بسم الله الرحمن الرحيم

SUDAN UNIVERSITY OF SCIENCE AND TECHNOLOGY COLLEGE OF GRADUATE SUTDIES

Quantifying the Cost of Unplanned Outage at Khartoum North Thermal Power Station

حساب تكاليف توقف محطة الخرطوم بحري الحرارية الغير مبرمج

The Thesis Submitted in Partial Fulfillment of the requirement for

The Master Degree of Science in Mechanical Engineering

Power Engineering

Presented by:

Ahmed Elazrag Zein Elabdeen Elsmani

Supervisor:

Dr. Eihab Abdelraouf Mustafa

بسم الله الرحمن الرحيم

الإستهلال

قال تعالى:

(وقل ربي زدين علما)

سورة طه الآيه (114)

قال الرسول (صلى الله عليه وسلم):

((ان الملائكة لتضع اجنحتها لطالب العلم رضا بما يصنع))

Dedication

To
My mother
То
My father
То
All my brothers
То
All my sísters
То
All my suns
То
My wífe Salwa Babíkír

Acknowledgment

First, I would like to express all my deepest thanks to Allah for his grate help in completing this thesis.

I would like to express my most sincere thanks to my supervisor:

Dr. Ethab Abdelraouf Mustafa for his patience, guidance and encouragement, and the tremendous amount of effort and help that offered to mean any time.

I would like to express my most profound gratitude to the staff at the Department Of Mechanical Engineering, Sudan University for general assistance in different ways and for valuable comments.

I would like to thank the staff and management at the Dr. Sharief power station.

I would like to thank all my colleagues for their help.

Finally, am forever indebted to my family for their endless patience and encouragement, when it was most required.

Abstract

This research concerns with the energy resources in Sudan. It includes the steam plants, their unplanned outage problems. The study conducted on Dr. Sharief power station in Khartoum north.

The research is studied the station problems occurring during the period (Jan 2011 to Dec 2015), the maintenance program procedure and management method description.

Losses resulting from unplanned outage were calculated. The rest of maintenance was not calculated because there were no enough data about material at the time in the unplanned outage case, communication, cleaning, lubrication and transportation.

In conclusion recommendations to prevention or reduction in the unplanned outage has been represented, station should also be rehabilitated, this will improve the station efficiency.

ملخص البحث

إهتم هذا البحث بدراسة مصادر الطاقة في السودان. وقد شمل ذلك محطات البخار ومكوناتها وأهم المشاكل التي تواجه المحطات وهي التوقف غير المبرمج وقد تمت الدراسة على محطة د. شريف الحرارية في الخرطوم بحري.

تمت الدراسة لحالات الأعطال في المحطة في الفترة من يناير 2011 حتى ديسمبر 2015 وكذلك وصف برنامج الصيانة المعمول بها واجراءاتها وطريقة ادارتها.

تم حساب تكلفة الفقودات الناتجة من التوقف غير المبرمج ولعدم وجود بيانات عن الفاقد من المواد في حالات التوقف غير المبرمج واعمال النظافة والتزييت والاتصالات والمواصلات تعذر حساب باقي التكاليف المتعلقة باعمال الصيانة.

ختاما تم تقديم مقترحات لمنع او تقليل التوقف غير المبرمج وهي إعادة تأهيل المحطة مما يساعد على زيادة كفاءة المحطة.

List of Contents

Title	Page
Dedication	II
Acknowledgement	III
Abstract – English	IV
Abstract – Arabic	V
List of contents	VI
List of figures	IX
List of tables	X
Table of Abbreviations	XII
Chapter one	
Introduction	
1-1 Introduction	2
1-2 Problem Statement	3
1-3 Objective of the study	3
1-4 Methodology of the study	3
Chapter Two	
Literature Review	
2-1 Background	5
2-2 Steam system operation	7
2-2-1 Boiler	7
2-2-2 Economizer	8
2-2-3 Air preheater	8
2-2-4 Super heater	8
2-2-5 Forced draft fan	8
2-2-6 valves	8
2-2-7 Turbine	9
2-2-8 Condenser	10
2-2-9 Electrical generator	11
2-2-10 pumps	11
2-2-11 Cooling tower	12
2-2-12 Cooling water pump	12
2-3 River sider	13
2-3-1 Intake lift pump	13
2-4 Lubricating oil system	14
2-5 Unplanned outage	16
2-5-1 Unit trip	16
2-5-1-1 Plant failure	16
2-5-1-2 External fault	17
2-5-1-3 Summary of definitions	
2-5-2 Human unplanned outage	20

2-6 Maintenance	20
2-6-1 Maintenance objective	21
2-6-2 Maintenance type	21
2-6-2-1 planned Maintenance	21
2-6-2-2 unplanned Maintenance	22
2-6-3 Maintenance planning	24
2-6-4 Maintenance organization	24
2-6-5 Maintenance analysis	25
2-7 Maintenance management	26
2-7-1 Maintenance management function	26
2-7-2 Management tools for maintenance	26
2-7-3 Management and charts	27
2-7-4 Maintenance departments	27
2-7-4-1 Maintenance departments Structure	27
2-7-4-2 Activities of Maintenance department	28
Chapter Three	
Material and Methods	
3-1 The study site	31
3-2 Data collection	31
3-2-1 Field unit trip	31
3-2-2 Field unit human unplanned outage	34
3-2-3 Data collection of training	35
3-3 Calculation losses cost	35
3-3-1 Calculation kilo watt hour cost	35
Chapter four	
Results and Discussion	
4-1 Losses cost	38
4-1-1 Calculation Kilo watt hour cost	38
4-1-2 Load of unit	38
4-1-3 Calculation of losses cost of units trip of year 2011	39
4-1-4 Calculation of losses cost of units trip of year 2012	39
4-1-5 Calculation of losses cost of units trip of year 2013	40
4-1-6 Calculation of losses cost of units trip of year 2014	40
4-1-7 Calculation of losses cost of units trip of year 2015	40
4-1-8 Calculation of losses cost of Human unplanned outage of year 2011	41
4-1-9 Calculation of losses cost of Human unplanned outage of year 2012	42
4-1-10 Calculation of losses cost of Human unplanned outage of year 2013	42
4-1-11 Calculation of losses cost of Human unplanned outage of year 2014	42
4-1-12 Calculation of losses cost of Human unplanned outage of year 2015	43
4-2 Rehabilitation	44
4-2-1 Rehabilitation of objective	45
4-2-2 Improving the plant heat rate	45

4-2-3 Maximizing the output		
4-2-4 Achieving the output		
4-2-5 Aiming at life time extension		
4-3 Training and performance		
Chapter five		
Conclusion and Recommendation		
5-1 Conclusions	54	
5-2 Recommendation		
References		

List of Figure

Figure	Page
Fig(2-1) Schematic diagram of the power station	6
Fig(2-2) Boiler component	7
Fig(2-3) Fuel unloading system	9
Fig(2-4) Steam cycle	10
Fig(2-5) Boiler feed pump	11
Fig(2-6) Cooling tower with cooling tower fans	12
Fig(2-7) Lubrication oil system	15
Fig(2-8) Boiler control loop and protection	17
Fig(2-9) Trip of cycle of national grid	17
Fig(2-10) Analysis of the trip of national grid	18
Fig(2-11) Single line diagram of Khartoum north power station	19
Fig(2-12) The form of the maintenance	23
Fig(2-13) Planned and planned maintenance	23
Fig(2-14) Simple maintenance department chart	28
Fig(3-1) Unit trip statistics year 2011	32
Fig(3-2) Unit trip statistics year 2012	32
Fig(3-3) Unit trip statistics year 2013	33
Fig(3-4) Unit trip statistics year 2014	33
Fig(3-5) Unit trip statistics year 2015	34
Fig(3-6) Unit unplanned outage statistics	35
Fig(4-1) Unit trip statistics from Jan 2011 to Dec 2015	41
Fig(4-2) Unit unplanned outage statistics from Jan 2011 to Dec 2015	43

List of Table

Table	Page
Table(3-1) Unit trip statistic from Jan 2011 to Dec 2015	31
Table(3-2) Unit unplanned outage statistics from Jan 2011 to Dec 2015	34
Table(4-1) Cost of kilo (SDG) from 2011 to 2015	39
Table(4-2) Losses cost of units trip year 2011	39
Table(4-3) Losses cost of units trip year 2012	39
Table(4-4) Losses cost of units trip year 2013	40
Table(4-5) Losses cost of units trip year 2014	40
Table(4-6) Losses cost of units trip year 2015	40
Table(4-7) Losses cost of unit unplanned outage year 2011	41
Table(4-8) Losses cost of unit unplanned outage year 2012	42
Table(4-9) Losses cost of unit unplanned outage year 2013	42
Table(4-10) Losses cost of unit unplanned outage year 2014	42
Table(4-11) Losses cost of unit unplanned outage year 2015	43
Table(4-12) Total losses cost from year 2011 to 2015	43

Appendix

Appendix	Name of Title		
Appendix (1)	KNPS units trip statistics	58	
Appendix (2)	Incident Report of trip	63	
Appendix (3)	KNPS Human unplanned outage	68	
Appendix (4)	Annual preventive maintenance program	72	
Appendix (5)	Training program of all power station	74	
Appendix (6)	Calculation Kilo watt hour cost	77	
Appendix (7)	Trips classifications	82	
Appendix (8)	Annual report	87	

Table of Abbreviation

Abbreviation	Meaning			
A/F	Air fuel ration			
BFP	Boiler feed pump			
BMD	Boiler maintenance department			
BMS	Burner management system			
СВ	Circuit breaker			
CDI	Control instrument			
CEP	Condensate extraction pump			
CO	Control oil			
CT	Cooling tower			
CWP	Cooling water pump			
CV	Control valve			
D/A	Desecrator			
EMD	Electrical maintenance department			
ESV	Emergency stop valve			
FD	Force draught			
E/F	Earth/ fault			
FO	Fuel oil			
FW	Feed water			
FWDG	Forwarding pump			
Gen	Generation			
KNPS	Khartoum north power station			
HPH	High pressure heater			
LO	Lubrication oil			
MFT	Main fuel trip valve			
N/A	Not available			
NRV	Non return valve			
O/C	Over/ Current			
O/L	Over / Load			
PEW	Permit for work			
S/H	Super heater			
S/S	Sub station			
TME	Turbine maintenance engineering			
TX	Transformer			
U/N	Under/Voltage			
VT	Volt transformer			
IVI	Level			
Aux Bard	Auxiliary Board			
CW	Cooling tower			

Chapter one Introduction

1-1 Introduction

Electrical is the main nerve for the modern life technology and it's important for the life as it is the back bone civilization. The development of countries is measured through their power consumption. In nature there are different resources for energy like (sun, water falls, wind force and fossil fuel) Power system begins with a generation source. Electrical generators are devices that convert energy form a mechanical form to an electrical form.

Electrical power can be produced in many ways that including chemical reaction, heat, light or mechanical energy. Most electrical power is produced today through hydro-electrical plants, nuclear energy, natural gas or coal. Fossil fuel and nuclear fission plant use steam turbines to deliver the mechanical energy required to rotate a large three phase generator. Hydroelectric systems use hydraulic turbines which are mounted vertically that intercept the flow of water to produce electrical energy.

The most common thermal power plants are internal combustion engine (diesel engine) gas power plants and steam power plants. Electricity was first introduced in Sudan in 1908, when a small 100kw steam station employing reciprocating engines, and direct current generators was installed. In 1925 the plant capacity was increased to 3MW. In 1962 the first hydro-station was operated in Elgirba senar and Elrossieres, with a capacity of 12.6, 15 and 280 MW respectively.

In 1948 steam power station was operated in Khartoum north with an overall capacity of 60MW and then is replaced in 1994 by another station of 120MW.

The main power generation in the Sudan can be divided into four sectors: hydro-power stations, steam power stations, gas power stations and diesel power stations.

1-2 Problem Statement:

Due to increase of number and duration of unplanned outage of the plant failure leads mainly to:

- Deterioration of original performance (output & efficiency)
- Loss of availability of the station
- And higher production cost for (maintenance & operation)

1-3 Objectives of the study

The objective for the research is to study the station (Khartoum north power station) problem during the period from June 2011 to December 2015 which effect of unplanned outage of the unit and estimate the losses cost from unplanned outage.

1 -4 methodology of the study

In order to Guantifing the the cost of unplanned outage of power station it reguired data collection :

- field unit trip
- field unit human unplanned ontage.
- Data collection of training.
- calculation Kilo watt hour (KWH) cost
- calculation losses cost.

Chapter Two Literature Review

2-1 Background

The power station is a simple superheat steam power station it is constructed for covering needs of electric energy in Sudan.

As a historical review the Khartoum North power station in March 1981is located at northeast North Khartoum Industrial Area is provide power for national public, industrial and civil use.

In May 1985 a request was made by National Electrical corporation project to Internal Combustion limited to carry out official acceptance test on.

Phase I consist of two units (No 1 & No 2) for each 30 MW steam turbine generator unit to energize the existing Blue Nile power system via 110KV transmission line were officially inaugurated in December 1985.

An existing to Khartoum North power station Know as phase II consist of two units (No3 & No 4) for each 60 MW steam turbine generator units to energize via another 110KV transmission line, it were officially inaugurated on July 1994.

This project is the expanded phase III including two sets of 100MW steam turbine generator units were officially inaugurated on March 2011 [4]

Therefore, the installed gross capacity of the plant is 380MW (2x30MW+2x60MW+2x100MW).

The newly increased capacity of the plant is connected with the local power system through the 4 circuit outgoing line. Established in phase I and phase II, the Main transformer in this phase uses 2 circuit incoming line ... phase III line will finally incorporated into 110 KW national power system of Sudan.

Now the power stations (formerly Khartoum North Power Station) represent the major asset of National Electrical Corporation by with

capacity of 380MW, it is the 3rd thermal station in generating power after garri combined power station and Kosti power station. [8]

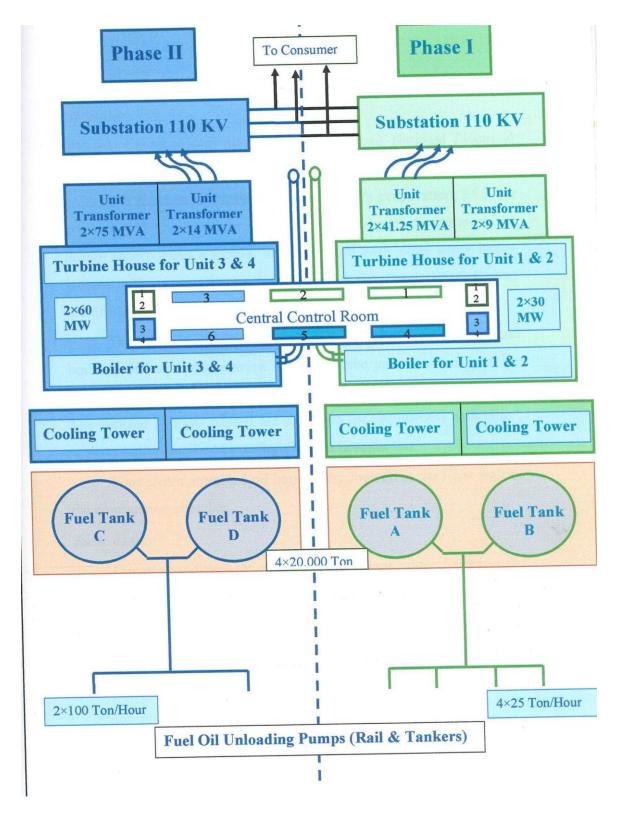


Figure (2-1) schematic diagram of the power station [2]

2-2 Steam System Operation:-

There is four areas follow the path of steam as it leaves the boiler and returns via the condensate return system this four areas (generation, distribution, end use and recovering of steam).

