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Chapter one 
Introduction 

 

1.1 Thermo Electric Devices 
 

 In 1834, a French watchmaker and part time physicist, Jean Peltier who 

found that an electrical current would produce a temperature gradient at the 

junction of two dissimilar metals. Thermal current and electric current flow in 

opposite directions. 

Thermoelectric devices have gained importance in recent years as viable solutions 

for applications such as spot cooling of electronic components, remote power 

generation in space stations and satellites etc. 

These solid-state devices have long been known for their reliability rather than 

their efficiency; they contain no moving parts, and their performance relies 

primarily on material selection, which has not generated many excellent 

candidates. 

Research in recent years has been focused on developing both thermoelectric 

Structures and materials that have high efficiency. In general, thermoelectric 

research is two-pronged with [1] experiments focused on finding new materials 

and structures with enhanced thermoelectric performance and [2] analytical models 

that predict thermoelectric behavior to enable better design and optimization of 

materials and structures. While numerous reviews have discussed the importance 

of and dependence on materials for thermoelectric performance, an overview of 

how to predict the performance of various materials and structures based on 

fundamental quantities is lacking. In this paper we present a review of the the 

oretical models that were developed since thermoelectricity was first observed in 

1821 by Seebeck and how these models have guided experimental material search 
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for improved thermoelectric devices. A new quantum model is also presented, 

which provides opportunities for the optimization of nanoscale materials 

to enhance thermoelectric performance. 

1.2 The Problem of Study 
Research in recent years has been focused on developing both thermoelectric 

Structures and materials that have high efficiency 

1.3 The Aim of Study 
The aim of this work is to construct models that have guided experimental material 

search for improving thermoelectric devices and Also a new quantum model, 

which provides opportunities for the optimization of nanoscale materials to 

enhance thermoelectric performance. 

1.4 Presentation of the thesis 
This thesis consists of four chapters one is the introductions, in chapter two the 

thermoelectric and application is presented, Chapter three is concerned with 

Density of States, Fermi Energy and Energy Bands. In chapter four the practical 

work is exhibit. 
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Chapter Two 
Thermoelectric Effects and Applications 

 

2.0 Introduction: 
Thermoelectric devices have gained importance in recent years as viable solutions 

for applications such as spot cooling of electronic components, remote power 

generation in space stations and satellites etc. These solid-state devices have long 

been known for their reliability rather than their efficiency; they contain no moving 

parts, and their performance relies primarily on material selection, which has not 

generated many excellent candidates. Research in recent years has been focused on 

developing both thermoelectric structures and materials that have high efficiency. 

In general, thermoelectric research is two-pronged with (1) experiments focused on 

finding new materials and structures with enhanced thermoelectric performance 

and (2) analytical models that predict thermoelectric behavior to enable better 

design and optimization of materials and structures. While numerous reviews have 

discussed the importance of and dependence on materials for thermoelectric 

performance, an overview of how to predict the performance of various materials 

and structures based on fundamental quantities is lacking. In this paper we present 

a review of the theoretical models that were developed since thermoelectricity was 

first observed in 1821 by Seebeck and how these models have guided experimental 

material search for improved thermoelectric devices. A new quantum model is also 

presented, which provides opportunities for the optimization of nanoscale materials 

to enhance thermoelectric performance. 

2.1 Thermoelectric Properties 
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When two ends of a wire are held at different temperatures, a voltage develops 

across the two sides. This effect is known as the Seebeck effect, which was 

discovered by Seebeck in 1821 and published in 1822 [1]. The voltage between the 

two ends is proportional to the temperature difference across the wire provided the 

temperature gradient is small. The proportionality Constant is defined as the 

Seebeck coefficient or thermoelectric power and is obtained from the ratio of the 

voltage generated and the applied temperature difference. 

ݏ =
∆ܸ
∆ܶ

.                                                     (2.1.1) 

In 1834, the Peltier effect, a companion to the Seebeck effect, was discovered [2]. 

This effect occurs when a current passes through a wire. The current will carry 

thermal energy so that the temperature of one end of the wire decreases and the 

other increases. The Peltier coefficient ߨଵଶis defined as the heat emitted per unit 

time per unit current flow from conductor 1 to 2. Therefore, this heat is directly 

proportional to the current passing through the junction as described by Eq.(2.1.1). 

݀࣫ = ෑ݀(2.1.2)                                                  .ܫ 

The Peltier effect is often overwhelmed by irreversible Joule heating, which also 

originates from electronic current. The Thomson effect was predicted in 1854 and 

found experimentally in1856 [3]. The Thomson effect occurs when a current flows 

across two points of a homogeneous wire having a temperature gradient along its 

length and heat is emitted or absorbed in addition to the Joule heat. The Thomson 

coefficient μ்is positive if heat is generated when positive currentflows from a 

higher temperature to lower temperature. 

݀࣫ = ்ߤ
߲ܶ
ݔ߲

 (2.1.3)                                                  .ܫ݀ݔ݀
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The three thermal–electrical properties provide the basis for modern direct energy 

conversion devices and their exploitation has been the subject of considerable 

research. In 1912,Altenkirch [4,5] introduced the concept of a figure of merit when 

he showed that good thermoelectric materials should possess large Seebeck 

coefficients, high electrical conductivity to minimize Joule heating and low 

thermal conductivity to retain heat at the junctions that will.  

2.2 Development of Semiconductor Thermoelectric Materials 
Initial thermoelectric materials studied were metals, which display Seebeck 

coefficients of a few tens of μܸ/ܭ. However, in the middle of the 20th century, 

interest turnedtowards semiconductors as thermoelectric materials despite small 

ratios of electrical to thermalconductivity, due to their high Seebeck coefficients 

and heat conduction dominated by phonon transport. In 1952 Ioffe [7] studied the 

change in semiconductor thermal conductivity of a material relative to its position 

in the periodic table. He found that for larger mean atomic weight, the thermal 

conductivity was lower. This behavior was attributed to the increase in density that 

caused the velocity of sound in the crystal to decrease leading to a subsequent 

decrease in thermal conductivity. Since mobility of electrons serves as a direct 

relation between the crystal structure and electrical conductivity, Goldsmid [8] 

studied the ratio of mobility µ and thermal conductivity κ as a function of the mean 

atomic weight. Using the relationship proposed by Shockley and Bardeen [9] for 

mobility in semiconductors and Pierls relationship for thermal conductivity, he 

calculated the ratio as a function of the electron mean free path le and phonon 

mean free path l pin crystals. 

ߤ
݇

=
௠ߩ4݁

ଵ/ଶ(௘݇஻ܶ݉ߨ2)௦ݒܿ
݈௘
݈௣

                                          (2.2.1) 



6 
 

Hereߩ௠is the mass density; ߭௦ the velocity of sound and c is the septic heat of the 

crystal; and me use the electron mass and charge respectively. Using material 

properties measured for some common semiconductors they plotted the above ratio 

against the mean atomic weight of the semiconductors seen in Fig. (2.2.1). 

Applying the above mentioned selection rules of choosing materials with high 

Seebeck coefficients and high atomic weights led to the discovery of bismuth 

telluride (Bi2Te3) in 1954 by Goldsmid [10] that provided cooling of 26 ◦C. 

Bismuth telluride has a hexagonal structure with mixed ionic–covalent bonding 

along the lattice planes and the weak vander Waals bonding perpendicular to the 

planes. The hexagonal structure ensures high anisotropy in the lattice conductivity 

with a factor of 2 decrease in the thermal conductivity in the direction 

perpendicular to the planes. Bismuth telluride also has a multivalve bands structure 

with multiple anisotropic constant energy surfaces that have a small effective mass 

in one direction and large effective masses in the other two directions. Since 

smaller effective mass leads to high electron mobility, choosing the appropriate 

growth direction of bismuth telluride is necessary for good thermoelectric 

performance. 

  

 

  

 

Fig (2.2.1). Ratio of Electron Mobility to Thermal Conductivity Of 

Thermoelectric Materials  

In 1956, Ioffe et al. [11] suggested that alloying a semiconducting thermoelectric 

material with anisomorphous substance – materials having the same crystalline 
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structure – would enhance the figure of merit by reducing lattice thermal 

conductivity without affecting carrier mobility. They suggested that phonons 

would scatter due to the disturbances in the short-range order but the preservation 

of long-range order would prevent scattering of electrons and holes. This led to an 

extensive study of the thermoelectric performance of various semiconductor alloy 

systems over a wide range of temperatures. 

Birkholz in 1958 [12] and Rosi in 1959 [13] showed that alloying ݅ܤଶܶ݁ଷwith 

ܾܵଶܶ݁ଷ. Or݅ܤଶܵ݁ଷgreatly reduced the thermal conductivity. They also showed that 

adding even 5% ofܾܵଶܵ݁ଷgreatly improved the figure of merit by raising the band 

gap that reduced am bipolar conduction i.e. contribution due to both electrons and 

holes to electrical conductivity and thermal conductivity. These studies led to the 

formation of a pseudo-ternary ݅ܤଶܶ݁ଷ– ܾܵଶܶ݁ଷ– ܾܵଶܵ݁ଷsystem. The studies 

showed that the best n-type material was the Bi2Te3rich alloys while the bestp-

type performance was obtained from the Sb2Te3pseudo-ternary alloys with an 

average figure of merit of 3.3×10−3K−1from both types at room temperature [14]. 

In general however, bismuth and bismuth telluride alloys are good thermoelectric 

materials only below room temperature. At room temperature and above, the 

relatively small band gap causes mixed conduction due to both electrons and holes 

leading to reduced Seebeck coefficient. 

At temperatures above those that bismuth telluride can be used, materials like lead 

telluride are found to have very good thermoelectric properties in the range of 300–

700 K. Lead telluride belongs to the lead chalcogenides system similar to materials 

such as PbS and PbSe. Leadchalcogenides have a cubic (NaCl) rock-salt structure 

with a FCC unit cell. They are polar semiconductors with a mixed ionic–covalent 

bond with the electrons traveling mainly in the caution (Pb) sub lattice and the 

holes in the anion chalcogenidesub lattice. Similar to bismuth telluride, lead 
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telluride (PbTe) has high mean atomic weight and a multi valley and structure. 

Having slightly higher band gap of 0.32 eV at 300 K, lead telluride produces 

higher Seebeck coefficients compared to bismuth telluride. While it has higher 

lattice thermal conductivity than bismuth telluride at room temperature, it 

eventually produces higher ZT values as the temperatures raised. Lead telluride 

also forms isomorphs solid solutions with lead selenide and tin telluride leading to 

lower thermal conductivities and improved ZT values. Rosi et al. [14] in 

1961studied the band gap of the PbTe–SnTe system and determined that band 

reversal effect actually causes the band gap to go to zero at the composition 

Pb0.4Sn0.6Te and hence recommended that lower compositions of tin telluride 

would ensure sufficient band gaps leading to Z T values near 1 for n-type 

ܾܲܶ݁–ܵ݊ܶ݁ alloys at 700 K [15]. Another type of alloy system that givesZ T

 values around 1 for temperature range around 700 K are alloys between 

 called TAGS [16]. These alloys possess the same rock-salt ݁ܶ݁ܩ2andܾ݁ܶܵ݃ܣ

structure ofܾܲܶ݁ over partof the compositional range. When the composition of 

GeTe is greater than 70%, it transits to arhombohedral structure. The lattice strain 

associated with this phase transition is also believedto contribute to reduced lattice 

thermal conductivity values around 1.5 W/m K. At higher temperature ranges of 

600–1300 K, silicon and germanium which are bad thermo electrics due to their 

high thermal conductivity at room temperature can be alloyed to obtain SiGe alloy, 

afar superior material for thermoelectric generation [17]. The large band gap of 

silicon makes silicon rich alloys such as ܵ݅଴.଻݁ܩ଴.ଷ suitable for high temperature 

applications since problems with minority carrier dominance do not arise. The 

large phonon scattering ensures low thermal conductivity without affecting the 

electron mobility making it possible to obtain ZT values of 0.5and higher [18]. 
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Materials exhibit the highest possible thermal conductivity in the crystalline state 

and the lowest conductivity in the amorphous state. Based on this concept Slack in 

1979 [19] proposed that the smallest possible lattice conductivity can be predicted 

by setting the mean free path of the phonons equal to that in the amorphous state. 

