001). 

E(t) = A(t) exp (−iφ(t))                           (3.4) 

The amplitude A(t) and the phase φ(t) of the field equation are separately given 

by. 

𝑑𝐴(𝑡)

𝑑𝑡
=

1

2
𝑔𝑛(𝑁𝑡 − 𝑁𝑡ℎ)𝐴(𝑡)                                 (3.5) 

𝑑𝜑(𝑡)

𝑑𝑡
=

1

2
𝛼𝑔𝑛(𝑁𝑡 − 𝑁𝑡ℎ)                                        (3.6) 

From the physical model of two-level atoms in SLs, the differential equation 

for the carrier density N, which is equivalent to the population inversion in 

common, lasers is given by: 

𝑑𝑁(𝑡)

𝑑𝑡
=

𝐽

𝑒𝑑
−

𝑁(𝑡)

𝑡𝑠
− 𝑔𝑛(𝑁(𝑡) − 𝑁0)𝐴2(𝑡)                (3.7) 
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   Where (J) is the injection current density and (d) is the thickness of the active 

layer. The first term on the right side of the equation is the pumping by the 

injection current. The second term is the carrier recombination due to 

spontaneous emissions. The carrier lifetime have been treated as a constant 

coefficient with a good approximation. The third term represents the carrier 

Recombination induced by the laser emission. The photon number inside the 

laser cavity is derived by the internal optical energy U and defined by the 

following equations. 

𝑆 =
𝑈

ℏ𝜔
=

𝜖0𝜂𝜂𝑒

2ℏ𝜔 ∫ 𝑑3𝑟|𝐸𝑟𝑒𝑎𝑙(𝑟)|2
𝑐𝑎𝑣𝑖𝑡𝑦

             (3.8) 

Where (η) is the refractive index for the mode, (r) is the three-dimensional 

coordinate, and (Ereal) is the real optical field inside the cavity. Assuming that 

the field inside the laser cavity is constant over the coordinate at a fixed time, 

the relation of the photon number (photon density) (S) and the real optical field 

(Ereal) is approximated by 

𝑆 = |𝐸|2 = 𝜀0𝜂𝜂𝑒2ℏ𝜔|𝐸𝑟𝑒𝑎𝑙|2𝑉             (3.7) 

Where (V) is the volume of the active layer. When rewrite the field amplitude 

(A), it is given by 

𝐴 = 𝑆
1
2 = (

𝜀0𝜂𝜂𝑒𝑉

2ℏ𝜔|𝐸𝑟𝑒𝑎𝑙|
)

1

2                           (3.9) 

By summarizing the rate equations for the field amplitude, the phase, and the 

carrier density as follows. 

�̇� =
1

2
𝑔𝑛(𝑁𝑡 − 𝑁𝑡ℎ)𝐴(𝑡)                           (3.10𝑎) 

�̇� =
1

2
𝛼𝑔𝑛(𝑁𝑡 − 𝑁𝑡ℎ)                                   (3.10𝑏)  

�̇� =
𝐽

𝑒𝑑
−

𝑁(𝑡)

𝑡𝑠
− 𝑔𝑛(𝑁𝑡 − 𝑁0)𝐴2(𝑡)         (3.10𝑐) 
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Ignoring the noise, the phase of the optical field is determined by N (t) and 

|A (t) |
2
 and is not an independent dynamical variable, so chaotic oscillations 

cannot appear without a nontrivial feedback, cause chaos cannot occur in a 

system of two ordinary differential equations. The time delay adds, in principle, 

an infinite number of other degrees of freedom, though in practice the number 

of active degrees of freedom involved in the observable laser dynamics depends 

on the size of tR compared to the intrinsic times scales in the laser operation. We 

are not concerned with the dynamics of the optical phase in this system as it is 

removed by the use of the photo detector in the optoelectronic circuit. The 

dynamics of the photon density S and carrier density N can be described by the 

usual single-mode SL rate equations appropriately modified in order to include 

the ac-coupled feedback loop. 

