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Abstract

Image denoising and compression has remained a fundamental problem in the
field of image processing aiming at the removal of noise which may corrupt
an image during its acquisition or transmission while sustaining its quality.
Wavelets gave a superior performance in image denoising and compression due
to its properties such as multi resolution.In this thesis an adaptive method
of image denoising in the wavelet sub band domain has been proposed.The
idea behind using this technique the DWT process the horizontal ,vertical
and diagonal details of the image without affect the approximation details,
it improves the performance of the mathematical software(MATLAB) of de-
noising function. The experimental evaluation shows that it removes noise
significantly and more effectively than the existed denoise technique it show
that by applying different wavelet family types, different noise level and differ-
ent level of decomposition.In the second phase of thesis after image became
free of noise the compression technique jpeg 2000 has been applied to the
image due to the development and demand of multimedia product grows in-
creasingly fast, contributing to insufficient bandwidth of network and storage
of memory device. Therefore, the theory of data Compression is useful be-
cause it helps reduce the consumption of expensive resources such as hard
disk space or transmission bandwidth.In this thesis, the fundamental theory
of image compression in chapter 2 has been briefly introduced,two typical
standards JPEG and JPEG 2000 will be described and implemented to the
denoise image in chapter 4. The last given image is compressed denoise image
without degraded its quality.
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المستخلص
على الضجيج يطرأ ،و الصور معالجة مجال في الأساسية المشاكل من الصور وضغط الضجيج تقليل يعد
الصورة من الضجيج إزالة في فائقا أداءا المتقطعة المويجات تقنية .تعطي ونقلها إلتقاطها مراحل في الصور
فعالة يقة طر الأطروحة هذه في نقدم . المتعدد الوضوح و المتعددة كالدقة خواص من به تتمتع لما وذلك
نقلها ليتم الصورة بضغط نقوم ثم ومن الصورة جودة على ذلك يؤثر أن دون الصور من الضجيج لإزالة
لنقاء المقبول الحرج المستوى تقدير الأطروحة هذه في المستخدمة التقنية وتقترح . مثلى بصورة تخزينها أو
للصورة ية والقطر والرأسية الأفقية التفاصيل تحسين عملية التقنية هذه إستخدام وراء من والفكرة الصورة
هذه فعالية ، يتحسن (الماتلاب) ياضي الر البرنامج أداء فإن وبذلك التقريبية التفاصيل على تؤثر أن دون
يل للتحو يات مستو عدة بتجربة الصور لنقاء الأدنى الحد يات مستو بتقييم على تعتمد بإستخدام يقة الطر
و خاصة معايير وفق الصورة وتنقية الضجيج لتقليل يات مستو وعدة للضجيج يات مستو عدة و المويجي
الأخرى بالتقنيات مقارنة مثالية و فعالة بصورة الضجيج تقليل في التقنية هذه فعالية التجارب أوضحت قد
٢٠٠٠ الجبيج تقنية تطبيق يتم فإنه الصورة في الضجيج تقليل وبعد الأطروحة هذه من الثاني الجزء .في
الوسائط منتجات على المتزايد والطلب للتطورالسريع ونسبة الأخيرة السنوات وفي لانه وذلك الصورة لضغط
ولذلك . التخزين وحدات في المكلف للتخزين ونسبة كافي غير الترددي النطاق عرض أصبح المتعددة
و الذواكر في المساحة لتوفير البيانات تكرار من للحد بمكان الأهمية من تعتبر البيانات ضغط ية نظر فإن
الصورة ضغط في يةالأساسية النظر بإيجاز نقدم البحث هذا في مثلى. بصورة الترددي النطاق إستخدام
هذا من الرابع الفصل في (جيبج٢٠٠٠) ال يقة بطر الضغط وتطبيق بتفصيل نقوم و الثاني الفصل في

. مضمونها في عالية جودة مع الضجيج من خالية مضغوطة صورة على الحصول النتائج وتظهر البحث
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1 Chapter One: Introduction

1.1 Preface

1.1.1 Image De-noising
The image is said to be more expressive than thousand words. The noise
can get introduced in the image in stages of image acquisition, compression
and transmission. There are many other causes too, like hardware faults in
the camera lens, lesser processing power etc. This noise introduced in image
produces undesired elements in image which are not soothing to the human
eye so it is a priority to reduce the noise in image to as low as possible. The
domain which deals with the noise elimination is known as image de-noising.
The traditional way of image de-noising is filtering. Recently, a lot of research
about non-linear methods of signal de-noising has been developed [1].

These methods are mainly based on thresholding the Discrete Wavelet
Transform (DWT) coefficients, which have been affected by a noise. Al-
though Fourier transform is a powerful tool for analyzing the components of
a stationary signal. But it is failed for analyzing the non stationary signal
where as wavelet transform allows the components of a non-stationary signal
to be analyzed. Wavelet based de noising in 2D images has been a popular
research work in the past few years because the wavelet can analyze the sig-
nal at different frequencies with different resolutions. This is known as multi
resolution analysis (MRA). Medical images often corrupted by noises due to
some factors such as machine specifications, detector specifications.

Despite Wavelet basis is have irregular shape, they are able to perfectly re-
construct functions with linear and higher order polynomial shapes, Wavelets
allow complex information such as music, speech, images and patterns to
be decomposed into elementary forms at different positions and scales and
subsequently reconstructed with high precision [2].

1



1 Chapter One: Introduction

1.1.2 Image Compression
Data compression is concerned with being able to represent a given mass
of data more concisely easier for storage and transmission .while retaining
the essential information of the original. There are two basic kinds of com-
pression schemes: lossless and lossy. In the case of lossless compression one is
interested in reconstructing the data exactly, without any loss of information.
Lossy compression techniques involve some loss of information, and data that
have been compressed using lossy techniques generally cannot be recovered
or reconstructed exactly. In return for accepting this distortion in the re-
construction, we can generally obtain much higher compression ratios than is
possible with lossless compression. In many applications, this lack of exact re-
construction is not a problem. For example, when viewing a reconstruction of
a video sequence, the fact that the reconstruction is different from the original
is generally not important as long as the di7erences do not result in annoy-
ing artifacts. Thus ,video is generally compressed using lossy compression.
With lossless compression the reproduction is identical to the original, and
hence, quality is not an issue. In the case of lossy compression, however, the
reproduction is only an approximation to the original image. Measurement
of quality is thus an issue with lossy compression. In the context of lossy
compression, we usually are ready to accept an error, as long as the quality
after compression is acceptable. One of the methods to achieve this goal is to
employ the wavelet transform. A wavelet transform is well localized in both
space and frequency domains and is very similar to the mechanisms of human
vision system. Thus the wavelet transform matches well with human visual
system characteristics. From an image coding point of view, this tends to
contribute to good image quality [3].

1.1.3 Properties of Wavelet Transform
A wavelet transform can be used to decompose or divide a signal into small
wavelets and in wavelet theory , it is possible to obtain a good estimation of
the given function by using only a few coefficients which is a great attainment
as compared to Fourier transform.
One of the main advantages of wavelets is that they provide a concurrent
fixing or localization in domain of time and frequency. Wavelets also use fast
wavelet transform, so it is very fast.

2



1 Chapter One: Introduction

Wavelet transform can frequently squeeze or de-noise a signal in absence of
considerable degradation.
Wavelets have the advantage of being able to divide the pure details in a
signal. Smaller wavelets can be applied to dissociate the most elementary de-
tails in a signal, while very large wavelets can identify other details of coarse
analysis.
Wavelet theory is competent to declare aspects of data that other signal anal-
ysis method misses. The features like breakdown points and segregation in
higher order derivatives are perfect example for this [4].

1.1.4 Application of Wavelet Transform

Wavelets has many applications. For example, it is used to extract features
from ECG data. Other applications include data and image compression,
extraction of spatio-temporal features from 3D+time MRI data and image
de-noising.

1.2 Problem Statement
This study targets the problem of compression and de-noising of images. An
image is often corrupted by noise in its acquisition and transmission. For
example, medical images normally have a problem of high level components
of noises. Another major issue is that using a Fourier basis fails to reconstruct
functions with linear and higher order polynomial shapes. On the other hand,
in terms of compression, the time required for images to be sent over the
Internet or downloaded from web pages is crucial, and also the storage of
data in a given amount of disk or memory space.

1.3 Proposed Solution
The central idea to wavelets is to analyze (a signal) according to scale .Imagine
a function that oscillates like a wave in a limited portion of time or space and
vanishes outside of it. It can be used to decompose or divide a signal into small
wavelets and in wavelet theory, it is possible to obtain a good estimation of
the given function by using only a few coefficients which is a great attainment
as compared to Fourier transform. Many images you see on the Internet

3



1 Chapter One: Introduction

today have undergone compression for various reasons. Image compression
can benefit users by having pictures load faster and web pages use up less
space on a Web host. Image compression does not reduce the physical size
of an image but instead compresses the data that makes up the image into a
smaller size [5].

1.4 Objectives
The objectives of this study are representing signals with a high degree of
scarcity. Presentation of an effective and low complexity image de-noising al-
gorithm using DWTs, which will recover an image from noise contamination
effectively. In other words provision of smoothness and better edge preser-
vation image, a good estimation of the given function could be obtained by
using only a few coefficients to increase the peak signal to noise ratio (PSNR)
and in the same time decreasing mean sugared error (MSE). The second
part of the project after de-noising the image is compress it which facilitates
the efficient transmission and storage of digital data,and develops the optimal
algorithm for image compression.

1.5 Methodology
The proposed de-noising algorithm is will be performed in MATLAB sim-
ulation environment and the results will be compared accordingly [5]. the
algorithm summed up to the following steps.

