3-Results and Discussion

The ethanol extract from *Aristolochia bracteolata* was fractionated by paper chromatography. After the usual workup compound I(which appeared blue under UV light) and compound II (which appeared yellow under UV light)were isolated from *Aristolochia bracteolate* leaves*.*

3.1-Phytochemical screening

Phytochemical screening of leaves revealed the presence of many secondary metabolites : alkaloids, flavonoids, steroids, terpenoids, tannins and saponins.

3.2- Spectral data of compound I

In their UV spectra flavones,flavonols,chalcones and aurones give both band I(due to cinnamoyl chromophore) and band II(due to benzoyl chromophore).

Other classes: isoflavones, flavanones, dihydrochalcones and dihydroflavonols show only one peak originating from the benzoyl system. Band I, usually $300 - 400$ nm and band II, usually $240 - 280$ nm126 .

Dihydroflavonol Dihydrochalcone

OH

The UV absorption of some important classes of flavonoids is depicted in table 4.

Flavonoid class	Band I	Band II
Favone	330-350	250-270
Flavonol	350-390	250-280
Chalcone	365-390	240-260
Aurone	390-430	240-270

Table 4: The UV absorption of some flavonoids

In UV, compound I absorbs(Fig.1) at λ_{max} (MeOH) 285 nm. Such absorption is given by: i) flavanones ii) isoflavones iii)dihydroflavonols and iv)dihydrochalcones. However, no shoulder characteristic of isoflavones was detected in the range : 300- 340nm(Fig.1). Furthermore , the double multiplets which characterize flavanones and which appear at δ2,80 and δ5.20ppm was not detected in the 1 HNMR spectrum(Fig.). The sodium methoxide spectrum(Fig.2) revealed a bathochromic shift dignostic of dihydroflavonols.

Fig.1 : UV spectrum of compound I

Fig. 2 : Sodium methoxide spectrum of compound I

Very significant structural features have been obtained by utilizing the so- called UV shift reagents which produce shifts in the UV absorption maxima in accordance with the location of the various hydroxyl functions in flavonoid nucleus ; these reagents are : sodium methoxide (which is diagnostic of 3- and 4`-OH functions);sodium acetate (diagnostic of 7-OH function); aluminium chloride (diagnostic of 3- , 5-OH and catechol systems) and boric acid (diagnostic of catechol systems).

When sodium acetate was added to a methanolic solution of compound II, no bathochromic shift diagnostic of a 7-OH function was observed(Fig.).

Fig. 3 : Sodium acetate spectrum of compound I

Other shift reagents -boric acid(Fig.4) , aluminium chloride (Fig,5) failed to give any detectable bathochromic shifts. The boric acid spectrum thus suggests absence of catechols systems, while the aluminium chloride spectrum indicated absence of 3- and 5 hydroxylation as well as catechol moieties.

Fig. 4 : The boric acid spectrum of compound I

Fig. 5 : The aluminium chloride spectrum of compound I

The ¹HNMR spectrum (Figures 6_a and 6_b) showed: $\delta1.34$ (6H) assigned for 2 methyl functions; δ 1.96(3H) assigned for an acetyl group; δ 3.40-4.00(m) attributed for sugar protons ; δ 4.04 accounting for a methoxyl function . The aromatic protons appeared as multiplets centered at δ 6.30, δ 6.80, δ 7.65 and as singlet at δ 7.10ppm.

Fig.6_a: ¹HNMR spectrum of compound I

Fig.6 $_b$: ¹HNMR spectrum of compound I

On the basis of the above cumulative data, the aglycone of compound I was assigned the following tentative structure:

The mass spectrum(Fig.7) gave m/z340 (for $M^+ + H$ - aglycone). Other fragments exceeding this vlaue are resulting from the glycoside whose sugar was not identified in this study

.

