بسم الله الرحمن الرحيم

قال تعالى

{وَقُلِ اعْمَلُوا فَسَبَرَى اللَّهُ عَمَلَكُمْ وَرَسُولُهُ وَالْمُؤْمِنُونَ وَسَتُرَدُّونَ إِلَى عالِمِ الْغَيْبِ وَالشَّهادَةِ فَيُنَبِّئُكُمْ بِما كُنْتُمْ تَعْمَلُون}

(صدق الله العظيم)

(سورة التوبة 105)

Abstract

This study conducted to establish a population database for pancreas length and width using (CT) scan and classify the texture of computed tomography images of pancreas in diabetic patient and find the values of various parameter of texture prosperities for classification. The data were collected from 213 non- diabetic with no history of pancreas disease who had undergone abdominal CT scan between 2015 and 2017, and ages of 2 to 97 years old. The study revealed that the pancreas measurement was 29.94 ± 6.36 for head length, 25.07 ± 5.62 mm for head AP diameter, 61.43 ± 15.36 mm for body length, 22.74 ± 6.08 mm for body AP diameter, 33.94 ± 9.11 mm for tail length, 19.83 ± 6.43 mm for tail AP diameter and pancreas CT number which was evaluated as Hounsfield was 49.11 ± 8.81 for pancreas , 49.46 ± 8.03 for spleen and 37.61 ± 5.65 for vertebral body diameter.

Data were presented as mean and standard deviation (SD) for all of the variables. Showed results which were significant at P < 0.05. We measured pancreas length and width in Pancreas measured values were computed from the contour of the pancreas on each CT image. In addition to total pancreas measurements, the density was determined by CT Hounsfield (HU). And in childhood and adolescence, the pancreas measurements and CT(HU) increased linearly with age and then declines thereafter. We provide enduring population highlighting data for pancreatic parenchymal measurements in Sudanese as well pancreatic CT (HU).

Also this study concern to characterize the pancreas area to head, body and tail using Gray Level Run Length Matrix (GLRLM) and extract classification features from CT images. The GLRLM techniques included eleven's features. To find the gray level distribution in CT images it complements the GLRLM features extracted from CT images with runs of gray level in pixels and estimate the size distribution of the sub patterns. analyzing the image with Interactive Data Language software to measure the grey level distribution of images. The results showed that the Gray Level Run Length Matrix and features give classification accuracy of pancreas head 89.2%, body 93.6 and the tail classification accuracy 93.5%. The overall classification accuracy of pancreas area 92.0%. Also this study c the calcification accuracy of the normal pancreas 100%, diabetic pancreas is 100% and over all accuracy of pancreas area100%.

These relationship patients are stored in a Texture Dictionary that can be later used to automatically annotate new CT images with the appropriate pancreas area names.

ملخص البحث

أجريت هذه الدراسة لإنشاء قاعدة بيانات سكانية لطول وعرض البنكرياس باستخدام التصوير المقطعي المحوسب ولتحليل نسيج الصور المقطعية المحوسبة للبنكرياس في مرضي السكري باستخدام برامج تحليل الطيف المحوسبة (LDL). تم جمع البيانات من 213 من عينه طبيعية مرجعية مع عدم وجود تاريخ مرضي للبنكرياس للذين خضعوا لإجراء فحص أشعة مقطعية للبطن باستخدام جهاز الأشعة المقطعية متعددة المقاطع بين عامي 2015 و 2017، من سن 2 إلى 97 سنة من العمر. أظهرت الدراسة أن قياس البنكرياس كان بين عامي 2015 و 2017، من سن 2 إلى 97 سنة من العمر. أظهرت الدراسة أن قياس البنكرياس كان بين عامي 2015 و 2017، من سن 2 إلى 97 سنة من العمر. أظهرت الدراسة أن قياس البنكرياس كان بين عامي 2015 و 2017، من سن 2 إلى 97 منة من العمر. أظهرت الدراسة أن قياس البنكرياس كان كثافة النسيج الطبيعي للبنكرياس و 2015 ± 26.0 ملم لقطر الرأس و 19.83 ± 6.31 ملم لطول الجسم و كثافة النسيج الطبيعي للبنكرياس وجدت 11.94 ± 18.8 للبنكرياس، 49.46 ± 8.03 ملم لقطر الزيل الجسم الفقري البطني 13.67 ± 5.65 تم عرض البيانات على أنها وسط حسابي وانحراف معياري لجميع المتغيرات. أظهرت النتائج التي كانت مطابقه ل P <500. قمنا بقياس طول و عرض البنكرياس وتم حساب التيم المقاسة من حدود البنكرياس على كل صور الأشعة المقطعية. بالإضافة إلى قياس البنكرياس وتم عليا معياري لمو معاري الكلي تم المتغيرات. أظهرت النتائج التي كانت مطابقه ل P <500. قمنا بقياس طول و عرض البنكرياس وتم حساب التيم المقاسة من حدود البنكرياس على كل صور الأشعة المقطعية. بالإضافة إلى قياس البنكرياس وتم حساب البنكرياس و كثافة النسيج الطبيعي للبنكرياس إلى الراد على مالتعدم في السن ثم انخضات بعد ذلك.