1. A four level DWT transforms the noise-corrupted image.

2. Estimate The standard deviation of noise will be estimated with one of
the proposed methods.

3. For each sub band (except the low pass or approximation sub band),
apply hard or soft threshold to the sub band coefficients.

4. Reconstruct the image by employing the inverse DWT.

Secondly The JPEG 2000 compression engine (encoder and decoder)
is illustrated in block diagram form in figure (1.2)at the encoder, the
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Figure 1.1: Proposed Algorithm for wavelet de noising with neigh shrink

discrete transform is first applied on the source image data. The trans-
form coefficients are then quantized and entropy coded before forming
the output code stream (bit stream). The decoder is the reverse of the
encoder. The code stream is first entropy decoded, de-quantized , and
inverse discrete transformed, thus resulting in the reconstructed image
data. [6]

Figure 1.2: General block diagram of the JPEG 2000 (a) encoder and (b)
decoder
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1.6 Thesis organization
The thesis is organized as follows. Chapter 2 discusses a literature review of
image processing techniques. Chapter 3 discusses the wavelet transform. In
the second part of this chapter, we systematically describe different wavelet
de-noising approaches. In addition, we Discuss image compression techniques
and link them to the employed method in this study. Also, this chapter,
considers the compression technique JPEG 2000. Chapter 4 presents the
implementation, simulation results and experimental restoration results. This
includes a comparison with other de-noising methods. Finally, chapter 5
presents conclusions and recommendation.
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2.1 Background
Digital Images are electronic snapshots taken of a scene or scanned from doc-
uments, such as photographs, manuscripts, printed texts, and artwork. The
digital image is sampled and mapped as a grid of dots or picture elements (pix-
els). Digital images play an important role in research and technology such
as geographical information system as well as it is the most vital part in the
field of medical science [7]. Therefore, these images are required in accurate
form so that they can be used effectively. But during their transmission and
reception they are usually affected by noise. The original meaning of ”noise”
was and remains ”unwanted signal”. Image noise is random (not present in
the object imaged) variation of brightness or color information in images, and
is usually an aspect of electronic noise. Noise removal algorithm is the process
of removing or reducing the noise from the image [7]. This chapter attempts
to give a brief description about the sources of noise and the various noise
models.

The existing traditional image de-noising methods can be broadly divided
into two categories: one is in spatial domain, the main use of various smooth-
ing template and image de-convolution processing, in order to achieve the
purpose of noise suppression or elimination; Another is the transform domain
method, we transform the image, and then choose the appropriate frequency
band pass filter, the inverse transformation to obtain the image de-noising.
Spatial domain de-noising method often uses the mean filter, median filtering,
Wiener filtering and image average method. The median filtering method is a
method of nonlinear signal processing, its basic thought is in digital image, a
point value by the median neighborhood of the point in the template instead
of several point. Is simply to use a window, the mobile at various points
along the image pixel values, window center points of using the median of all
pixels in the window for replacement. The shape and size of the window will
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have obvious influence on the filtering effect. Because standard median filter
is a kind of non parameter estimation, so there will be a certain blindness.
As a kind of adaptive de-noising method, Wiener filter according to the local
variance of the image value, output to adjust the filter, to restore the image
of the original image is the ultimate goal of the minimum mean square error.
But because of the interference signal, input process depends on the external
environment, and these statistics are unknown and changing factors. Aiming
at the defects of the algorithm, the researchers still need further research and
exploration [8].

The basic idea of transform domain is: first, some noise on the image
transformation, transformation to transform domain; then, according to the
transform coefficients in the transform domain processing; finally, the inverse
transform of the image to the original space, achieve the purpose of removing
noise. The low-pass filter is: in the spatial domain, two-dimensional convolu-
tion by using a low pass convolution template, so as to achieve the purpose
of image de-noising. Methods of image space common conversion transform
domain are: Fourier transform, Walsh Hadamard transform, discrete cosine
transform, wavelet transform and the recent development of multi scale geo-
metric analysis method. Because many signal can not be effectively analysis
in spatial domain, and after the transformation coefficients distribution be-
comes obvious, in the frequency domain signals can be effectively analyzed.
This can be used to all kinds of image processing tasks, and also makes this
method becomes a hot image de-noising research [9].

2.2 Related Work
In recent years, wavelet analysis technique was also applied to the field of
image processing, and the application effect is good. At present, the wavelet
method is widely used in image de-noising, main methods: wavelet transform
modulus maximum de-noising, wavelet coefficient correlation de-noising and
threshold shrinkage de-noising. The basic principle of wavelet de-noising is:
the first step is to decompose the noisy image using wavelet; the second step to
extract the wavelet coefficients of image wavelet coefficients and noise removal;
third step transform reconstruction image noise removal. More used in the
de-noising process [10].

Although wavelet de-noising method has become a main research direction
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of image de-noising, but it is also inadequate, with one kind of noise is very
similar to that of image, then wavelet analysis method is very difficult to
distinguish between the image information and noise information, of course
this case removal effect is not very satisfactory. Therefore, to further ex-
pand the research field of de-noising method. At the same time, by using
the method of partial differential equation for image processing, is a newly
emerging area developed in the recent years. Stronger local adaptability and
flexibility makes PDE method has become an effective image processing tech-
nology. This method in image de-noising can protect the edge of the image
better. Through research, we can found that the following two questions are
the key and difficult problems in the field of signal processing: one is due to
the Nyquist sampling high sampling frequency, resulting in a large number
of sample data; two is the sampling and compression mode, make a large
number of data’s utilization rate is not high, resulting in the waste of sensing
element, time and memory space. To some extent these problems restrict the
development of signal and information processing. Aiming at these problems,
in recent years, the birth of a new theory of compressed sensing. The meth-
ods used to obtain the signals at the same time, the data below the Nyquist
frequency sampling, compression, need to use reconstruction algorithm ap-
propriate restore enough data points.

The utility model has the advantages of reducing sampling data, the storage
space is saved enough amount of information under the premise, and combined
the traditional data acquisition and compression, but there is no complex
data encoding, it is very suitable for the small equipment occasions, so the
compressed sensing in the field of signal processing has become a new research
direction [3].

Compressed sensing theory as the signal processing in the field of a new
research direction, since 2006 the formal papers, soon it is paid more atten-
tion by the research in related fields at home and abroad. At present, the
area is mainly focused on the research work of theory, research foundation
for: Terence Tao, Emmanuel Candès, David Donoho [11] who have the the-
ory framework of compressed sensing, a sensing matrix is given to satisfy
the sufficient condition, which is consistent with the Uniform Uncertainty
Principle( UUP); between the sensor matrix’s row number M and the signal
sparsity K must meetM ≥ K log(N), [12] and published a series of impor-
tant papers [13]. In addition, there are many specific problems about solving
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the sensing matrix and reconstruction algorithm of two major aspects of the
research results. Study on the sensing matrix, matrix of the current selec-
tion is random, such as Gauss matrix or Bernoulli matrix. How to construct
the sensing matrix is an open problem in this field at present. DeVore us-
ing polynomial method to obtain satisfy UUP feature matrix, but it only
for sparse K smaller case, the problem is far from solved. When it comes
to reconstruction of the signal, [14] There are many documents will match
tracking and optimization method is introduced to solve the problem, but the
discussion on the algorithm convergence and stability problems. Considering
hardware implementation, Professor Baraniuk, from Rice university, devel-
oped single pixel camera, which attracted the attention of the domestic and
international numerous media. Furthermore, Professor Wald [8], from MIT,
developed an MRI RF pulse instrument. Professor Freeman [6], from MIT as
well, developed a coded aperture camera and finally Milenkovic [15] Illinois
State University, developed DNA microarray sensors. However, in addition
to the single pixel camera, Rice University (the expensive hardware cost, low
efficient reconstruction algorithm), other hardware are lack of strict and effec-
tive theory of compressed sensing matrix discriminant analysis. After nearly
two years of development, the compressed sensing has achieved many impor-
tant results in the theory, many researchers have begun to put into practical
applications, such as information, medical science etc [16].

2.3 Noise Sources
During image transmission and image acquisition noise is introduced in the
image. There may be different reasons for the introduction of noise in the
image. The number of pixels corrupted in the image determines the quantifi-
cation of the noise [17]. The important sources of noise in the digital images
are the environmental conditions, which may affect the imaging sensor, low
light and sensor temperature may which introduces noise in the image, dust
particles present in the scanner which may introduce noise in the digital image
and finally the interference in transmission channel [17]
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2.3.1 Types of Noise Models
Digital images are prone to a variety of types of noise. Noise is the result
of errors in the image acquisition process that result in pixel values that do
not reflect the true intensities of the real scene. Depending upon the type
of disturbance the noise can affect the image to a different extent. Different
noise models include the Gaussian noise model, [18]

2.3.1.1 Gaussian Noise Model

It is also called as electronic noise because it arises in amplifiers or detectors.
Gaussian noise caused by natural sources such as thermal vibration of atoms
and discrete nature of radiation of warm objects. Gaussian noise generally
disturbs the gray values in digital images. That is why Gaussian noise model
essentially designed and characteristics by its PDF or normalizes histogram
with respect to gray value. This is given as [17]

pG(z) =
1

σ
√
2π

e
−
(z − µ)2

2σ2 (2.1)

where σ2 is the variance and µ is the mean value.

Figure 2.1:

2.3.1.2 Salt and Pepper Noise Model

This is also called data drop noise because statistically its drop the original
data values. This noise is also referred as salt and pepper noise. However
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the image is not fully corrupted by salt and pepper noise instead of some
pixel values are changed in the image. Although in noisy image, there is a
possibilities of some neighbors does not change [17].

p(z) =


pa for z = a

pb for z = b

0 otherwise

(2.2)

Figure 2.2: PDF of Salt and Pepper Noise

2.3.1.3 Periodic Noise

This noise is generated from electronics interferences, especially in power sig-
nal during image acquisition. This noise has special characteristics like spa-
tially dependent and sinusoidal in nature at multiples of specific frequency.
Its appears inform of conjugate spots in frequency domain. It can be con-
veniently removed by using a narrow band reject filter or notch filter [17].