Fig. 7: Mass spectrum of compound I

The following retro Diels-Alder fission(Scheme I) suggests 2 methyl substituents for ring A:

Scheme I : Retro Diels-Alder fission of compound I (aglycone)

3.3-Characteization of compound II

In UV, compound II absorbs(Fig.8) at λ_{max} (MeOH) 265,298,312nm. Such absorption indicates conjugation between the 4- keto function and the B aromatic ring of the flavonoid nucleus. This absorption is characteristic of flavones.

Fig.8 : UV spectrum of compound II

In their UV spectra flavones give both band I(due to cinnamoyl chromophore) and band II(due to benzoyl chromophore) , a feature which is shared by flavonols, chalcones and $aurones^{[13]}$. Other classes: isoflavones, flavanones, dihydrochalcones and dihydroflavonols afford only one peak originating from the benzoyl system.

Very significant structural features have been obtained by utilizing the so- called UV shift reagents which produce shifts in the UV absorption maxima in accordance with the location of the various hydroxyl functions in flavonoid nucleus ; these reagents are : sodium methoxide (which is diagnostic of 3- and 4`-OH functions);sodium acetate (diagnostic of 7-OH function);aluminium chloride (diagnostic of 3- , 5-OH and catechol systems) and boric acid (diagnostic of catechol systems).

The sodium methoxide spectrum (Fig.9) showed a bathochromic shift without decrease in intensity indicating a 4⁻-OH function. When sodium acetate was added to a methanolic solution of compound I, no bathochromic shift diagnostic of a 7-OH function was observed(Fig.10). Other shift reagents-boric acid(Fig. 11) , aluminium chloride (Fig.12)- failed to give any detectable bathochromic shifts. The boric acid spectrum thus suggests absence of catechols systems, while the aluminium chloride spectrum indicated absence of 3- and 5 hydroxylation as well as catechol moieties.

Fig. 9 : Sodium methoxide spectrum of compound II

Fig. 10 : Sodium acetate spectrum of compound II

Fig. 11 : The boric acid spectrum of compound II

Fig. 12 : The aluminium chloride spectrum of compound II

The above UV data suggests that compound II is a flavone which is hydroxlated at the 4⁻-position. The ¹HNMR spectrum(Figures 13a and 13b) showed : δ 1.34(12H) assigned for 4 methyl functions ; δ 1.90(3H) characteristic of an acetyl group ; δ 3.55-3.83(m) assigned for a sugar moiety; δ 6.36(1H) assigned for C₆- proton. Other aromatic protons appeared as a multiplet centered at δ7.80ppm. The EI mass spectrum gave m/z338 for $(M^+ + 2H -$ aglycone)

Fig.13a: ¹HNMR spectrum of compound I

Fig.13b: ¹HNMR spectrum of compound I

On the basis of the above cumulative data , the following partial partial structure was proposed for the aglycone of compound II :

3.4-GC-MS analysis of *Trigonella foenum* **fixed oil**

Trigonella foenum oil was analyzed by GC-MS .MS library(NIST) was chcked for identification of the constituents. Furthermore , the observed fragmentation pattern was interpreted (MS library revealed about 90-95% match).

The GC-MS analysis showed the presence of 26 components(Table 5).The typical total ion chromatograms (TIC) is depicted in Fig.14.

Fig.14: Total ion chromatograms

Table 5: Contituents of *Trigonella foenum* oil

Major constituents of the oil are discussed below:

Z,Z-9,12-Octadecadienoic acid methyl ester (35.85%)

Fig. 15 shows the EI mass spectrum of 9,12-octadecadienoic acid methyl ester.The peak at m/z294, which appeared at R.T. 17.506 in total ion chromatogram, corresponds to M^{\dagger} [C₁₉H₃₄O₂]⁺. The peak at m/z263 corresponds to loss of a methoxyl function.