أيضا هذه الدراسة تتعلق بتوصيف منطقة البنكرياس إلى الرأس والجسم والذيل باستخدام الأوامر الإحصائية العليا وشملت أحد عشر خاصية للعثور على توزيع امتداد مستوى الرمادي في الصور المقطعية المستخرجة من الصور المقطعية وتحليل الصورة باستخدام برنامج IDL لقياس توزيع مستوى الرمادي من الصور من الصور المقطعية وتحليل الصورة باستخدام برنامج IDL لقياس توزيع مستوى الرمادي من الصور وأظهرت النتائج أن حساسية التصنيف لمنطقة الرأس 2.98 معدة القياس توزيع مستوى الرمادي من الصور وأظهرت النتائج أن حساسية التصنيف لمنطقة الرأس 2.98 معدة من مستوى الرمادي من الصور وأظهرت النتائج أن حساسية التصنيف لمنطقة الرأس 2.98 معدة من الحسم ودقة تصنيف الذيل 3.5%. وأظهرت النتائج أن حساسية التصنيف النكرياس مودي هذه الدراسة تم اجراء مقارنه بين البنكرياس الطبيعي وبنكرياس مرضي السكري وأظهرت النتائج أن حساسية التصنيف اللبنكرياس الطبيعي وبنكرياس مرضي السكري وأظهرت النتائج أن حساسية التصنيف اللبنكرياس الطبيعي وبنكرياس مرضي السكري وأظهرت النتائج أن حساسية التصنيف اللبنكرياس الطبيعي وبنكرياس مرضي السكري وأظهرت النتائج أن حساسية التصنيف اللبنكرياس اللبنكرياس ورين معام لأجزاء للبنكرياس مرضي السكري وأظهرت النتائج أن حساسية التصنيف البنكرياس الطبيعي وبنكرياس مرضي السكري وأظهرت النتائج أن حساسية التصنيف البنكرياس الطبيعي وبنكرياس مرضي السكري وأظهرت النتائج أن حساسية التصنيف البنكرياس الطبيعي وبنكرياس مرضي السكري ما00% و

هذه العلاقات خزنت في شكل مترجم يمكنه التعرف علي اجزاء البنكرياس بصوره تلقائية وتسميه مناطق البنكرياس الثلاثة كما هي مخزنه في المترجم.

IV

Dedication

This work is lovingly dedicated:

-To my mother **Amna Elameen**, for her warm love and care support

-To my father **Elhaj Elbasheir** without his support this project would not have been made possible

-To my sisters, brothers for their help and support

- To my friends for their valuable advice

- To the all dearest people in my life

Acknowledgment

-I would like to thank ALLAH who has blessed and guided me to accomplish this thesis.

-I wish to express my sincerest gratitude to my supervisors **Dr. Mohamed Alfadil**, College of Medical Radiological Sciences at Sudan university of Science and Technology, for his contact supervision, inexhaustible patience, constant encouragement, and for giving me a valuable times, guidance, criticism and corrections to this thesis from beginning up to end, and **Dr. Caroline Edward Ayad**, College of Medical Radiological Sciences at Sudan university of Science and Technology for her full patience and cooperation.

-I also would like to thanks All The Technologists who help me as skillful technical assistance and all staff in **Royal Care International Hospital** especially CT department ; **Mohamed Slman ,Mohammed A. Alwahab** and **Azzaytona Specializes Hospital** for their help in collection of the data and support .

- I thank **Dr .Suhaib Mohamed salih** for helping and advance.

- I also would like to thanks Naif Mohammed, Mohammed Hashim and Mujtaba Elgazali.