2.3.1.4 Photon Noise (Poisson Noise)

The appearance of this noise is seen due to the statistical nature of electro-
magnetic waves such as X-rays, visible lights and gamma rays. The X-ray
and gamma ray sources emitted number of photons per unit time. These rays
are injected in patients body from its source, in medical X-rays and gamma
rays imaging systems. These sources are having random fluctuation of pho-
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Figure 2.3: Periodic Noise

tons [17]. This noise is also called as quantum (photon) noise or shot noise.

Figure 2.4: Poisson Noise

2.3.1.5 Exponential Noise

The pdf of exponential noise is given as

p(z) =

ae−az z ≥ 0

0 z < 0
(2.3)

2.3.1.6 Uniform Noise

The noise caused by quantizing the pixels of a sensed image to a number
of discrete levels is known a quantization noise. It has an approximately
uniform distribution. Though it can be signal dependent, it will be signal
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Figure 2.5: PDF of Exponential Noise

independent if other noise sources are big enough to cause dithering, or if
dithering is explicitly applied.

p(z) =


1

b− a
a ≤ z ≤ b

0 otherwise
(2.4)

Figure 2.6: PDF of Uniform Noise

2.3.1.7 Gamma Noise

Gamma noise is generally seen in the laser based images. It obeys the Gamma
distribution [19]

p(z) =


abzb−1

b− 1!
e−az z ≥ 0

0 otherwise
(2.5)
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Figure 2.7: PDF of Gamma Noise

2.3.1.8 Rayleigh Noise

Rayleigh noise presents in radar range images.

Figure 2.8: PDF of Rayleigh Noise

2.3.1.9 Brownian Noise (Fractal Noise)

Colored noise has many names such as Brownian noise or pink noise or flicker
noise or 1/f noise. In Brownian noise, power spectral density is proportional
to square of frequency over an octave i.e., its power falls on ¼ th part (6 dB per
octave). Brownian noise caused by Brownian motion. Brownian motion seen
due to the random movement of suspended particles in fluid. However this
noise follows non stationary stochastic process. This process follows normal
distribution. Statistically fractional Brownian noise is referred to as fractal
noise. Fractal noise is caused by natural process [17].
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2.3.1.10 Structured Noise

Structured noise are periodic, stationary or non stationary and a periodic in
nature. If this noise is stationary, it has fixed amplitude, frequency and phase.
Structured noise are caused by interferences among electronic components.
Noise presents in communication channel are in two parts, unstructured noise
(u) and structured noise (s). structured noise is also called low rank noise.
In a signal processing, it is more advantagable (more realistic) to considering
noise model in a lower dimensionality space [17]. Therefore, noise is added to
the image during image acquisition and to a lesser or greater extent affects the
image. So, the noise models are an important part of digital image processing.
Without having the knowledge about these models it is nearly impossible to
remove the noise from the image and perform de-noising actions.

2.3.2 Evolution of Image De-noising Research

Removing noise from the original signal is still a challenging problem for re-
searchers. There have been several published algorithms and each approach
has its assumptions, advantages, and limitations. This paper presents a re-
view of some significant work in the area of image de-noising. After a brief
introduction, some popular approaches are classified into different groups and
an overview of various algorithms and analysis is provided. Insights and po-
tential future trends in the area of de-noising are also discussed [20]

Digital images play an important role both in daily life applications such
as satellite television, magnetic resonance imaging, computer tomography as
well as in areas of research and technology such as geographical information
systems and astronomy. Data sets collected by image sensors are generally
contaminated by noise. Imperfect instruments, problems with the data ac-
quisition process, and interfering natural phenomena can all degrade the data
of interest. Furthermore, noise can be introduced by transmission errors and
compression. Thus, de-noising is often a necessary and the first step to be
taken before the images data is analyzed. It is necessary to apply an efficient
de-noising technique to compensate for such data corruption.

Image de-noising still remains a challenge for researchers because noise
removal introduces artifacts and causes blurring of the images. This chapter
describes different methodologies for noise reduction (or de-noising) giving an
insight as to which algorithm should be used to find the most reliable estimate
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of the original image data given its degraded version. Noise modeling in
images is greatly affected by capturing instruments, data transmission media,
image quantization and discrete sources of radiation. Different algorithms are
used depending on the noise model. Most of the natural images are assumed
to have additive random noise which is modeled as a Gaussian. Speckle
noise [20] is observed in ultrasound images whereas Rician noise [1] affects
MRI images. The scope of the paper is to focus on noise removal techniques
for natural images. [20]

Image De-noising has remained a fundamental problem in the field of im-
age processing. Wavelets give a superior performance in image de-noising due
to properties such as sparsity and multi resolution structure. With Wavelet
Transform gaining popularity in the last two decades various algorithms for
de-noising in wavelet domain were introduced. The focus was shifted from
the Spatial and Fourier domain to the Wavelet transform domain. Ever since
Donoho’s Wavelet based thresholding approach was published in 1995, there
was a surge in the de-noising papers being published. Although Donoho’s con-
cept was not revolutionary, his methods did not require tracking or correlation
of the wavelet maxima and minima across the different scales as proposed by
Mallat [13]. Thus, there was a renewed interest in wavelet based de-noising
techniques since Donoho [21] demonstrated a simple approach to a difficult
problem.

Researchers published different ways to compute the parameters for the
thresholding of wavelet coefficients. Data adaptive thresholds were introduced
to achieve optimum value of threshold. Later efforts found that substantial
improvements in perceptual quality could be obtained by translation invari-
ant methods based on thresholding of an Un decimated Wavelet Transform .
These thresholding techniques were applied to the non orthogonal wavelet co-
efficients to reduce artifacts. Multi wavelets were also used to achieve similar
results. Probabilistic models using the statistical properties of the wavelet co-
efficient seemed to outperform the thresholding techniques and gained ground.
Recently, much effort has been devoted to Bayesian de-noising in Wavelet do-
main. Hidden Markov Models and Gaussian Scale Mixtures have also become
popular and more research continues to be published. Tree Structures or-
dering the wavelet coefficients based on their magnitude, scale and spatial
location have been researched. Data adaptive transforms such as Indepen-
dent Component Analysis (ICA) have been explored for sparse shrinkage.
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Figure 2.9: Classification of De-Noising Algorithm

The trend continues to focus on using different statistical models to model
the statistical properties of the wavelet coefficients and its neighbors. Fu-
ture trend will be towards finding more accurate probabilistic models for the
distribution of non-orthogonal wavelet coefficients [11].

2.3.3 Classification of Image De-noising Algorithms

As shown in Figure 2.9, there are two basic approaches to image de-noising,
spatial filtering methods and transform domain filtering methods.

2.3.4 Spatial Filtering
A traditional way to remove noise from image data is to employ spatial filters.
Spatial filters can be further classified into non-linear and linear filters [22].

2.3.4.1 Non-Linear Filters

With non-linear filters, the noise is removed without any attempts to explicitly
identify it. Spatial filters employ a low pass filtering on groups of pixels
with the assumption that the noise occupies the higher region of frequency
spectrum. Generally spatial filters remove noise to a reasonable extent but at
the cost of blurring images which in turn makes the edges in pictures invisible.
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In recent years, a variety of nonlinear median type filters such as weighted
median, rank conditioned rank selection, and relaxed median [16] have been
developed to overcome this drawback [22].

2.3.4.2 Linear Filters

A mean filter is the optimal linear filter for Gaussian noise in the sense of
mean square error. Linear filters too tend to blur sharp edges, destroy lines
and other fine image details, and perform poorly in the presence of signal-
dependent noise. The wiener filtering method requires the information about
the spectra of the noise and the original signal and it works well only if the
underlying signal is smooth. Wiener method implements spatial smoothing
and its model complexity control correspond to choosing the window size.
To overcome the weakness of the Wiener filtering, Donoho and Johnstone
proposed the wavelet based de-noising scheme in [23].

2.3.5 Transform Domain Filtering

The transform domain filtering methods can be subdivided according to the
choice of the basis functions. The basis functions can be further classified as
data adaptive and non-adaptive. Non-adaptive transforms are discussed first
since they are more popular.

2.3.5.1 Non-Adaptive thresholds

VisuShrink [23], is non-adaptive universal threshold, which depends only on
number of data points. It has asymptotic equivalence suggesting best perfor-
mance in terms of MSE when the number of pixels reaches infinity. VisuShrink
is known to yield overly smoothed images because its threshold choice can be
unwarrantedly large due to its dependence on the number of pixels in the
image.

2.3.5.2 Adaptive Thresholds

SureShrink [23], uses a hybrid of the universal threshold and the SURE
[Stein’s Unbiased Risk Estimator] threshold and performs better than Vis-
uShrink. BayesShrink [23] minimizes the Bayes’ Risk Estimator function as-
suming Generalized Gaussian prior and thus yielding data adaptive threshold.
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BayesShrink outperforms SureShrink most of the times. Cross Validation [24]
replaces wavelet coefficient with the weighted average of neighborhood co-
efficients to minimize generalized cross validation (GCV) function providing
optimum threshold for every coefficient. The assumption that one can distin-
guish noise from the signal solely based on coefficient magnitudes is violated
when noise levels are higher than signal magnitudes. Under this high noise cir-
cumstance, the spatial configuration of neighboring wavelet coefficients can
play an important role in noise-signal classifications. Signals tend to form
meaningful features (e.g. straight lines, curves), while noisy coefficients often
scatter randomly.