�̇� = (𝑔(𝑁 − 𝑁𝑡) − 𝛾0)𝑆                                      (3.12𝑎) 

�̇� = (
𝐼0 + 𝑓𝐹(𝐼)

𝑒𝑣
) − 𝛾𝑐𝑁 − 𝑔(𝑁 − 𝑁𝑡)𝑆         (3.12𝑏) 

𝐼̇ = 𝛾𝑓𝐼 − 𝐾�̇�                                                         (3.12𝑐) 

Where I is the high-pass filtered feedback current (before the nonlinear 

amplifier), 𝑓𝐹(𝐼) ≡
𝐴𝐼

𝐼+𝑆0𝐼
 is the feedback amplifier function, I0 is the bias 

current, e the electron charge, V is the active layer volume, g is the differential 

gain, Nt is the carrier density at transparency, γ0 and γc are the photon damping 

and population relaxation rate, respectively, γf is the cutoff frequency of the 

high-pass filter and k is a coefficient proportional to the photo detector 

responsibility. Compared with optical feedback, optoelectronic feedback is 

reliable and robust because the system is insensitive to optical phase variations 

(Rogister et al (2001) and Tang, S. and Liu, J.M.,(2001) and Solorio, J.S., et 
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al,(2002), for this reason the phase dynamics of the optical field can be 

eliminated. A detailed physical model of the experimental system should 

include also a series of low-pass frequency filters arising from the limited 

bandwidth of the photo diode, the electrical connections to the laser, parasite 

capacitances, and other undesirable electronic effects. However, we will see 

that such additional filters do not play a critical role in a qualitative description 

of the observed dynamics, which is the aim of the present model. For numerical 

and analytical purposes, it is useful to rewrite equations (3.12a), (3.12b), 

(3.12c), in dimensionless form. To this end, we introduce the new variables 

𝑥 =
𝑔𝑆

𝛾𝑐
                                  (3.13𝑎) 

𝑦 = 𝑔𝛾0(𝑁 − 𝑁𝑡)                 (3.1𝑏) 

𝑧 = (
𝑔𝑘

𝛾𝑐
− 𝑥)                        (3.13𝑐) 

And the time scale 

𝑡0 = 𝛾0𝑡                            (3.14) 

The rate equations then become as follow: 

Frist rate equation: 

�̇� = (𝑔(𝑁 − 𝑁𝑡) − 𝛾0)𝑆                                       

By substituting the following equations: 

𝑥 =
𝑔𝑆

𝛾𝑐
                                 (3.16𝑎) 

by substituting the following equations: 

𝑆 =
𝑥𝛾𝑐

𝑔
                              (3.16b) 

𝑁 − 𝑁𝑡 =
𝑦𝛾0

𝑔
                     (3.16c) 

�̇� = 𝛾0𝑡                               (3.16d) 
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1

𝑑𝑡
=

𝛾0

𝑑�̇�
                                                              (3.16e) 

In equation (3.15).The first rate equations then become. 

�̇� = 𝑥(𝑦 − 1)                                                       (3.17) 

The second rate equation. 

�̇� = (
𝐼0+𝑓𝐹(𝐼)

𝑒𝑣
) − 𝛾𝑐𝑁 − 𝑔(𝑁 − 𝑁𝑡)𝑆                       (3.18) 

By substituting the following equations in equation (3.18) 

𝑁 =
𝑦𝛾0

𝑔
+ 𝑁𝑡                                                                                       (3.19𝑎) 

𝑓𝐹(𝐼) =
𝐴𝐼

1 + �̇�𝐼
                                                                                 (3.19𝑏) 

𝛼 =
𝐴𝑘

𝑒𝑉𝛾0
                                                                                            (3.19𝑐) 

𝐴 =
𝑒𝛼𝑉𝛾0

𝑘
                                                                                        (3.19𝑑)   

𝛾 =
𝛾𝑐

𝛾0
                                                                                                   (3.19𝑒) 

𝑧 =
𝑔𝐼

𝑘𝛾𝑐
− 𝑥                                                                                          (3.19𝑓) 

𝑔𝐼 = 𝑘𝛾𝑐(𝑧 + 𝑥)                                                                                  (3.19𝑔) 

�̇� =
𝑆𝑔

𝑘𝛾𝑐
                                                                                                 (3.19ℎ) 

𝑓(𝑧 + 𝑥) =
𝛼(𝑧 + 𝑥)

1 + 𝑆(𝑧 + 𝑥)
                                                                (3.19𝑖) 

�̇� =
𝑔𝛾(𝐼0 − 𝑒𝑣𝛾𝑐𝑁𝑡)