This observation prompted extensive research into materials that are termed as 

phonon glass and electron crystal (PGEC). These materials have very complex 

structures such as compounds of Borides (ܻܤ଺଼) [20], compounds of silver–

thallium(ܶ݁ܵݏܣܫଷ) [21] and ܪଶܱ. These materials contain groups of atoms or 

molecules that do not have precisely defined positions or orientations. The lack of 

long-range order causes the atoms or molecules to rattle and act as phonon 

scattering sites reducing the thermal conductivity to around 0.5 W/m K. 

Another class of materials is called Skutterudites, which are complex materials 

with a chemical formula of ReTm4M12where Re is a rare earth element such as 

lanthanum or cerium,Tm is a transition metal such as cobalt, iron, etc. and M is a 

metalloid such as phosphor ,arsenic, or antimony. Binary skutterudites have the 

chemical formula of ܶ݉ܯଷ, and its crystalstructure has the unique feature of 

containing two large empty spaces within each unit cell.While the binary structures 

have reasonably large Seebeck coefficients around 200 µV/K, they still exhibit 

very high thermal conductivities [15]. When a rare earth element is mixed with the 

binaryskutterudite, the heavy atom of the rare earth element occupies the empty 

space of the crystal [22]. In addition to causing large impurity scattering of 

phonons in these materials, the loosely bound heavy atoms rattle in their cages 

enhancing scattering of phonons and reducing thermal conductivity by an order of 

magnitude at room temperature. Skutterudites have been found to have a figure of 

merit greater than unity at temperatures around 700 K. 
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Additional examples of PGEC materials are inorganic catharses with the chemical 

formulaA8B46where B represents for example either gallium or germanium or a 

combination of the two elements [15]. Catharses consist of an open framework of 

gallium and germanium atoms that act as an electron crystal. Guest atoms are 

selectively incorporated in nano cavities in the crystal. The guest atoms vibrate 

independent of the crystal structure scattering phonons in the process. These 

materials are found to be very promising for thermoelectric applications at 

temperatures above 600oC. Catharses can be made of tin, silicon, antimony, etc. 

Examples of some good thermo electric catharses are ଼ܵݎ  ସସ as଼݊ܵݏܥ ,ଷ଴݁ܩଵ଺ܽܩ

well as ܼ݊ସܾܵଷ that has been observed togive Z T values of 1.3 at 400 K. More 

recently an alloy of Pb–Sb–Ag–Te abbreviated as LAST was developed as n-type 

thermoelectric material having Z T values around 1.7 [23,24]. These alloys have 

nano-sized inclusions during synthesis that act as phonon scattering sites. A similar 

p-type alloy dubbed as SALT was observed to have Z T values around 1.6, the 

highest known for p-type thermoelectric materials. 

Beyond the development of bulk materials with enhanced thermoelectric 

properties, superlatives have been proposed as structures that may improve Z T . 

These alternating layers of materials can be manufactured from alloys that are 

good thermoelectric materials to start with such as ݅ܤଶܶ݁ଷ/ܾܵଶܶ݁ଷ,݅ܤଶܶ݁ଷ/

 ௫and݁ܩଶܵ݁ଷas well as ܾܲܵ݁ܶ݁/ܾܲܶ݁ quantum dot superlattices,ܵ݅/ܵ݅ଵି௫݅ܤ

Si/Gesuperlattices [25]. By adding interfacial scattering sites, the 

thermalconductivity of these structures can presumably be reduced. While 

fabrication of superlatticefilms and wires can take advantage of the advances made 

in semiconductor manufacturing technology such as lithography, electroplating, 

etc., significant challenges exist in translating the high Z T performance of bulk 

materials into similarly performing nanostructures. In this regard the biggest 
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bottleneck is the electrical conductivity which is dominated by contact resistance. 

The anisotropic nature of most nanoscale materials also makes their thermal 

conductivity performance unpredictable and difficult to measure. Measurement of 

thermoelectric propertieat the nanoscale is especially difficult as the substrate and 

buffer layers can overwhelm the Seebeck coefficient and electrical conductivity 

measurements. The challenges and high costs associated with nano scale 

measurements places special emphasis on the need to have a detailed 

understanding of electron–hole–phonon transport at the nano scale for a better 

prediction of thermoelectric performance. The models used to predict 

thermoelectric parameters must include the effect of various factors such as 

electron and phonon mean free paths, electron mobility, effect of band gap, 

substrate strain etc. Moreover, quantum confinement effects in low-dimensional 

structures, while increasing the density of states per unit volume at the Fermi level, 

can alsolead to reduced electrical conductivity due to the limited energy states 

available for electron transport. Similarly while phonon scattering and confinement 

at the super lattice interfaces can lead to reduced thermal conductivity, its impact 

on electron and hole transport through confinedcarrier-phonon scattering also has 

to be better understood. There has never been a greater need fora strong model that 

can couple both quantum and scattering effects to predict transport behavior 

innanoscale devices. In the next few sections, we present a review of the various 

models used to predict thermoelectric performance of bulk as well as low-

dimensional structures with a view to identify and distinguish their ability to 

incorporate the necessary fundamental physics that guide thermoelectric behavior 

in materials. 

2.3 Development of Modeling of Thermoelectric Coefficients 
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In 1928, Somerfield [26] put forth a comprehensive model on free-electron theory 

in metals using Fermi–Dirac statistics instead of Maxwell Ian statistics for the free-

electron theory in metals developed by Lorentz. Somerfield assumed that only the 

valence electrons in a metal formed a free-electron gas that obeyed the Fermi–

Dirac distribution ଴݂. Sommerfeld [27] studiedthermoelectric phenomena in metals 

where various combinations of the electric current and temperature gradient 

 were applied on a wire. From his calculations he obtained equationsfor the ݔ ߲/ ߲ܶ

electrical conductivity σ , thermal conductivity κ and Thomson coefficient μ். In 

allhis calculations Somerfield assumed conditions of local thermodynamic 

equilibrium and the number of electrons to be independent of temperature, and the 

mean free path of the electrons to be independent of their velocity ν. 

ߪ =
ଶ݁ߨ4

3݉௘
ቀ
݉௘

ℎ
ቁ
ଷ
න ଴݂

߲
ݒ߲

(݈௘ݒଶ)݀ݒ                                 
ஶ

଴
(2.3.1) 

݇ =
௘݉ߨ4
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଴
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଴
න ݈௘ݒଷ

߲ ଴݂

ݔ߲
ݒ݀

ஶ

଴
቏     (2.3.2) 

்ߤ =
ଶߣଶ݉௘݇஻ଶܶߨ2

3݁ℎଶ
                                            (2.3.3) 

Wherevers the electron mass, h is the Planck’s constant and λ is the de Broglie  

Wave length me of electrons. 

Bloch [28] solved the wave equation for periodic metallic lattice and showed that if 

the latticeis perfect, the electron would travel infinitely through it and only by 

taking into consideration the thermal motion of the lattice and the effect of 

impurities would finite conductivity be obtained. In addition, Bloch showed that 

the application of Pauli’s exclusion principle eliminated the direct proportionality 

between the number of free electrons and the electrical conductivity. Conduction 
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under an applied field would then take place only if the final energy levels are 

unoccupied such that the electrons near the Fermi level can make transitions and 

take part in conduction. Bloch called these electrons conduction electrons. Based 

on these ideas Bloch introduced temperature dependence of electronic conduction 

in metals where the electric resistance varied directly with the absolute temperature 

for high temperatures and varies as ܶହfor low temperatures. Bloch’stheory of 

electrical conduction could not be easily extended to semiconductors as it seemed 

tosuggest that a lattice should have nearly infinite conductance at low temperatures 

while in realitythe conductivity of semiconductors is very low at low temperatures 

due to limited number of free electrons. It also could not explain the non-

conductivity of insulators. In 1931, Wilson [29] extended Bloch’s theory to 

semiconductors and developed a formal theory of electron transporting 

semiconductors and insulators with emphasis on the temperature dependence of 

electrical conductivity. Wilson’s work was further extended to study Hall 

coefficients and thermoelectric power of semiconductors by Bronstein [30] in 1932 

and Fowler [31] in 1933 but neither of the results by these authors were in a form 

suitable for comparison with direct experimental data or predictions of 

thermoelectric power from measured Hall and resistivity data. 

In his book The Theory of Metals in 1953 Wilson [32] gave a comprehensive 

analysis of the conduction mechanism and thermoelectric performance of metals 

and semiconductors under the relaxation time approximation taking into account 

the effect of electron scattering with acoustic and optical phonons and electron–

impurity scattering. Based on his calculations, the relaxation time in metals for 

electron–phonon scattering was calculated to be proportional to ߝଷ/ଶܶିଵ whereε is 

the electron energy. This relation is the same result that was obtained by Bloch for 

metals. Inthe case of semi conductors the distribution of electrons is taken to 
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be ଴݂ = expି(ఌିఌ೑ /௞ಳ ்)  and restricting the phonon energy range to values around 

the Fermi energy ߝ௙ , Wilson calculated theelectrical conductivity σ to be 

proportional to ݊௘݉௘
∗ିହ/ଶܶିଷ/ଶ where ݉௘

∗ is the effective massof the electron and 

݊௘is the number of free electrons. By arriving at a direct proportionalitybetween 

the electrical conductivity and number of free electrons, Wilson was able to show 

thatsemiconductors have very low conductivity at low temperatures due to the very 

small number of free electrons available for conduction. 

In 1953 Johnson and Lark-Horovitz [33] used Somerfield’s model of electric 

current and thermal current to calculate thermoelectric coefficients for three 

different cases: (1) impurity temperature range where all the carriers are either n-

type or p-type such that the concentration of carriers remains constant with 

temperature until intrinsic carrier effects become important; (2)transition 

temperature range where in addition to n- and p-type carriers, intrinsic carriers also 

exist and hence ݊௘ ≠  ݊௛; (3) intrinsic temperature range where intrinsic carrier 

dominates the electrons and holes from donors and acceptors such that ݊௘ = ݊௛. 

The authors used Maxwellstatistics to describe the carrier distribution in the 

semiconductors. The mean free path was said to be affected by lattice vibrations 

where, similar to Somerfield, it was expressed to be independent of carrier energy. 