2.3.5.3 Spatial-Frequency Filtering

Spatial-frequency filtering refers use of low pass filters using Fast Fourier
Transform (FFT). In frequency smoothing methods [10] the removal of the
noise is achieved by designing a frequency domain filter and adapting a cut-off
frequency when the noise components are de-correlated from the useful signal
in the frequency domain. These methods are time consuming and depend
on the cut-off frequency and the filter function behavior. Furthermore, they
may produce artificial frequencies in the processed image. Operations in the
wavelet domain can be subdivided into linear and nonlinear methods.

2.3.5.4 Data-Adaptive Transforms

Recently a the method called Independent Component Analysis (ICA) has
gained wide spread attention. The ICA method was successfully implemented
in [24] in de-noising Non-Gaussian data. One exceptional merit of using ICA
is it’s assumption of signal to be Non-Gaussian which helps to de-noise images
with Non-Gaussian as well as Gaussian distribution. Drawbacks of ICA based
methods as compared to wavelet based methods are the computational cost
because it uses a sliding window and it requires sample of noise free data or
at least two image frames of the same scene. In some applications, it might
be difficult to obtain the noise free training data.
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2.4 Image compression
Image compression, the art and science of reducing the amount of data re-
quired to represent an image is one of the most useful and commercially
successful technologies in the field of digital image processing. The num-
ber of images that are compressed and decompressed daily is staggering and
the compression and decompressions themselves are virtually invisible to the
user [25]. Digital images are widely used in a number of various applications.
It is seen that uncompressed digital images would need large storage capacity
and wider transmission bandwidth for effective utilization of picture detail
in modern applications. Therefore, the effective image compression solutions
are becoming more critical with the recent growth of data intensive, multime-
dia based web applications [4]. In the development of efficient compression
techniques will continue to design challenge for future communication system
and advanced multimedia applications. During image compression quality of
decompressed image is also criterion for evaluation of given coding scheme.
In the process of compression decompression various artifacts such as block-
ing artifacts, blur artifacts, rising or edge artifacts are observed . Blocking
artifacts often exist in the images compressed by standards such as JPEG
and MPEG which causes serious image degradation [26]. Blocking artifacts
is a prevailing degradation caused by Block-Based Discrete Cosine Transform
(BDCT) coding technique under low bit rate conditions [27].

There are two fundamental components of compression are redundancy and
irrelevancy reduction. Redundancy reduction aims at removing duplication
from the signal source. Irrelevancy reduction omits parts of the signal that
will not be noticed by the signal receiver, namely the Human Visual System
(HVS). In general, three types of redundancy can be identified. First, coding
Redundancy, in which fewer bits to represent frequently occurring symbols.
Second, Inter-pixel Redundancy, in which the neighboring pixels have almost
same value. Finally, irrelevant information, since the human visual system
cannot simultaneously distinguish all colors.

Data compression a method that takes an input data D and generates the
data C(D) with the less number of bits as compared to input data. The reverse
process is called decompression which takes the compressed data C(D) and
reconstructs the data D′ as shown in figure 2.10. Compression can be divided
into two categories, as lossless and lossy compression [28] .
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Figure 2.10: Compression-Decompression System

Figure 2.11: Image Compression Techniques

2.4.1 Lossless Compression Techniques

Lossless data compression techniques are applied on text data or scientific data
and preferred for artificial images such as technical drawings, icons or comics.
Lossless compression method may also be preferred for high value content,
such as medical image scans made for archive purposes. Lossless compression
is usually two steps algorithm. The first step transforms the original image
to some other format in which the inter-pixel redundancy is reduced. The
second step uses an entropy encoder to remove the coding redundancy. The
lossless decompression is a perfect inverse process of the lossless compressor.

2.4.2 Lossy Compression Technique

Lossy method is especially suitable for natural images such photos in ap-
plications where minor loss of fidelity is acceptable to achieve a substantial
reduction in bit rate. The lossy compression that produces imperceptible dif-
ferences can be called visually lossless. Generally, most lossy compression is
there steps algorithm. The first stage is a transform to eliminate the inter-

22



2 Chapter Two: Literature Review

Figure 2.12: Lossless Compression Techniques

Figure 2.13: Lossless Compression Techniques

pixel redundancy to pack information efficiently. There quantizer is applied
to remove psycho-visual redundancy to represent the packed information with
a few bits as possible. The quantized bits are then efficiently encoded to get
more compression from the coding redundancy.
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Table 2.1: Image formats and its features
Format Features Disadvantages
TIFF (Tagged Image
File Format) (lossy and
lossless)

Flexible format, save
8 or 16 bits per color
(RGB) totally 24 or 48
bits

Not used in web pages
because TIFF files re-
quire large size.

GIF (Graphics Inter-
change Format)

Grayscale and black
white Image, it works
with 8 bits per pixel or
less which indicates 256
or less colors. It states
simple graphics, logos
and cartoon style im-
age.

It does not work with
color

PNG (Portable Net-
work Graphics) (Loss-
less)

Same 8 bits, 24 bits
and 48 bits per pixel.
10 to 30% compressed
than GIF format.
Also, PNG format
have smaller size and
more colors compare
to others

JPEG (Joint Photo-
graphic Expert Group)
(Lossy)

It support 8 bits gray
scale and 24 bits
color images, provide
motion video com-
pression, compress the
meal would subjects,
photographs and video
stills

Black & white docu-
ments, line art anima-
tions

BMP (Bitmap) (do not
compress)

Graphics file related to
Microsoft window op-
erating system, sim-
plicity. BMP images
are binary files.

Large in size, it does
not support true colors

RAW (lossless/lossy) File size smaller than
TIFF format. Avail-
able on digital cameras

These are not stan-
dardized image and it
require manufacture’s
software to

24



2 Chapter Two: Literature Review

Figure 2.14: Lossy Image Compression

Figure 2.15: original Lena image (b) compressed 85% (1.8kb)(c) high com-
pressed 96% (0.56 kb)

2.4.3 Advantage Of Image Compression

There are the following advantages of image compression. The size reduction
is most significant benefit of the image compression. It takes up less space
on the hard drive and retains the same physical size, unless edit the image’s
physical size in an image editor. The file size reduction with the help of
internet, to create image rich sites without using much bandwidth or storage
space. The second advantage is associated with data loss. Some common files
like JPEG, which an image shrinks in the size of compression, will discard
some of the photo’s data permanently. So compress the images to ensure that
decompressed back up before starting. Otherwise lose the high quality of the
original decompressed image permanently. The third advantage is concerned
with slow devices. Various electronics devices may load large compressed
image slowly. For example CD devices can only read data at a specific rate
and cannot display large images in real time. Also doe some webhost that
transfer data slowly compressed images remain necessary for a fully functional
websites. Image compression allow for the faster loading of data on slower
devices.
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2.4.4 Performance Parameters
There are two performance parameters which are used to measure the per-
formance of the image compression algorithm. One is PSNR (Peak Signal
to Noise Ratio) and second is MSE (Mean square error). The MSE is the
cumulative difference between the compressed image and original image.

MSE =

∑
M,N (L1(m,n)− L2(m,n))

2

M ×N
(2.6)

PSNR is the measurement of the peak error between the compressed image
and original image. The higher PSNR contains better quality of image. To
complete the PSNR, first of all MSE is completed [8].

PSNR = 10 log10
R2

MSE , (2.7)

where R is the relative data redundancy of the representation with b bits,
which is given by

R =
1

c
, (2.8)

where c is the compression ration, which is given by

c =
compressed image
original image (2.9)

This Thesis constitutes the idea of image compression, numerous technolo-
gies, different types of images used within the photo compression. All the
image compression techniques are useful in their related areas and every day
new compression techniques is developing which gives better compression ra-
tio. Based or different technology, the quality of image can be measured by
various important parameters like compression ratio, MSE, PSNR.
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3 Chapter Three The Wavelet
Transform

3.1 Introduction to Wavelet Transform
The wavelet transform has received much attention in the last few years for
its application to digital signal processing problems. The wavelet transform is
useful tools since it retains spatial information while at the same time provide
a division of the frequency content by employing compactly supported basis
function. The wavelet decomposition methodology is that the wavelet basis
functions have compact support, which means that the basis functions are
non-zero only on a finite interval. In contrast, the sinusoidal basis functions
of the Fourier expansion are infinite in extent.

The compact support of the wavelet basis functions allows the wavelet
transformation to efficiently represent functions or signals which have local-
ized features. Many real-world signals have these features, and decompositions
such as the Fourier transform are not well suited to represent such signals.
The wavelet transform divides the plane into different sized bins, which gives
better resolution in time for high frequency components and better frequency
resolution for low frequency components (see Figure3.1).

Figure 3.1: Time-frequency tiling for DWT
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3.1.1 Time-frequency tiling for DWT
The DWT basis functions corresponding to the fine scale wavelet coefficients
w3,1, w3,2, . . . , w3,8 are well-localized in time but have large bandwidths. They
capture the high-frequency characteristics of a signal at different times. The
DWT basis functions corresponding to the coarser scales wavelet coefficients
w2,1, . . . , w2,4 and w1,1 and w1,2, capture the intermediate frequency character-
istics of the signal at different times [29].

3.1.2 Time-frequency tiling for DFT

In contrast to the DWT basis functions, the DFT basis function have sup-
ported over the entire time domain but are perfectly localized in frequency.
The DFT coefficients capture the overall signal energy at a particular fre-
quency fn.

To develop the wavelet transform, we start with the complete signal space
(function space) V0. We will create a smoother space V1 which is an approxi-
mation to complete signal space [29].