𝛾0𝛾𝑐𝑒𝑣
+ 𝑓(𝑧 + 𝑥) − 𝑦 − 𝑥𝑦                               (3.19𝑗) 

𝐼𝑡ℎ = 𝑒𝑣𝛾𝑐 (
𝛾0

𝑔
+ 𝑁𝑡)                                                                       (3.19𝑘) 

𝛿 =
𝐼0 − 𝐼𝑡

𝐼𝑡ℎ − 𝐼𝑡
                                                                                     (3.19𝑙) 

Then the second rate equations become: 

�̇� = 𝛾(𝛿 − 𝑦 + 𝑓(𝑧 + 𝑥) − 𝑥𝑦)                                                (3.20) 

The third rate equation can be modified by the following equation: 
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𝐼̇ = −𝛾𝑓𝐼 + 𝑘�̇�                                                        (3.21𝑎) 

𝐼 =
𝑘𝛾𝑐(𝑧 + 𝑥)

𝑔
                                                        (3.21𝑏) 

𝑑

𝑑𝑡
(

𝑘𝛾𝑐(𝑧 + 𝑥)

𝑔
) = −𝛾 𝑓𝐼 + 𝑘�̇�                            (3.21𝑐) 

𝑘𝛾𝑐𝛾0(�̇� + �̇�)(�̇�)

𝑔
= −𝛾𝑓𝐼 + 𝑘�̇�                             (3.21𝑑) 

�̇� =
𝛾𝑐𝛾0𝑥(𝑦 − 1)

𝑔
                                                       (3.21𝑒) 

�̇� + �̇� =
−𝛾𝑓(𝑧 + 𝑥)

𝛾0
+ 𝑥(𝑦 − 1)                         (3.21𝑓) 

�̇� =
−𝛾𝑓(𝑧 + 𝑥)

𝛾0
+ 𝑥(𝑦 − 1) − �̇�                       (3.21𝑔) 

�̇� = 𝑥(𝑦 − 1)                                                          (3.21ℎ) 

�̇� =
𝛾𝑓(𝑧 + 𝑥)

𝛾0
                                                       (3.21𝑖) 

𝜖 =
𝛾𝑓

𝛾0
                                                                (3.21𝑗) 

To 

�̇� = −𝜖(𝑧 + 𝑥)                                                           (3.22) 

The new rate equations after modification are: 

�̇� = 𝑥(𝑦 − 1)                                       (3.23a) 

�̇� = 𝛾(𝛿 − 𝑦 + 𝑓(𝑧 + 𝑥) − 𝑥𝑦)         (3.23b) 

�̇� = −𝜖(𝑧 + 𝑥)                                        (3.23𝑐) 

Where  𝑓(𝑧 + 𝑥) ≡ 𝛼
𝑧+𝑥

1+𝑠(𝑧+𝑥)
   ,  𝛿0 =

𝐼0−𝐼𝑡

𝐼𝑡ℎ−𝐼𝑡
 , 

  
𝐼𝑡ℎ

=
𝑒𝑣

𝛾𝑐
(

𝛾0

𝑔
+ 𝑁𝑡)(is the solitary laser threshold current),  

𝛾 =
𝛾𝑐

𝛾0
⁄  ,, 𝛼 = 𝐴𝑘

𝑒𝑣𝛾0
⁄  and 𝑆 =

𝛾𝑐�̇�𝑘
𝑔⁄  
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3.4   Amplitude modulation in Diode laser 

3.4.1 Modulation 

Modulation is the addition of information to an electronic or optical carrier 

signal. A carrier signal is one with a steady waveform, constant height 

(amplitude) and frequency. Information can be added to the carrier by varying 

its amplitude, frequency, phase, polarization (for optical signals), and even 

quantum level phenomena like spin. Common modulation methods include the 

following: Amplitude modulation (AM), in which the height (i.e., the strength 

or intensity) of the signal carrier is varied to represent the data being added to 

the signal. Frequency modulation (FM), in which the frequency of the carrier 

waveform is varied to reflect the frequency of the data. Phase modulation (PM), 

in which the frequency of the carrier waveform is varied to reflect changes in 

the frequency of the data (similar but not the same as FM). Polarization 

modulation, in which the angle of rotation of an optical carrier signal is varied 

to reflect transmitted data. Pulse-code modulation,  in which an analog signal is 

sampled to derive a data stream that is used to modulate a digital carrier signal. 