LIST OF CONTENTS

Contents	Page NO.		
الأيه	I		
Abstract	II		
Abstract (Arabic)	1V		
Dedication	V		
Acknowledgment	VI		
List of contents	VII		
List of tables	IX		
List of figures	XI		
List of abbreviations	XVII		
Chapter One (Introduction)			
Introduction	1		
1-1 Texture analysis	3		
1-2 Problem of the study	4		
1-3 Justification	4		
1-4 Objective	5		
Chapter two (Theoretical background and literature review)			
2-1 Embryology of the pancreas	6		
2-2 Anatomy of the pancreas	8		
2-3 Physiology of the pancreas	14		
2-4 Pathology of the pancreas	20		
2-5 Computerized Tomography Scanning(Over View)	29		
2-6 Texture analysis	35		
2-7 Previous study	47		

Chapter three		
3-1 Material	56	
3-2 Study design	56	
3-3 Duration and place of study	56	
3-4 Study Population Sample size	56	
3-5 Exclusion criteria	57	
3-6 Technique and protocol	57	
3-6-1 CT KUB protocol	57	
5.6.2 Texture analysis	57	
3.7 Method of Pancreas Measurement	57	
3-8 Data analysis	59	
3-9 Ethical approval	59	
Chapter four (Result)		
4 Result	60	
Chapter five (Discussion, conclusion and recommendation)		
5-1 Discussion	98	
5-2 Conclusion	102	
5-3 Recommendation	103	
References	104	
Appendix		

LIST OF TABLES

Tables NO.	Tables	Page NO.
4.1	istribution of study sample according to Participant's Gender for non-diabetic	61
4.2	istribution of study sample according to Participant's age for non-diabetic	62
4.3	Shows descriptive statistics of Sudanese pancreas measurements for non-diabetic	63
4.4	Shows descriptive statistics of Sudanese pancreas measurements between male & female for non-diabetic	64
4.5	Shows descriptive statistics of Sudanese pancreas measurements using T-test for non-diabetic	65
4.6	Showed the classification accuracy of the pancreas regions using linear discriminant analysis for diabetic patient	77
4.7	Showed the classification accuracy of the pancreas in non-diabetic and Diabetic using linear discriminant analysis	88
4.8	Showed statistical analysis for GLCM	

	features to non-diabetic & diabetic patient	89
	using t-test	
4.9	Table 4.9 Showed differences in means	
	for non-diabetic & Diabetic patient using	90
	t-test	

LIST OF FIGURES

Figures NO.	Figures	Page NO.
2-1	The rotation of the duodenum and the unequal growth of the duodenal wall lead to fusing of the ventral and dorsal pancreatic buds.	7
2-2	Formation of the anular pancreas producing duodenal obstruction	7
2-3	Anatomic relationships of the pancreas with surrounding organs and structures	9
2-4	The arterial blood supply of the pancreas	12
2-5	Lymph nodes draining the pancreas	13
2-6	Structure of the pancreas	15
2-7	Example of image segmentation using texture analysis to determine the boundary between distinct regions of texture. Left, mosaic image of eight Brodatz textures represented in approximately equal proportions. Right, grey- level texture map showing the ideal segmentation of the textures	37
2-8	Three-dimensional textured intensity surface representation of a medical image. A: Two- dimensional MR image of the brain. B: Pixel values of the MR image plotted on the vertical axis to produce a 3D textured surface	39
2-9	Example of matrix for GLCM	41

2-10	GLCM of the matrix	42
3-1	shows the method of pancreas measurements	58
3-2	Axial CT for abdomen shows the vertebral	58
	width as reference plane	
4-1	Distribution of study sample according to Participant's Gender for non-diabetic	61
4-2	Distribution of study sample according to	62
	Participant's age for non-diabetic	
4-3	show relation between the subjects ages and	68
	pancreas CT(HU) for non-diabetic	
4-4	show relation between the subjects ages and	69
	spleen CT(HU) for non-diabetic	
4-5	show relation between the subjects ages and	70
	vertebral diameter for non-diabetic	
4-6	show the relation between the subjects ages	71
	classified in to age classes and pancreas head	
	length for non-diabetic	
4-7	show the relation between the subjects ages	72
	classified in to age classes and pancreas head	
	AP diameter for non-diabetic	
4-8	show the relation between the subjects ages	73
	classified in to age classes and pancreas body	
	length for non-diabetic	
4-9	show the relation between the subjects ages	74
	classified in to age classes and pancreas body	
	AP diameter for non-diabetic	