Signals in space are approximation of those in , lacking the fine scale struc-
ture which we have removed, therefore, we will call these spaces approximation
space. Continuing this iteration upon , we have a set of nested approximation
spaces to with the relationship as shown in figure3.2

Figure 3.2: The approximation spaces
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Given that each of the Vj as a subspace of the space above, we can now
construct a space detail, which was removed as the orthogonal compliment to
the approximation space. We can divide each Vj into the sum of two spaces
as

Vj = Vj+1 ⊕Wj+1, (3.1)

where the operation ⊕ denotes direct addition and thus the space Wj+1 is
the compliment space to Vj+1 in the space Vj. A space that is particularly
important in signal processing is call L2(R) . This is the space of all basis
functions f(t) with a well defined integral of the square of the modulus of the
function. The L signifies a Lebesque integral, the ”2” denotes the integral
of the square of the modulus of function, and R states that the independent
variable of the integration (t) is a number over the whole real line. In order to
develop the wavelet expansion [14], we need the idea of an expansion set or a
basis set. If we start with the vector space of signals, V0, then if any f(t) ∈ V0

can be expressed as

f(t) =
∑
k

akψk(t) for any f(t) ∈ V0 (3.2)

where ak denote the expansion coefficients, and ψk(t) called the expansion set.
Then the coefficients can be calculated by the inner product

ak =
⟨
f(t), ψ(t)

⟩
=

∫
f(t)ψ(t) dt (3.3)

We can define the wavelets as a family of functions generated from a single
function by translation and dilation. The general form of these wavelets is
described by

ψj,k = 2j/2 ψ
(
2jt− k

)
(3.4)

where ψ expansion set and also called the mother wavelet and it is used to
generate all other members of the family. 2j is the scaling of t ( j is the log2
of the scale), k is the translation in t, and 2j/2 maintains the L2 norm of the
wavelet at different scales.

These wavelets are used in the wavelet transform. The purpose of the
wavelet transform is to represent a signal, f(t) as a superposition of wavelets.
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For special choices of the signal can be represented as

f(t) =
∑
j,k

cj,k ψj,k(t) (3.5)

cj,k =2−j/2

∫
f(t)ψj,k dt (3.6)

The purpose of obtaining this description is that it provides a representation
of the signal f(t) in terms of both space and frequency localization in figure3.2
. In comparison, the Fourier transform is excellent at providing a description
of the frequency content of a signal. But if the signal is non-stationary the
frequency characteristics vary in space, which is in different regions the signal
f(t)may exhibit very different frequency characteristics, the Fourier transform
does not take this into account. The wavelet transform on the other hand
produces a representation that provides information on both the frequency
and time characteristics and where these characteristics are localized in space.
The coefficients cj,k characterize the projection of f onto the base formed
by (j, k). For different j represents different frequency characteristics, k is
the translation of the dilated mother wavelet, therefore cj,k represent the
combined space-frequency characteristics of the signal. The cj,k are called
wavelet coefficients.

3.2 2D Discrete wavelet transform
The two-dimensional (2D) discrete wavelet transform (DWT) represents an
image x(t) ∈ L2(R2) in the terms of a set of shifted and dilated wavelet func-
tions

{
ψLH , ψHL, ψHH

}
and scaling function ϕLL. When these shifted and

dilated functions form an othonormal basis for L2
(
R2

)
, the image can be

decomposed as

x(t) =
∑
k∈Z2

uj,k ϕ
LL
j,k (t) +

∑
b∈B

∑
k∈Z2

wb
j,k ψ

b
j,k(t) (3.7)

where

ϕLLj,k = 2jϕLL
(
2jt− k

)
, (3.8)

ψb
j,k = 2jψb

(
2jt− k

)
, (3.9)
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and finally
b ∈ B = {LH,HL,HH} . (3.10)

The values LH,HL,HH denote the sub bands of the wavelet decomposition.
The expansion coefficients, called the scaling coefficients and wavelet coeffi-
cients, which are given by

uj,k =

∫
t∈R2

x(t)ϕj,k(t) dt, and (3.11)

wb
j,k =

∫
t∈R2

x(t)ψb
j,k(t) dt, (3.12)

respectively.
For simplicity we will use for 2-DWT coefficients and basis functions, wb

j,k →
wi and ψb

j,k → ψi. In practice, the image will be discretized using N ×N grid.
This imposes a maximal level of decomposition j = log2N with 4j−1 wavelet
coefficients in each subband and 4j−1 scaling coefficients at each scale.

3.2.1 Wavelet Transform Properties

Wavelet transforms possess a number of endearing properties that make wavelet-
domain statistical image processing attractive. We will section the wavelet
properties into three types; primary, secondary, and tertiary properties. The
following is the primary properties of the wavelet transform [30] and [31].
WP1. Locality: The wavelet coefficient represents image content locally in
space and frequency (see figure3.1).

WP2. Multi-resolution: The wavelet transform represents and analyzes the
image at a nested set of scales. Four wavelets at given scale nest inside one
at the next coarser scale, giving rise to quad-tree of wavelet coefficients that
mirrors that dyadic squares (see Figure 3.3).

Figure 3.3: Cameraman image in WT

Figure 3.3: (a) “Cameraman” image. (b) The two-dimensional wavelet
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transform represents an image in terms of (low pass) scaling coefficients and
three sub bands of (band pass) wavelet coefficients that detect edges in the
horizontal (LH), vertical (HL), and diagonal directions (HH). (c) The wavelet
sub bands form three multi scale quad-trees, with each (parent) coefficient
having four child coefficients in the next finer scale band. The child wavelets
divide the support of the parent wavelet in four.

WP3. Edge Detection: Wavelets act as local edge detectors. The edges in
the image are represented by large wavelet coefficients at the corresponding
locations.

WP4. Energy Compaction: The wavelet transforms of real-world images
tend to be sparse. A wavelet coefficient is large only if edges are present
within the support of the corresponding wavelet filter.

WP5. Decorrelation: The wavelet coefficients of real-world images tend
to be approximately de-correlated. The primary properties give the wavelet
coefficients of natural images significant statistical structure, which leads us
to the following secondary properties [30].

WS1. Non-Gaussianity: The wavelet coefficients have peaky, heavy-tailed
marginal distributions [30]. The Energy Compaction (WP4) of the signal in
the wavelet domain results in non Gaussian marginal probability density of
the wavelet coefficients as shown in Figure 3.4. Which can be understood as;
The Gaussian component corresponding to the small state has a relatively
small variance, capturing the peakiness around zero, while the component
corresponding to the large state has a relatively large variance, capturing the
heavy tails. Even though, no Gaussian density has heavy tails in the strict
sense. But you find that a Gaussian with a large variance captures the shape
of the heavy-tailed density in the region where large values are likely.

WS2. Persistency: Large/small values of wavelet coefficients tend to prop-
agate through the scales of the quad-trees [5]. Persistency is an effect of the
Edge Detection (WP3) and Multi-resolution (WP2) properties. (See Figure3.5

respectively, in Donoho and Johnstone’s (a) Doppler and (b) Bumps test
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Figure 3.4: Peaky and heavy-tailed marginal histogram of the finest scale
(J=5) wavelet coefficients of cameraman image.

Figure 3.5: Clustering and persistence illustrated

signals [1]. The signals lie atop the time–frequency tiling (Fig.3-1) provided by
a seven-scale wavelet transform. Each tile is colored as a monotonic function
of the wavelet coefficient energy,with darker tiles indicating greater energy.
An additional wavelet-domain properties exploited by the HMT can be use to
reduce HMT model parameters. This model is constructed using two empiri-
cal tertiary properties of image wavelet coefficients. These tertiary properties
reflect the self-similar nature of images and their resulting generalized 1/f

spectral behavior [2].

WT1. Exponential decay across scale: The magnitudes of the wavelet co-
efficients of real-world images decay exponentially across scale.

WT2. Stronger persistence at fine scales: The persistence of large/small
wavelet coefficient magnitudes becomes exponentially stronger at finer scales.
Using WT1 and WT2, we will develop a reduced-parameter HMT model that
is described with just nine meta-parameters independent of the size of the
image and the number of wavelet scales.
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3.3 JPEG 2000 Image Compression

3.3.1 Introduction

The JPEG (Joint Photographic Experts Group) 2000 standard, finalized in
2001, defines a new image coding scheme using state of the art compression
techniques based on wavelet technology. Its architecture is useful for many
diverse applications, including Internet image distribution, security systems,
digital photography, and medical imaging. A lot of confusion exists as to
what JPEG 2000 is and how it compares with other compression standards
such as MPEG (Moving-Picture Experts Group) -2, MPEG-4, and the earlier
JPEG. With brief comparisons to other compression standards, this article is
primarily intended to highlight some of the often misunderstood and rarely
mentioned potential-become-actual benefits of JPEG 2000. JPEG 2000 is a
Compression techniques are used to reduce the redundant information in the
image data in order to facilitate the storage, transmission and distribution of
images (e.g. GIF, TIFF, PNG, JPEG) [31].