In the impurity and transition range an additional mean free path due to impurities 

was included where the mean free path was expressed as a function of carrier 

kinetic energy ε as ݈௜௠௣ =  ௚is the temperature variation of theܧ ଶwhere aߝ௚ܧܽ 

bandgapwidth and was found from the measured thermoelectric power curve of 

intrinsic germanium [33].The thermoelectric power for polycrystalline germanium 

having carrier concentrations ranging from 10ଵହ– 7 × 10ଵ଼ܿ݉ଷwas calculated 

using these equations and compared to experimentsconducted by Lark-Horovitz, 

Middleton, Miller Scanlon and Walerstein [34] over a temperaturerange of 78–925 
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K. For impurity temperature range of approximately 78–300 K there was lot of 

scatter in the experimental data and the theoretical predictions were not in good 

agreement with the experiments. In the transition and intrinsic range of 

temperatures greater than 300 K there was good agreement between experiments 

and theory. Despite being founded on equilibrium principles, these models were 

important in establishing limits to the performance of bulk materials as will be 

shown later. 

When Lord Kelvin (Thomson) [35] formulated his theory of thermoelectric 

phenomena in1854 he suggested that similar to the reciprocal relations between 

force and displacement in a mechanical system in equilibrium, there exist 

reciprocal relations between two or more irreversible transport processes that 

interfere with each other when they take place simultaneously in a thermodynamic 

system. Accordingly if J is the electric current due to an applied field and Q the 

thermal current due to the application of a temperature gradient, then for 

independent processes the electro-motive force that drives the electric current is 

given by 

ଵܺ = ܴଵ(2.3.4)                                                 ܬ 

Whereܴଵ is the resistance to current flow and the force that drives the thermal 

current is given by 

ܺଶ = ܴଶܳ                                                (2.3.5) 

Whereܴଶis the resistance to the flow of thermal current. However since these two 

processesmutually interfere with each other, two forces X1and X2must be 

expressed as a combination of the two resistances ܴଵand ܴଶas 

ଵܺ = ܴଵଵܬ + ܴଵଶܳ                                          (2.3.6) 
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ܺଶ = ܴଶଵܬ + ܴଶଶܳ                                          (2.3.7) 

Thomson suggested that as long as there is no heat conduction from one part of the 

circuit to another, ܴଵଶ = ܴଶଵ. Thomson’s reciprocal relations were examined by 

Onsager in 1931 [36]who calculated the thermoelectric properties as the entropy 

flow per particle due to (1) he at flow from high temperature to low temperature 

and (2) degradation of electrochemical potential energy into heat. From the 

macroscopic laws governing the thermoelectric process, the electric current J and 

the thermal current Q were expressed as 

ܬ− = ଵଵܮ
1
ܶ
ߤ∇ + ∇ଵଶܮ

1
ܶ

                                       (2.3.8) 

ܳ = ଶଵܮ
1
ܶ
ߤ∇ + ∇ଶଶܮ

1
ܶ

                                       (2.3.9) 

 ଶଶ are called kinetic coefficients are properties of the medium suchܮ ଵଶandܮ ,ଵଵܮ

aselectrical conductivity, thermal conductivity etc and in the absence of a magnetic 

field, Onsager stated that 

ଵଶܮ =  ଶଵ                                              (2.3.10)ܮ

Callen in 1948 [37] showed that while Onsager’s relations strictly referred to 

specific transient irreversible processes, they could be extended to steady state 

processes by considering the system to be the limiting case of many small sections, 

each in local equilibrium. This assumption is incorporated by treating the 

temperature T and Fermi energy ߝ௙ as functions of position. Callen pointed out 

that this assumption was similar to the assumptions made while using the 

Boltzmann transport equation where the system is assumed to be in local 

equilibrium by incorporating the deviation from the equilibrium term in the 

calculations. Here non-equilibrium effects were introduced to the problem. 
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In 1953 Frederikse [38] noticed large anomalies in the predicted vs. measured 

thermo electric power in germanium below temperatures of 200 K. They attributed 

these anomalies to the assumption of lattice thermal equilibrium commonly made 

when calculating thermo electric coefficients. The deviation from the equilibrium 

of the lattice at low temperatures results in a phonon current that interacts with the 

electron current. Frederikse modified Lark-Horovitz’smodel to include an 

additional term inversely proportional to temperature that would account for the 

deviation from equilibrium of the lattice at lower temperatures. Onsager’s 

reciprocal relations were used by Price [39] in 1956 where he used a modification 

of the Johnson–Lark-Horvitz model [40] to calculate the thermoelectric 

coefficients in isotropic semiconductors. The thermo electric parameters were 

calculated phenol menologically as a function of the electron and hole 

conductivities using average values of the electric and thermal currents.  

= ߪ ܬ〉  •  (2.3.11)                                               〈ܬ

ܵ =
1
ܶߪ

ܬ〉 • ܳ〉                                              (2.3.12) 

௘ߢ =
1
ܶ
〈ܳ • ܳ〉                                              (2.3.13) 

The carrier energy was said to be affected by contributions from (1) electrostatic 

field (2) band edge energies (3) band gap and at low temperatures (4) entrainment 

of the lattice energy due to carrier–lattice collisions known as phonon-drag effect 

where phonons carrying a thermal current tend to drag the electrons with them 

from the hot side to the cold side [41]. The resulting expression for thermoelectric 

power was expressed in terms of the electron and hole electrical conductivities as 

ܵ =
݇஻

ߪ2݁
൤ߪ)ߙ௘ − (௛ߪ  − ∋ߪ ln ൬

௘ߪ
௛ߪ
൰ − ൨ߦ௛ߪ                     (2.3.14) 
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ߪ ݁ݎℎ݁ݓ = ௘ߪ + ௛ߪ ߦ ݀݊ܽ    = log൭
௘ߤ
௛ߤ
൬
݉௘

݉௛
൰
ଷ
ଶ
൱ . 

Price assumed that the electron and hole mobility’s were independent of doping 

and used these vs. σ plot to graphically obtain the value of α, which represents the 

optimal performance, as shown in Eq. (2.3.14). Price showed that the graph (shown 

in Fig.(2.1 ) formed a loop where n-type materials are at the bottom of the loop and 

p-type materials at the top. The value where ߪ௘ =  ௛ߪ

 

Fig. 2.3.1 Price’s Doping Curve for Thermoelectric Power  

corresponded to the minimum value of σ where minimum thermoelectric power is 

obtained due to bipolar transport. In addition to the thermoelectric loop, another 

notable contribution made by Price was the study of the change in thermoelectric 

power of semiconductors under shear strain. He showed that shear strain would 

change the activation energy of the impurity donor atom binding a carrier in a 

many-valley band by decoupling the orbitals associated with the different valleys 

leading to a shift in the band edge energies. Price recognized that this shift in the 

band edge energies of the donor atoms would appreciably change the 

thermoelectric power of semiconductors especially at very low temperatures. 

ߙ = 2 log ൬
௑ߪ2
଴ߪ

൰… ߙ ≫ 1.                                (2.3.15) 
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Ioffe in 1957 [6] gave a simple explanation to calculate the Seebeck coefficient 

based on thermodynamic considerations. Consider a junction of two conductors 

through which one coulomb of charge passes at an infintesimally slow rate such 

that the current is very small. The entire circuit is assumed to be at constant 

temperature T such that there is no heat conduction or joule heat loss allowing the 

system to be treated to be in equilibrium. Since the two conductors are in 

equilibrium their chemical potentials are equal such that ߝ௙భ = ௙మߝ =  ௙. For aߝ

reversible,open system, the definition of internal energy can be written as 

௜ܷ = ௦ܶ +  ௙.                                           (2.3.16)ߝ

The average energy U as well as the entropy s of the electrons in the two 

conductors is different. Since the chemical potential of the two conductors is equal, 

we can write 

௜ܷ = ௦ܶ + ௙ߝ .                                        (2.3.17) 

When an electron passes through a junction of two conductors  its average energy 

changes by ௜ܷభ  −  ௜ܷమ. This difference in electron energy is generated in the form 

of Peltier heat ߨଵିଶat thejunction. 

௜ܷభ  −  ௜ܷమ =  ଵିଶ.                                   (2.3.18)ߨ

The relation between Peltier heat and Seebeck coefficient is given by  ܵܶ =  .ଵିଶߨ

From  Eqs. (2.3.17) and (2.3.18) the Seebeck coefficient is obtained as 

ݏ =
ଵିଶߨ
ܶ

= ௜ܷభ  −  ௜ܷమ
ܶ

= ܵଵ − ܵଶ.                              (2.3.19) 

Eq. (2.3.19) describes the Seebeck coefficient as the flow of entropy per unit 

charge across a junction .From this definition and Eq. (2.3.20), the Seebeck 

coefficient across the junction can be written as 



20 
 

ܵ =
1
݁
൬
̅ߝ − ௙ߝ
ܶ

൰                                       (2.3.20) 

where ε is the average electron energy passing across the junction. If ε is the 

energy of each electron passing through the junction and ݂(ߝ) is the distribution 

function of the electrons, theaverage electron energy across the junction is 

calculated as 

̅ߝ =
∫ ஶߝࢊ(ࢿ)ࢌࢿ
૙

∫ ஶࢿࢊ(ࢿ)ࢌ
૙

.                                      (2.3.21) 

Using Fermi–Dirac statistics to describe electron distribution in near degenerate 

semi conductors and a constant relaxation time, power-law approximation to 

describe carrier energy dependent mean free path of the electrons, 

ℓ௘തതത ∝ ௥ߝ .                                          (2.3.22) 

Ioffe calculated the Seebeck coefficient in a semiconductor as 

ݏ =
݇஻
݁
൦൬
ݎ + 2
ݎ + 1

൰
௥݂ାଵ ቀ

௙ߝ
݇஻ܶ

ቁ

௥݂ ቀ
௙ߝ
݇஻ܶ

ቁ
−

௙ߝ
݇஻ܶ

൪ .                   (2.3.23) 

The Fermi integrals in Eq. (2.3.23) are calculated from 

௥݂൫ߝ௙/݇஻ܶ൯ = න
௥ݔ

݁൫௫ିఌ೑/௞ಳ்൯ାଵ
                           (2.3.24)

ஶ

଴
 

Whereݔ =  ஻ ܶ is the reduced energy for electrons. Ioffe calculated the݇/ߝ 

electrical conductivitythrough the relation ߪ =  ݊௘݁μ, where ݊௘is the electron 

density given by Fermi–Dirac statistics as 

݊௘ =
2݉௘)ߨ4

∗݇஻ܶ)ଷ/ଶ

ℎଷ ଵ݂/ଶ ൬
௙ߝ
݇஻ܶ

൰                            (2.3.25) 
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andμ is the temperature dependent mobility of the electrons. Temperature 

dependency ofmobility was included through the relation μ = μ଴݇஻ܶ௥ାଵwhere μ଴ 

is the mobility at absolute 0 K. Thermal conductivity was calculated as a sum of 

the contributions from the electrons as well as lattice vibrations i.e. phonons. The 

lattice conductivity was obtained from 

݇௣௛ =
1
3

 ௦݈௣                                      (2.3.26)ݒܿ 

c is the specific heat obtained from the Debye model, ߭௦ is the sound velocity and 

݈௣is thephonon mean free path. The electron contribution to thermal conductivity 

calculated from thegeneral case of the Wiedemann–Franz law is given by 

݇௘௟
ߪ

= ܣ ൬
݇஻
݁
൰
ଶ

ܶ                                   (2.3.27) 

The coefficient A accounts for the various scattering mechanisms and is equal to 

ܣ = ൦
ݎ + 3
ݎ + 1

௥݂ାଶ ቀ
௙ߝ
݇஻ܶ

ቁ

௥݂ ቀ
௙ߝ
݇஻ܶ

ቁ
−

ݎ) + 2)ଶ

ݎ) + 1)ଶ
௥݂ାଵ
ଶ ቀ

௙ߝ
݇஻ܶ

ቁ

௥݂
ଶ ቀ

௙ߝ
݇஻ܶ

ቁ
൪               (2.3.28) 

where the scattering parameter ݎchanges depending on the type of scattering. For 

example,the value of r is −1 for scattering with optical phonons while for 

ionized-impurity scattering,which is predominant in metals, the value of ݎ is 

determined to be equal to be 2. This model combines transport concepts with 

fundamental properties to achieve a reliable estimator of the thermoelectric 

properties of bulk materials. 