2-2-1 Boiler

The boiler used to convert the chemical energy in the fuel oil to heat energy by burning out the fuel on the boiler furnace; the generated heat converts the water to steam. The boiler of furnace, economizer, air preheater and super heater.

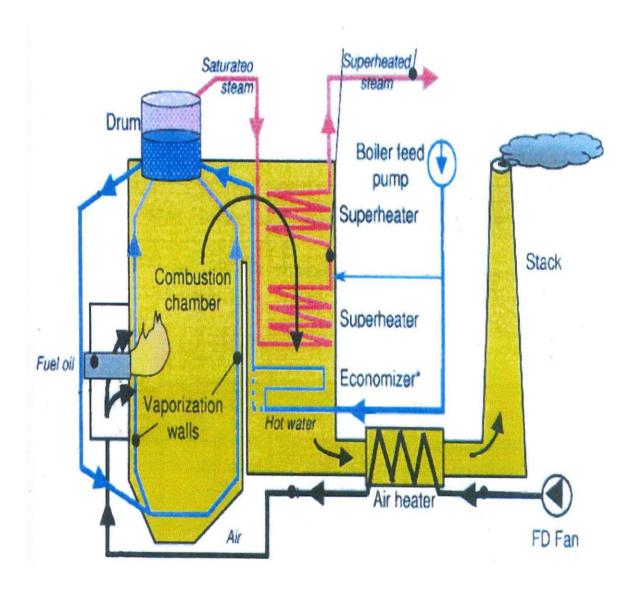


Figure (2-2) the boiler components [4]

2-2-2 Economizer

An economizer is a heat exchanger which acts to preheat the boiler feed water by transferring heat from the flue gases stream. Economizers provide effective methods of increasing boiler efficiency.

2-2-3 Air preheater

Air preheater are similar to economizer in that they transfer energy from the flue gases into the system in these device however the energy is transferred to the incoming combustion air then increasing boiler efficiency.

2-2-4 Super heater

Super heater add energy to steam, resulting in a steam temperature that exceeds the saturation temperature at a specific pressure. Super heater rely on the energy transferred directly from the steam while convective super heater rely on the transfer of additional energy from the flue gases to the steam.

2-2-5Forced Draft Fan

A forced draft fan is located at the inlet of a boiler and pushes ambient air into the burner region, ensuring that adequate air is delivered to the combustion process.

2-2-6 Valves

In steam systems the principle function of valves are to isolate equipment or system branches, to regulate steam flow, and to prevent over press ration. The principal types of valves used in steam system include gate, globe and swing check valves typically isolate steam pressure reducing valves controlling the amount of steam.

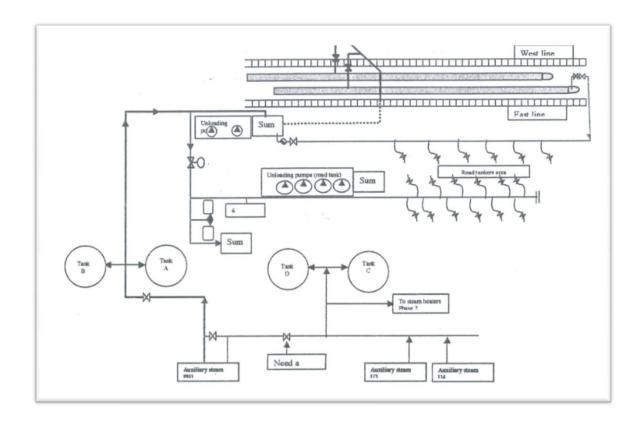


Figure (2-3) Fuel unloading system [5]

2-2-7 Turbine

A turbine is a device which converts theenergy of steam to a mechanical work by passing a fluid, such as steam, through a series of rotating blades. The blades are perpendicular to the flow direction of the steam. The steam expands in the turbine due to the pressure below the atmospheric created by a condenser attached to the turbine. The expansion of the steam results in the rotation of the turbine blades. The rotation blades are attached to a shaft; this shaft does mechanical work on the electrical generator.

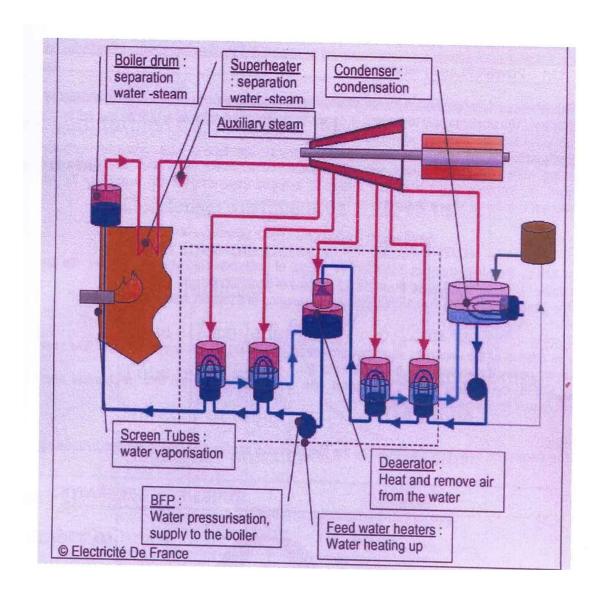


Figure (2-4) steam cycle [6]

2-2-8 Condenser

The condenser is a device which is used to convert the steam back to the liquid phase. A multiple pass shell and tube heat exchanger is used to minimize the amount of heat transfer with water from the cooling tower. The water circulated from the cooling tower returns to cooling tower to be atmospherically cooled. The liquid formed from the steam recycled back to the boiler feed water system. It should be noted that during the condensation process a number of gases become dissolved in the condensate. These dissolved gases are treated by the dearator.

2-2-9 Electrical generator

An electrical generator is a device which converts the Mechanical net work done by the turbine to electrical energy. Electrical generator consist of three windings having a magnetic field, the work done by the blades on the windings results in a motion which is perpendicular to the magnetic field a current is generated in due to this motion in a direction which predicated the right Hand Rule.

2-2-10Pumps

The boiler feed pump is a nine stage horizontal centrifugal pumps of the barrel casing design. The pump internal together with the discharge cover, suction guide, stuffing boxes, bearing housing and pump half coupling, from a cartridge which can be withdrawn from the pump casing as a complete unit for maintenance purpose, without disturbing the suction and discharge pipe work or the alignment of the prime mover the pump shaft is sealed at each and of the pump by Mechanical seals which are flushed with station cooling water. The mechanical seal stuffing boxes are also cooling with station cooling water.

Figure (2-5) boiler feed pump [6]

2-2-11 Cooling Tower

Cooling Tower it is mechanically induced drought crosses flow cooling lower. Air inlet cover is designed to retain water drop lets within the confines of the cooling tower and is positioned to direct the air entering the cooling tower.

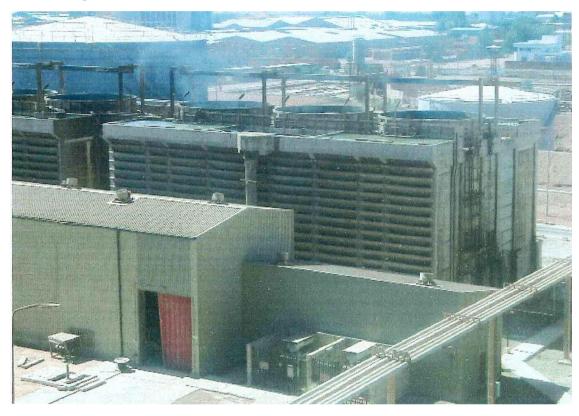


Figure (2-6) cooling tower with cooling fans [6]

2-2-12 Cooling water pump

Cooling water pumps are supplied per unit but the system is arranged so that any two pumps can be used to supply both cooling water circuits located in a pump house on the east side of the cooling towers. The pumps are mounted on plinths below grade level. The arrangement ensures that the pumps minimum suction head is always available an enables the pump suction and discharge headers and the underground pipe work to the turbine generator area to be flooded, prior to starting pump.

2-3 River side

The riverside work is approximately 4.5 km from the main power station site. It is bounded on the north by the kuku Kassala road approximately 0.5 km to the south, the intake life pump structure is located on the Blue Nile. Approximately 0.5 km west and downstream of the intake structure is the clean dram out fall. The main function of the plant are to extract raw water from the river, to treat the water to remove the majority of the suspended solid and to present algae growth, to store the resultant clarified water and to supply it to the main station as required.

The main uses for the clarified water are as make-up for the cooling water system, and as raw water supply to the demineralization plant.

To fulfill these functions, the plant comprises four in take lift pumps, a pre-settlement tank, two clarifiers and two clarified water storage tanks, each of which is fitted with two clarified water forwarding pumps. Associated with the treatment plant are various systems for the handling of chemicals and for the disposal of sludge.

The clean drain out fall permits the disposal of non- toxic waste water from the power station and river side work. From the main power station site, the waste is mainly from boiler blow down and cooling water purge. From the river side work, the waste is chiefly sludge resulting from the clarification process. Electrical supplies for the river side work are obtained from the adjacent kuku 33kv substation.

A local control room provides monitoring and controlling I facilities for the intake lift pumps and the river side work. [6]

2-3-1 Intake lift pump

Four in take lift pumps are provided to supply water from the River Nile to the river side works, thus normally only one or two pumps are in operator each pump is located on a platform which may be raised and lowered to any one of four positions to cater for the seasonal variations in river level. The levels are 2.75m a part. The plat form is moved vertically in guide rail using one of two specially provided hoists.

The pumps are vertically mounted on two stages centrifugal pump driven at 1470 rev/mitt, by 41 5v motors rated at 37 KW. The steel supporting structure, platform and pipe work is protected against corrosion by impressed current catholic production two underground glass reinforced plastic pipe connect the discharge pipe work to the riverside works, where the water enters the pre-Settlement tank via a concrete flume. [6]

the dynamically balanced rotating assembly is supported at the drive end non-drive end of the shaft by plain thin wall white metal lined journal bearings .Axial location of the rotating assembly is maintained by double tilting pad thrust bearing mounted at the non-drive end of the shaft.

The discharge cover is spigot located to the pump casing and is secured a ring of studs, washers and nuts, sealing being effected by a '0' ring located between the cover and the casing. A balance chamber is formed between the discharge cover and the non-drive end stuffing box. The balance chamber leakage returned to the pump suction branch through a pipe welded to a passage drilled in the pump casing. A similar passage is drilled in the discharge cover and sealing between the discharge cover and pump easing connection, where the balance chamber return passes through each component, is effected by an '0' ring .Provision is made in the pump casing for two drain connection. [6]

2-4 Lubricating oil system

The bearings in the boiler feed pump are supplied with lubricating oil from the lubricating oil system incorporated in the pump set. The oil system comprises a main gear type oil pump directly driven from the non-drive end of the pump shaft, a motor driven auxiliary gear type oil pump for starting, standby and emergency duties, two non-return valves, an oil filter and oil cooler.

During auto start-up, the lubricating oil is drawn from the non-drive end bearing sump by the motor- driven auxiliary oil pump and is passed through the oil cooler and the oil filter to the bearings of the boiler feed pump. A pressure switch in the bearing supply manifold clears a starting interlock in the boiler feed pump driving motor circuit and allows the boiler feed pump to be started. Once the has started, the main oil pump driven from the non-driven end of the pump shaft takes over the supply of lubricating oil and at a pre-set pressure a pressure switch will shut down the motor. Driven auxiliary oil pump if the oil pressure falls below a preset pressure, the pressure switch will also automatically start up the motor Driven auxiliary oil pump.[6]

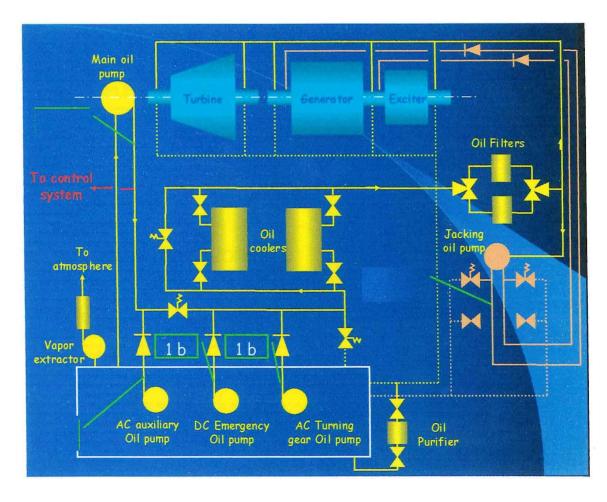


Figure (2-7) lubrication oil system [6]

2-5 Unplanned Outage

It is divide to two type 'unit's trip and human unplanned outage.

2-5-1 Unit trip

The unit trip means that a unit load lost suddenly (load lost more than 50% of design capacity of unit).

Unit trip may be due to: human error, plant failure and external faults (refer to Appendix (1)) making use appendix (1) from the down time to calculation losses cost.

2-5-1-1 Plant failure:

Plant failure is a problem in any component or cycle operation system, in the station. This problem effect the unit and trip unit.