3.3.2 Features of JPEG 2000
• Lossless and lossy compression: the standard provides lossy compression
with a superior performance at low bit-rates. It also provides lossless com-
pression with progressive decoding. Applications such as digital libraries/-
databases and medical imagery can benefit from this feature.
• Protective image security: the open architecture of the JPEG2000 stan-
dard makes easy the use of protection techniques of digital images such as
watermarking, labeling, stamping or encryption
• Region-of-interest coding: in this mode, regions of interest (ROI’s) can be
defined. These ROI’ scan be encoded and transmitted with better quality
than the rest of the image.
• Robustness to bit errors: the standard incorporate a set of error resilient
tools to make the bit-stream more robust to transmission errors. Example
of region of interest coding shown in the following figure A region of interest
in the Barbara image is reconstructed with quality scalability. The region of
interest is decoded first before any background information.
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Figure 3.6: JPEG 2000 example of Region of interest

3.3.3 Limitations of JPEG Standard

• Low bit-rate compression
JPEG offers an excellent quality at high and mid bit-rates. However, the
quality is unacceptable at low bit-rates (e.g. below 0.25 bpp) • Lossless and
lossy compression
JPEG cannot provide a superior performance at lossless and lossy compres-
sion in a single code-stream. • Transmission in noisy environments
the current JPEG standard provides some resynchronization markers, but the
quality still degrades when bit-errors are encountered. • Different types of
still images
JPEG was optimized for natural images. Its performance on computer gen-
erated images and bi-level (text) images is poor.

3.3.4 JPEG 2000’s Advantages Over Other Compression
Standards

All MPEG standards are complex and computation intensive. This translates
into extensive processing latency and memory requirements in standard- defi-
nition (SD) applications. These factors become even more of a problem when
high-definition (HD) formats are considered, and JPEG 2000 becomes even
more desirable. Another strength of JPEG 2000 is the standard itself, which
allows immense flexibility and control in many different applications. There
is also much versatility regarding formats: JPEG 2000 supports anything
from 8-bits per sample to an unlimited amount of bits per sample, whereas
MPEG only supports 8-bit data. JPEG 2000 continues to gain popularity,
even though MPEG-2 is the established standard for DVD and broadcast ap-
plications. JPEG 2000 is also very popular in HD applications that require
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high-quality storage or transmission of HD images over wireless or other links.

3.3.5 DCT versus WT

JPEG 2000 uses the wavelet transform (WT) to reduce the amount of in-
formation contained in a picture, while MPEG and JPEG systems use the
discrete cosine transform (DCT). It is true that the WT requires more pro-
cessing power than the DCT, but MPEG systems require more than just the
DCT. The DCT, or any type of Fourier transform, expresses the signal in
terms of frequency and amplitude—but only at a single instant in time. The
WT transforms a signal into frequency and amplitude over time, and is there-
fore more efficient. The figures on the following page demonstrate this. To
obtain the same amount of information as with one WT pass, the DCT must
be used for every frequency; and each of these frequencies must be trans-
formed at each time instant for each (8*8) pixel block. In addition, MPEG
systems use inter-frame compression [motion estimation] in order to reduce
the amount of data further for motion estimation. This requires storage of at
least two entire fields in external memory. The computation-intensive motion
estimation process requires a very powerful processor. Temporal compression
can be used in JPEG 2000 systems, but it is not inherent in the JPEG 2000
standard.

3.3.6 Applications of JPEG2000

CCTV Security
When transmitting or storing picture information, compression must be em-
ployed to maintain picture resolution while making best use of limited channel
bandwidth. Compression is defined as lossless if full recovery of the original
is available from the channel without any loss of information; otherwise, it is
lossy. Standards are required to ensure interoperability. JPEG 2000 is the
only standard compression scheme that provides for both lossless and lossy
compression . As such, it lends itself to applications that require high-quality
images despite limitations on storage or transmission bandwidths. An impor-
tant feature of systems based on JPEG 2000 is the ability to extract a variety
of resolutions, components, areas of interest, and compression ratios from a
single JPEG 2000 code stream. This is not possible with any other compres-
sion standard because the image size, bit rate, and quality must be specified
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on the encode side and can not be determined or changed on the decode side.
For example, a closed- circuit TV (CCTV) security system can make use of
this feature by sending a single JPEG 2000 code stream over a low bandwidth
network. High-resolution images can be stored on a hard- disk drive (HDD),
while several lower-resolution images are displayed on monitors. The operator
on the receive side can decide what information to extract from the single code
stream sent [31]. JPEG 2000 is frame accurate, in that every single frame of
the input is contained in the compressed format. MPEG systems, on the other
hand, reduce the amount of data through temporal compression (which does
not encode each frame as a complete image), so MPEG compression is not
frame-accurate. For this reason, legal issues restrict the use of MPEG com-
pression in some security applications. To get around this problem, security
system and equipment providers have had to develop their own compression
schemes—or use the highly inefficient motion JPEG (M-JPEG) compression
standard—in order to provide a compressed stream that contains every single
field of the original. They can now use JPEG 2000 for new designs [10].

Internet Image Distribution
Progressive coding, another feature of the JPEG 2000 standard, means that
the bit stream can be coded in such a way as to contain less-detailed infor-
mation at the beginning of the stream and more detailed information as the
stream progresses. This makes it ideal for Internet/network applications—
especially with large images and low bandwidths—as the image can be seen in-
stantly on the decoding side, even with low-speed networks or image databases.
The lower sub bands are shown first, and more detail is added as time pro-
gresses. The picture thus becomes sharper and more detailed over time, and
the entire image does not have to be downloaded before it can be seen [32].
With the low-quality image instantly available, the user at the receiving end
can decide whether to view the picture in its fully decoded version, or to pass
it by and scan the next picture instead. Clients can view images at different
resolutions or quality levels [compression rates] making them suitable for any
transmission bandwidth, connection speed, or display device. In addition,
JPEG 2000 coding provides the option to zoom in or out on a particular area
of the image—or to display a particular region of the image at a different
resolution or compression rate. High Definition
At extreme compression levels, JPEG 2000 video starts to blur, but is still
quite viewable. MPEG or JPEG artifacts are much more disturbing to the
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eye, with the picture visibly broken down into small blocks at high compres-
sion ratios. The high image quality at medium-to-high bit rates and contents
that contain a lot of motion, lack of block artifacts, and high efficiency make
JPEG 2000 ideal for high-definition (HD) applications, such as digital cin-
ema, HD recording systems, and HD camera equipment. Many applications
require exact bit-rate control, which only JPEG 2000 can provide. Exact bit-
rate control is possible because an entire frame or field is transformed at once;
it is then broken down into bit streams or code blocks that can be processed
independently with the techniques described below. In systems using DCT,
quantization is the only technique used, and this makes exact bit-rate control
difficult. In order to control bit rate in DCT systems, the information must be
repeatedly re-processed and re-quantized. The rate- control algorithm used
in JPEG 2000 truncates each bit stream to meet a specific target bit rate,
adjusting the truncation and re-quantization of each code block’s data as re-
quired. In addition to programming the target bit rate, the standard allows
the user to specify a particular quality metric. In this case, the target bit rate
will vary to meet the specified quality factor, as long as the performance does
not fall below a specific peak signal-to-noise ratio. The PSNR is an indication
of picture quality comparable to perceived picture quality [9]

Figure 3.7: JPEG 2000 applications

3.3.7 JPEG 2000 Code Stream

A given input image or part of the image [tile] is sent to a set of wavelet
filters, which transform the pixel information into wavelet coefficients, which
are then grouped into several sub bands [the use of wavelets in encoding was

38



3 Chapter Three The Wavelet Transform

first explained in Analog Dialogue 30 -2 (1996)]. Each sub band contains
wavelet coefficients that describe a specific horizontal and vertical spatial fre-
quency range of the entire original image. This means that lower-frequency,
less-detailed information is contained in the first transform level, while more
- detailed, higher-frequency information is contained in higher transform lev-
els. For simplicity, only two levels of transform are shown here. The first
transform level results in sub bands LH1, HH1, HL1, and LL1. Only sub
band LL1 is passed on for further filtering, generating the next transform
level and creating sub bands LH2, HH2, HL2, and LL2. Equally sized code
blocks, which are essentially bit streams of data, are generated within each sub
band. This break-down is necessary for coefficient modeling and coding, and
is done on a code-block-by-code-block basis. In essence, the actual compres-
sion is achieved by truncating and/or re-quantizing the bit streams contained
in each code block. These bit streams are then optimally truncated using a
technique knows as post-compression-rate-control (PCRC). Code blocks can
be accessed independently. Their bit streams are coded with three coding
passes per bit plane. This process, called context modeling, is used to assign
information about the importance of each individual coefficient bit. The code
blocks can then be grouped according to their significance. On the decoding
side it is then possible to extract information according to its significance,
allowing the most significant information to be seen first. JPEG 2000 can
contain a user-defined number of layers, which are defined by PCRC and con-
text modeling. Each layer stands for a particular compression rate, where
the compression rate is achieved from the quantization-, rate-distortion-, and
context modeling processes. Layer 0, for example, contains bit streams-from
the lossy WT transform-that are heavily truncated, contain no coding passes,
and thus provide the highest compression rate and the lowest quality. Layer
16 can then contain bit streams that are less truncated and use a higher num-
ber of coding passes, thus providing low compression and high quality [16].
Tiles or images are further partitioned into precincts. Precincts contain a
number of code blocks, and are used to facilitate access to a specific area
within an image in order to process this area in a different way, or to decode
only a specific area of an image. The JPEG 2000 bit stream is generated by
arranging code blocks or precincts into an array of packets with the lower
subbands coming first. The JPEG 2000 stream starts with a main header
containing information such as: uncompressed image size, tile size, number of
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components, bit depth of components, coding style, transform levels, progres-
sion order, number of layers, code block size, wavelet filter type, quantization
level, etc. The entire image data, grouped in code blocks of LL, HL, LH, and
HH subbands, follows the header. Data is not contained in the header infor-
mation. Also, a table of contents can be stored on the encode side, and allows
a decoder to call up a certain resolution on demand, without first having to
decode or download the entire JPEG 2000 code stream [16].