In 1959 Chasmar and Stratton [42] used Ioffe’s model to calculate the optimum 

value of the Fermi level that would give the maximum value ofܼ ܶ for various 

values of the scattering   parameter  . Using classical statistics and Fermi–Dirac 
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statistics respectively they obtained the maximum value of ܼ ܶ as a function of 

material parameters. They introduced a material parameter ߚwhich was a function 

of the effective mass and temperature of the system and thelow carrier 

concentration mobility μ. 

ߚ =
(஻ܶ݇∗݉ߨ2)2݁

ଷ
ଶ

ℎଷ ቀ݇஻݁ ቁ
ଶ
ߤܶ

݇௟
.                            (2.3.29) 

For a given temperature and material parameter β, the optimum value of Fermi 

energy to maximize ܼ ܶ was calculated for various scattering parameters r. Their 

calculations indicated that the value of β and hence the figure of merit Z T must 

increase as the temperature rises. More importantly their work was the first to 

identify the impact of band gap on the figure of merit. While materials with large 

band gaps were found to have low carrier mobility and high thermal conductivity, 

small band gap materials would result in low Z T values at high temperatures due 

to increased minority carrier contribution to thermal conductivity. In addition ionic 

compounds were shown to be poor thermoelectric materials due to very high polar 

scattering of electrons, which decreases mobility. Chasmar and Stratton combined 

their analysis with the results of Golds mid [8] whose studies on the ratio of 

mobility to thermal conductivity as a function of the atomic weight led to the 

discovery of bismuth telluride. From their analysis semiconductors with optimal 

values of β between 0.1 and 0.2 and high atomic weight include sulphides, 

selenides and telluride’s of heavy metals such as lead or bismuth. Though these 

compounds have low band gap at0 K (≤ 0.22 ܸ݁), the bandgap increases with 

temperature. Cadmium telluride on the other handhas a large bandgap, 1.45 eV at 

300 K but the material parameter ߚ is only 0.03–0.06. Basedon the above studies 

Chasmar and Stratton proposed that a combination of cadmium telluride orselenide 
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(large bandgap, small β ) with a telluride or selenide of small bandgap and large ߚ 

would result in a good thermoelectric material. 

Attempts to find an upper bound to the figure of merit were made by various 

researchers. Littman and Davidson [43] used irreversible thermodynamics to show 

that no upper limit was imposed on Z T by the second law. However, Rittner 

and Neumark [44] showed that it was important to employ a combination of 

statistical or kinetic methods with a proper physical model of semiconductors to 

study the figure of merit. Simon [45] studied the optimum Z T value in two band 

semiconductors as a function the minimum band gap Eg, material parameter β for 

electrons and holes and the scattering parameter r for electrons and holes. He 

defined a parameterߛ = (݉௘/݉௛)  ଷ/ସ(μ௘/μ௛)ଵ/ଶthat he varied by adjusting the 

material parameters βe and βh. Whilehe could not arrive at a definite upper limit to 

the value of Z T his theoretical studies of optimumܼܶ vs. ߛfor ݃ܧ = 0showed 

that very high values of Z T could be achieved in very smallbandgap 

semiconductors by doping. At this point, most of the fundamental physics required 

to fully describe thermoelectric performance was known. Yet, most transport 

models were still not sophisticated enough to simultaneously include all the 

pertinent physics. Significant progress was made in the fifties and the sixties 

towards analytically calculating the scattering parameters used in the Boltzmann 

transport equation. The most common modes of scattering included in the BTE 

were acoustic-phonon scattering through the deformation potential put forth by 

Bardeen and Shockley [6] and the polar-optical mode scattering put forth by Callen 

in 1949 [46] and Froehlich in 1954 [47]. In the case of elastic scattering such as 

acoustic-phonon scattering and ionized-impurity scattering, the relaxation time 

approach that characterizes the rate at which momentum decays can be used to 

solve the BTE. However in the case of inelastic scattering no relaxation time exists 
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and hence other methods to solve the BTE were developed such as the vibrational 

calculations approach put forth by Kohler in 1948 [48],the iteration method by 

Rode in 1970 [49] and the matrix method by Kranzer in 1971 [50].Meanwhile 

Kane in 1957 [51] determined accurately the structure of the lowest (000) 

conduction band  minima at the center of the Brillouin zone as well as the wave 

functions in that valley. Using Kane’s model of the band structure and electron 

wave functions, Rode [49] calculated the electron mobility in intrinsic, direct gap, 

polar, non-degenerate semiconductors using Maxwellian statistics. He included the 

three scattering mechanisms i.e. acoustic deformation potential scattering, polar 

optical-phonon scattering and piezoelectric scattering which heidentified as the 

most important mode of scattering for lower lattice temperatures such as for e.g. 

below 60 K in GaAs. The electron distribution function under the influence of a 

small electric field is described as a linear finite-difference equation, which was 

solved using a numerical iteration method. The mobilities resulting from using 

parabolic vs. non-parabolic bands described by Kane were compared. Non-

parabolicity affected the calculated mobility by only 10% in wide band  gap 

material such as GaAs while small band gap material such as In Sb showed a 50% 

decrease in the calculated mobility when non-parabolicity was in cluded .Good 

match between the predicted and measured mobility data was seen for GaAs 

between the temperature ranges of 150–400 K. While the poor match with 

measured data at high temperatures could not be explained, the results below 150 

K were attributed to the non-inclusion of impurity scattering in the model which 

becomes prominent at low temperatures. In 1971 Rode [52]extended the previous 

study to calculate mobility and thermoelectric power in degenerate direct-gap, 

polar semiconductors using Fermi–Dirac statistics. In addition to piezoelectric 

scattering, longitudinal acoustic-phonon scattering and polar optical-phonon 

scattering, ionized-impurity scattering and heavy hole scattering were also 
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included in the calculations. Thermoelectric power was calculated from the short-

current calculated from the perturbation distribution where the elides set equal to 

zero. 

ܵ = −
ቀ1
݁ ௙ߝ∇ + ܬ

ቁߪ
∇ܶ

                                        (2.3.30) 

Mobility and thermoelectric power were compared with experimental data for 

intrinsic In Sb, In As and In P. There was good agreement with measured mobility 

data for all three semiconductors above room temperature while below room 

temperature the mobility showed two orders of magnitude decrease compared to 

experiments. Electron–hole scattering was prominent above room temperature, 

polar mode inelastic scattering dominated at room temperature while impurity 

scattering was dominant below room temperature. Below 60 K in In Sb and 80 Kin 

In As, deformation potential acoustic mode scattering and piezoelectric scattering 

dominate electron mobility. Good agreement with experimental data was also seen 

in the case of thermoelectric power for various electron concentration levels at 

room temperature. However, for higher temperatures, the thermoelectric power 

showed slight deviation from experiments where multivalve conduction was 

suspected to dominate electron transport. Mahan in 1994 [53] extended Rode’s 

work to study the optimum band gap in direct band gap semiconductors. Non-

parabolicity was included using the two-band Kane model and the solution to the 

BTE was obtained using Rode’s iteration method in the Gauss–Siebel formulation 

because inelastic scattering was included. Comparisons were made between Z T 

values for parabolic bands and non-parabolic bands with either elastic ionized-

impurity scattering or inelastic polar optical-phonon scattering. They found that the 

dependence of Z T on the ban dag fell into two regimes. For Eg<6kB T the 

value of Z T decreased with decreasing band gap due to the increasing presence of 
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minority carriers. For ܧ௚ > 10݇஻ܶ the value of ZT either increased or 

decreased depending upon the type of scattering involved. Additionally they found 

that the most important effect of non-parabolicity was to modify the effective mass 

values that in turn changed the value of the material parameter ߚ଴present in the 

expression for ZT similar to the parameter β in Chasmar and Stratton’s model. 

Mahan determined that in order to obtain higher values the value of β0 needs to 

increase implying that materials with higher effective masses or reduced thermal 

conductivity κ needed to be researched. Table 1 summarizes the progression 

of thermoelectricity and the various models used for predicting thermoelectric 

performance since the first thermoelectric effect was discovered in 1821. 

2.4 Development of Low-Dimensional Models for Thermoelectric Applications 

The concept of mono crystalline semiconductor structures having a periodic 

potential in one dimension was proposed by Esaki and Tzu in 1970 [54] who called 

these structures super lattices .While several low-dimensional structures can be 

envisaged to improve thermo electric performance, super  lattices provide a fertile 

conceptual tested and have been the focus of many studies. Esaki and Tzu 

suggested that the periodic potential could be obtained by periodic variation of 

alloy composition or variation of impurity density during epitaxial growth out of 

materials such as Si, Ge and their alloys, III–V, II–VI, compounds and their alloys 

etc. The dispersion relation in the direction parallel to the super lattice planes was 

assumed to be parabolicwhile in the cross-plane direction they used a sinusoidal 

approximation in the form of Mathieu’sequation [55] 

,||൫݇ܧ ݇ୄ൯ =
ℏଶ݇||

ଶ

2݉௘
∗ + 1)ݐ − cos(݇ୄ݀))                       (2.4.1) 

Where is the super lattice period, ݇ୄcorresponds to the wave vectors in the cross-

planedirection and kkcorresponds to the wave vectors in the in-plane direction of 
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the superlattices.The amplitude of the superlattice periodic potential is given by t. 