Parameter	Way of controlling	If	Action	To prevent
O ₂ : Air excess	• FD Fan speed	Low	Air/Oil ratio trip	Fire out of furnace
		High		Bad efficiency
T: Steam temperature	Attemperator CV	High	CV Open	Metal stresses
	_	Low	CV close	Water in turbine
P: Steam Pressure	Fuel Oil CV	Low	Load drop	Bad boiler circulation
		High	Safety V/v	Pipe distortion
L: Drum level	 Feed regulating CV 	Low	Boiler trip	Tubes overheat
	BFP speed	High	Turbine trip	Water in turbine

CV: Control valve

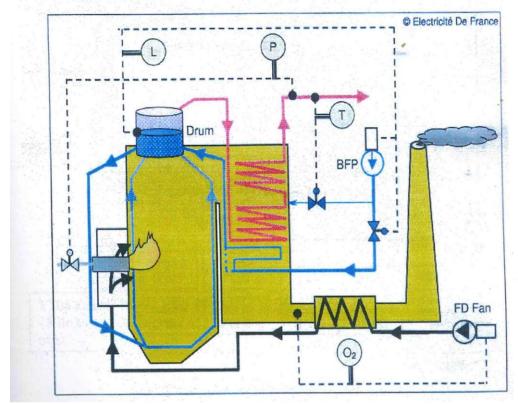


Figure (2-8) boiler control loop and protection [2] 2-5-1-2 External fault

It is a problem of national grid out of station this problem effect in station and trip the station show the fig (2-9),fig (2-10)

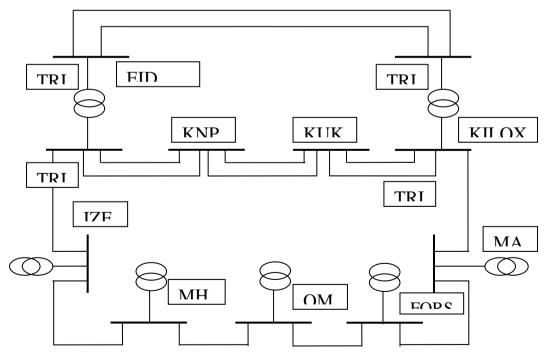


Fig (2-9) Trip of Cycle of National grid [4]

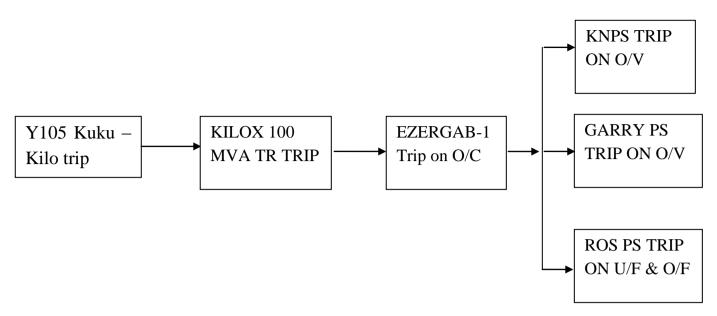


Fig (2-10) Analysis the trip of National grid[4]

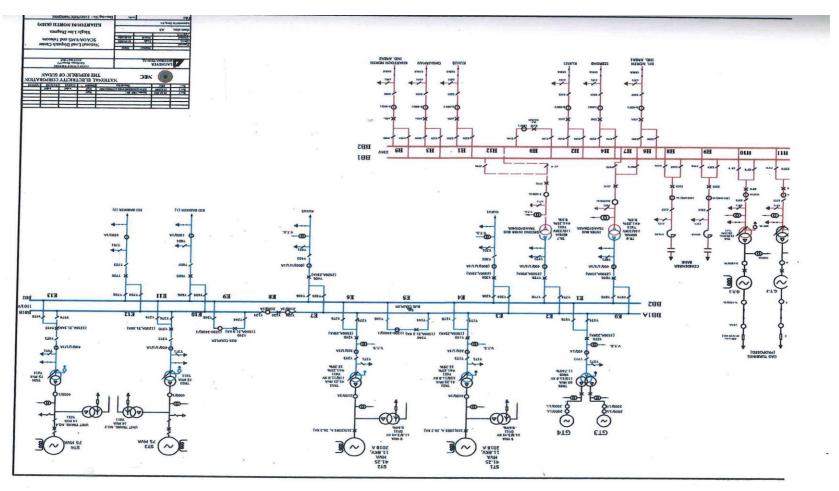


Figure (2-11) single line diagram Khartoum Power station

2-5-1-3 Summary of Definitions

- Active error Failure: an active human error is an unintended action
 or an intended action based on a mistaken diagnosis, interpretation,
 or other failure, which is not recovered and which has significant
 negative consequences for the system.
- Latent Human Error / failure (operation level): A latent human error is similar to an active error, but the consequences of the error may only become apparent after a period or when combined with other error or particular operational conditions.

• Latent Human error/Failure (management Level):

A management level human error is an inadequate or nonexistent management policy, which creates the preconditions for active latent human, hardware, or software failure.

- Violation Error I Failure: A violation error occurs when an
 intended action is made which deliberately ignores known operation
 rules, restrictions, or procedures. However, this definition excludes
 actions that are deliberately intended to harm the system, which
 come within the category of sabotage.
- **Recovery Error / Failure**: A recovery failure occurs if a potentially recoverable active or latent error is not detected or remedial action is not taken before the negative consequences of the error occur.

2-5-2 Human Unplanned Outage

Human unplanned outage means the unit is shut down by operator due the operation condition of the unit is not proper for equipment safety and efficiency.

2-6 Maintenance

Maintenance is activity performed in order to maintain certain breakdown on equipment and plant.

Technical Definition of maintenance is to keep or restore an asset to an acceptable standard at acceptable cost. [7]

2-6-1 Maintenance objective

Extended and useful life of the assets, maintain the plants equipment using technical performance for production company desires (higher productivity), Decrease the time loss of the production due to the plants equipment failure, Ensure the safety of the personnel using the machinery and equipment and Perform the maintenance operation at lowest cost.

2-6-2 Maintenance type

Can be used into two types: planned maintenance and unplanned maintenance.

2-6-2-1 planned maintenance:

Maintenance, which is known to be necessary sufficiently in advance for normal planning and preparing procedure to be followed it has three major forms:

- **Design-Out maintenance**: This is also known as plant improvement maintenance, and its object is to improve the operation, reliability or capacity of the equipment in place. This sort of work usually involves Studies, Construction Installation Start- up, and running.
- **Preventive maintenance**: t was divided into Systematic and condition based maintenance
 - **Systematic maintenance**: It is attending to serve equipment either according to time schedule or basis of predetermined units of use preventive maintenance is to detect the failure or premature wear to correct before breakdown it is also called the periodic maintenance.
 - Condition-based maintenance: it is also called the predictive or auscultative maintenance; it is preventive techniques based on inspection. It depends on continuous observation of an item of equipment to detect possible faults or monitor its condition.

This is the main point of annual preventive maintenance plan Application in the Power Station:

- **Preparation:** evaluation of the current status, efficiency of the main equipment's / parts. List of work order, spare-parts arrival, equipment's/ tools needed, manpower requirement, sub-plans for each section, safety documents &tools, targetsand priorities.
- **Final Plan approval:** meeting, software planning communications, announcement, shutdown test & measurement.
- **Execution:** Daily follow-up meeting weekly management meeting, walk around, safety visit, critical tasks follow up testing.
- **Commissioning:** Final testing, preparation for re-starting first starting & rim-up trails re adjusting when-where necessary, evaluation for approval & deviations measure.
- Corrective maintenance: Also called break down maintenance,
 Palliative or corrective maintenance this form of maintenance
 Consists of: Troubleshooting on Machines whose poor condition
 result in Stoppage or in operation under in tolerable Condition,
 repairs

2-6-2-2 unplanned maintenance

It is called unscheduled maintenance, by other word can say it is not carried out regularly. This can be represented by emergency maintenance (Work caused by unforeseen break down or damage).

Design-out maintenance, Preventive maintenance and Corrective maintenance are the main Type Used in practice.

Other People were added to type of maintenance to planned maintenance as below:

Running maintenance: Is the work carried out with asset remaining use. Shutdown maintenance: The work carried out when the asset is out of service.

Break down maintenance: Means the work carried out after failure of an asset. Figure (2-12) and Figure (2-13) are showing the forms of maintenance and planned and unplanned maintenance respectively.

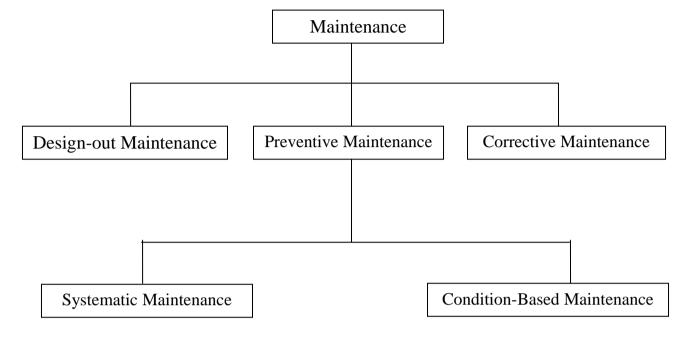


Fig (2-12): The form of the Maintenance [7]

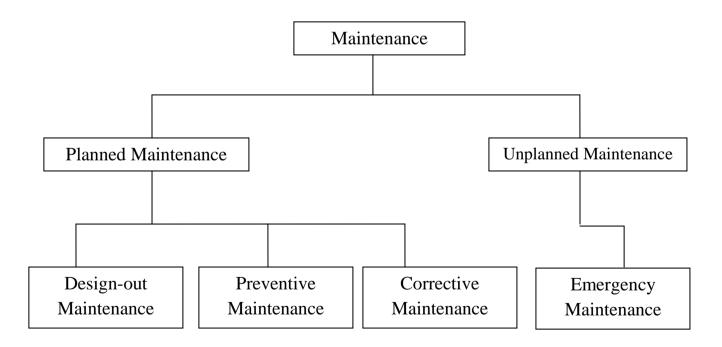


Fig (2-13): Planned and Unplanned Maintenance [7]

2-6-3 Maintenance Planning

Maintenance Planning is the function which concern with daily maintenance. The repair schedule, preventive and design out maintenance periodic overhauls, planned replacement and activities of Control Station.

In establishing planning system, in the power station concern with identify and list all items (building, transport item, auxiliary equipment), arrange in Convenient Section to provide plant inventory (according to process, Type of equipment), each item of equipment or plant chooses between planned maintenance or emergency maintenance or both, List maintenance-work to be done according to time scheduling Master Plan maintenance (maintenance chart for whole plant or section of plant), prepare the details of maintenance instruction sheet sheets or schedules for every item, organize the team of maintenance Organize the documentation system to run maintenance System run Smoothly, Check and develop the planned maintenance program from time to lime and organized the spare parts system (Supply time life and ordering).

2-6-4 Maintenance Organization:

Maintenance organization is not easy in designing, because it is difficult to say this is the optimum organization, so there are points for helping in designing maintenance organization:

Engineers in maintenance department have to study all proposal organization and prepare operation procedure.

The workshop equipment must be prepared early before machines are installed.

The maintenance office must set up in order to be in Operation when equipment arrives. Method offers should start preventive maintenance, Lubrication file checking the technical documentation complete spare part forecasts.

Central maintenance planning office (CMPO) should be gradually put in action, at least one year before start up.

Spare part maintenance section (SPMS) put in action gradually once the equipment and extra parts start arriving.

After start-up, mechanical and electrical services should insure availability of machine and give a priority to preventive maintenance.

When in the power station is operating the priority of the following points should be considered:

- Evaluation of machine data by updating of preventive program.
- Maintenance management performance indicators.
- Stock management.
- Improvement of work method and planning.
- Good in award receiving and safe keeping of all supplies.

Contract maintenance services: This can be used in the following condition: Work for specialist skill land available in market or required on the routine basis (fire sprinkler system, heating system, air condition).

Work which can be done by others with lower cost.

Fire appliance and safety revaluation and Precaution firefighting appliances should be the responsibility of maintenance department (Usually be maintained by an outside contractor). Maintenance department must consider of labor safety, accident cause and damage of plant and equipment.

2-6-5 Maintenance Analysis

There are two sorts of cost, direct cost and indirect cost direct maintenance cost:

It is determine actual maintenance practice and all quantifiable work the list below shows various components: Regular maintenance (Controls and checks), Labor, Equipment, Consumables (spare part and stock management), Training, Sub contracting and Technological Updating

Failure cost (Indirect cost): it is a result of unavailability of equipment and causes losses of production. The list of failure cost shows as blows:

Losses of production or service, Alternative in the quality or service, delivery delays, depreciation, work accident, deterioration in the work place and environment and Station image.

2-7 Maintenance Management

All activities of maintenance should be managed in proper way Maintenance management need to adopt their language (Technical), so that the executives and decision makers will understand.

2-7-1 Maintenance Management Function

It is Summarize of most important point as shown below:

- To optimize the reliability of equipment and infrastructure. To make the equipment and infrastructure in a good condition. To carry out the emergency repair of equipment and infrastructure for best possible availability for production. To enhance the modification and the extensions with new low cost items.
- To monitor and ensure the operation of equipment for production and for distribution of energy and fluids.
- To improve safety operation, too train personnel in specific maintenance skills, to advise on acquisition, Installation and machine Operation of, to contribute to finished high generation, to ensure the environmental protection.

2-7-2 Management tools for maintenance

Performance indicators are generally presented in coefficient form or relation between two absolute values (ration). The ratios are the tools for monitoring maintenance system. Performance indicators are divided in to two categories of ratio:

- **Economic ratio**: which evaluated the internal result and allow Comparison between maintenance services of similar plant.
- **Technical Ratio**: which checking technical performance of installation.

2-7-3 Management and Charts

The principle objective of chart are:

- To serve as a warning if something goes wrong in maintenance Practice.
- To allow systematic comparison with previous result and establish the evaluation of parameter and trends.
- To judge the performance of different maintenance Service (with, the limits of ratio).
- Experience proves that a good maintenance management is only possible if the manager is correctly informed.

This is much Type of charts and graphs to assist maintenance function.

2-7-4 Maintenance departments:

Maintenance department must consist of plan and making possible preparation for main work through suitable techniques and appropriate resource.

2-7-4-1 maintenance Department Structure

The simplest organization chart of maintenance department contains the following function:

Maintenance management: Is responsible for technical and administrative management. The particular concerns with supervisor work, interpreting technical failure, giving instruction for maintenance program, recruiting personnel, Taking part in a board meeting and advising on equipment.

Planning: It is responsibility for methods (Preventive program, work Preparation) and work planning (programming scheduling) section also responsible selecting part to store and administration the stores. Intervention for preventive maintenance and Corrective maintenance Spare part Storage: It is responsible for stock keeping (registration Conservation, Storage) and issuing of spare parts.

Workshops: It is responsible for minor jobs to repair in mechanical and electrical department.

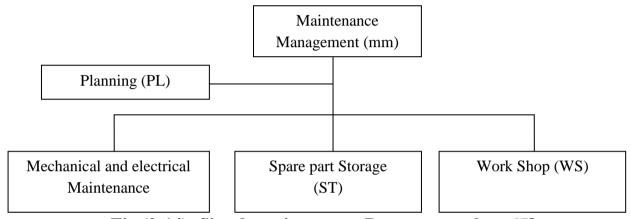


Fig (2-14): Simple maintenance Department chart [7]

2-7-4-2 Activities of maintenance Department

Maintenance department activities can divide in to activities, but these activities can be decrease or increase or maintenance operation The Activities are summarized below:

- Engineering: It concern with study and design of modification existing equipment (improving capacity, quality of production, operation safety maintainability and environment impact). Also Concern with monitor work executed by maintenance team.
- **Job preparation**: It concern with studies, job specification, material resources time allocation and workload.
- Work program: it determines by work scheduling assembly the required material, human resources, rowing program and setting time limits.

Chapter three Material and method

3-1 The study site

The field is located at Khartoum north power station, the power station lies on the eastern edge of an industrial zone hence is bounded to the east and south by kafori district and to the west and south by businesses.

Arail way line was connected from Khartoum north rail way station to the power station to deliver furnace fuel via rail tankers. Also an asphalted road connected omer elmukhtar Main Street to the power station to diesel and furnace fuel via road tankers and to use for transportation especially during rainy season.

From this description is been that the station is near to the transportation, distribution station and is near to the consumer regions.