Fig. 15: Mass spectrum of 9,12-octadecadienoic acid methyl ester

9,12,15-Octadecatrienoic acid methyl ester(19.66%)

Mass spectrum of 9,12,15-octadecatrienoic acid methyl ester is depicted in Fig.16.The peak at m/z 292, which appeared at R.T. 17.578 corresponds $M^{+}[C_{19}H_{32}O_2]^{+}$ while the peak at m/z277 is attributed to loss of a methyl function.

Fig. 16: Mass spectrum of 9,12,15-octadecatrienoic acid methyl ester

Hexadecanoic acid methyl ester(13.29%)

Mass spectrum of hexadecanoic acid methyl ester is depicted in Fig. 17.The peak at m/z 270, which appeared at R.T. 15.838 corresponds to $M^+[C_{17}H_{34}O_2]^+$ while the peak at m/z239 is attributed to loss of a methoxyl group.

Fig. 17: Mass spectrum of hexadecanoic acid methyl ester

Z-9-Octadecenoic acid methyl ester(10.13%)

Fig. 18 shows the EI mass spectrum of 9-octadecenoic acid methyl ester.The peak at m/z 296, which appeared at R.T. 17.613 in total ion chromatogram, corresponds to M^{\dagger} [C₁₉H₃₆O₂]⁺, while the peak at m/z266 accounts for loss of a methoxyl function

Fig. 18: Mass spectrum of 9-octadecenoic acid methyl ester

3.4.1-Antibacterial activity

Trigonella foenum fixed oil was screened for antimicrobial activity against five standard human pathogens. The results are depicted in Table (6) .The results were interpreted as follows : (<9mm: inative;9- 12mm:partially active;13-18mm: active;>18mm:very active) .Tables (7) and (8) represent the antimicrobial activity of standard antibacterial and anifungal chemotherapeutic agents against standard bacteria and fungi respectively.

Type	Conc.(mg/ml)	Sa	Bs	Ec	Ps	Ca
Oil	100	20	14	15	15	17
	50	18		14	14	15
	25	17	۰	13	13	10
	12.5	15	۰	12	12	9
	6.25	11		10	7	

Table 6 : Antibacterial activity of *Trigonella foenum* oil

Table 8 : Antifungal activity of standard chemotherapeutic agent

Drug	Conc.(mg/m) \mathbf{I}	An	Ca
Clotrimazol	30	22	38
e	15	17	31
	7.5	16	29

- Sa.: *Staphylococcus aureus*
- Ec.: *Escherichia coli*
- Pa.: *Pseudomonas aeruginosa*
- An.: *Aspergillus niger*
- Ca.: *Candida albicans*
- Bs.: *Bacillus subtilis*

The oil showed excellent activity against the bacterial strain *Staphylococcus aureus* in the concentration range : 100-25mg/ml. It also exhibited excellent activity against the yeast *Candida albicans* at 100mg/ml. The oil showed activity against all test organism at 100 mg/ml.

3.5-**GC-MS analysis of** *Foeniculum vulgae* **fixed oil**

GC-MS analysis of *Foeniculum vulgae* fixed oil was carried out. The MS library (NIST) was checked for identification of the constituents (a 90-95% match was observed) . Furthermore, the observed fragmentation pattern was interpreted.

The GC-MS spectrum of the studied oil revealed the presence of 32 components(Table 9).The typical total ion chromatograms (TIC) is depicted in Fig.19.

Fig.19: Total ion chromatograms

Main constituents of the oil are discussed below:

9-Z-Octadecenoic acid methyl ester(48.54%%)

Fig. 20 shows the EI mass spectrum of 9-octadecenoic acid methyl ester.The peak at m/z 296, which appeared at R.T. 17.559 in total ion chromatogram, corresponds to M^{\dagger} [C₁₉H₃₆O₂]⁺, while the peak at m/z266 accounts for loss of a methoxyl function

Fig. 20: Mass spectrum of 9-octadecenoic acid methyl ester

9,12-Z,Z-Octadecadienoic acid methyl ester (28.50%)

The mass spectrum of 9,12-octadecadienoic acid methyl ester is displayed in Fig.21.The peak at m/z294(R.T. 17.499-in total ion chromatogram)) corresponds $M^{+}[C_{19}H_{34}O_2]^{+}$. The signal at m/z263 corresponds to loss of a methoxyl function.