Radio and television broadcasts and satellite radio typically use AM or FM. 

Most two-way radios use FM, although some employ a mode known as single 

sideband (SSB). More complex forms of modulation include phase-shift keying 

(PSK) and Quadrature Amplitude Modulation (QAM). 

3.4.2 Modified Rate Equation with AM in Diode laser: 

 Here we use Amplitude modulation; the schematic diagram of directly 

modulated semiconductor lasers with a delayed optoelectronic feedback is 

shown in Fig.3.1. The diode laser (DL) is produce light signal, this light signal 

output from the laser diode is converted into electronic signal using a photo 
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detector (PD) and then amplified to the required gain. Modulated factor ((1 + 

H) x) where (H) is modulation current depends on the modulation depth is fed 

back to the input of the laser diode in addition to its injection current. Allowing 

the light to travel a certain distance through free space before reaching the (PD) 

can provide the required delay. For GHz modulation, the delay is of the order of 

nanoseconds that correspond to a traveling distance of the order of a few 

centimeters. For a negative feedback it is deducted from the total input current 

comprising of the bias and modulation factor. Feedback control is more 

commonly used than open-loop or feed forward control. Then we can define the 

main characteristics of Closed-loop Control as being: 

 To reduce errors by automatically adjusting the systems input, to improve 

stability of an unstable system, to increase or reduce the systems sensitivity, to 

enhance robustness against external disturbances to the process and to produce 

a reliable and repeatable performance. 

 Correspondingly the equation for the input current will be modified as follows. 

�̇� = −𝜖(𝑧 + 𝑥) + (1 + 𝐻)�̇�                     (3.24) 

where H is sinusoidal current of modulation represent in the following 

equation: 

𝐻 = 𝐴 sin(2𝜋𝑓𝑡)                                   (3.25) 

Here we examine the effect of the amplitude of the modulation term (A) on the 

dynamical system while the frequency is remain constant equal to (f=1GHz). 

Three rate equations after our modification become: 

�̇� = 𝑥(𝑦 − 1)                                                          (3.26a) 

�̇� = 𝛾(𝛿 − 𝑦 + 𝑓(𝑧 + 𝑥) − 𝑥𝑦)                               (3.26b) 

�̇� = −𝜖(𝑧 + 𝑥) + (1 + 𝑨𝑠𝑖𝑛(2𝜋𝑓𝑡))                          (3.26𝑐) 
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Figure 3.1: Schematic diagram of directly modulated semiconductor lasers 

3.5 Dynamical Model of Unidirectional Coupling Oscillators 

We consider continuous wavelet transform to the two time series obtained from 

the two chaotic time-delayed systems, with small variation in initial condition. 

Fig.3.2 describes the identical synchronization configuration model. To 

investigate synchronization, were coupled two lasers Master and Slave by 

  

Figure 3.2: Unidirectional coupling Sketch of two delayed laser. 
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By using modified equations (3.23) with modulation term for both (Master and 

Slave) we obtain. For the master: 

𝑥�̇� = 𝑥𝑚(𝑦𝑚 − 1)                                              (3.26a) 

𝑦�̇� = 𝛾(𝛿 − 𝑦𝑚 + 𝑓(𝑧𝑚 + 𝑥𝑚) − 𝑥𝑚𝑦𝑚)         (3.26b) 

𝑧�̇� = −𝜖(𝑧𝑚 + 𝑥𝑚) − 𝑐𝑥𝑚                                     (3.26𝑐) 

For the slave: 

𝑥�̇� = 𝑥𝑠(𝑦𝑠 − 1)                                              (3.27a) 

𝑦�̇� = 𝛾(𝛿 − 𝑦𝑠 + 𝑓(𝑧𝑠 + 𝑥𝑠) − 𝑥𝑠𝑦𝑠)              (3.27b) 

𝑧�̇� = −𝜖(𝑧𝑠 + 𝑥𝑠) − 𝑐(𝑥𝑠 − 𝑥𝑚)                       (3.27𝑐) 

In the present configuration the coupling factor was used as sinusoidal current 

equation depend on amplitude and frequency. 