3-2 Data collection

3-2-1 Field unit trip

Field unit trip of power station collection of data in power station by efficiency office it registers in computer by the staff in the station.

Table (3-1) unit trip statistics January 2011 to December 2015 Appendix (8)

Year	Total no. of unit trips			
	Human error Plant failure External fault			
2011	12	42	10	
2012	7	42	8	
2013	3	58	2	
2014	5	18	2	
2015	5	54	6	
Total	32	214	28	

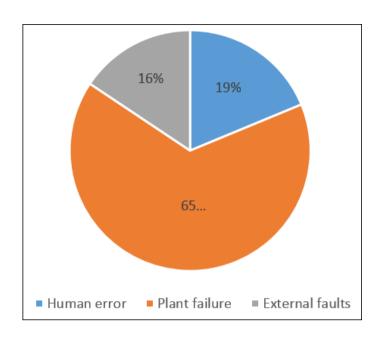


Figure (3-1) show unit trip statistics year 2011

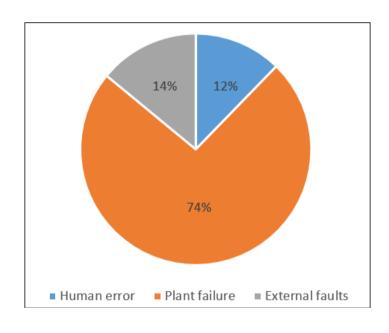


Figure (3-2) show unit trip statistics year 2012

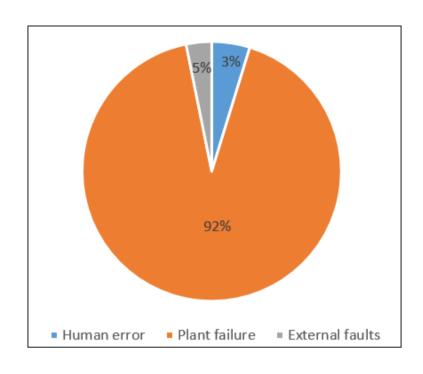


Figure (3-3) unit trip statistics year 2013

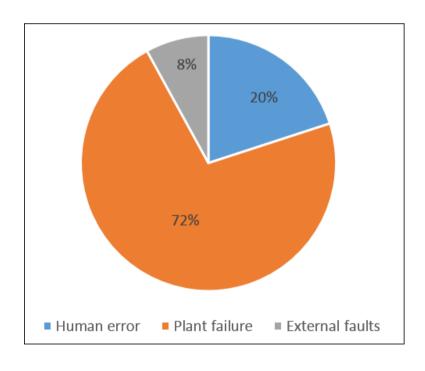


Figure (3-4) unit trip statistics year 2014

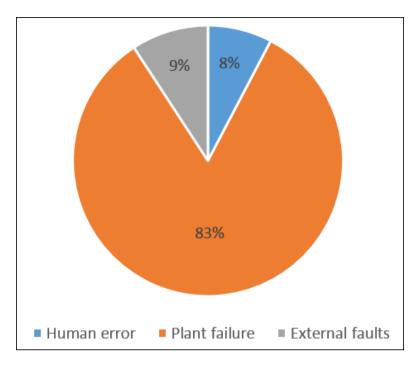


Figure (3-5) unit trip statistics year 2015

3-2-2 Field unit's human unplanned outage

Field unit's human unplanned outage collection of data by efficiency office it registers in computer by staff in the station

Table (3-2) shows units human unplanned outage statistics from January 2011 to December 2015

Table (3-2)

Year	Total human unplanned outage
2011	25
2012	25
2013	58
2014	40
2015	33
total	181

Human unplanned outage

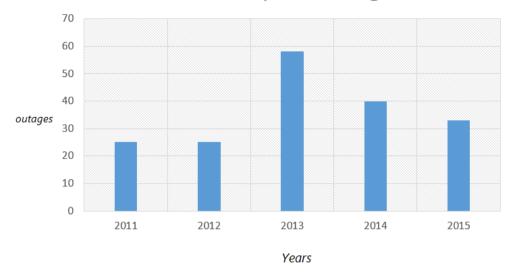


Figure (3-6) units unplanned outage statistics

3.2.3 Data collection of training

Collection data of training in the all power stations in the Sudan from the training center Abu haraz of electricity (refer to appendix (5)).

Collection of data in the power station has passed its designed lifetime collected from internet.(refer to Reference(10)).

3.3 Calculation Losses Cost:

The equation of losses cost is depended to down time, load of unit and cost kilo watt hour.

3.3.1 Calculation kilowatt hour (kWh) Cost:

The equation of kilo watt hour is depended to salaries& wages, operation cost, maintenance cost, generation expenditure Depreciation and insurance, (refer to Appendix (6)).

Dr=TAV Where Dr = Depreciation Rate per Month (1) TAV = Total Assets Value **IRPM=TAV** \times 1.8 \times 1\12 (2) Where 1RPM = Insurance Rate per Month Cost of kWh= Total Cost \ Total Generation power (3) Tota1Gnen'uionPower Losses Cost down time load of unit x Cost KWH (4) Phase (1) down time of two unit = down time of unit (1.) + down time of unit2 (5) Phase (2) down time of two unit =

down time of unit (3) +down time of unit 4

(6)

Chapter four Results and Discussion

4-1 losses cost

This calculation of losses cost from period (January 2011 to December 2015) and it calculation on power generation losses cost by down time because no data about losses of materials, time in case of maintenance, clean, lubrication, communications and transportation.

4-1-1 Calculation of kilo watt hour cost

Calculation of kilo watt hour cost the kWh cost from total cost of salaries wages, operation cost, maintenance cost, generation expenditure depreciation and insurance.

Kilo watt hour different from month to month because it depended on an operation and maintenance cost

4-1-2 load of unit

Load of unit is the different between (I), (II) and phase (III)

Phase I

Unit (1) = 30 MW

Unit (2) = 30 MW

Phase II

Unit (3)=60 MW

Unit (4) = 60 MW

Phase III

Unit (5)=100 MW

Unit (6) = 100 MW

Table (4-1) Cost of kilo watt (SDG) from 2011 to 2015: Appendix (6)

Year	Average cost of kwh (SDG)
2011	0.2
2012	0.22
2013	0.18
2014	0.17
2015	0.21

4-1-3 Calculation of losses cost of unit trip year 2011

Losses cost = losses of unit x cost of kWh

Table (4-2) losses cost of units trip year 2011

Units	Trip losses 10^6 kwh	Cost of kwh (SDG)	Losses cost 10^6(SDG)
Unit 1	0.85	0.2	0.17
Unit 2	0.0	0.2	0
Unit 3	5.4	0.2	1.08
Unit 4	8.1	0.2	1.62
Unit 5	1.2	0.2	0.24
Unit 6	4.5	0.2	0.9
Total losses cost			4.01

4-1-4 Calculation of losses cost of unit trip year 2012

Table (4-3) losses cost of unit trip year 2012:

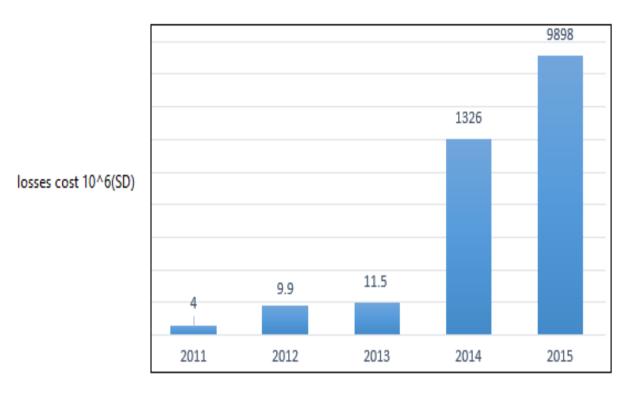
Units	Trip losses 10^6 kwh	Cost of kwh (SDG)	Losses cost 10^6(SDG)
Unit 1	2.7	0.22	0.594
Unit 2	0.0	0.22	0
Unit 3	2.2	0.22	0.484
Unit 4	5.1	0.22	1.122
Unit 5	15.3	0.22	3.366
Unit 6	19.5	0.22	4.29
Total losses cost			9.856

4-1-5 Calculation of losses cost of unit trip year 2013

Table (4-4) losses cost of unit trip year 2013:

Units	Trip losses 10^6 kwh	Cost of kwh (SDG)	Losses cost 10^6(SDG)
Unit 1	3.5	0.18	0.63
Unit 2	0.0	0.18	0
Unit 3	2.92	0.18	0.526
Unit 4	1.63	0.18	0.293
Unit 5	20.2	0.18	3.64
Unit 6	35.8	0.18	6.444
Total losses cost			11.53

4-1-6Calculation of losses cost of unit trip year 2014


Table (4-5) losses cost of unit trip year 2014:

Units	Trip losses 10^6 kwh	Cost of kwh (SDG)	Losses cost 10^6(SDG)
Unit 1	315.9	0.17	53.7
Unit 2	0.0	0.17	0
Unit 3	2869	0.17	487.73
Unit 4	2367	0.17	402.39
Unit 5	_	0.17	_
Unit 6	2248.3	0.17	382.2
Total losses cost			1326

4-1-7 Calculation of losses cost of unit trip year 2015

Table (4-6) losses cost of unit trip year 2015:

Units	Trip losses 10^6 kwh	Cost of kwh (SDG)	Losses cost 10^6(SDG)
Unit 1	1466	0.21	307.86
Unit 2	0.0	0.21	0
Unit 3	2291	0.21	481.11
Unit 4	3061	0.21	642.81
Unit 5	22826	0.21	4793.46
Unit 6	17488	0.21	3672.5
Total losses cost			9897.7

Year

Figure (4-1) unit trip statistics from 2011 to 2015:

4-1-8Calculation of losses cost of human unplanned outage year 2011

Table (4-7) losses cost of unit unplanned outage year 2011:

Units	Unplanned outage losses(10^6kwh)	Cost of kwh (SDG)	Losses cost 10^6(SDG)
Unit 1	47.7	0.2	9.54
Unit 2	110.16	0.2	22.032
Unit 3	16.1	0.2	3.22
Unit 4	30.3	0.2	6.06
Unit 5	33.1	0.2	6.62
Unit 6	33.6	0.2	6.72
Total losses cost			54.2

4-1-9 Calculation of losses cost of human unplanned outage year 2012

Table (4-8) losses cost of unit unplanned outage year 2012:

Units	Unplanned outage losses(10^6kwh)	Cost of kwh (SDG)	Losses cost 10^6(SDG)
Unit 1	43	0.22	9.46
Unit 2	264	0.22	58.1
Unit 3	66	0.22	14.52
Unit 4	104	0.22	22.88
Unit 5	142	0.22	31.24
Unit 6	193	0.22	42.46
Total losses cost			178.66

4-1-10 Calculation of losses cost of human unplanned outage year 2013

Table (4-9) losses cost of unit unplanned outage year 2013:

Units	Unplanned outage losses(10^6kwh)	Cost of kwh (SDG)	Losses cost 10^6(SDG)
Unit 1	79	0.18	14.22
Unit 2	-	0.18	-
Unit 3	49	0.18	8.82
Unit 4	170.3	0.18	30.65
Unit 5	300	0.18	54
Unit 6	500	0.18	90
Total losses cost			197.7

4-1-11Calculation of losses cost of human unplanned outage year 2014

Table (4-10) losses cost of unit unplanned outage year 2014:

Units	Unplanned outage	Cost of kwh	Losses cost
	losses(10^6kwh)	(SDG)	10^6(SDG)
Unit 1	60544	0.17	10292
Unit 2	-	0.17	-
Unit 3	98996	0.17	16829
Unit 4	63548	0.17	10803
Unit 5	-	0.17	-
Unit 6	-	0.17	-
Total losses cost			37924

4-1-12 Calculation of losses cost of human unplanned outage year 2015

Table (4-11) losses cost of unit unplanned outage year 2015:

Units	Unplanned outage losses(10^6kwh)	Cost of kwh (SDG)	Losses cost 10^6(SDG)
Unit 1	9964	0.21	2092
Unit 2	236520	0.21	49669
Unit 3	84492	0.21	17743
Unit 4	32677	0.21	6862
Unit 5	188846	0.21	39658
Unit 6	259652	0.21	54527
Total losses cost			170551

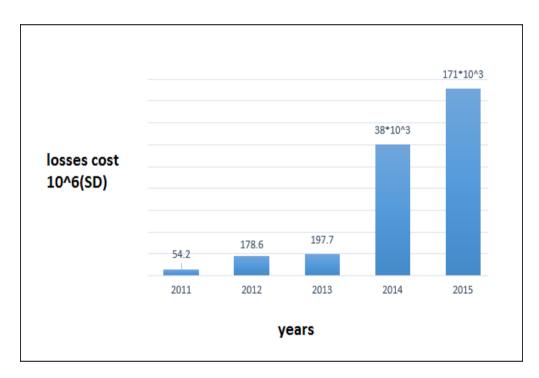


Figure (4-2) unit unplanned outage statistics from 2011 to 2015:

Table (4-12) show total losses cost for years 2011 till 2015:

	Losses cost of unit trip	Losses cost of human unplanned outage(10^6	Total 10^6 (SDG)
Year		SDG)	
2011	4.01	54.2	58.21
2012	9.856	178.66	188.516
2013	11.53	197.7	209.23
2014	13.26	37924	39250
2015	9897.7	170551	180448.7
Total	11249.1	208905.6	220154.7

With reference to table (4-12), it can be noticed that losses cost due to unit trip increases cost from year to year, human unplanned outage of losses cost is increase from year to year.

All this problem the main case is the power station (phase I, phase II) are passed its design life time. The solution of this problems are rehabilitation the power station (phase I, phase II), training and improvement performance power station.

4-2 Rehabilitation

Steam power units more than 25 years in operation are facing serious threats in view of their remaining lifetime. Even in case of proper operation & maintenance, the ageing of power plant leads to higher production cost mainly due to:

- Deterioration of original performance (output & efficiency).
- Loss of availability by increased number and duration of forced outages.

Steam power plant rehabilitation is a cost-effective method to regain competitive electricity production cost of older power plant units.

The result of a successful rehabilitation are reduced electricity production cost achieved by output increase, and prevent the unplanned outage of the plant failure, heat rate improvement, and availability enhancement while at the same time extending life time and complying with stricter environmental standards. These targets are reached by a complete plant approach using plant system engineering and project management tools.

Rehabilitation of and older power plant means to introduce and overall technical concept in order to recapture or exceed the original performance and availability while complying with environmental requirements and extending the remaining service live. Rehabilitation is involving either the total plant or major plant systems.

Rehabilitation usually includes the refurbishment of component and / or ordinary service work.

4-2-1 Rehabilitation objectives

- 1. Recapture or exceed original plants performance.
- 2. Improve availability reliability.
- 3. Comply with environmental standards.
- 4. Increase plant failure.

4-2-2 Improving the plant heat rate

Optimizing the heat rate of generating units requires careful balancing of the boiler and steam turbine generator / condenser performance.