4-10	show the relation between the subjects ages classified in to age classes and pancreas tail	75
	length for non-diabetic	
4-11	show the relation between the subjects ages	76
	classified in to age classes and pancreas tail AP	
	diameter for non-diabetic	
4-12	Scatter plot generated using discriminate	77
	analysis function for three classes represents:	
	pancreas head, body and tail for diabetic	
4-13	show error bar plot for the CI SRE show error	
	bar plot for the CI SRE textural features that	
	selected by the linear stepwise discriminate	
	function as a discriminate feature where it	78
	discriminates between all features. From the	
	discriminate power point of view in respect to	
	the applied features the SRE can differentiate	
	between all the classes successfully for diabetic	
4-14	show error bar plot for the CI LRE textural	
	features that selected by the linear stepwise	
	discriminate function as a discriminate feature	79
	where it discriminates between all features for	
	diabetic	
4-15	show error bar plot for the CI GLN textural	
	features that selected by the linear stepwise	80
	discriminate function where it discriminate	
	between all features for diabetic	

4-16	show error bar plot for the CI RLN textural features that selected by the linear stepwise discriminate function as a discriminate feature where it discriminate between all features for diabetic	81
4-17	show error bar plot for the CI RP textural features that selected by the linear stepwise discriminate function as a discriminate feature where it discriminates between all features for diabetic	82
4-18	show error bar plot for the CI LGLRE textural features that selected by the linear stepwise discriminate function as a discriminate feature where it discriminates between all features for diabetic	83
4-19	show error bar plot for the CI HGLRE textural features that selected by the linear stepwise discriminate function as a discriminate feature where it discriminates between all features for diabetic	84
4-20	show error bar plot for the CI SRHGLE textural features that selected by the linear stepwise discriminate function as a discriminate feature where it discriminates between all features for diabetic	85
4-21	show error bar plot for the CI LRLGLE textural	

	features that selected by the linear stepwise discriminate function as a discriminate feature where it discriminates between all features for diabetic	86
4-22	show error bar plot for the CI LRHGLE textural features that selected by the linear stepwise discriminate function as a discriminate feature where it discriminates between all features for diabetic	87
4-23	Show error bar plot for CI SRE textural feature that selected by the linear stepwise discriminate function as a discriminate feature where it discriminates between all features. From the discriminate power point of view in respect to the applied features the SRE can differentiate between all the classes successfully.	91
4-24	show error bar plot for the CI LRE textural features that selected by the linear stepwise discriminate function as a discriminate feature where it discriminates between all features.	92
4-25	show error bar plot for the CI GLN textural features that selected by the linear stepwise discriminate function where it discriminate between all features.	93
4-26	show error bar plot for the CI RLN textural features that selected by the linear stepwise	94

	discriminate function as a discriminate feature	
	where it discriminate between all features.	
4-27	show error bar plot for the CI RP textural	
	features that selected by the linear stepwise	95
	discriminate function as a discriminate feature	
	where it discriminates between all features.	
4-28	show error bar plot for the CI LGLRE textural	
	features that selected by the linear stepwise	96
	discriminate function as a discriminate feature	
	where it discriminates between all features	
4-29	show error bar plot for the CI LRLGLE textural	
	features that selected by the linear stepwise	97
	discriminate function as a discriminate feature	
	where it discriminates between all features	

LIST OF ABBREVIATIONS

Abbreviations	Full Name
SMA	Superior mesenteric artery
IVC	Inferior Vena cava
SPINK1	Serin Protease Inhibitor Kazal Type1
СТ	Computed Tomography
MDCT	Multi detector Computed Tomography
HU	Hounsfield unit
GLCM	Gray-Level Co- Occurrence Matrix
GLRLM	Gray Level Run Length Matrix
PH	Potential of Hydrogen
ССК	Cholecystokinin
GIP	
	Glucose Dependent Insulin Otropic Peptide
KVP	Kilo voltage peak
DM	Diabetes Mellitus
T1DM	Type1 Diabetes Mellitus
T2DM	Type2 Diabetes Mellitus
PDX1	Pancreatic duodenal homeobox1

PRS1	Pancreatic trypsinogen gene
SRE	Short Run Emphasis
LRE	Long Run Emphasis
GLN	Gray Level Non uniformity
RLN	Run Length Non uniformity
RP	Run Percentage
LGLRE	Low Gray Level Run Emphasis
HGLRE	High Gray Level Run Emphasis
SRLGLE	Short Run Low Gray Level Emphasis
SRHGLE	Short Run High Gray Level Emphasis
LRLGLE	Long Run Low Gray Level Emphasis
LRHGLE	Long Run High Gray Level Emphasis