𝐶 = 𝐴 sin(2𝜋𝑓𝑡)                                                (3.28) 

Where (A, f) is the coupling factor amplitude and frequency, respectively, here 

was examined the effect of the variation in the amplitude of the added term 

while the frequency remain constant. 

3.6 Dynamical Model of Bidirectional Coupling Oscillators 

Here apply the synchronization conditions �̇�m − �̇�s to the Master oscillator as 

modulation term in third equation rate and �̇�s − �̇�m to the slave oscillator 

system, fig. (2.6) describe the schematic diagram. Then the consequences for 

chaos synchronization was discussed by (Ohtsubo, J., (2008).  

By using modified equations (3.26) with coupling factor term for both (Master 

and Slave) we obtain. For the master: 

𝑥�̇� = 𝑥𝑚(𝑦𝑚 − 1)                                              (3.29a) 

𝑦�̇� = 𝛾(𝛿 − 𝑦𝑚 + 𝑓(𝑧𝑚 + 𝑥𝑚) − 𝑥𝑚𝑦𝑚)         (3.29b) 

𝑧�̇� = −𝜖(𝑧𝑚 + 𝑥𝑚) − 𝑔(�̇�𝑚 − �̇�𝑠)                       (3.29𝑐)
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Figure 3.3: Bidirectional Sketch of two coupling delayed laser. 

For the slave: 

𝑥�̇� = 𝑥𝑠(𝑦𝑠 − 1)                                              (3.30a) 

𝑦�̇� = 𝛾(𝛿 − 𝑦𝑠 + 𝑓(𝑧𝑠 + 𝑥𝑠) − 𝑥𝑠𝑦𝑠)              (3.30b) 

𝑧�̇� = −𝜖(𝑧𝑠 + 𝑥𝑠) − 𝑔(�̇�𝑠 − �̇�𝑚)                        (3.30𝑐) 

𝑔 = 𝐴 sin(2𝜋𝑓𝑡)                                             (3.31) 

In the present configuration we recall coupling factor (g), here we examine the 

effect of the variation of the amplitude (A) of the coupling factor on the 

synchronization process while the frequency remain constant also.  
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Chapter Four  

Results and Discussion 

4.1 Introduction 

In this study, the theoretical approach of modulated laser chaos by 

optoelectronic feedback in the laser diode is achieved. Effects of the amplitude 

modulation term have been illustrated. Berkeley Madonna and Origin software 

are used to analyze the time series generated in the chaos regime. The analysis 

concerns the study of the attractors and the Fourier transformations of the 

output spectrum. The results of numerical investigations on the effect of 

amplitude modulation on the dynamics of Diode lasers were illustrated. The 

study was undertaken to find out the possibility of obtaining chaotic outputs of 

Diode laser under small amplitude values. The nonlinear dynamics of 

semiconductor lasers with current modulation was investigated. 

4.2 Effect of modified model with amplitude AM on chaos 

dynamic 

In our suggested model the transition from a chaotic spiking to stationary 

steady state and eventually periodic self-oscillations as the amplitude of the 

modulation current was varied as explained in chapter three with Fig.(3.1), and 

the time series of the output that were registered for different values of the 

injected amplitude modulation. The modeling approach of this scenario was 

investigated by programming the physical model, where the total simulation 

time chosen depends strongly on the magnitude of the temporal scales defined 

by the parameters γ and 𝜖, between the chaotic spiking and steady state 

(belonging to the initial value of the feedback strength), the system passes 
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through a cascade of period doubled and chaotic attractors of small amplitude. 

By using Berkeley Madonna software where the feedback strength  𝜖 is fixed to 

2×10
−5

, γ=1×10
−3

, α=1, S=11, δ=1.01702. While the initial conditions were: 

 xm= 0.0219, ym=1, zm= 0.005. The bias current δ is constant in this case. The 

observed intensity spectra with the increase of the amplitude of the modulated 

current are shown in figures number (4.1, 4.2, 4.3, 4.4, 4.5), of the time series, 

corresponding FFT and attractors. 

Figure (4.1a) shows some spikes with high amplitudes in dynamic time series, 

at the value of the Amplitude modulated current (A=0.060) the chaotic state 

was appeared. In the corresponding attractor of chaotic behavior, the 

trajectories are different in diameters and dense fig.(4.1b).While the 

corresponding FFT of this state fig.(4.1c) shows the signature of chaotic 

behavior, where the distribution is decay exponentially. The (x) axis in the 

figures represents photon density and (y) axis represents carrier density. 