Fig. 21: Mass spectrum of 9,12-octadecadienoic acid methyl ester

γ – Terpinene(4.98%)

Fig. 22 shows the mass spectrum of **γ –** terpinene .The peak at m/z136 , which appeared at R.T. 17.559 in total ion chromatogram, corresponds $M^+[C_{10}H_{16}]^+$.

Fig. 22: Mass spectrum of **γ –** terpinene

β-Pinene(3.51%)

The masss spectrum of β -Pinene is shown in Fig.23. The molecular ion $M^+(C_{10}H_{16})$ appeared at m/z136 with RT,4.205 in total ion chromatogram.

Fig. 23: Mass spectrum of β-pinene

3.5.1-Antibacterial activity

Foeniculum vulgae oil was screened for antimicrobial activity against five standard bacterial strains . The diameters of the growth of inhibition zones are shown in Table (10) . Conventional terms were used for interpretation of the results : $\langle \text{9mm: } \text{inative:} 9 - \rangle$ 12mm:partially active;13-18mm: active;>18mm:very active) .Tables (11) and (12) represent the antimicrobial activity of standard drugs..

Type	Conc.(mg/ml)	Sa	Bs	Ec	Ps	Ca
Oil	100	20	14	15	15	17
	50	18		14	14	15
	25	17		13	13	10
	12.5	15		12	12	9
	6.25	11		10	7	

Table 10 : Antibacterial activity of *Foeniculum vulgae* oil

Table 11 : Antibacterial activity of standard chemotherapeutic agents

Drug	Conc.(mg/ml)	Bs	Sa	Ec	Ps
Ampicilin	40	15	30		
	20	14	25		
	10	11	15		
Gentamycin	40	25	19	22	21
	20	22	18	18	15
	10	17	14	15	12

Drug	Conc.(mg/ml)	An	Ca
Clotrimazole	30	22	38
	15	17	31
	7.5	16	29

Table 12 : Antifungal activity of standard chemotherapeutic agent

- Sa.: *Staphylococcus aureus*
- Ec.: *Escherichia coli*
- Pa.: *Pseudomonas aeruginosa*
- An.: *Aspergillus niger*
- Ca.: *Candida albicans*
- Bs.: *Bacillus subtilis*

.

Foeniculum vulgae oil showed excellent activity against *Staphylococcus aureus* in the concentration range : 100-25mg/ml. It also exhibited significant activity against the yeast *Candida albicans* at 100mg/ml.

3.6-*Coriandrum Sativum*

The fixed oil of *Coriandrum Sativum* was extracted by maceration and analyzed by Gas Chromatography - Mass Spectrometry where 52 constituents were detected(Fig.24 and Table 13). Also antimicrobial activity was evaluated.

Fig.24: Total ions chromatogram

Major constituent of the oil are: 9-ocatadecanoic acid(Z)- methyl ester (61.60%). Then it is followed by 9,12-octadecadienioc acid (Z,Z)- methyl ester (14.15%), hexadecanoic acid methyl ester (8.04%), and methyl stearate (3.12%). The rest of the constituents have a percentage that dose not exceed (2.67%).

Table 13: Constituents of the oil

3.6.1- Antimicrobial activity

The total extract of *Coriandrum Stivum* seeds was evaluated for antimicrobial activity. The extract –unlike the oil which failed to exhibit any activity-gave significant activity against all test organisms(see Table 14). Noteworthy is the excellent anticandidial potency.

Table 14: The antimicrobial activity crude extract of *Coriandrum Stivum*

Organism	
	Crude extract
Bacillus subtitles	20
Staphylococcus aureus	20
Escherichia coli	19
Pseudomonas aeruginosa	22
Aspergillus niger	18
Condida albacans	20