The authors found that under moderate electric fields in the cross-plane direction 

the confined energy bands and wave vector zones would result in a negative 

conductance that could lead to new ultra-high frequency oscillators. The negative 

conductivity will arise from the fact that electrons traveling perpendicular to the 

super lattice would experience negative effective mass beyond the inflection point 

in the sinusoidal E vs. k dispersion relation. In 1984 Friedman [56] suggested that 

the low-temperature (݇஻ܶ <  ௙ ) thermoelectric power S of a superlattice as aߝ

function of dopant concentration can be used to provide information about the one-

electron density of states and the location and width of the mini-bands. Following 

Wilson’s model for calculating thermoelectric power using Fermi–Dirac statistics 

in the BTE and assuming energy-independent momentum scattering rates, they 

showed mathematically that the thermoelectric power tends to diverge at the mini-

band extreme. The divergence in S is smoothed out for energies greater than 

݇஻ܶbutthey were still discernible for low temperatures. In addition, anisotropy in 

the thermoelectric power was predicted for in-plane vs. cross-plane temperature 

gradient. For the next couple of years the low-temperature thermoelectric power of 

super lattices was predominantly used as atoll to understand the electronic structure 

and transport properties of super lattices [57,58] as well as the scattering dynamics 

of electrons and phonons in solids [59,60].In 1992, Mensah and Kanga [61] used 

the relaxation time approximation (RTA) model of the BTE with the sinusoidal 

dispersion relation for the confined direction of super lattices to obtain analytical 

expressions for the Seebeck coefficient and thermal conductivity of super lattices 

along the super lattice cross-plane direction. Defining 2∆ as the width of the lowest 

energy mini-band in the E vs. k regime, the thermo power and thermal conductivity 

are calculated for two ranges of∆. For ∆≪  ஻ܶ , the electrons in the superlatticeܭ

are said to behave as a 2D electron gas whilefor∆≫ ݇஻ܶthe electrons behave as a 
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3D gas. They suggested that by an optimal selection of ∆ and d, the super lattice 

period, it is possible to obtain good-quality and efficient thermo elements. In 1993,   

and Hicks [62] proposed that layering highly anisotropic thermoelectric materials 

such as Bi2Te3alloys in the form of super lattices would make it possible to 

increase the figure of merit provided that the super lattice multilayers are made in a 

particular orientation. The model of the super lattice proposed by the authors 

involved layers of thin films with no barrier layers such that confinement effects 

originated only due to electron confinement in the thin films. They theorized that in 

addition to confinement effects that cause electrons to behave as a 2D gas, the 

layering would reduce thermal conductivity through phonon scattering and thus 

increase Z T. The layers were assumed to be parallel to the ݔ–  plane where they ݕ

have a parabolic dispersionand a confined dispersion in the z direction as shown in 

Eq. (35) which unlike the sinusoidal dispersion used in the previous papers, treats 

the lowest sub band in the well to be flat similar to electrons confined in an infinite 

potential well. 

,൫݇௫ߝ ݇௬൯ = ℏమ௞ೣమ

ଶ௠ೣ
∗ +

ℏమ௞೤మ

ଶ௠೤
∗ + ℏమగమ

ଶ௠೥
∗௔మ

                          (2.4.2) 

Using the dispersion relation and the equations for S, σ and݇௘௟ and ݇௣௛specified by 

Ritter [44]they calculated the figure of merit ܼܶfor transport along the x-axis in 

terms of the Fermi functions of order 1 and 0 (refer Eq. (2.4.1)) as well as the 

reduced Fermi energy ε∗ fand a material parameter B described in Eq. (2.4.2). 

ܼଶ஽ܶ =
ቀ2ܨଵ
଴ܨ

− ௙∗ቁߝ ଴ܨ

1
ܤ + ଶܨ3 −

ଵଶܨ4
଴ܨ

                                (2.4.3) 

Where 
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∗௙ߝ =
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ℏߨଶ
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݇஻ܶ
ܤ   ݀݊ܽ  =

1
ܽߨ2

൬
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      (2.4.4) 

The authors analyzed that the value ofܼଶ஽ܶcan be increased by using narrower 

layersthat will ensure increased phonon scattering and by choosing optimum 

current direction and layer orientation to maximize mobility. The ܼଶ஽ܶvalues for 

 ଶܶ݁ଷwere predicted for two orientations of the multilayers, the x–y planes and݅ܤ

the x–z planes. The results predicted an increase in Z T by a factor of 13 over the 

bulk value in the x–z plane for current flow along the x-axis for layers that are 3.8∆ 

thick. In the case of the x– y plane results predicted an increase in Z T by a factor 

of 3 over the bulk value for layers that are 10∆ thick. The dispersion model used in 

the above paper treats the quantum wells as decoupled such that there is no 

tunneling between the wells. 

So fo and Mahan [63] analyzed the Z T predictions of a super lattice put forth 

by Hicks and Dresselhaus by incorporating alternating barrier layers having finite 

thermal conductivity in the super lattice and introduced a tunneling probability 

between the quantum wells in their calculations. They argued that quantum mixing 

between the wells due to tunneling leads to a broadening of the density of states 

from 2D to 3D. In addition, the finite thermal conductivity of the barrier region 

produces a parasitic effect of backflow of heat that would hinder the pumping of 

heat in the well. The authors used the RTA model to include electron density 

dependence on the electrical conductivity through the expression given by Drudge 

[29]. 

ߪ = ݊௘(݁ଶ߬/݉௫).                                       (2.4.5) 

The dependence of the electrical conductivity on electron density ensures that if 

the well width a and chemical potential ε f are kept constant, just by increasing 
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the barrier width b, the electron density will decrease due to reduced tunneling 

probability causing the electrical conductivity to decrease and decrease Z T . 

Alternately, for a fixed barrier width, as the well width is reduced, the 2D density 

of states increases and proportionately increases the electrical conductivity as well 

as ܼܶ. The thermal conductivity equation was also modified to include heat 

backflow at the barriers in the thermal conductivity. In addition they changed the 

value of B to be inversely proportional to the super lattice period d and not 

the well thickness a. Sofa and Mahan used their model to predict the ZT vs. well 

width values for݅ܤଶܶ݁ଷlayers in the x– y plane with transport along the x-axis. 

Using average values in the literature for the mobility µx and thermal conductivity 

κ, they found that there was improvement in ܼܶ due to the enhancement of density 

of states at the bottom of the lowest sub band with decreasing well width but the 

amount of increase was not as high as originally predicted by Dresselhaus and 

Hicks. The change in Z T with decreasing well width was studied as a function of 

the barrier width. In all cases except for a 20∆ wide barrier the Z T values 

increase with decreasing well thickness. The decrease in Z T for the 20∆ barrier 

was attributed to tunneling through the barrier that causes quantum coupling 

between the wells leading to broadening of density of states making the 2D density 

of states to become 3D density of states and reduce Z T . The authors also point out 

that the flat sub band assumption works well when the Fermi level lies above the 

sub and at a distance greater than the value of kBT as electrons above and below 

the Fermi level have opposite contribution to the thermo power. Similar studies on 

the effect of tunneling and finite thermal conductivity contribution of the barrier 

material were done by Brodie and Reinbeck [64] in 1995 who studied the effects of 

confinement on the figure of merit of Bi2Te3superlattices using Kraig–Penny type 

sub band energy dispersion in the RTA model. They too found that the value of Z 

T2Dincreased as the well width decreased until tunneling between wells caused the 
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value of Z T2Dto reduce for further decrease in well width. In 2001 Brodie and 

Reinbeck [65] extended the BTE model with Kronig–Penny sub-bands to calculate 

thermoelectric coefficients in quantum well and quantum wire super lattices. The 

thermoelectric coefficients were calculated for the occupied sub-bands in each 

conduction band valley neglecting inter-valley scattering. The results for each 

valley were summed over all the multiple ellipsoidal conduction band valleys to 

obtain the overall thermoelectric coefficients. Elastic acoustic-phonon scattering 

through the deformation potential scattering and inelastic optical- phonon 

scattering using the solution to the inelastic 3D Boltzmann transport equation were 

in- clouded in the calculations. Optical phonons were assumed to be dispersion less 

with the dominant phonon energy to be the value of its zone center ¯ ω0. The BTE 

solution for inelastic scattering was obtained by using an extension of Ritz’s 

iterative method [66]. The thermoelectric coefficients were compared to the results 

of the constant relaxation time approximation (CRTA) and bulk values as a 

function of decreasing well width. In general, solutions based on the CRTA were 

found to predict much higher values for mobility compared to the inelastic 

solution. Power factor predictions made by both CRTA and inelastic scattering 

methods predicted lower values than the bulk which were attributed to electron 

confinement in the wells leading to reduced conductivity. The power factor values 

increased with decreasing well width due to increase in the 2D density of states 

and eventually matched the bulk power factor. However, further decrease led to 

electron tunneling that changed the 2D density of states to 3D lowering the power 

factor. These effects as seen previously were not captured by the CRTA model. 

The effect of scattering and band structure on the thermoelectric performance was 

demonstrated through the power factor studies done on two materials, PbTe and 

GaAs. PbTe has an anisotropic multi valley band structure while  a single isotropic 

conduction band valley. At room temperature both acoustic-phonon and optical-
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phonon scattering dominate in PbTe while only optical-phonon scattering 

dominates in GaAs. Accordingly the full solution of the BTE including elastic 

acoustic-phonon and inelastic optical-phonon scattering showed an increase of 

only a factor of two in the power factor of  to its bulk value while GaAs showed a 

factor of 9.5 increase in its power factor. The ability to incorporate the full band 

structure information to calculate the thermoelectric coefficients was demonstrated 

by Sofa et al. in 2003 [67] when they presented a method of calculating the 

electronic structure from first principle calculations, which they included in the 

relaxation time approximation to calculate the transport coefficients. They defined 

a kernel of all transport coefficients known as the transport distribution that 

contains all the electro misinformation needed to obtain the thermoelectric 

coefficients directly for any given material as shown in Eq. (2.4.6). 

ܵ =
݁݇஻
ߪ

න݀ߝ ൬−
߲ ଴݂

ߝ߲
൰ Ξ(ߝ)

ߝ − ߤ
݇஻ܶ

Ξ ݁ݎℎ݁ݓ    = ෍⃗ݒ௞ሬ⃗
௞ሬ⃗

௞ሬ⃗ݒ⃗ ௞ሬ⃗ݒ⃗ .        (2.4.6) 

The group velocity values are obtained using the linear augmented plane wave 

(LAPW) method while the relaxation times are calculated for various scattering 

mechanisms using parameters found in the literature. Doping was included by 

changing the relative position of the Fermi level under the assumption that the ban 

structure remains unchanged as the Fermi level changes. The above method was 

used to calculate the thermoelectric coefficients for Bi2Te3 using 

experimentally determined thermal conductivity values for the various planes. The 

Seebeck coefficient for all doping levels was calculated using a constant relaxation 

time that gave the best fit with experimental data in the intrinsic region. For all 

doping levels, the Seebeck coefficient of the n-type material showed a better fit 

with experiments compared to the p-type. The model also captured effectively the 

anisotropy in the electrical conductivity of  ݅ܤଶܶ݁ଷ where the conductivity along 
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the basal plane can be four times greater than the conductivity along the trigon 

axis. The predictions for the figure of merit however did not show very good match 

with experiments with results for the n-type matching better than those for the p-

type. Similar match with experimental data was obtained by Lee and Allman in 

2006 [68] who calculated the thermoelectric coefficients using a tight-binding 

model with ݌ݏଷ݀ହݏ∗orbitals, nearest neighbor interactions and spin–orbit coupling 

for Bi2Te3 in the constant relaxation time approximation model. Table 2 

summarizes the progression of models used for predicting thermoelectric 

performance in low-dimensional structures. 

 

2.5 Nanostructured Thermoelectric Materials 
The advent of quantum well nan of lm and nanowire super lattice structures that 

improve the value of ZT due to a number of advantages has shifted the focus 

towards understanding carrier transport behavior in nanostructures. Quantum 

confinement in nanostructures increases the local carrier density of states per unit 

volume near the Fermi energy increasing the Seebeck coefficient [62] while the 

thermal conductivity can be decreased due to phonon confinement [69,70] and 

phonon scattering at the material interfaces in the super lattices [62,71,72]. 