 

Figure 4.1: a) Time series of dynamical model b) Attractor and c) Fourier transform 

when (A=0.060) 
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When (A) increased to (0.075), system converted to the period doubling state, 

with different frequency was appeared in fig. (4.1a) high and low intestines 

while (f) remain constant. The corresponding attractor is in figure (4.2b). The 

FFT diagram in figure (4.2c) has also different frequency. 

  

 

Figure 4.2: a) Time series of dynamical model b) Attractor and c) Fourier transform 

when (A=0.075) 
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In Fig. (4.3a) the period doubling state is remain while the amplitude increasing 

to the (A=0.115). The corresponding attractor of period doubling state is 

represented in Fig. (4.3b) is differ than other one in Fig. (4.2b) the small and 

large periods referring to the small and large peaks. Fig. (4.3c) shows the 

corresponding FFT of this state. 

  

 

Figure 4.3: a) Time series of dynamical model b) Attractor and c) Fourier transform 

When (A=0.115) 
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Fig. (4.4a) illustrated the transition from periodic doubling state to periodic 

state when the amplitude is increased into (A = 0.199), Fig. (4.4b) clarify the 

corresponding FFT of periodic state, seen that peaks in time series appear as a 

fixed frequencies. In the corresponding attractor of periodic state, the small 

peaks appears as a periodic orbits in Fig. (4.4c). 

  

 

 

Figure 4.4: a) Time series of dynamical model b) Attractor and c) Fourier transform 

when (A=0.199) 
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Fig. (4.5a) shows the steady state, where the magnitude of the amplitude on the 

system (A=0.656) and modulation frequency (f=1GHz) while fig.(4.5b) 

represents the corresponding attractor for steady state as a spiral fixed point. 

Fig. (4.5c) represent Fourier transform of steady state. 

  

 

 

Figure 4.5: a) Time series of dynamical model b) Attractor and c) Fourier transform 

when (A=0.656) 
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Fig. (4.6a) shows chaotic state, where the magnitude of the amplitude on the 

system (A=0.060) and modulation frequency (f=1GHz) while the feedback 

strength change to (𝜀 =3×10
−5

). Fig.4.6b represents the corresponding attractor 

for chaotic state it’s denser than fig.1. Fig. (4.6c) represent Fourier transform 

it's appear with several frequencies. 

 

Figure 4.6: a) Time series of dynamical model b) Attractor and c) Fourier transform 

when (A=0.060) 
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The bifurcation diagram (Fig.4.7) is computed by varying (A) over a small 

interval contiguous to the initial Hopf bifurcation. As (A) approaches the 

turning point (when its value becomes greater than 0.081) the chaotic amplitude 

fluctuations are sufficiently low trigger fast dynamics. This results in an erratic-

sensitive to initial condition-sequence of Homoclinic spikes on top of a chaotic 

background. 

  

 

Figure 4.7: Bifurcation diagram for the model equations other parameters 

Constant 
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4.3 Effect of variation AM in unidirectional coupling 

We start simulation when a and f are zero in the model and the initial state for 

Master-Slave is: xm=0.021, ym=1, zm=0.005 and xs=0.022, ys=1, zs=0.005. 

  𝜖 = 2 × 10
−5

, γ = 1 × 10
−3

, α = 1, s = 11, δ = 1.01702. To investigate the 

synchronization between two coupled lasers unidirectional we apply the 

condition of synchronization as we mentioned in the previous chapter 

Section 5. Here we illustrate the results of numerical investigations on the 

effect of directly delayed modulated amplitude on the dynamics of master-slave 

lasers Diode unidirectional coupling. The study was undertaken to find out the 

possibility of synchronization step outputs under small values of amplitude 

while frequency was constant equal to (f=4). The synchronization of two 

semiconductor lasers with current modulation was investigated when 

(a=0.4101). The relation between coherence as function in the frequency was 

shown in full synchronization, partial synchronization and unsynchronized 

coupling also we show the relation between the coherence function and 

variation amplitude. 
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Fig.4.8A. show the coherence function between photon density output of the 

master and Slave y-axis and frequency in x-axis about (c=0.75) when the 

amplitude is (a=0.4098) and (f=4). Notching from the magnitude of the 

coherence function and dynamics time series of Master and Salve there are 

partial synchronization. Fig.4.8B reveals the dynamic of two oscillators. 