In the case of the boiler, a rehabilitation project must begin with a complete analysis of the existing operational issues, including emission limits, and identification of available solution, this must include evaluation of any changes brought about by the modifications to the steam turbine, such as different reheat steam flow and inlet temperature. Boiler efficiency improvement can be realized through upgrading components with better designs optimizing system performance, and eliminating conditions that degrade efficiency between maintenance outages, primary areas to be considered is this review are fuel preparation and transport firing system design furnace wall cleaning convective heat transfer surface arrangement, and air pre-heater heating element and seal design.

Retrofitting of rotors diaphragms or more commonly of complete stator\rotor modules(inner block)is now well proven way of significantly

improving the heat rate of steam turbine The new design of steam turbine blade is quite distinct from its popular two-dimensional predecessor. Thefully three dimensional blade profiles enable a step change in efficiency in a cylinder to be made.

Another very effective means of improving the unit efficiency is to improve vacuum or back pressure Condenser tube bundle design 25 year ago was largely focused on packing as many tube in the available volume as possible. As a result some tubes condensed very little steam.

Are designed state of the art tube bundle pattern will allow steam to access all the tube and an improvement in condensing pressure is achieved cooling towers can also be retrofitted with modern packing to give an improvement in cooling water temperature and hence an lower condensing pressure and ultimately a higher power output.

4-2-3 Maximizing the output

As is the casewithoptimizing the plant heat rate, maximizing the plant output can be best approached by balancing boiler and steam turbine performance. Many 20 year old steam turbines have a design margin which is unused with the Boiler Maximum Continuous Rate often 3% higher than the Valves Wide open turbine steam flows. Modifying the unit to run at Boiler Maximum Continuous Rate conditions is possible and will yield valuable megawatts. In addition, by considering both boiler and turbine, it is often possible to redesign the steam conditions to further increase the output of the plant.

The boiler feed system is usually designed for Boiler Maximum Continuous Rate condition and should not need up-rating. Plant such as the condenser and condensate extraction pumps, however would be designed around valves wide open condition. The pumps would be specified with a

margin (10%) and can usually a accommodate Boiler Maximum Continuous Rate conditions once fully refurbished, however due to the size and cost of a condenser there is usually on margin.

In the boiler two change from the original design are typically encountered. First, higher main steam flow is required because of improvements to the HP section, higher reheat steam flow is sent back to the boiler at a lower temperature. The main steam changes can be accommodated by improve steam drum separation and minimizing pressure drop through the super heater. Reheat change are more complex and typically involve new tube surface to increase heat absorption with the minimal effect on system pressure drop. Other key changes are the requirement for greater heat input to the boiler and regulatory pressure to maintain or reduce emission within established limits. Steam turbine blading can be replaced or modified to accommodate the increase steam flow with only selected rows having to be changed.

However, the increased heat rejection to consider will give rise to a higher condensing pressure and worsen the heat rate due to the limited margin in it. This is where the trade of comes, and it is easy to see from a chart of electricity pool price why extra megawatt at the expense of heat rate might be more beneficial.

Electrical generator also tends to have design margin that will accommodate the extra megawatts.

4-2-4 Achieving a higher reliability / Availability

Curing forced outage causes improves reliability. Reducing the time spent on planned outages, in combination will the improved reliability will improve availability. Here there is scope to re-engineer high maintenance area, again with the input of the operations and maintenance staff at the station, and review the planned outage regime.

As noted earlier, the primary cause of forced outages of a boiler are tube leaks and fouling. Programs to a aggressively manage boiler tube leaks should include maintenance of accurate records of forced outage events, closed attention of feed water treatment, and use of weld over lays and coating in high wear / corrosion areas. Fouling can be addressed through proper design of heat absorption surface clear spacing improved clean equipment, and well-tuned firing systems.

With accurate instrumentation, with continuously monitor key parameters of the plant and enable outages to be planned when they are needed, thereby allowing the plant to generate for longer periods between shutdowns.

4-2-5 Aiming at lifetime extension

Life extension is a reasonably well established principle, which is starting together momentum in the global power generation market.

The residual life time assessment will focus on these components which have creep life or fatigue life limitations. To the operator-these mean running hours and controlled (and forced) stop / starts respectively. When much of the 20-25 Years old plant was originally designed, the plant was expected to run base load and the only thermal limited applied in the design was creep. Thermal fatigue resulting from frequent stop/ start was not anticipated.

Electrical generators are also examined thoroughly due to the nature of the loading on the winding and the material of the end caps or retaining rings, and the fact that the insulation is deteriorating with time, temperature and fatigue.

Obsolescence, particularly in control systems and switchgear area, can be a major problem, ultimately leading to a situation where replacement of major portions evens the complete system is required.

Steam power plant rehabilitation is a feasible solution for older unit having achieved more than 200.000 operation hours. Rehabilitation keeps valuable generation capacity in service will increase a viability level while meeting enhanced environmental standards.

Competitive electricity production costs are regularly achieved with significantly less capital investment compared to building a new station.

A standardized process of rehabilitation project development including assessment of plant condition and residual life time ensures reliable feasibility results for decision making taking into account technical and economic factors.

Rehabilitation in the power stations is preventing the unplanned outage.

4-3 Training and performance:

Training:

Training requires much more than simply following: and practicing the procedures. It requires understanding the reasons for the procedures, the consequence of deviations from these procedures and recognition and accommodation for the fact that actual performance will differ from that observed in training sessions. The training should as for as is possible, reduce their differences, or at least the significance of such differences. It is essential that operating procedures and training be closely integrated.

Training should in no way be considered as a substitute or remedy for poor design. Although poor training is frequently given as the reason for people making mistakes, we must emphasize that working in an error - likely situation is probably a more valid reason. Good training will have considered the relevant human factors elements.

Training can be considered to take place at two levels:

- ❖ The general (appreciation, overview, awareness), education level.
- The detail level of being able to perform tasks, functions or acquire skills.

While it is impractical to provide employees with detailed human factors training, process safety, and management training should provide an overview of the subject. The detailed training in operations, maintenance inspections, and tests. Must include reference to specific and readily applicable human factors issues. An integral part of training is the existence of quality procedures to follow. Writing quality procedures is not a casual skill; it requires proper consideration of all the ways the user interacts with the procedure.

In all training programs, the importance of identifying, reporting, and eliminating error-likely situations, reporting mistakes and near misses and looking for ways to prevent error should be emphasized. Once again, this requires a blame-free environment.

The following are some human factors aspects relevant to training but they are mean only as a stimulus to further study and consideration and not as an authoritative and exhaustive checklist:

• The trainer must understand human factors principles.

- The training environment should be noise-free, with proper lighting and a comfortable temperature provided. Good audiovisual aids should be used.
- Lines of communication should be kept short. Transfer of information is probably least accurate by a work of mouth. Avoid superfluous information.
- Understanding the objectives of a procedure and the consequences of deviation are a vital part of learning how to perform the procedure knowing process limitations and tolerances is also important.
- Choosing the tasks best suited to equipment and allowing people to do the task they are best suited to, is better than training people to do jobs which they are ill-suited. Practice need to be carried using training situations similar to the active tasks and the differences between the real and artificial situation need to be appreciated.

All activities are based on various levels of ability, skill based actions are virtually automatic and may fail due to distractions and change. Rule based actions require good procedures and adequate time. Knowledge based actions require technical knowledge and organized thinking. Different types and levels of training and practice are required for these different abilities. Recognize the effects of stress in case of emergencies. The actual emergency probably will differ considerably from those practiced. The reluctance to acknowledge that the emergency practiced. The reluctance to acknowledge that the emergency exists is a well-known cause of delayed response. Complex decisions are doomed to failure under stress.

People develop bad habits and take things for granted. Processes equipment, and technology change, so retaining is essential at appropriate intervals.

Develop realistic evaluation exercises to verify that effective learning of skills has occurred.

Performance:

In addition to proper training and quality procedures, good performance requires a supportive culture and working environment. The procedures provides the how to the training reinforces this with the background, the understanding, and the practice to develop the necessary skills; the environmental must support their quality execution.

An encouraging, motivational environment is likely to evoke better performance than a threatening one, it is generally accepted that results are better where employees are empowered to contribute and participate rather just follow. Training and performance is preventing the human error.

Chapter five Conclusion and recommendation

5-1 Conclusion

- 1. The main causes of all plant failure in the power station are due to that is the power station has passed its designed life time (phase one and phase two)
- 2. The deficiency of training maintenance and operation plays the main role in increasing the down time
- 3. The study could cover the station problem during the period (Jan 2011-Dec 2015)
- 4. The cost of stoppage in the power station is about 220*109(SDG).
- 5. From the information mentioned above, it can be noticed that if the rehabilitation of the station and good training maintenance and operation they will save more than $220*10^9(SDG)$.

5-2 Recommendations

- a) Rehabilitation of the power station, including the refurbishment of components and ordinary service work in advance technical standard.
- b) Formulating corporate maintenance management plan, including the maintenance concept and relevant training.
- c) Maintenance specialists should take part in all negotiations during the acquisition of new equipment.
- d) In the development of human resources, there are two urgent priorities motivation and training. One of the problem is to attract highly qualified personnel to field which traditionally offers rather poor career prospects. The company should provide better career opportunities for maintenance personnel.
- e) To keep the spare part level in perfect quantity.
- f) Observation on the cables of electrical from column between station and substation, and concern rampart to protect the column of electrical on main roads.
- g) The health and safety of both men and machines have to be carefully looked after. The order line of work place has to be assured to improve total productivity and the labor force, and to avoid accident.

References

- 1. Gill. A.B power plant Efficiency, 1996 Pergaman publisher.
- 2. Dr. Sharief power station Manufacturer, Operational and Maintenance Instruction Manuals, catalogue No: 0029E/0551E
- 3. Saleh B.M Omer, performance promotion& efficiency improvement in Dr. Sharief power station, 1997, University of Khartoum.
- 4. Dr. Sharief power station Manufacturer, Operational and maintenance instruction Manuals, catalogue No: P103A/D
- 5. ASLAD specialty chemical company, 2000, seminar on combustion, Dr. Sharief power stations.
- 6. Dr. Sharief power station Manufacturer, operations and Maintenance instruction manuals, catalogue No: HSL SC139.
- 7. The maintenance productivity documents, A.E. Haroon, Sudan University of science and Technology, 2003
- 8. National Electricity Corporation, statistical information 2004.
- 9. P. Gopalakrishnan & A.K.Banerji Maintenance and spare parts Managements Third printing-New Delhi 2002
- 10. Rehabilitation of steam power plant
- [On line] http://www.power.alstom.com/home/turkey-plant/turkey-plant-steam/-files/paper

Appendix

Appendix (1)

KNPS unit trip statistic year 2011

Losses Classifications						
GWH	Unplanned Out	Planned Out.	Trips	Others	Total Losses	Remarks
UNIT1	47.7220	45.3600	0.8515	8.5554	102.4889	
UNIT2	110.1600	152.6400	0.0000	0.0000	262,8000	
UNIT3	16.0489	0.0000	5.4366	43.0828	64.5683	
UNIT4	30.2936	6.6230	8.0702	52.4462	97.4330	
UNIT5	33.0840	53.7600	1.1690	9.6988	97.7118	
UNIT6	33.6100	63.1750	4.5108	9.6558	110.9516	
Station	270.918	321.5580	20.0381	123, 4390	735.9535	
Outages Losses						
Uplanned Outage	Energy losses	frequency of				
Cause	(GWh)	Occurance				
Water/steam leak	64	4				
Boiler tube failure	25	4				
Turbine outages	17	3				
Boiler outages	11	3				
Gov.devects	36	3				
FDF defect	0	0				
RAH defect	1	1				
UPS outages	2	2				
MFT replacement	0	0				
Generator Work	0	0				
Others	115	5				
total forced outage	270,918	25				

Appendix (1)

KNPS unit trip statistic year 2012

		1				
Loss Classifications						
GWH	Unplanned Out	Planned Out.	Trips	Performanc e & Others	Total Losses	Remarks
UNIT1	42.9664	1.4400	2.7236	21.2818	68.4118	
UNIT2	263.5200	0.0000	0.0000	0.0000	263.5200	U2 N/A all year
UNIT3 UNIT4	65.8470 103.6820	84.3900 60.4800	2.1940 5.0899	78.1880 79.9219	230.6189 249.1738	
UNIT5	141.9937	0.0000	15.3167	53.5613	210.8716	
UNIT6	193.2050	0.0000	19.4597	45.5920	258.2567	
Station	811.214	146.310	44.784	278.545	1280.853	
Sidilon	011.214	140.310	44.704	270.343	1200.033	
Outage Losses						
Uplanned Outage	Energy losses	requency of				
Cause	(GWh)	Occurance				
Water/steam leak	0	0				
Boiler Outages	169	13				
Turbine outages	145	8				
110 kv CB outages	0	0				
BFP Defect	0	1				
FDF defect	0	0				
RAH Defect	5	3				
Cooling water leak	0	0				
CT Fans	0	0				
MFT replacement	0	0				
Generator Work	5	2				
Others	267	9				
total forced outage	270.918	25				

KNPS unit trip statistic year 2013

Loss Classifications							
GWH	Unplanned Out	Planned Out.	Trips	Performance & Others	Total Losses	Remarks	
UNIT1	79.2347	33.6960	3.5068	7.1080	123.5455		
UNIT2	0.0000	0.0000	0.0000	0.0000	0.0000	U2 N/A all qe	аг
UNIT3	48.5183	9.6000	2.9191	23.4844	84.5219		
UNIT4	170.3258	49.9792	1.6250	78.1185	300.0485		
UNIT5	299.7733	0.0000	20.1532	46.5515	366.4780		
UNIT6	498.5699	50.4000	35.7562	37.1716	621.8976	CT4 NIA -II -	
GT1 GT4	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	GT1 N/A all o	
Station	1096.422	143.675	63.960	192,434	1496,491	GIT NIA dii	geai
Otation	1000.122	110.010	00.000	102.707	1100.101		
Outage Losses							
Uplanned Outage	frequency of	Energy losses					
Cause	Occurance	(GWh)					
Others	11	149					
TV Problems (PH3)	7	586					
T/A ESV Relay/Bled st		14					
Boiler Tube Failure	5	10					
Annual O/H Unplanned		85					
T/A oil system Defects		16					
Boiler water Contamina	_	85					
Furnace Defects	3	25					
Transformer Defects	3	16					
Barring Gear Defects	2	11					
Boiler Acid Cleaning	2	19					
RAH Defects	2	35					
Safety Valve Defects	2	6					
Trip Investigation	2	16					
T/A bearing vibration	1	22					
total forced outage	58	1096,422					