Normally, the electrical conductivity is assumed not to be significantly affected 

due to the large semiconductor band gap and the disparity between the electron and 

phonon mean free paths [25,73]. This assumption is also a consequence of the 

predominantly particle-based models. The combined benefits of reduced thermal 

conductivity and improved Seebeck coefficient imply a theoretically higher ZT 

compared to the bulk structures. However, experimental observations have not 

been able to achieve the presumed benefits of super lattice thermoelectric devices 

despite theoretically predicted improvements in ZT and experimentally observed 
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reduction in the thermal conductivity of super lattices compared to their bulk 

counterparts [74,75]. Hence there is a need to better understand the effect of all the 

significant factors contributing to the thermoelectric figure of merit of nan scale 

devices. In this regard, the two main phenomena that affect electron transport in 

nanostructures are (1) electron confinement and (2) electron scattering effects such 

as electron–phonon scattering, electron–impurity scattering etc. Shrinking device 

dimensions presents an increasing need for a quantum transport model that can 

effectively couple scattering effects. The need to incorporate scattering stems from 

the fact that while electron–phonon scattering usually helps restore thermodynamic 

equilibrium, shrinking device dimensions may not ensure enough scattering to 

restore equilibrium. The simultaneous consideration of scattering effects, which is 

usually described as particle behavior, and quantum effects, which are wave in 

nature, is confounding and computationally intensive. In this regard the non-

equilibrium Green’s function formalism provides a framework for coupling 

quantum effects and thermal effects to model electron transport in thermoelectric 

devices. Open boundary conditions allow the source and drain contacts to be 

coupled to the device through simple self-energy terms. In addition, the NEGF 

formalism does not require a statistical distribution of carriers within the device 

thus allowing for the rigorous incorporation of both elastic and inelastic scattering 

effects using the concept of Battier probes [76]. A brief synopsis of the formalism 

is presented here while a more thorough and detailed development can be found in 

[76] and [77]. The first reported use of NEGF to predict thermoelectric 

performance is found in [78–80]. True quantum simulations have to see 

widespread use, but modern devices demand this level of modeling. 
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Chapter Three 
Density of States, Fermi Energy and Energy Bands 

 

3.1 Introduction 
This chapter is concerned with studying the density of states of beside Fermi 

energy and energy bands theory. 

3.2 Density of states 

3.2.1 Current and Energy Transport 
The electric field E is interfered with two processes which are the electric current 

density j and the temperature gradient∇T . The coefficients come from the Ohm’s 

law and the Seebeck effect.The field can be written as 

E =
j
σ

 α∇T                                                  (3.2.1) 

Where ߪ is the electrical conductivity and is the Seebeck coefficient. The heat flux 

(thermal current density) q is also interfered with both the electric field Ε and the 

temperature gradient ∇T . However, the coefficients are not readily attainable. 
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Thomson in 1854 arrived at the relationship assuming that thermoelectric 

phenomena and thermal conduction are independent. Later, Onsager [1] supported 

that relationship by presenting the reciprocal principle which was experimentally 

verified. The heat flux can be written as 

q = αT୨ − k∇T                                               (3.2.2) 

where k is the thermal conductivity consisting of the electronic and lattice (or 

phonon)contributions to the thermal conductivity as 

k = kୣ + k୪                                                (3.2.3) 

In this chapter, only the electronic contribution to the total thermal conductivity is 

used. 

qୣ = αT୨ − kୣ∇T                                              (3.2.4) 

We consider a one-dimensional analysis in this chapter because most 

thermoelectric devicesreasonably holds one-dimension, so that tensor notations are  

3.2.2 Electron Density of States 

Dispersion Relation 

From Equation (10.16) (combining the Bohr model and the de Broglie wave), we 

have 

λ =
h
p

                                                  (3.3.1) 

This ߣ is known as the de Broglie wavelength. Using the definition of wave vector 

k = 2ߣ/ߨ, we have 

 k =
p
ℏ

                                                  (3.3.2) 

Knowing the momentum p = mv, the possible energy states of a free electron is 

obtained 

 E =
1
2

mvଶ =
pଶ

2m
=
ℏଶkଶ

2m
                             (3.3.3) 
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which ߣ is called the dispersion relation (energy or frequency-wave vector 

relation). 

Effective Mass 

In reality, an electron in a crystal experiences complex forces from the ionized 

atoms. We imagine that the atoms in the linear chain form the electrical periodic 

potential. If the free electron mass m is replaced by the effective mass m*, we can 

treat the motion of electrons in the conduction band as free electrons. An exact 

defined value of the wave vector k, however, implies complete uncertainty about 

the electron’s position in real space. Mathematically, localization can be described 

by expressing the state of the electron as a wave packet, in other words, a group 

velocity. The group velocity of electrons in Figure 11.1 is the slope of the 

dispersion relation. 

v୥ =
∂ω
∂k

                                                  (3.3.4) 

Since the wavelength is twice the lattice constant a, the boundaries at the zone in k-

space is k = ±ߨ/a. The frequency߱ associated with a wave vector of energy E is 

E = ωℏ   and k =
p
ℏ

                                      (3.3.5 ) 

Where the two equations are known as the Planck-Einstein relations. 
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Figure (3.2.1) Dispersion Relation of A Group of Electrons with A Nearest 

Neighbor Interaction.  

Notethatω is linear the boundaries of the Brillouin zone (k = ±π/a)for small k, and 

that பன
ப୩

 vanishes at  

v୥ =
1
ℏ
∂E
∂k

                                                       (3.3.6) 

The derivative of Equation (3.3.6) with respect to time is 

∂v୥
∂t

=
1
ℏ
∂ଶE
∂k ∂t

=
1
ℏ
∂ଶE
∂k

∂k
∂t

                                       (3.3.7) 

From Equation (3.3.5), we have mv୥ = ℏk and m ∂v୥/  ∂t = ℏ ∂k/ ∂t. The force 

acting on the groupof electrons is then 

F = m
∂v୥
∂t

= n
∂k
∂t

                                            (3.3.8) 

Combining Equations (3.3.7) and (3.3.8) yields 

F =
ℏଶ

∂ଶE/ ∂kଶ
∂k
∂t

                                            (3.3.9) 
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This indicates that there is an effective mass m*, which will replace the electron 

mass m. 

1
m∗ =

1
ℏ
∂ଶE
∂kଶ

                                         (3.3.10) 

The effective mass m* is the second order of derivative of energy with respect to 

wave vector, which is representative of the local curvature of the dispersion 

relation in three dimensional space. The effective mass is a tensor and may be 

obtained experimentally or numerically. 

3.4 Density of States 

Thermoelectric materials typically exhibit the directional behavior. Therefore, in 

general we have 

E =
ℏଶ

2
ቈ

k୶ଶ

m୶
+

k୷ଶ

m୷
+

k୸ଶ

m୸
቉                                 (3.4.1) 

where mx, my, and mz are the principal effective masses in the x-, y-, z directions 

and here k is the magnitude of the wave vector. 

kଶ = k୶ଶ + k୷ଶ + k୸ଶ                                      (3.4.2) 

This represents the surface of a sphere with radius k in k-space. We introduce a 

new wave vectors k’ and an effective mass m’ as 

E =
ℏଶkᇱଶ

2mᇱ                                                  (3.4.3) 

Equating Equations (3.4.1) and (3.4.3), we have a relationship between the original 

wave vector and the new wavevector as 

k୶ = ට
m୶

mᇱ k୶ᇱ , k୷ = ට
m୷

m′
k୷ᇱ  and k୸ = ට

m୸

m′
k୸ᇱ                                  (3.4.4) 

In Figure 11.2, we have the volume of a thin shell of radius k and thickness dk. 

dk = dk୶dk୷dk୸ = ඨ
m୶m୷m୸

mᇱଷ dk′୶dk′୷dk′୸ = ඨ
m୶m୷m୸

mᇱଷ 4πkᇱଶdkᇱ            (3.4.5) 
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The volume of the smallest wave vector in a crystal of volume L3 is (2π/L)3 since 

L is the largest wavelength. The number of states between k and k + dk in three-

dimensional space is then obtained (see Figure 3.3.1) 

N(k)dk =
2.4πk′ଶ

ቂ2πL ቃ
ଷ                                         (3.4.6) 

where the factor of 2 accounts for the electron spin (Pauli Exclusion Principle). 

Now the density of states g(k) is obtained by dividing the number of states N by 

the volume of the crystal L3. 

g(k)dk =
k′ଶ

πଶ ඨ
m୶m୷m୸

mᇱଷ dk′                                (3.4.7) 

 

 

 
 

 

 

 

Figure (3.4.1) A Constant Energy Surface In K-Space: (A) Three-Dimensional 

View, (B) Lattice Points For A Two-Dimensional View. Spherical Band In  

From Equation (3.4.3), we have 

kᇱ =
√2m′
ℏ

Eଵ/ଶ                                            (3.4.8) 

Differentiating this gives  

∂k′
∂E

=
√2m′
ℏ

Eଵ/ଶ                                            (3.4.9) 

Replacing this into Equation (3.4.7), m’ is eliminated. The density of states per 

valley is finally obtained as 
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g(E) =
1

2πଶ
ቈ
2mୢ

∗

ℏଶ
቉

ଷ
ଶ

E
ଵ
ଶ                                      (3.4.10) 

where 

mୢ
∗ = ൫m୶m୷m୸൯

ଵ
ଷ                                       (3.4.11) 

which is called the density-of-states effective mass, and mx, my, and mz are the 

principal effective masses in the x-, y-, z-directions. Most actual band structures 

for semiconductors have ellipsoidal energy surfaces which require longitudinal and 

transverse effective masses in place of the three principal effective masses (Figure 

3.4.2). Therefore, the density-of-states effective mass is expressed as 

mୢ 
∗ = ൫m୪m୪

ଶ൯
ଵ
ଷ                                             (3.4.12) 

where l m is the longitudinal effective mass and t m is the transverse effective 

mass. 

 

 

 

 
 

Figure (3.4.2) Constant electron energy surfaces in the Brillouin zones (space 

or k-space): (a) as spherical band such as GaAs; (b) an ellipsoidal band such 

as Si. Si has six identical conduction bands. 

3.5 Fermi-Dirac Distribution 
Although the classical free electron theory gave good results for electrical and 

thermal conductivities including Ohm’s law in metals, it failed in certain other 

respects. These failure was eliminated by having the free electron obeys the Fermi-

Dirac distribution. The ground state is state of the N electron system at absolute 

zero. What happens as the temperature is increased The solution is given by the 
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Fermi-Dirac distribution. The kinetic energy of the electron increases as the 

temperature is increased: some energy levels are occupied 11-8which were vacant 

at absolute zero, and some levels are vacant which were occupied at absolute zero 

(Figure 3.5.1). The Fermi-Dirac distribution fo gives the probability that an orbital 

at energy E will be occupied by an ideal electron in thermal equilibrium. 

fୟ =
1

e(୉ି୉ూ)୩ా୘ + 1
                                 (3.5.1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (3.5.1) Fermi-Dirac Distribution at the Various Temperatures. 
 