3.3.8 Encoder and Decoder Structures of JPEG-2000

The simplified structures of the encoder and decoder of JPEG-2000 are shown
in Figure 3.8 Assume that we have a multiple-component image. The major
processing steps of the encoder are: component transformation, tiling, wavelet
transformation, quantization, coefficient bit modeling, arithmetic coding, and
rate-distortion optimization. The role of the decoder is to reverse the steps
performed by the encoder, except the rate-distortion optimization step.

Figure 3.8: Encoder Processing Steps

Figure 3.9: Encoder and decoder structure of JPEG-2000

3.3.9 Compression In the Encoder
Component Transform(Three steps:)
• Image tiling (optional) for each image component
• DC level shifting to samples of each tile are subtracted the same quantity
(i.e. component depth). • Color transformation (optional) from RGB to Y,
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Figure 3.10: Image Tiling and process in encoder

Cb and Cr • Discrete Wavelet Transform (DWT) is used to decompose each
tile component into different sub-bands.
• The transform is in the form of dyadic decomposition and use bi- orthogonal
wavelets.

Figure 3.11: Forward dwt transform

DWT can be irreversible or reversible Although Two filtering modes are
supported
• Convolution based
• Lifting based

. (2D)-Forward Transform
• 1-D sets of samples are decomposed into low-pass and high-pass samples.
• Low-pass samples represent a down-sampled, low resolution version of the
original set. • High pass samples represent a down-sampled residual version
of the original set (details).

3.3.9.1 Quantization

After transformation, all coefficients are quantized using scalar quantization.
Quantization reduces coefficients in precision. The operation is lossy unless
the quantization step is 1 and the coefficients integers (e.g. reversible integer
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Figure 3.12: Forward dwt transform with details

5/3 wavelet). The process follows the formula

qb(u, v) = sign
(
ab(u, v)

) ab(u, v)
∆b

(3.13)

where qb is the quantization level, (u, v) is the transform coefficient of sub
band ∆b=quantization step,ab (u, v)=largest integer not exceedingab Modes
of Quantization
� Integer mode€ integer-to-integer transforms are employed. Quantization
step are fixed to one. Lossy coding is still achieved by discarding bit-planes.
� Real mode€ real-to-real transforms are employed. Quantization steps are
chosen in conjunction with rate control. In this mode, lossy compression is
achieved by discarding bi-planes or changing the size of the quantization step
or both.
• Precinct: each sub-band is divided into rectangular blocks called precincts.
• Packets: three spatially consistent rectangles comprise a packet.
• Code-block: each precinct is further divided into non-overlapping rectan-
gles called code-blocks.
• Each code-block forms the input to the entropy encoder and is encoded
independently.
• Within a packet, code-blocks are visited in raster order.

Entropy Coding: Bit-planes
• The coefficients in a code block are separated into bit-planes. The indi-
vidual bit-planes are coded in 1-3 coding passes. Entropy Coding: Coding
Passes Each of these coding passes collects contextual information about the
bit- plane data. The contextual information along with the bit-planes are
used by the arithmetic encoder to generate the compressed bit-stream. The
coding passes are:
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Figure 3.13: Bit-planes (Entropy Coding)

• Significance propagation pass € coefficients that are insignificant and have
a certain preferred neighborhood are coded.
• Magnitude refinement pass € the current bits of significant coefficients are
coded. •Clean-up pass € the remaining insignificant coefficients for which no
information has yet been coded are coded.
JPEG2000 Bit-stream
For each code-block, a separate bit-stream is generated . The coded data of
each code-block is included in a packet. If more that one layer is used to en-
code the image information, the code-block bit-streams are distributed across
different packets corresponding to different layers.

Figure 3.14: JPEG 2000 bit stream

For a 512 x 512 gray-level image compressed with one tile, code-block size
64 x 64, precinct size 512 x 512, 3 levels of decomposition and one layer, the
general structure of the bit stream is as follows If all the packet headers are

Figure 3.15: JPEG 2000 bit stream example

grouped together in a single header and placed in the main header, the struc-
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ture is Layers of the JPEG2000 Bit-stream

Figure 3.16: JPEG 2000 bit stream example (packet together)

Therefore, each layer consists of a number of consecutive bit-plane coding
passes from each code-block in the tile, including all sub-bands of all compo-
nents for that tile. Layer Formation

Figure 3.17: Layers of the JPEG2000 Bit-stream

The individual code-block streams have the property that they can be trun-
cated to a variety of discrete lengths R1, R2, R3…Rn. . The distortion in-
curred when reconstructing from each of these truncated subsets is estimated
and denoted by D1, D2, D3…Dn. The Mean Squared Error distortion metric
is generally used. The first, lowest quality layer, is formed from the optimally
truncated code-block bit-streams.

Figure 3.18: two individual code-block streams
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Figure 3.19: Hierarchical structure of the JPEG2000 Bit-stream

3.3.9.2 Quality Scalability

By interleaving the packets in different orders, four possible progression orders
can be achieved in JPEG2000 Quality , Resolution , Spatial location and
Component

Figure 3.20: The Barbara image is decompressed at different qualities

3.3.9.3 Resolution Scalability

In a resolution scalable image coding algorithm, a multiresolution representa-
tion of the data is often obtained using a linear filter bank. Reversible cellular
automata have been recently proposed as simpler, nonlinear filter banks that
produce a similar representation. The original image is decomposed into four
subbands, such that one of them retains most of the features of the original
image at a reduced scale. [21]

Figure 3.21: The Barbara image is decompressed at different resolution

45



4 Chapter Four: Results and
Analysis

4.1 Image De-noising
This section takes you through the features of two-dimensional discrete wavelet
analysis using the Matlab software. to provides these functions for image
analysis. Although we will show how you can use two-dimensional wavelet
analysis to compress an image efficiently without sacrificing its clarity in the
following steps:

1. Load the Image using the command imread

2. Display the image. The oupt is shown in figure 4.1

Figure 4.1: Original color Image.

3. Convert Image to Grayscale Image

4. Perform a single-level wavelet decomposition To perform a single-level
decomposition of the image using the bior2.2 wavelet Type the following
code.
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[cA1,cH1,cV1,cD1] = dwt2(X,'bior3.7');

Figure 4.2: Gray Scale Image

This generates the coefficient matrices of the level-one approximation
(cA1) and horizontal, vertical and diagonal details (cH1,cV1,cD1, re-
spectively).

5. Construct and display approximations and details from the coefficients.
To construct the level-one approximation and details (A1, H1, V1, and
D1) from the coefficients cA1, cH1, cV1, and cD1, type the follwing code.

1 A1 = upcoef2 ( ' a ' , cA1 , ' b i o r 3 . 7 ' , 1 ) ;
2 H1 = upcoef2 ( 'h ' , cH1 , ' b i o r 3 . 7 ' , 1 ) ;
3 V1 = upcoef2 ( ' v ' , cV1 , ' b i o r 3 . 7 ' , 1 ) ;
4 D1 = upcoef2 ( 'd ' , cD1 , ' b i o r 3 . 7 ' , 1 ) ;

Figure 4.3 shows the single-level wavelet decomposition. Figure 4.4
shows the level-one approximation and details.

6. Regenerate an image by single-level Inverse Wavelet Transform. To find
the inverse transform, type
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Figure 4.3: single-level wavelet decomposition

Xsyn = idwt2(cA1,cH1,cV1,cD1,'bior3.7');

7. Perform a multilevel wavelet decomposition. To perform a level 2 de-
composition of the image (again using the bior3.7 wavelet), type
[C,S] = wavedec2(X,2,'bior3.7') ;
where X is the original image matrix, and 2 is the level of decomposition.
The coefficients of all the components of a second-level decomposition
(that is ,the second-level approximation and the first two levels of de-
tail) are returned concatenated into one vector, C. The Argument S is
a bookkeeping matrix that keeps track of the sizes of each component.

8. Extract approximation and detail coefficients. To extract the level 2
approximation coefficients from C, type
cA2 = appcoef2(C,S,'bior3.7' ,2) ;
To extract the first- and second-level detail coefficients from C, type
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Figure 4.4: level-one approximation and details

1 [ cH2 , cV2 , cD2 ] = de t coe f 2 ( ' a l l ' ,C, S , 2 ) ;
2 [ cH1 , cV1 , cD1 ] = de t coe f 2 ( ' a l l ' ,C, S , 1 ) ;

where the first argument ( 'h' , 'v' , or 'd') determines the type of de-
tail (horizontal, vertical, diagonal) extracted, and the last argument
determines the level.

9. Reconstruct the Level 2 approximation and the Level 1 and 2 details.
To reconstruct the level 2 approximation from C, type
A2 = wrcoef2('a',C,S,' bior3.7 ' ,2) ;
To reconstruct the level 1 and 2 details from C, type

1 H1 = wrcoef2 ( 'h ' ,C, S , ' b i o r 3 . 7 ' , 1 ) ;
2 V1 = wrcoef2 ( ' v ' ,C, S , ' b i o r 3 . 7 ' , 1 ) ;
3 D1 = wrcoef2 ( 'd ' ,C, S , ' b i o r 3 . 7 ' , 1 ) ;
4 H2 = wrcoef2 ( 'h ' ,C, S , ' b i o r 3 . 7 ' , 2 ) ;
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5 V2 = wrcoef2 ( ' v ' ,C, S , ' b i o r 3 . 7 ' , 2 ) ;
6 D2 = wrcoef2 ( 'd ' ,C, S , ' b i o r 3 . 7 ' , 2 ) ;

10. Display the results of a multilevel decomposition. Note With all the
details involved in a multilevel image decomposition, it makes sense to
import the decomposition into the Wavelet 2D graphical tool in order
to more easily display it. To display the results of the level 2 decompo-
sition, type the following code. the output is shown in figure 4.5.