 

Figure 4.8a: coherence function when (a=0.4098, f=4,c=0.74) 

 

 

Figure 4.8b: Dynamical time series of two LD and coherence when (a=0.4098, f=4) 
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Fig.4.9A. illustrated the coherence function about (C=0.98) when the amplitude 

increase to (a=0.4101) with constant frequency. Showing the transition from 

partial synchronization step to full synchronization step and Fig.4.9B. Show the 

dynamic time series of two oscillators. 

 
Figure 4.9a: coherence function when (a=0.4101, c=0.98) 

 

Figure 4.9b: Dynamical time series of two LD when (a=0.4101) 
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Fig.4.10A. clarify the coherence function between two oscillators when the 

frequency remain constant and the amplitude are (a=0.4102) notching that from 

the magnitude of coherence function it is unsynchronized equal to (C=0.71) and 

Fig.4.10B. Show the dynamic time series of two oscillators. 

  

 

Figure 4.10a: coherence function when (a=0.4012, c=0.71) 

 
Figure 4.10b: Dynamical time series of two LD when (a=0.4012).  
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4.4 Effect of variation AM in bidirectional coupling 

we start simulation when a and f are zero in the model and the initial state for 

Master-Slave is: xm=0.021,ym=1, zm=0.005 and xs=0.022, ys=1, zs=0.005 

feedback strength  𝜖 is fixed to 2 × 10
−5

, γ = 1× 10
−3

,α = 1, s = 11, δ1 = 

δ2=1.01702. To investigate the synchronization between two coupled lasers we 

apply the condition of synchronization as we mentioned in the previous chapter 

section 6. Here we illustrate the results of numerical investigations on the effect 

of directly delayed modulated amplitude on the dynamics of master-slave lasers 

Diode bidirectional coupling. The study was undertaken to find out the 

possibility of synchronization step outputs under small values of amplitude 

while frequency was constant equal to (f = 4). The synchronization of two 

semiconductor lasers with current modulation was investigated when 

(a=1.55).The relation between coherence as function in the frequency was 

shown in full synchronization, partial synchronization and unsynchronized 

coupling also we show the relation between the coherence function and 

variation amplitude. 
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Fig. (4.11A) represent coherence function (C=0.96) and Fig.4.11B. Represent 

time series of two coupled laser when (a=1.56) and frequency remain constant 

noticing here partial synchronization step. 

  

 

Figure 4.11a: coherence function when (a=1.56, c=0.96) 

 

 

Figure 4.11b: Dynamical time series of two coupled laser and coherence function when 

(a=1.56) 
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Fig. (4.12A) illustrate Coherence function equal (C=1) and fig.4.12B show the 

time series of two coupled laser when (a=1.55). Noticing here the full 

synchronization step was appearing. 

  

 

Figure 4.10:  coherence function when (a=1.55) 

 

 

Figure 4.11: Dynamical time series of two coupled laser when (a=1.55) 
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Fig. (4.12B) avouch the unsynchronized step when the amplitude of coupling 

factor is (a=1.50) and the frequency was (f = 4). Fig.4.12A. show the coherence 

function about (C=0.8). 
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Figure 4.12: Dynamical time series of two coupled laser and coherence function when 

(a=1.50).   

 

4.4 Dissections  

When the Master and Slave are identical and coupled unidirectional, where the 

dynamical variables of both are equal in time is a solution for the coupled 

system. To determine the sensitivity of our setup to parameter mismatch in real 

Lasers, we evaluated a measure of synchronization. We found numerically, that 

for (a=0.4101), this solution is stable and synchronization of the electric field 

and the carrier density in Master and Slave is accomplished. And coherence 

function equal to(C=0.98 approach to1) this refer to full synchronization we 

furthermore showed in the fig.4.9 it can be seen that after a short transient the 

two output signals become unsynchronized. The detuning between amplitude of 

the two lasers plays a crucial role for identical synchronization. Even a small 

amplitude detuning prevents the lasers from synchronizing, as seen in 

Fig.4.8.Partial synchronization. In this unidirectional coupling configuration, 

the coupling delay (𝜀) between the Master and the Slave, does not play any role 

in the synchronization process. 