3.6 Electron Concentration 
The electron concentration n in thermal non equilibrium is expressed as 

n = න g(E)f(E)dE
ஶ

଴

                                      (3.6.1) 
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where f(E) is the temperature-dependent occupation probability in thermal 

nonequilibrium. It becomes the Fermi-Dirac distribution ଴݂(ܧ) in thermal 

equilibrium as shown in Equation (3.5.1), which becomes unity at absolute zero 

when E is less than EF, and zero when E is greater than EF(Figure 11.5). The 

electron concentration n in thermal equilibrium is 

n = න g(E)f଴(E)dE
ஶ

଴

                                               (3.6.2) 

Using Equations (3.4.10) and (3.5.1), the electron concentration n in thermal 

equilibrium is 

n =
1

2πଶ
ቈ
2mୢ

∗

ℏଶ
቉

ଷ
ଶ
න

E
ଵ
ଶ

e(୉ି୉ూ)୩ా୘ + 1

ஶ

଴

                           (3.6.3) 

3.7 Fermi Energy in Metals 
The Fermi-Dirac distribution implies that at absolute zero (in the ground state of a 

system) the largest Fermions (electrons, holes, etc.) are filled up in the density of 

states, of which the energy is often called the Fermi energy (Figure 3.7.1), but here 

we specifically redefine it as the Fermi energy at absolute zero. So that the Fermi 

energy is temperature-dependent quantity. It is sometimes called the Fermi level or 

the chemical potential. In general, the chemical potential (temperature dependent) 

is not equal to the Fermi energy at absolute zero. The correction is very small at 

ordinary temperatures (under an order of 10ଷK) in ordinary metals. 
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Figure (3.7.1) Electron concentration n is given by the area under the density 

of states curve up to the Fermi energy EF. The dashed curve represents the 

density of filled orbitals at a finite temperature. The electrons are thermally 

excited from region 1 to region 2. 
 

The largest number of states N can be defined when a sphere of Fermi radius kF is 

divided by the smallest volume ቀଶ஠
୐
ቁ
ଷ
 in k-space (see Figure 3.3.1). 

N =
2. 4

3πk୊ଷ

ቂ2πL ቃ
ଷ                                               (3.7.1) 

where the factor of 2 accounts for the Pauli Exclusion Principle. Since the crystal 

volume is defined as V = L3, the Fermi wave vector is 

k୊ = ቈ
3πଶN

V
቉

ଵ
ଷ

= (3πଶn)
ଵ
ଷ                                    (3.7.2) 

where N/V is the electron density (or electron concentration) n at the Fermi 

surface, which can be obtained from the lattice points, the lattice constant and the 

mass of the atom (n is usually a great number of about 10ଶଶ cm-3). The Fermi 

wave vectors form the Fermi surface, which separates the occupied from the 

unoccupied levels. The Fermi surface is one of the fundamental constructions in 

the modern theory of metals; in general it is not spherical. The Fermi energy is 

E୊ =
ℏଶ

2m
(3πଶn)ଶ                                         (3.7.3) 

or the electron concentration n is 
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n =
2(2m)ଵ/ଶ

3πଶℏଷ
E୊
ଷ/ଶ                                       (3.7.4) 

This can be also obtained by integrating Equation (3.6.3) from zero to EFwith f଴ ≈

1for (E − E୊)k୆T << 0 in most metals. The Fermi velocity at the Fermi surface is 

v୊ =
ℏk୊
m

=
ℏ
m

(3πଶn)
ଵ
ଷ                                     (3.7.5) 

For metals, the Fermi velocity is an order of 10଼ cm/s. This is a substantial 

velocity (about 1 percent of the speed of light). From the view point of classical 

statistical mechanisms, this is quite a surprising result, for we are describing the 

ground state (T = 0), and all particles in a classical gas have zero velocity at T = 0 

(classical equipartition energy1/2mvଶ  =  3/2kBT). The Fermi velocity is only an 

approximation to the average electron velocity; this approximation works best in 

metals and in heavily doped semiconductors. The electron mean free path A can be 

approximated by  

A ≈ v୊τ                                                (3.7.6) 

Where is τ the relaxation time. The mean free path is a measure of the average 

distance between successive scattering events. The relaxation time is the average 

time between successive collisions. The wavelengthߣ of electrons may be 

estimated by the de Broglie expression. 

λ =
h
p
≈
2πℏ
mv୊

                                             (3.7.7) 

 

 

3.8 Fermi Energy in Semiconductors 

In semiconductors, we usually have(E − E୊)/k୆T >>  1, and then (E − E୊)/

k୆Tbecomes much greater than 1. Therefore, eliminating one we have 
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fୟ =
1

e(୉ି୉ూ)୩ా୘ + 1
= exp ൤−

E − E୊
K୆T

൨                            (3.8.1) 

The electron concentration n in equilibrium from Equation (3.7.4) is 

n =
1
2π

ቈ
2mୢ

∗

ℏଶ
቉
ଷ/ଶ

න exp ൤−
E − E୊

K୆T
൨ dE

ஶ

଴

                      (3.8.2) 

This can be solved using Gamma function. The electron concentration n in single 

band is reduced to (this is known as the Boltzmann approximation) 

n = N୴2 ቈ
2mୢ

∗K୆T
2π.ℏଶ

቉
ଷ/ଶ

exp ൤
E୊

K୆T
൨                            (3.8.3) 

where N୴ is the degeneracy (number of bands or valleys having the same band 

edge energy and the same wave vector). For example, Si has the degeneracy of six 

valleys (see Figure (3.7.1). Solving forܧி, we have 

E୊ = K୆T ln ቎
n

2N୴
ቈ
2mୢ

∗K୆T
2π.ℏଶ

቉
ିଷଶ
቏                              (3.8.4) 

In typical semiconductors, the Fermi energy EF may be below the conduction band 

edge EC. The band gap Egis the difference between EC and EV, which is usually 

much larger than k୆Tas shown in Figure (3.7.1) the electron concentration n is the 

shaded area under the density of states curve and the Fermi energy at room 

temperature. Note that the Fermi energy greatly affects the electron concentration n 

in the conduction band, which is much smaller than that of a metal (Figure 3.8.1). 
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Figure (3.8.1) Electron concentration n in a semiconductor is given by the 

area under the density of states curve and the Fermi energy EF at room 

temperature. The Fermi energy EF is located under the minimum of conduction 

band. The dashed curve represents the density of filled orbitals at a finite 

temperature. 

3.9 Energy Bands 
The free electron model of metals gives us good insight into the electrical 

conductivity and electrodynamics of metals. But the model fails to help us with 

other questions, for example the relation of conduction electrons in the metal to the 

valence electrons of free atoms and many transport properties. Every solid contains 

electrons. The important question for electrical conductivity is how electrons 

respond to an applied electric field. We shall see that electrons in crystals are 

arranged in energy bands separated by regions in energy for which no wavelike 

electron orbits exist. Such forbidden regions are called energy gaps or band gaps 

 which are shown in Figure 3.8.1 wherein the differences between a metal, a (ீܧ)

semiconductor and an insulator are summarized schematically. 

The crystal behaves as an insulator if the allowed energy bands are all either 

filled or empty, for then no electrons can move in an electric field. The crystal 

behaves as a metal if one or more bands are partly filled. The crystal is a 

semiconductor or semimetal if one or two bands are slightly filled or slightly 

empty. 
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To understand the difference between insulators and conductors, we must 

extend the free electron model to take account of the periodic lattice of the solid. 

The possibility of a band gap is the most important new property that emerges. 

 

 

 

 

 

 

Figure (3.9.1) Energy level diagrams for a metal, a semiconductor, and an 

insulator. Metals have a partly occupied band (shaded). 

 For semiconductors and insulators, the Fermi level lies between the occupied 

valence band and the unoccupied conduction band. 

3.10 Multiple Bands 
There may be two separate bands: a conduction band for electrons and a valence 

band for holes as shown in Figure 3.10.1(a). In many semiconductors such as Si 

and PbTe, there may be also multiple bands that have the same energy levels, 

whereby it is called degeneracy. The heavy and light holes are degenerate and the 

split-off hole in the valence band is slightly off the valence band edge (maximum). 
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Figure (3.10.1) Band structures of a semiconductor including the conduction 

band and the valence bands. (a) A model of a conduction band and a valence 

band, and (b) a model of multiple bands. 

3.11 Direct and Indirect Semiconductors 
The type of band gap in semiconductors is important for the selection of material 

for many electronic devices including thermoelectric devices, solar cells and lasers. 

There are two types of band gaps in semiconductors, which are direct and indirect 

band gap. The energy E of a particle is always associated with a wave vector k (or 

momentum), which implies that, for any transition between bands, both energy and 

momentum must be conserved. When an electron absorbs enough energy to exceed 

the energy gap ܧ௚, the electron can jump from the valence band into the 

conduction band. The source of the energy could be photons, phonons, or electric 

field. 
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In direct band gap semiconductors, such as GaAs, the maximum and 

minimum of energy versus momentum relationship occur at the same value of the 

wave vector (Figure 3.10.1 (a)). In indirect band gap semiconductors like Si and 

Ge, the maximum and minimum of the energy versus momentum relationship 

occurs at different wave vectors, which is pictured in Figure 3.10.1 (b). In this 

case, the electron cannot directly jump into the conduction band, but once the 

electron at the valence band edge EV absorbs energy (photon, phonon, or electric 

field) and reaches the energy level of the conduction band edge EC across the 

energy band Eg, it can indirectly jumping to the conduction band with the aid of 

phonon energy because phonon usually exists anyway. 

 
Figure (3.12.1) Energy versus wave vector diagrams in (a) direct band gap 

and (b) indirect band gap semiconductors. 
 

Direct and indirect gap semiconductors have major differences in their optical 

properties. Direct band gap semiconductors are more efficient photon emitters, 

semiconductor lasers are made of direct gap semiconductors such as GaAs, 
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whereas most electronic devices including thermoelectric devices are built on 

indirect semiconductors. 

 

3.12 Periodic Potential (Kronig-Penney Model) 
So far we have dealt with a free electron. In fact the electron in a crystal 

experiences a periodic potential which is along a line of the ionized atoms. 

Assuming one-dimensional lattice with the lattice constant a as shown in Figure 

3.12.1 (a), resembling the individual atomic potentials as the atom is approached 

closely and flattening off in the region between atoms. We approximate this by a 

square periodic potential in Figure 3.12.1 (b) as introduced by Kronig and Penney. 

 
Figure (3.12.1) periodic potential energy model of kroingpenny model.  

 

The Schrodinger equation for the wave function is then 

−
ℏଶ

2݉
߲ଶ߰
ଶݔ߲

+ (ݔ)ܷ) − ߰(ܧ = 0                               (3.12.1) 
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The potential distribution is given by 

(ݔ)ܷ = ൜
0 ݎ݋݂       0 < ݔ ≤ ܽ
଴ܷ݂ݎ݋ − ܾ ≤ ݔ ≤ 0                                 (3.12.2) 

Subject to the following periodicity requirement 

ݔ)ܷ + ܽ + ܾ) =  (3.12.3)                                      (ݔ)ܷ

The general solutions for Equation (11.42) are 

߰ = ௜௞ೣ݁ܣ + ௜௞ೣ݁ܤ                                        (3.12.4) 

߰ = ೣ࣫݁ܥ + ೣ࣫݁ܦ                                          (3.12.5) 

where 

ܧ =
ℏଶ݇ଶ

2݉
ܽ݊݀ ଴ܷ − ܧ =

ℏଶ࣫ଶ

2݉
                        (3.12.6) 

And K and Q are to be determined, from which the Eigen energy E of the electron 

inside such a periodic potential is to be extracted.  