KNPS unit trip statistic year 2014

		l					
Loss Classifications							
GWH	Unplanned Out	Planned Out.	Trips	Performance & Others	Total Losses	Remarks	
UNIT1	60544.3394	15573.6000	315.8991	*****			
UNIT2	236520.0000	0.0000	0.0000	0.0000		U2 N/A a	ll gear
UNIT3	98995.8385	40862.5000	*****	*****	*****		
UNIT4 UNIT5	63547.4932	40800.0000	******	*****		HE BUA -	<u> </u>
UNIT6	789600.0000 582428.3033	86400.0000 0.0000	0.0000	0.0000		U5 N/A a	ıı y ear
GT1	0.0000	0.0000	0.0000	0.0000	0.0000	GT1 N/A	all ∎ear
GT4	0.0000	0.0000	0.0000	0.0000	0.0000	GT4 N/A	
Station	1831635.974	183636.100		*****]
Outage Losses							
Uplanned Outage	Energy losses	frequency of					
Cause	(GWh)	Occurance					
Boiler water contamination	542,9	8					
Boiler tube failure	250,4	5					
Annual O/H extension	255,5	4					
Miscellaneous	40,4	5					
Burners Defects	25,7	3					
Turbine defects	12,8	3					
Boiler front fire incident	15,1	2					
Boiler water leak	12,4	2					
ESV/TV defects	47.4	2					
HPH leakages	3,2	2					
Boiler 5 tube distortion	580,8	1					
Fuel oil header press. Low	8,1	1					
Furnace gas leak	27,1	1					
Steam leakage	3,9	1					
total forced outage	1825,661	40					

Appendix (1)
KNPS unit trip statistic year 2015

Lana Classifications							
Loss Classifications							
GWH	Unplanned Out	Planned Out.	Trips	Performance & Others	Total Losses	Remarks	
UNIT1	9964.8000	0.0000	1466.1100	47042.5900	58473.5000		
UNIT2	236520.0000	0.0000	0.0000	0.0000		U2 N/A all ge	аг
UNIT3	84492.4972	12000.0000	2291.6685	130061.6293			
UNIT4 UNIT5	32677.4985 188846.2837	31544.9850 419336.6330	3061.6517 22826.6443	100512.7861 73608.4390	167796.9213	SAACKE pro	inat
UNIT6	259651.6670	346281.6670	17488.3213	43484.3447		AACKE proje	
GT1	0.0000	0.0000	0.0000	0.0000	0.0000	GT1 N/A all q	
GT4	0.0000	0.0000	0.0000	0.0000	0.0000	GT4 N/A all	
Station	812152.746	809163.285	47134.396	394709.789	2063160.216		
Outage Losses							
Uplanned Outage	Energy losses	frequency of					
Cause	(GWh)	Occurance					
Boiler water contamin	157753,4	5					
Boiler tube failure	14305,1	4					
Annual O/H extension	297467,2	5					
Miscellaneous	41305,2	8					
Burners Defects	0,0	0					
Turbine defects	3925,0	1					
Boiler front fire incid	0,0	0					
Boiler water leak	3087,0	2					
ESV/TV defects	45583,3	4					
HPH leakages	6050,8	2					
Boiler 5 tube distortio	0,0	0					
Fuel oil header press.	0,0	0					
Furnace gas leak	6155,5	2					
Steam leakage	0,0	0					
total forced outage	575632,459	33					

NATIONAL ELECTRICITY CORPORATION

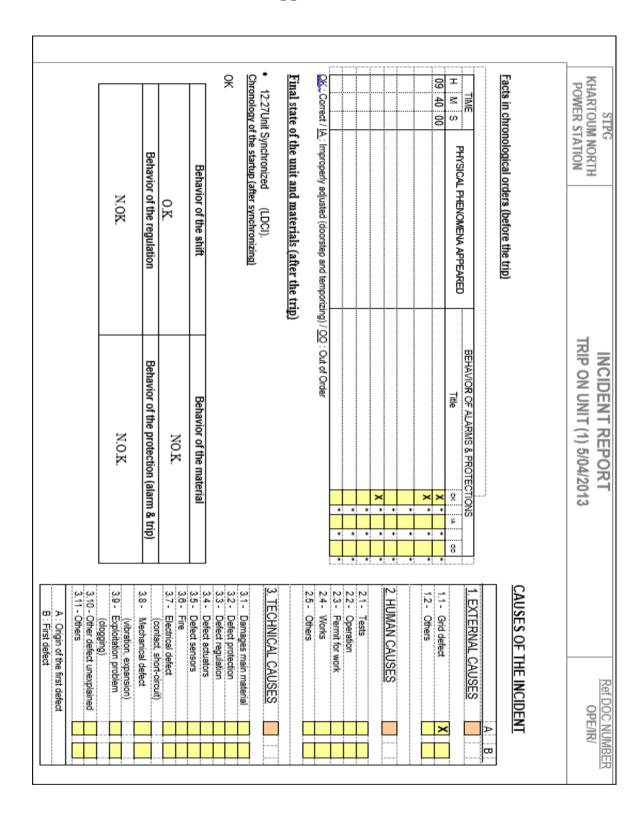
KHARTOUM NORTH POWER STATION

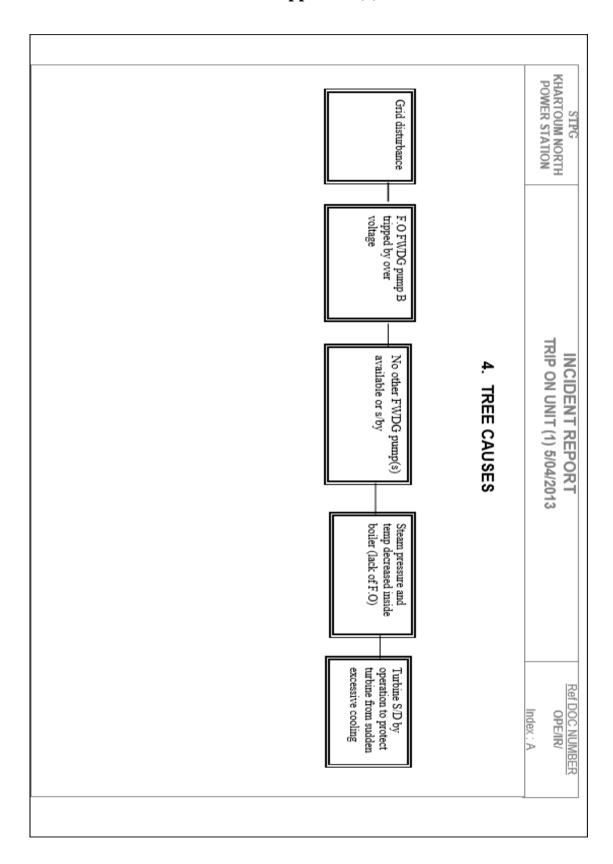
Department: OPERATION Date: 5/04/2012

INCIDENT REPORT

TRIP ON UNIT (1) 5/04 / 2013

Ref. DOC Number:


SUMMARY: This report is about the incident happened on unit (1) 5 / 04 / 2013 Boiler trip


Index	WRITER		CHECKER		
	Name	Sign	Name	Sign	
А	Tariq Abbadi Ali	Abadi	Nasor Ahmed Nasor		

FOLLOW-UP OF THE EVOLUTIONS

INDEX	NATURE OF THE MODIFICATIONS	JUSTIFICATIONS	DATE
А	Creation of the document		4/05/2013

IMPACTS ON THE UNIT	PROGRESS Finished 2. RE	Black out Delay on grid program Voluntary trip SUMMARY DESCRIPTION Heavy grid disturbance caused the F.O FWDG pump to trip the fuel to boiler Steam pressure decreased and turbine shutdown	PARTS OF UNIT CONCERNED NATURE OF THE INCIDENT	IRIP Date SYNCHRONIZING Date	GENERALIIY UNIT	1. GENER	STPG KHARTOUM NORTH POWER STATION
I During 2 15	PROGRESS Finished 2. REPERCUSSION	Black out X No-load without separation X Voluntary trip X SUMMARY DESCRIPTION Heavy grid disturbance caused the F.O FWDG pump to trip by overvoltage. No fuel to boiler Steam pressure decreased and turbine shutdown.	NED Boiler	D M Y H M Date 05 04 13 Time 09 40 Date 18 04 13 Time 16 51	X 1 2 3 4 4	1. GENERAL INFORMATION	INCIDENT REPORT TRIP ON UNIT (1) 5/04/2013
	Regulation operated manually	3 SITUATION OF T	Outage prolonged afte \$400 MWH TEMPORARY N	IMPACTS ON T	HWW 09	IMPACTS ON THE	REPORT 1) 5/04/2013
	Regulation operated manually X • V State of materials before the incident N.OK NO available s/by F.O FWDG pumps	HE UNIT BEF	Outage prolonged after trip due to barring gear defect which caused a total loss of 8400 MWH TEMPORARY MEASURES (temporary instructions, bridges)	IMPACTS ON THE MATERIALS	- Unit 2	IMPACTS ON THE PERFORMANCES (others	
	* Which one?:	T ANALYSIS ORE THE INCIDE	r defect which caused a orary instructions, bri		· Onic	others units)	Ref D
		N N	i total loss o		, onit 4		Ref DOC NUMBER OPE/IR/

		C&I (W.O ISSUED) MAINTENANCE DEPT	ps available	Boiler failed to trip by F.O pressure low No S/by FWDG pumps available
REMARKS	WHEN	5- ACTION PLAN	ACTIONS	
OPE/IR/ Index: A	2013	TRIP ON UNIT (1) 5/04/2013	TT	KHARTOUM NORTH POWER STATION

Appendix (3)
Year 2011 KNPS human unplanned outage

No	Date	Month	Unit	Phase	Cause	Duration
1.	23	Jan	2	1	Boiler gas leak	32.5
2.	2	Feb	4	2	T/A defect	66.8
3.	18	April	1	1	Boiler tube leak	19.1
4.	18	April	2	1	Drum door leak	18.0
5.	26	May	2	1	Boiler gas leak	42.0
6.	30	May	3	2	Transmission job	20.00
7.	13	June	4	2	Feed water leak	10.8
8.	24	July	1	1	Boiler gas leak	66.2
9.	27	July	2	1	Boiler gas leak	38.2
10.	28	July	1	1	Boiler gas leak	13.0
11.	4	Aug	3	2	Boiler tube leak	43.4
12.	10	Aug	3	2	Feed water leak	17.4
13.	16	Aug	2	1	Boiler tube leak	17.1
14.	21	Aug	4	2	T/A defect	104.3
15.	19	Sept	3	2	BFP defect	8.6
16.	20	Sept	2	1	Drum door leak	20.1
17.	23	Sept	2	1	Gen air cooler failed	11.3
18.	3	Oct	4	2	Drum door leak	9.6
19.	6	Oct	2	1	BMS power failed	27.6
20.	9	Oct	2	1	Boiler tube leak	30.6
21.	17	Oct	3	2	Cooling water pump A dish leak	6.9
22.	30	Oct	3	2	Cooling water pump A dish leak	4.7
23.	2	Nov	3	2	Boiler tube leak	26.5
24.	10	Nov	3	2	Boiler tube leak	45.2
25.	22	Nov	3	2	Feed water leak	7.1
26.	26	Nov	1	1	Fuel oil heaters leak	12.9

Year 2012 KNPS human unplanned outage

NO	Date	Month	Unit	Phase	Cause	Duration
1.	5	Jan	2	1	Water leak (Fittings)	19.3
2.	29	Jan	2	1	Water leak (Fittings)	27.9
3.	29	Jan	3	2	Electrical defect	12.7
4.	21	Feb	3	2	Electrical defect	3.6
5.	25	Feb	3	2	Electrical defect	24.5
6.	18	Mar	2	1	Condenser tube failure	41.2
7.	22	Mar	3	2	Cooling water leak	78.0
8.	28	Mar	1	1	FDF defect	32.0
9.	9	April	1	1	Condenser tube failure	33.6
10.	11	April	1	1	Condenser tube failure	63.5
11.	14	April	1	1	Turbine defect	42.7
12.	23	April	4	2	Transmission job	15.6
13.	25	May	1	1	Boiler tube failure	21.5
14.	4	Jun	1	1	Boiler tube failure	49.5
15.	9	Jul	2	1	Gas leak	29.2
16.	26	Jul	1	1	Condenser tube failure	41.1
17.	6	Aug	3	2	Boiler tube failure	49.7
18.	25	Sep	1	1	Condenser tube failure	35.9
19.	27	Sep	1	1	Boiler tube failure	26.5
20.	8	Oct	2	1	Condenser tube failure	59.7
21.	28	Oct	4	2	Boiler tube failure	56.0
22.	2	Nov	2	1	BFP defect	83.1
23.	8	Nov	1	1	BFP defect	6.1
24.	29	Nov	2	1	BFP defect	12.3
25.	13	Dec	2	1	Condenser tube failure	64.9
26.	29	Dec	2	2	Turbine defect	2.7

Appendix (3)
Year 2013 KNPS human unplanned outage

NO	Date	Month	Unit	Phase	Cause	Duration
1.	16	Jan	3	2	Condenser tube failure	44.75
2.	23	Jan	4	2	T/A defect	19.62
3.	16	Feb	4	2	Others	42
4.	23	Feb	1	1	T/A defect	8.15
5.	2	Mar	2	1	Boiler tube failure	21.35
6.	13	May	4	2	FDF defect	63.15
7.	20	May	2	1	Electrical defect	21.17
8.	23	May	1	1	Condenser tube failure	62
9.	5	Jun	1	1	Condenser tube failure	1.8
10.	14	July	4	2	T/A defect	44.17
11.	28	July	2	1	MFT replacement	4
12.	10	Aug	2	1	Cooling water leak	113.1
13.	12	Aug	4	2	T/A defect	3.87
14.	18	Aug	2	1	BFP defect	28.25
15.	10	Sep	2	1	Boiler tube failure	18.25
16.	25	Sep	1	1	Electrical defect	9.1
17.	14	Oct	2	1	MFT replacement	2.75
18.	4	Nov	1	1	Condenser tube failure	67
19.	24	Nov	1	1	Condenser tube failure	13.9
20.	6	Dec	1	1	Condenser tube failure	47.78
21.	15	Dec	1	1	Condenser tube failure	80.82

_

NO	Date	Month	Unit	Phase	Cause	Duration
1.	14	Feb	2	1	MFT replacement	2.52
2.	24	Feb	2	1	MFT replacement	3.75
3.	20	Apr	1	1	BLR main steam line	63.6
					defect	
4.	25	Apr	1	1	HP heater drain line to	5.6
					D/A flange leak	
5.	24	May	3	2	Outage for D/A level	4.87
					transmitter leakage	
6.	4	May	1	1	Gen protection & BFP	28
					/PB Mechanical seal	
7.	11	May	1	1	BLR contamination	97
8.	17	May	2	1	To fix 100 KV VT	5.25
					leakage	
9.	25	May	3	2	To replace MFT	5.38

Appendix (4)