When the Master and Slave are identical and coupled bidirectional, all other 

control parameters in the system are constant. 

For (a=1.55), this solution is stable and synchronization of the electric field and 

the carrier density in Master and Slave is investigated. And coherence function 

equal to(C=1) this refer to full synchronization we furthermore showed in the 

fig.4.10 it can be seen that after a short transient the two output signals become 

unsynchronized. Even a small amplitude detuning prevents the lasers from 

synchronizing, as seen in Fig.4.11.Partial synchronization. ). We furthermore 
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showed in the fig.4.12 it can be seen the two output signals become 

unsynchronized. When (a = 1.50) and coherence function about (C =0.8) in this 

bidirectional coupling configuration, the coupling delay (𝜀) between the Master 

and the Slave also, does not play any role in the synchronization process 

 

4.5 Conclusion 

A delayed optoelectronic feedback diode laser is employed to study the ability 

of obtaining chaotic output from a directly modulated semiconductor laser 

under GHz modulation frequency. The results showed the effect of small 

window modulation amplitude on the output dynamics in the range (0.006 > 

a >0.656) when all other control parameters are kept constant at the chaotic 

operating condition. The transition from a chaotic spiking to stationary steady 

state and eventually periodic self-oscillations as the amplitude of the 

modulation current was varied as explained in chapter three also we 

demonstrate the instability of the system by bifurcation diagram so the 

modulation amplitude is sensitive in output dynamic. The optoelectronic 

delayed feedback laser diode can be controlled to get at a given nonlinear state, 

such as the single-periodic, periodic doubling, quasi chaotic, chaotic by 

choosing (A) and (f) properly. The optoelectronic feedback scheme has the 

advantage of ease of implementation, as it is insensitive to the optical phase of 

the output intensity. A comparison between unidirectional and mutual coupling, 

for the identical synchronization case when all the other control parameter are 

kept constant, revealed that while the first is extremely sensitive to deviations in 

The modulation feedback amplitude detuning, when the frequency is fixed to 

(f=4) the latter shows robust synchronization under identical operation 
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conditions and might be suitable for optical communication applications. From 

the above results we reveal that: In unidirectional coupling when (a=0.4101), 

This solution is stable and synchronization of the electric field and the carrier 

density in Master and Slave is accomplished and coherence function equal 

to(C=0.98 approach to 1) while in the mutual coupling when (a=1.55) and 

coherence function equal to(C=1) this is full synchronization in same equal 

 Parameters, we note from the step of synchronization in mutual greater than 

unidirectional. We furthermore showed when the amplitude in unidirectional 

coupling (a=0.4102) it can be seen that after a short transient the two output 

signals become unsynchronized and coherence function equal to(C=0.71). But 

in the mutual coupling when (a=1.5) and the coherence function equal to 

(C=0.8). The detuning between amplitude of the two coupling configuration 

lasers plays a crucial role for identical synchronization. Even a small amplitude 

detuning prevents the lasers from synchronizing, as seen in partial 

synchronization, in unidirectional coupling we note that when (a = 0.4098) and 

coherence function equal to(C = 0.75) while in mutual coupling when (a=1.56) 

and coherence function(C=0.96) In this two coupling configuration, the 

coupling delay (𝜀) between the Master and the Slave, does not play any role in 

the synchronization process. Also we note that in the bidirectional coupling the 

synchronization is contentious between two oscillators in the range of 

amplitude (0.1.58 > a > 11.61) in our suggestion model while in the 

unidirectional configuration more sensitive than mutual coupling. 

4.6 Recommendation 

From this work we recommend that: The availability and ease of operation of 

diode lasers, in a wide range of configurations, make them a convenient test bed 
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for exploring basic aspects of nonlinear and chaotic dynamics. It also makes 

them attractive for practical tasks, such as chaos-based secure communications 

and random number generation. Avenues for future research and development 

of chaotic laser diodes are also identified. Also we Explained the variety of 

synchronized motion in coupled chaotic systems applications in both 

(unidirectional and mutual)configuration, for example it used to increase the 

power of lasers, to synchronize the output of electronic circuits, to control 

oscillations in chemical reactions or to encode electronic messages to secure 

communications. 
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