Four boundary conditions are needed to determine the unknown coefficient A, B, 

C, and D. We can use the continuity of the wave function and its derivative at x = 

0, which gives 

ܣ + ܤ + ܥ +  (3.12.7)                                    ܦ

݅K(A − B) = Q(C − D)                                (3.12.8) 

Two more boundary conditions are necessary to determine the four unknown 

coefficients. Due to the periodicity in the potential, the wave function at any two 

points separated by a lattice vector is related through the Bloch theorem in the x-

direction, 

ψ(x + a + b) = ψ(x)e୧୩(ୟାୠ)                            (3.12.9) 

We should distinguish the wave vector k from the propagation vector of the 

solution K in Equation (3.12.4). The latter contains the energy of the electrons that 

we want to find. We want to find a relation between k and E, which is equivalent to 
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a relation between k and K. The continuity requirements for the wave function and 

its derivative at x = a are then 

 Ae୧୩౗ + Be୧୩౗ = (Ce࣫ౘ + De࣫ౘ)e୧୩(ୟାୠ)                        (3.12.10) 

ik൫e୧୩౗ + Be୧୩౗൯ = ࣫(Ce࣫ౘ + De࣫ౘ)                          (3.12.11) 

Four equations with four unknowns have a solution only if the determinant of the 

coefficients vanishes, yielding 

࣫ଶ − kଶ

2K࣫
sinh(࣫b) sin(ka) + cosh(࣫b) cos(ka) = cos൫k(a + b)൯         (3.12.12) 

It is rather tedious to obtain this equation. The result is simplified if we represent 

the potential by the periodic delta function obtained when we pass to the limit b = 

0 and ଴ܷ = ∞in such a way that Qଶba/2 = P, a , a finite quantity. In this limit 

Q >> >> and Qb ܭ  1. Then, Equation (3.12.12) reduces to 
P

ka
sin(Ka) + cos(Ka) = cos(ka)                              (3.12.13) 

The range of K for which this equation has solutions are plotted in Figure 3.12.1, 

for the case P = 32/ߨ. We can convert the solution for K into energy, and redraw 

the graph as a function of ka as shown in Figure 3.12.2 The figure shows that, for 

each wave vector k, there are multiple values for the electron energy E. 
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Fig (3.12.2): Forbidden region  

Figure (3.12.2) Left-hand side of Equation (3.12.13) as function of Ka. Because the 

right-hand side is always less than or equal to one, there are regions (the shaded 

area) where no solution for Ka exists, and thus no electrons exist with energy 

corresponding to the values of K in these regions. 

The electron energy forms quasi-continuous bands (because k itself is quasi-

continuous) separated from each other by a minimum gap that occurs at ka = sߨ(s 

= 0, ±1, ±2, … ), or k = sߨ/a, at which the right-hand side of Equation (3.12.2) is 

±1. Figure 3.12 (b) implies that there are multiple values of k for each E. However, 

the Bloch theorem says that wave functions corresponding to the wave vectors k 

separated by m (2ߨ/a) (since b = 0) are identical, they are the same quantum state 

and should be counted only once. Thus, rather than plotting the energy Eigen 

values for all the wave vectors, we can plot them in one period, as shown in Figure 

3.12.3 This way of representation is called the reduced-zone representation. The 

relationship between the energy and the wave vector is the dispersion relation. 
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Fig 3.12.3 Parabolic energy curves of a free electron in one dimension 

Figure (3.12.3) (a) Parabolic energy curves of a free electron in one dimension, 

periodically continued in reciprocal space. The periodicity in real space is a, and 

(b) extended zone: splitting of the energy parabola at the boundaries of the first 

Brillion zone. The energy gaps are forbidden regions. The solid lines from Kronig-

Penney model. 
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Figure (3.12.4) The solid lines show the energy bands in the reduced zone. 

The free electron dispersion relations are shown as dashed lines. 

The ab initio calculated electronic band structure using the density functional 

theory (DFT) depicted in Figure 3.12.4 shows the indirect energy gap and the 

threefold degeneracy of the valence band at the Fermi energy. It is seen that the 

approximate sum of the energy bands for a specific energy level in Figure 3.12.5 

(a) corresponds to the density of states for the energy level in Figure 3.12.5 (b). 

From this approach, we can estimate the effective mass using Equation (3.12.13) 

that is the second derivative of energy with respect to wave vector. Also we obtain 

the band gap from the figure. 
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Figure( 3.12.5) (a) Electronic band structure of Mg2Si calculated with the 

density functional theory (DFT),  and (b) 

Electronic band structure of Mg2Si calculated with the density functional theory 

(DFT), and (b) total electron density of states (DOS) projected on magnesium and 

silicon atoms, the solid line for total DOS, the dashed line for silicon contribution, 

and the dot-dashed line for magnesium contribution. Bullet at al. (2011) 

 

 

3.13 Effect of temperature on Fermi level: 
The Fermi temperature is defined as the temperature corresponding to the Fermi 

energy such that: 

௙ܧ = ௕ܭ ௙ܶ                                           (3.13.1) 
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With the Fermi energy of the order of a few eV, the Fermi temperature works out 

to be of the order of several thousand Kelvin (approximately 10,000 K).How do we 

reconcile the fact that the material is at room temperature or lower, or even at 0 

Kelvin, while the Fermi temperature is 10,000 K? One way to look at the situation 

is as follows: When we measure the temperature of a material, we do not typically 

measure the temperature of a single atom or electron. What we measure is the 

average temperature of the material. There is invariably going to be a distribution  

Of energy within the material. In this distribution, an extremely small thermal 

mass, consisting ofa very small fraction of the nearly free electrons (which is itself 

a very small fraction of the total electrons in the system), is at the Fermi energy, 

and the temperature corresponding to that energyis the relatively high Fermi 

temperature. Therefore the „high‟ Fermi temperature is not inconsistent with the 

„low‟ temperature or the solid as a whole. 

 

 

 

 

 

 

 

Chapter Four 
Material and Methods 

 

4.1 Introduction 
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In this chapter one propose a simple and low-cost experimental set-up through 

which chapter one can demonstrate the Seebeck effect using a thermocouple and 

an instrumentation amplifier. The experiment can be set up and conducted during a 

1-hour laboratory session. 

4.2 The experiment 
For demonstration of experimental work, one set up the thermocouple circuit was set 

up which was shown in Figure (4.3.1) and it is provides a list of the major 

components used in the set-up. includes two J-type thermocouples, each consisting 

of a pair of iron and constantan wires that are welded at one end. One of the 

thermocouples is used for measuring the reference temperature (T Ref), while the 

other thermocouple is used for measuring the ambient temperature (T). To make the 

connection between the constantan wires of each thermocouple, we simply twisted 

them together. Since the magnitude of the Seebeck voltage generated in the setup is 

of the order of a few μV, an instrumentation amplifier was used to amplify the 

magnitude of the voltage. 
4.3 The Material 
Three thermocouple Al-Fe, Fe-Cu and Cu-Al were fabricated. one end of 

thermocouple can be heated by a heater the temperature of each end can be 

measured by thermometer. the voltmeter reading in the range of mv is used to 

determine the electromotive force of the thermocouple. 
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Figure (4.3.1) shows the Equipment’s and the Circuit Used for Measurements 
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4.4 Results: 

The relations between induced EMF and temperature change of one end of Al/Cu, 

Fe/Al and Cu/Fe thermocouples were recorded, in table 4.4.1, 4.4.2 and 4.4.3  all 

experiments one end is kept at room temperature 300. 

Table (4.4.1) Induced voltage EMF V as a function of temperature ࣂ o f the 

other end of thermocouple for Al/Cu 

 (௢ܥ)ܶ (ܸ)ܸ

0.134 40.570 

0.158 53.053 

0.182 60.013 

0.214 67.799 

0.237 78.729 

0.264 89.608 

0.293 99.713 

0.303 110.643 

0.329 119.202 

0.360 130.081 

0.379 139.413 

0.410 149.518 

0.422 161.995 

0.454 168.234 

0.477 179.886 

0.487 189.218 

0.497 199.324 
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Table (4.4.2) Induced voltage EMF V as a function of temperature ࣂ o f the 

other end of thermocouple for Fe/Al 
 

 (௢ܥ)ܶ (ܸ)ܸ

0.592 39.854 

0.672 50.939 

0.766 60.477 

0.892 69.448 

1.033 80.018 

1.159 90.639 

1.200 101.208 

1.360 110.179 

1.500 119.151 

1.573 129.771 

1.646 139.774 

1.740 149.312 

1.860 159.881 

1.886 170.451 

1.993 180.505 

2.026 190.043 
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Table (4.4.3) Induced voltage EMF V as a function of temperature ࣂ o f the 

other end of thermocouple for Cu/Fe 

 (௢ܥ)ܶ (ܸ)ܸ

0.196 40.359 

0.222 48.849 

0.258 59.124 

0.301 70.705 

0.331 78.760 

0.372 89.906 

0.438 99.745 

0.497 109.106 

0.571 120.295 

0.592 129.656 

0.635 140.366 

0.668 150.206 

0.706 159.566 

0.730 168.492 
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4.5 Discussion:                                                                                     
Thermocouple induced EMF depends strongly on the difference in temperature 

between the two ends of the thermocouple. 

In view of figures (4.4.1) (4.4.2) and (4.4.3) for AL/Cu ,Fe/AL ,and Cu/Fe all 

thermocouples it is clear that the induced EMF is directly proportional to 

temperature this can be explained if one assumes that the induced  EMF v is related 

to the thermal kinetic energy gained by the electrons due to heating effects, i.e   eV 

= electron kinetic energy = ଵ
ଶ
  ଶ but according to kinetic theoryݒ݉

1
2
ଶݒ݉ = ܧ =

3
2
 (4.5.2)                                    ܶܭ

Inserting (4.4.1) in (4.4.2) yields  

ܸ =
ܶܭ3
݁

                                               (4.5.3) 

This relation can be displayed graphically in figure (4.4.1) comparing figures 

(4.4.1, 4.4.2) with (4.4.3), it is clear that the theoretical relation explain 

experimental  

This result is similar to that used in explaining x-ray production where the applied 

voltage v causes electrons to acquire kinetic energy such that  ܸ݁ = ଵ
ଶ
 ଶ . Theݒ݉

stopping potential in photoelectric effect also satisfies the same relation 
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4.6 Conclusions 
 

Seebeck's EMF varies linearly with the temperature difference and its 

corresponding coefficient is a constant that does not depend on the temperature. 

According to the second Thomson relation there should not be Thomson heat for a 

linear effect. But yet, when charge carriers enter a wire at a cold end, and leave it at 

a hot end, their heat content changes and they must cool it or absorb heat from its 

vicinity. 

Thermoelectric effects in systems are much more complicated than the simple 

model presented here. In metals only electrons with energy within a few kT around 

the Fermi energy contribute to the current, and their number is strongly 

temperature dependent, mainly at low temperatures. In addition, their thermal 

energy is not that of free particles. Yet, Seebeck effect and Pettier effect are 

basically reversible thermodynamic processes. Discussing them in terms of non-

equilibrium irreversible theories is meaningless.  
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Figure (4.4.1) Relation between the EMF and Temperature for Al-Cu Alloy as 

Thermocouple 
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Figure (4.4.2) Relation between the EMF and Temperature for Al-Fe Alloy As 

Thermocouple 
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Figure (4.4.3) Relation between the EMF and Temperature for Fe-Cu Alloy as 

Thermocouple 
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4.7 Recommendations: 

1. Seebeck effect it was important in new technological area so it 

needs more research program in this field. 

2. The thermocouple not understood clearly in their applications 

while there was a wide field which can be used thermocouples. 
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