The main point of Annual Preventive Maintenance Program

Task Name	Start	Duration
Main TMID activities: 1. (Feed water valve) and equipment's 2. Air ejector valve & equipment 3. Line steam drain v/v 4. T/A oil system (P/P+ cooler others) 5. GOV and ESV system 6. Condensate V/V & equipment CWPs 7. Cooling water system and equipment CWPs 8. Gen air cooler 9. Condenser tube cleaning	27/12/2011	13.63
Main BMD activities: 1. Furnace and super heater 2. Oil Burners and air heater washing 3. FD fan & suit blower 4. Boiler v/v + press parts FDRs 5. Boiler v/v (safety v/v +fuel oil v/v +NRV+Attemperator v/v)	27/12/2011	13.25
 Main EMID activities: Gen& unit transformer Gen C.B & tap changer Cooling tower Aux transfer & Board Tank form Aux tans & board 33 or 6.6 KV motors & starters 415V motors & starters Control v/v & electrical v/v + damper 	27/12/2011	13
 Main C&ID activities: 1. Transmitters& press interlocks 2. Gauges (temperature , pressure) flow calibration 3. T/A protection & level switches 4. BMS & tapping points 	27/12/2011	13.25

5.Burners management system check(v/v)	27/12/2011	
6.Control $v/v + loop$ (press & temp + c/v level)	27/12/2011	
Main chemical activities:	27/12/2011	13.63
1. Gen cooler inspection	27/12/2011	15.05
2. T/A condenser inspection		
<u>-</u>		
3. D/A shell deposit inspection		
4. BLR press side inspect & samp + mud drum 5. Reiler firing side inspection & sampling		
5. Boiler firing side inspection & sampling		
6. Cooling tower inspection		12.2.7
Main service activities:	28/12/2011	13.25
1. CT cell south side wooden door leak		
2. CT bond & area cleaning		
3. Heaters area cleaning		
4. Lube oil coolers area cleaning		
5. Condenser area cleaning		
6. Turbine area cleaning		
7. BFPs area cleaning		
8. Gen air cooler area cleaning		
9. Boiler air cooler area cleaning		
Main operation activities:	28/12/2011	13.25
a. PFW cancellation		
1. Gen & unit TX		
2. Transmitters & press interlocks (DOC only)		
3. Turbine production (DOC only)		
4. Tapping point (DOC only)& BMS		
5. Condenser & DE aerator		
6. Feed system, air ejectors & gen air cooler		
7. T/A steam spaces & soot blowers		
8. Boiler gas passes & press parts		
9. EMD valves (Necessary idol for EMD list)		
10.FD fan (for EMD), CW system & 3.3 KV		
board		
11.T/A rotating parts & 415v unit aux board		
b. Commissioning	2/1/2012	7 days
c. T/A protection test		
d. synchronizing		

National Electricity Corporation

Training program of all power station year 2011

No	Name of cycle	Type of learners	No of equitable	Week period	Begin date	End date
1.	Drawing Electrical	Technical	8	3	4Jan	23 Jan
2.	Gases plant	Technical	8	2	4Jan	16 Jan
3.	Weld	Technical	8	4	4Jan	30 Jan
4.	Turning	Technical	8	4	4Jan	30 Jan
5.	Filings	Technical	8	4	4Jan	30 Jan
6.	Gen electricity	Technical	12	3	25Jan	13 Feb
7.	Energy transformers	Technical	10	3	25Jan	13 Feb
8.	Bearing	Engineer	8	2	25Jan	6 Feb
9.	Stream Gen maintenance	Technical	8	2	25Jan	6 Feb
10.	Sweeping Quality	All sections	12	2	25Jan	6 Feb
11.	Mechanical measurement	Engineer	8	2	15Feb	27 Feb
12.	Electrical generation	Technical	8	3	15Feb	6 Mar
13.			12	2	15Feb	27 Feb
14.	Distribution safety	Technical	12	2	15 Feb	27 Feb
15.	Electronic	Technical	8	3	15 Mar	3 Apr
16.	Aerobic lines	Technical	12	2	15 Mar	27 Mar
17.	Gases operation	Technical	8	2	15 Mar	27 Mar
18.	Compressors	Technical	8	2	15 Mar	27 Mar
19.	MS project	Technical	12	2	15 Mar	27 Mar
20.	Gen safe	Technical	12	2	15 Mar	27 Mar
21.	Motors electricity	Technical	10	3	5 Apr	17 Apr
22.	Diesel operation	Technical	12	2	5 Apr	17 Apr
23.	Workshop equipment	Technical	8	4	5 Apr	1 May

24.	Sweeping quality	All sections	15	2	5 Apr	17 Apr
25.	Work team leading	Top leading	15	2	5 Apr	17 Apr
26.	Cable problem	Engineer	10	2	19	1 May
	defining				Apr	
27.						
28.	Technical safety	Technical	8	2	19	1 May
					Apr	
29.						
30.					1.0	
31.	ENG Drive	Technical	12	2	19	1 May
22	T	TD11	10	2	Apr	1 1/4
32.	Equipment	Technical	10	2	19	1 May
	measurement electricity				Apr	
33.	Energy counters	Technical	10	2	10	22 May
55.	Energy counters	Technical	10	<u> </u>	May	22 May
34.	Tower constructing	Technical	12	2	10	22 May
J . .	Tower constructing	Teelinear	12	2	May	22 Way
35.	Grid operation	Technical	10	2	10	22 May
	one operation	2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		_	May	:. <u></u> j
36.	Safety valves	Technical	12	2	10	22 May
	•				May	•
37.	Mechanical	Technical	8	2	10	22 May
	measurement				May	•
38.	Report writing	Intermediate	12	1	21	22 May
		leading			May	
39.	Schematizing grids	Technical	10	2	24	5 Jun
					May	
40.	Electricity drawing	Technical	8	2	24	5 Jun
					May	
41.	Diesel maintenance	Technical	12	2	24	5 Jun
					May	
42.	Bearing	Technical	8	2	24	5 Jun
4.0	T		0	-	May	10.7
43.	Engineering safe	Engineers	8	2	7 Jun	19 Jun
44.	Forth – going	Engineers	8	2	7 Jun	19 Jun
A 5"	electronics	Tr1! 1	10	2	7.1	10 T
45.	Diesel operation	Technical Technical	12	2	7 Jun	19 Jun
46.	Steam operation	Technical Technical	8	2	7 Jun	19 Jun
47.	Mechanical drawing	Technical Technical	8	2	21 Jun	17 Jun
48.	Weld	Technical Technical	8	4	21 Jun	17 Jun
49.	Turning	Technical	8	4	21 Jun	17 Jun

50.	Filings	Technical	8	4	21 Jun	7 Aug
51.	Grids technical	Engineers	10	2	26 Jul	7 Aug
52.	Mechanical drawing	Technical	8	2	26 Jul	7 Aug
53.	Maintenance	Engineers	10	2	26 Jul	7 Aug
	Schematizing	_				
54.	Sweeping quality	Intermediate	12	2	26 Jul	7 Aug
	(equipment)	leading				
55.	Electronics	Technical	12	3	26 Jul	7 Aug
56.	Equipment	Technical	10	2	16	28 Aug
	measurement				Aug	
	electricity					
57.	Safety valves	Technical	8	2	16	28 Aug
					Aug	
58.	Aerobic lines	Technical	12	2	16Sep	18 Sep
59.	Commonalty	Technical	12	3	16Sep	25 Sep
	electrical					
60.	MS project	Engineers	12	2	16Sep	18 Sep
61.	Mechanical	Technical	8	2	16Sep	18 Sep
	measurement					
62.	Energy transformers	Technical	10	2	27Sep	9 Oct
63.	Generators	Technical	10	3	2Ssep	16 Oct
64.	Diesel operation	Technical	12	2	27Sep	9 Oct
65.	General safety	Technical	12	2	27Sep	9 Oct
66.	Cables type and sizes	Technical	10	2	18	30 Oct
					Oct	
67.	Hydro plants	Technical	10	2	18	30 Oct
	maintenance				Oct	
68.	Floor lines	Technical	12	2	1 Nov	13 Nov
69.	Mechanical drawing	Technical	10	2	1 Nov	13 Nov
70.	Workshop equipment	Technical	12	4	1 Nov	27 Nov
71.	Sweeping quality	All sections	12	2	1 Nov	13 Nov
72.	The safe (distribution)	Technical	12	2	29	11 Dec
					Nov	
73.	Commonalty	Technical	12	3	29	18 Dec
					Nov	
74.	Maintenance	Engineers	10	2	29	11 Dec
	Schematizing				Nov	

Calculation KWh Cost year 2011

Total cost	Conoral ovnordituro	Salaries & wages	Maintenance cost	Insurance	Depereciation	Operational cost	Item (1000 SDG)	Tot.Cost	Average KWh cost	December	November	October	September	August	July	June	May	April	March	February	January	month	KWh Cost							Station	Unit6	Unit5		Unit4				Il Consumption
2,301,401.09	2 561 481 00	11.209.239.12	16.323.307.68		•	1,541,677.70			0.06	0.06	0.26	0.04	0.03	0.02	0.02	0.02	0.02	0.02	0.03	0.08	0.11	cost								212669	89053.27	92061.03	15431.678		16123.009	0 16123.009	0 16123.009	HFO 0 0 0 16123.009
8.1%	8 10/	35.4%	51.6%			4.9%	%age of Cost		0.20	0.19	0.42	0.17	0.16	0.16	0.14	0.15	0.14	0.14	0.16	0.26	0.28	Cost with fuel &lube oil								103750	0	0	37313.25735		41468.9238	41468.9238	24968 0 41468.9238	HCGO 24968 0 0 41468.9238
																									Total	Dec	Nov	Oct	Sep	Aug	Jul	Jun	Мау	35	?	Mar	Mar	Jan. Feb Mar
																								27.00	192213	36.35	1899.74	16281.08	16066.514	27215.56	30831.66	31912.5	27321.76	17454.988		18677.75	1275.08 18677.75	3239.67 1275.08 18677.75
																									103821	2212.82	1883.7	4945.84	12262.54	18017.9	16758.5	25324.13	22337.186	0		0	• •	
																																			_			

Calculation KWh Cost year 2012

Total cost	General expenditure			Insurance	Depereciation	Operational cost	Item (10)	Tot	•	Average KWh cost	December	November	October	September	August	July	June	May	April	March	February	January	month	KWh Cost						Station	Unit6	Unit5	Unit4	Unit3	Unit2	Unit1	Fel Oil Consumption	FUEL OIL MANAGEME
38,655,457.91	4,172,948.61	14,266,706.15	17,825,187.54			2,390,615.62	(1000 SDG)	Tot.Cost		0.08	0.45	0.08	0.10	0.05	0.05	0.03	0.03	0.02	0.03	0.02	0.04	0.05	cost							116589	54493.42	48585.73	11020.135	2489.779	0	0	HFO	Fuel Oil Consumption (Tonnes)
	10.8%	36.9%	46.1%			6.2%	%age of Cost			0.22	0.64	0.23	0.25	0.19	0.18	0.16	0.16	0.15	0.15	0.15	0.18	0.20	Cost with fuel &lube oil							163057	2.7	0	55522.9698	61029.40554	28	46475	нсво	tion (Tonnes)
																									Total	Dec	Nov	Oct	Sep	Aug	Jul	Jun	Мау	Apr	Mar	Feb	Jan.	Month
																									95945	4233.12	8589.81	8515.81	14320.985	8368.668	3047.4	7872.36	20874.738	8887.61	9274.11	491.42	1403.25	HFO
																									180207	12217.81	6456.06	18639.784	22723.23	20377.49	27674.917	14555.72	20095.93	16984.38	18097.1	2384.62	0	нсво
																									1527	0	0	0	0	0	1527.241	0	0	0	0	0	0	БО

Calculation KWh cost year 2013

Total cost	General expenditure	Salaries & wages	Maintenance cost	Insurance	Depereciation	Operational cost	Item		Average KWh cost	December	November	October	September	August	July	June	May	April	March	February	January	month		KWh Cost						Station	Unit6	Unit5	Unit4	Unit3	Unit2	Unit1	Fel Oil Consumption	FUEL OIL MANAGEME	
#N/A	2.952.905.85	14,292,108.19	#N/A		-	2,742,416.39	(1000 SDG)	Tot.Cost	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	0.02	0.02	0.05	0.01	0.04	0.06	cost								144315	46760.7	83962.49	3871.915	9720.295	0	0	HFO	Fuel Oil Consumption (Tonnes)	
	#WA	#WA	#WA			#N/A	%age of Cost		#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	0.16	0.17	0.20	0.15	0.20	0.20	&lube oil	Cost with fuel							148267	2629	7191.15	33580.31435	71007.1098	0	33859	нсво	otion (Tonnes)	
																									Total	Dec	Nov	Oct	Sep	Aug	Jul	Jun	Мау	Apr	Mar	Feb	Jan.	Month	
																									146695	10067.31	6432.68	13094.72	10894.53	13507.86	3279.85	15408.55	20189.06	18181.508	13371.82	10643.49	11623.25	HFO	
																									116701	8162.68	13859.18	6814.88	12864.792	18287.74	1671.24	12761.59	10094.62	13740.408	8139.04	5303.16	5001.78	нссо	Fuel Oil Delivery (Tonnes)
																									0	0	0	0	0	0	0	0	0	0	0	0	0	LDO	

Calculation KWh cost year 2014

FUEL OIL MANAGEMENT Fel Oil Consumption Unit1 Unit2 Unit3 Unit4 Unit5	Fuel Oil Cons HFO 0 0 23428 14060	Fuel Oil Consumption (Tonnes) HFO HCGO O 45737 O O 0 23428 39082 14060 58302		Month Jan. Feb Mar May Jun	HFO 13221.63 11002.86 6874.56 599.9 830.6 162.53	Fuel Oil Delivery (Tonnes) HCGO 15076.14 5197.06 13905.33 22118.982 16301.268 11675.3
Unit6 Unit6 Station	122 46975 84585	7336 150457		Jun Jul Aug	162.53 2953.57 3531.74	.74
Human Resource				Oct Nov Dec	12084.42 22892 4602.69	12084.42 22892 4602.69
No of Employee(2013) 396	No of Employee(2014) Intrance	4) Intrance	outlaws 19	training days		
KWh Cost month	cost	Cost with fuel- &lube oil				
January	0.02	0.15				
February	0.04	0.18				
April	0.03	0.16				
May	0.02	0.15				
July	0.03	0.17				
August	0.02	0.16				
September	0.03	0.18				
October	0.03	0.19				
December	0.10	0.10				
Average KWh cost	0.03	0.17				
Ttom	Tot.Cost	% and fort				
Operational cost	100,492,898.11	85.5%				
Depereciation Insurance						
Maintenance cost	12,678,705.92					
General expenditure	3,243,116.73	2.8%				
Total cost	117,586,972.73					

Calculation KWh cost year 2015

Total cost	General expenditure	Salaries & wages	Maintenance cost	Insurance	Depereciation	Operational cost	Item		Average KWh cost	December	November	October	September	August	July	June	May	April	March	February	January	IIVIIII	month	KWh Cost						Station	Unit6	Unit5	Unit4	Unit3	Unit2	Unit1	Fel Oil Consumption	FUEL OIL MANAGEME
1,076,488,140.34	8 494 241 11	28,162,143.49	17,585,454.54			1,022,246,301.21	(1000 SDG)	Tot.Cost	0.09	0.42	0.09	0.06	0.09	0.04	0.03	0.03	0.03	0.06	0.05	0.08	0.06		Cost							126786	55286	50734	9489	11277	0	0	НЮ	Fuel Oil Consumption (Tonnes)
60%	0.8%	2.6%	1.6%			95.0%	%age of Cost		1.21	1.84	1.39	1.24	1.23	1.12	1.07	1.06	1.09	1.14	1.15	1.13	1.10		cost with Tuel							187183	0	0	69516	57599	0	60067	нсво	on (Tonnes)
																									Cia	Dec	Nov	Oct	Sep	Aug	Jul	Jun	Мау	Apr	Mar	Feb	Jan.	Month
																									1441772	3556.33	14617.26	27650.371	21062.8	24779.362	17890.746	6043.84	10195.43	10411.01	4606.4	155.52	3223.25	HFO
																									107427	5719.858	8421.48	19736.64	17690.688	23979.56	16104.45	14535.04	13747.38	16212.73	21519.34	9391.7	22369.88	нсво
																									•	•	0	0	0	0	0	0	0	0	0	0	0	LDO

Appendix (7)

Trips classification year 2011

	94		lotal
	17		Others
	ω		MFT valve closed
	2		F.O Ratio
	11		Generator Protection
	4	Count	Winding temp very high Count
	4	high	Drum Water Level very high
	3	unt .	At least one BFP run Count
	11	High	Condenser Water Level High
	5	+	Fuel oil press. Low Count
	3		FD Fan Trips
	1		Blackout
Remarks	frequency		Trip Cause
		Trips Classifications	Trips
		12	Human Error
		74	Plant Failure
		14	External
		No	Trip Catagery

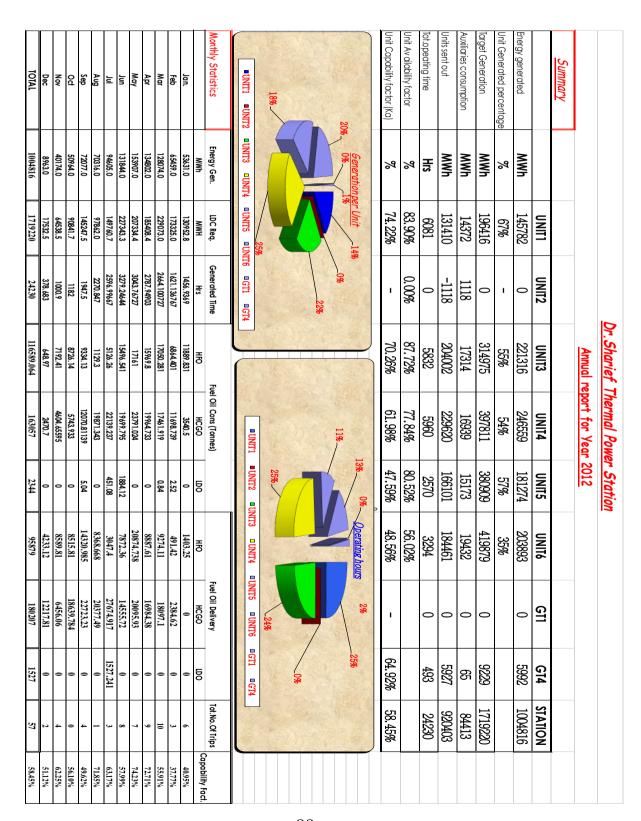
Appendix (7) Trips classifications year 2012

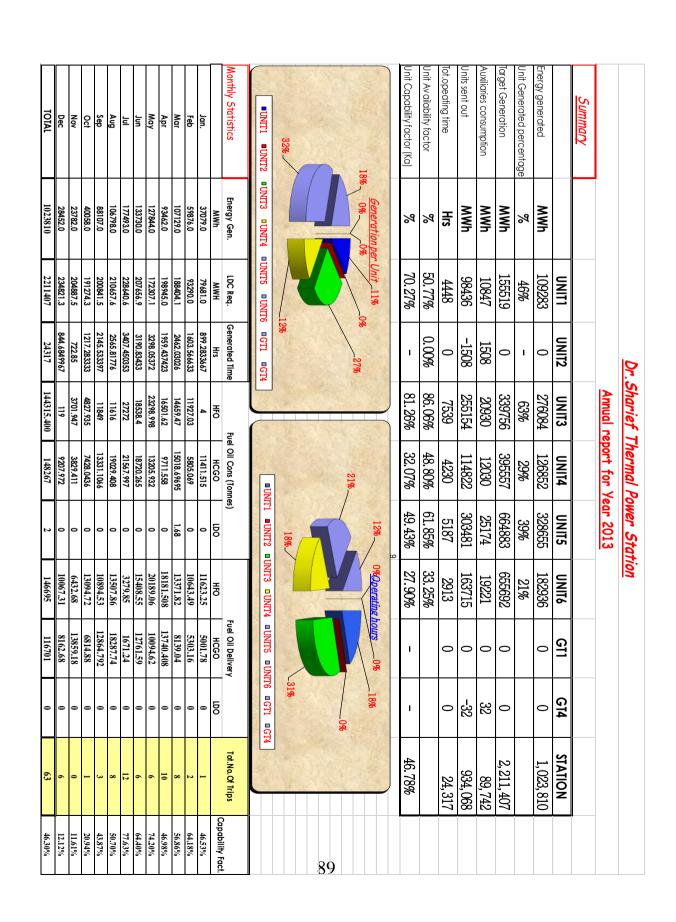
95 leto1	Winding temperature high	Poor installation (PH3)	no analysis 1	Malfunction of lube oil thermostatic valve	Fuel oil temperature very low	FDF trip 1	100%FRV poor response	Passing valve 2	MFT defect 2	Loose connection 2	Cond level control v/v undersized 2	Boiler tube failure 2	F.O. FWDG pump control problem 3	High vibration 4	BFP trip 4	Human Error 6	Electrical Failure 7	Fault signal 7	System Black out/Disturbance 8	<u>Irip Cause</u> frequency	Trips Classifications	lotal 5/		+	External
																				ncy Remarks					

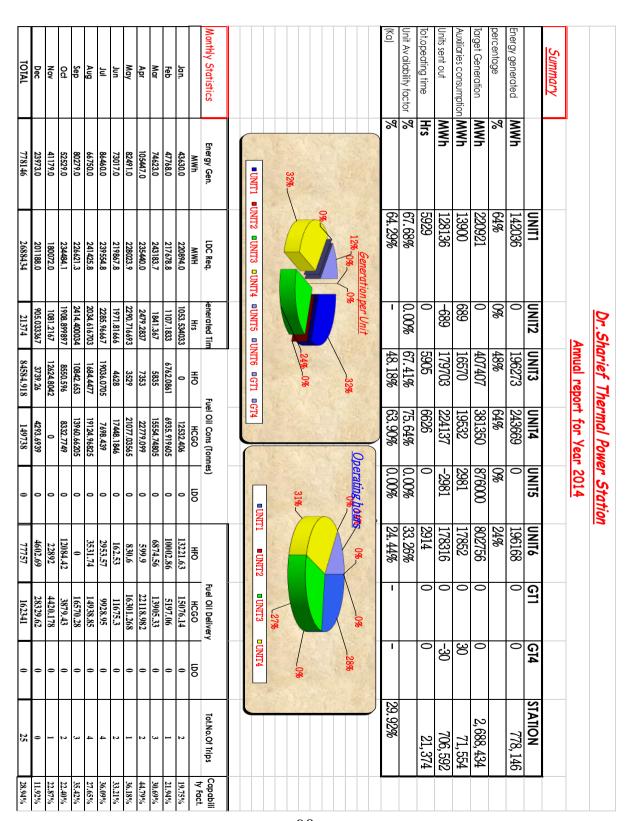
Appendix (7) Trips classification year 2013

This Catalana	=					
Trip Catagery	No					
External	2					
Plant Failure	58					
Human Error	ω					
Total	63					
Trips Classifications	<u>tions</u>					
Trip Cause	fre	frequency	Remarks	cs		
Unknown		26				
TV Defects		12				
False signal		ဖ				
Human Error		မေ				
FO FWD6 pump regulation troubles	troubles	2				
Vibration		2				
System Disturbance		2				
Pumphouse flooding		2				
Electrical fault		2				
CW pump trip		2				
Signal/Power cables burnt		1				
Poor air conditioning of eqpt room	tpt room	1				
Passing valve		1				
Boiler 4 fire incident		1				
BFP defects		1				
Bearing Damage		1				
Air ingress						
Total		63				

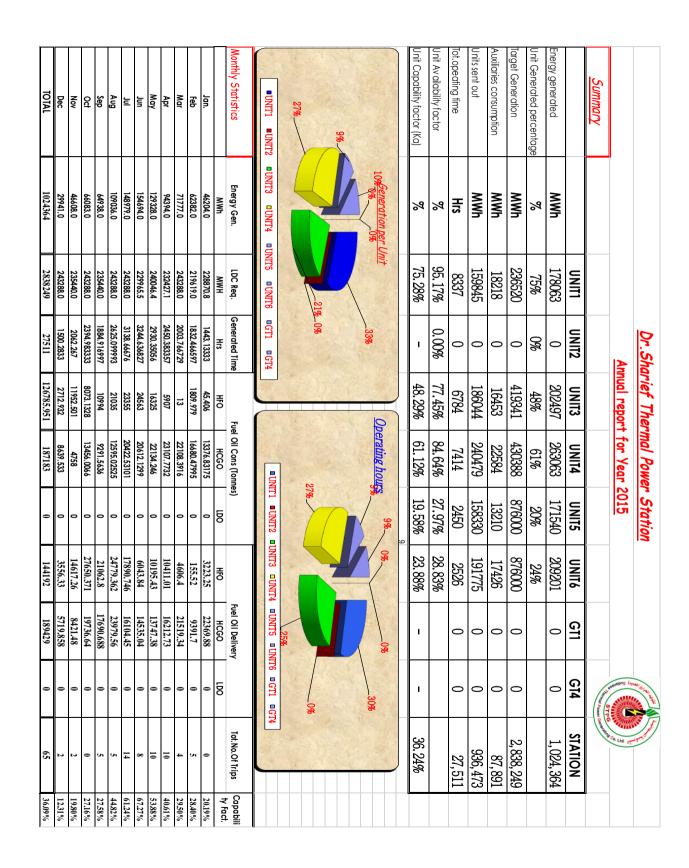
Trips classification year 2014


	25		Total	25		Total	
			Reverse power				
	1	high	T/A bearing temp high				
	1	ηρ v. high	Radial bearing temp v. high	1	e incident in U2 G(ply lost due to fir	FO FWD6 P/P supply lost due to fire incident in U2 G
			Power failed	-		ame scanners	Unavailability of flame scanners
External			Over voltage			closed	Main damber A/H closed
2 of them as ahuman error	Oi	failed	last burner flame failed				LP seal CV failure
	2	o high	Gen. Winding temp high		BFPs	Logic fault during change over of U4 BFPs	Logic fault during
External	ယ		Fuel press. low			V. stuck at 23%	Condenser level C.V. stuck at 23%
	2	ğ	Drum level very high	2		itter defect	Drum level transmitter defect
human error		W	Control oil press low	2		disturbance	External: System disturbance
	2	iry high	Condenser level very high	ω			False trip signal
1 of them as ahuman error	2	not running	At least one BFP not running	OI			Human Error
1 of them as ahuman error	3		Unknown	7			Unknown
ıcy Remarks	frequency		By Trip Alarm	frequency			By Trip Cause
						Trip Classifications	Trip Class
						25	Total
						51	Human Error
						18	Plant Failure
						2	External
						No	Trip Catagery


Appendix (7)


Trips classification year 2015

Trip Catagery No			
Plant Failure 54			
Human Error 5			
Total 65			
Trips Classifications			
Trip Alarm	frequency	/ Remarks	
Blackout	3	3 external	
Unknown	2	1 external	
At least one BFP not running	6		
Condenser level very high	3		
Control oil press low	5	2 of them as ahuman error	
Drum level very high	5		
Fuel press. low	7	3 of them as ahuman error	
Gen. Winding temp high	2		
last burner flame failed	1		
Radial bearing temp v. high	2		
T/A bearing temp high	4		
Drum level low	11		
Air fuel ratio	6		
T.V closed	4		
other	4	2 of them external	
Total	65		


TOTAL	Dec	Nov	Oct	Sep	Aug	Jul	Jun	May	Apr	Mar	Feb	Jan.		Monthly Statistics	LINU			Jnit Capability factor (Ka)	Unit Availability factor	Tot.opeating time	Units sent out	Auxiliaries consumption	Target Generation	Unit Generated percentage	Energy generated		<u>Summary</u>		
1153457	46798.0	9954.0	87047.0	106525.0	129306.0	148482.0	125263.0	159835.0	150990.0	138746.0	28048.0	22463.0	MWh	Energy Gen.	ONITY ONITY OUNTY		6eneration per Unit 28% 19% 19% 29% 17%	%	%	Hrs	MWh	MWh	MWh	%	MWh				
1509717	45931.8	41037.2	105366.1	150250.0	161233.7	185616.3	171543.8	187017.1	203016.6	208647.0	50057.0	0.0	HWW	LDC Req.	15 UNITE			59.07%	45.01%	3943	70618	9932	136362	7%	80550	UNITI		I _A	Dr.Sh
25490	847.7630211	167.9166333	2262.84263	3029.546333	3433.58345	3331.916636	3033.199703	3492.400033	2759.453284	2618.453356	512.6196693	0	Нrs	Generated Time	100			ı	0.00%	0	0	1078	0	0%	0	UNIT2		Annual report for Year 2011	Dr. Sharief Thermal Power Station
212669	10986.669	2595.77	16704.4	14739.826	31343.022	21268.58	17700.13	21744.3	23912.63	35568.848	8881.436	7223.376	떙					77.08%	62.35%	5462	196457	16705	276552	18%	213162	UNIT3		t for Year	rmal Powe
103750	1395.523	80.363	7125.894	15125.264	4890.771	18322.80715	16334.525	20915.865	16280.169	3276	0	3	нсво	Fuel Oil Cons (Tonnes)		INU e	20%	68.18%	62.20%	5449	183198	14334	289709	17%	197532	UNIT4		2011	r Station
192213	36.35	1899.74	16281.08	16066.514	27215.56	30831.66	31912.5	27321.76	17454.988	18677.75	1275.08	3239.67	픙	Fuel Oil		no tunno cunno cunno tunno		86.34%	59.34%	5198	310379	27138	390899	29%	337517	UNIT5			
103743	2212.82	1883.7	4945.84	12262.54	18017.9	16758.5	25324.13	22337.186	0	0	0	0	HCGO	Fuel Oil Delivery		UNIT4 - UNIT5	Operating hours 16% 0% 22%	78.02%	62.33%	5460	297212	27484	416194	28%	324696	9TINU			
64	2	0	1	9	8	3	6	14	12	51	4	0		Tot.No.Of Trips		NTS = UNT6	% %	73.74%	48.54%	25512	1057864	96671	1509717		1153457	STATION			
72%	101.89%	24.26%	82.61%	70.90%	80.20%	79.99%	73.02%	85.47%	74.37%	66.50%	56.03%		%	Tot.No. Of Trips Capability Fact. emarks															

Appendix (8) Annual report for year 2015