1 colormap (map) ;
2 subplot ( 2 , 4 , 1 ) ; image ( wcodemat (A1, 192 ) ) ;
3 t i t l e ( ' Approximation A1 ' )
4 subplot ( 2 , 4 , 2 ) ; image ( wcodemat (H1, 192 ) ) ;
5 t i t l e ( ' Hor i zonta l De ta i l H1 ' )
6 subplot ( 2 , 4 , 3 ) ; image ( wcodemat (V1, 192 ) ) ;
7 t i t l e ( ' V e r t i c a l De ta i l V1 ' )
8 subplot ( 2 , 4 , 4 ) ; image ( wcodemat (D1, 192 ) ) ;
9 t i t l e ( ' Diagonal Deta i l D1 ' )

10 subplot ( 2 , 4 , 5 ) ; image ( wcodemat (A2, 192 ) ) ;
11 t i t l e ( ' Approximation A2 ' )
12 subplot ( 2 , 4 , 6 ) ; image ( wcodemat (H2, 192 ) ) ;
13 t i t l e ( ' Hor i zonta l De ta i l H2 ' )
14 subplot ( 2 , 4 , 7 ) ; image ( wcodemat (V2, 192 ) ) ;
15 t i t l e ( ' V e r t i c a l De ta i l V2 ' )
16 subplot ( 2 , 4 , 8 ) ; image ( wcodemat (D2, 192 ) ) ;
17 t i t l e ( ' Diagonal Deta i l D2 ' )

11. Reconstruct the original image from the multilevel decomposition. To
reconstruct the original image from the wavelet decomposition struc-
ture, type
X0 = waverec2(C,S,'bior3.7') ;
This reconstructs or synthesizes the original image from the coefficients
C of the multilevel decomposition.

4.2 Image Compression
To compress the original image X, use the ddencmp command to calculate
the default parameters and the wdencmp command to perform the actual

50



4 Chapter Four: Results and Analysis

Figure 4.5: level 2 decomposition

Figure 4.6: Result of 2 level Image decomposition

compression. Type

1 [ thr , sorh , keepapp ]= ddencmp( 'cmp ' , 'wv ' ,X) ;
2 [ Xcomp ,CXC,LXC,PERF0,PERFL2] = . . .
3 wdencmp( ' gbl ' ,C, S , ' b i o r 3 . 7 ' , 2 , thr , sorh , keepapp ) ;

Note that we pass in to wdencmp the results of the decomposition (C and S)
we calculated in step 7. We also specify the bior3.7 wavelets, because we used
this wavelet to perform the original analysis. Finally, we specify the global
thresholding option 'gbl '. See ddencmp and wdencmp reference pages for more
information about the use of these commands. To view the compressed image
side by side with the original, type
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1 colormap (map) ;
2 subplot (121) ; image (X) ; t i t l e ( ' Or i g ina l Image ' ) ;
3 ax i s square
4 subplot (122) ; image (Xcomp) ; t i t l e ( ' Compressed Image ' ) ;

Figure 4.7: compressed image side by side with the original

PERF0 =49.8076 PERFL =99.9817 These returned values tell, respec-
tively, what percentage of the wavelet coefficients Was set to zero and what
percentage of the image’s energy was preserved in the Compression process.
Note that, even though the compressed image is constructed from only about
half as many nonzero wavelet coefficients as the original, there is almost no
detectable Deterioration in the image quality.

4.3 Multilevel de-noising
In this section we apply the experiments in the image by choosing number
of noise level and different number of image de-noising resolution level from
GUI interface as well as matlab code of de-noising and calculate and estimate
the following parameter and Indicator like peak signal to noise ratio(PSNR)
, the signal to noise ratio(SNR) and the mean squared error(MSE) .
To display the results of the levels of decomposition, type on the following
menu and choose suitable one according to the noise

Choose amount of noise from list of noise in Figure4.8 and then add it to
the gray scale image .

Apply Wavelet Transform Method to The Noisy Image shown in figure4.9 ,
then to decomposition the image in different level see the menu on figure4.10
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Figure 4.8: Menu ‘wavelet Family’

Figure 4.9: Menu ‘Noise Size’

Table (4.1) and table (4.2) represented the parameter of noisy image ,in
table (4.1) the wavelet coefficient is 2 db it has been chosen from Figure4.8
the menu of wavelet family and the amount of noise added to the image is
5 db has been chosen from 4.9 and the number of decomposition level is 2
level of filtering that mean the noisy image will pass through low pass filter
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Figure 4.10: Menu ‘Decomposition Level’

and high pass filter two times figure4.11 show the the filtering level of the
noisy image . The given figures represent the approximation , horizontal ,

Figure 4.11: two level wavelet decomposition

vertical and diagonal details of the image after applying two level of decom-
position Figure4.12 represent the output of de-noise image and also the table
4.3 show that the PSNR in the de-noise image is greater than PSNR in noisy
image , SNR in de-noise image is greater than SNR in noisy image and MSE
in de-noise image is less than MSE in noisy image. Peak Signal to Noise
Ratio ( PSNR) and Mean Square Error (MSE) are used to comparing the
squared error between the original image and the reconstructed image.There
is an inverse relationship between PSNR and MSE. So ahigher PSNR value
indicates the higher quality of the image (better). The values for the PSNR
in lossy image and video compression are between 30 and 50 dB, provided
the bit depth is 8 bits, where higher is better. For 16-bit data typical values
for the PSNR are between 60 and 80 dB.[5][6] Acceptable values for wireless
transmission quality loss are considered to be about 20 dB to 25 dB

In this part of experiments the amount of noise has been increased and
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Table 4.1: parameter of 2 level decomposition
Wavelet
family

amount of
noise

number of decomposition level

2 db 5 db 2

Table 4.2: parameter of 2 level noisy image before applying DWT
PSNR SNR MSE
19.606669 15.268698 0.010948

Figure 4.12: ‘Result of 2 level Image decomposition’

amount of decomposition also increased from the menu of noise level and
menu of decomposition level in Figure4.9 and Figure4.10 respectively to get
more and more clear and de-noise image with high quality and resolution, it
became 10 db of noise with number of decomposition is 3 level of filtering
show in Figure4.13. those menu (wavelet family menu , noise level menu
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Table 4.3: Result of 2 Level De-Noise Image
Parameter of de-noising Image DWT Stationary DWT
The peak signal to noise ratio of the
reconstructed image

27.836547 28.993875

The signal to noise ratio of the re-
constructed image

23.498576 24.655903

The mean squared error of the re-
constructed image

0.001646 0.001261

Table 4.4: parameter of 3 level decomposition
Wavelet
family

amount of
noise

number of decomposition level

3 db 10 db 3

and decomposition menu)allow user to select suitable and perfect method to
control the noisy image in different types of applications and give user high
degree of purity on the noisy image . The result shown that the PSNR and
SNR are increased from 24.501409 , 20.163438 in noisy image to 29.677112
and 25.339140 in the de-noise image and the MSE decreased from 0.003547
to 0.001077 , all result of 3 level of DWT shown in table (4.6)

4.4 Graphical User Interface (GUI) Results
This section takes you through the features of two-dimensional discrete wavelet
analysis using the Wavelet Toolbox software. The toolbox provides these
functions for image analysis. In this section we explore the same image as in
the previous section, but we use the Graphical interface tools to analyze the
image.

Table 4.5: parameter of 3 level noisy image before applying DWT
PSNR SNR MSE
24.501409 20.163438 0.003547
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Table 4.6: Result of 3 Level De-Noising Image
Parameter of de-noising Image DWT Stationary DWT
The peak signal to noise ratio of the
reconstructed image

29.677112 30.374443

The signal to noise ratio of the re-
constructed image

25.339140 26.036472

The mean squared error of the re-
constructed image

0.001077 0.000917

Figure 4.13: ‘Result of 3 level Image de-noising’

4.4.1 Image De-noising (GUI)
Start the 2-D Wavelet Analysis Tool. From the MATLAB prompt, type
wavemenu The Wavelet Tool Main Menu appears.show in figure 4.14

Click the Wavelet 2-Dmenu item. The discrete wavelet analysis tool for two
dimensional Image data appears.

Load an image. From the File menu, choose the Load > Image option see
figure4.15

When the Load Image dialog box appears, select the MAT-file wbarb.mat,
which is in the MATLAB folder toolbox/wavelet/wavedemo. Click the OK
button. The image is loaded into the Wavelet 2-D tool.
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Figure 4.14: Wavelet Tool Main Menu

Figure 4.15: Load Image Option
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Analyze the image. Using the Wavelet and Level menus located to the
upper right, determine the Wavelet family, the wavelet type, and the number
of levels to be used for the analysis. For this analysis, select the bior3.7
wavelet at level 2. Click the Analyze button. After a pause for computation,
the Wavelet 2-D tool

Figure 4.16: Apply DWT

4.4.2 Image CompressION Using (GUI)

Click the Compress button, located to the upper right of the Wavelet 2-
Dwindow. The Wavelet 2-D Compression window appears. the following
figure show that

Figure 4.17: Image de-noising and Compression using DWT
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4.4.2.1 Analysis of Compressed Image

The tool automatically selects thresholding levels to provide a good initial
balance Between retaining the image’s energy while minimizing the number
of coefficients Needed to represent the image. However, you can also adjust
thresholds manually using the By Level thresholding option, and then the
sliders or edits corresponding to each level.

Figure 4.18: Image Thresholding

Select from the direction menu whether you want to adjust thresholds for
horizontal, Diagonal or vertical details. To make the actual adjustments for
each level, use the sliders or use the left mouse button to directly drag the
yellow vertical lines. To compress the original image, click the Compress but-
ton. After a pause for computation, the compressed image is displayed beside
the original. Notice that compression eliminates almost half the coefficients,
yet no detectable deterioration of the image appears. .to Show the residuals.
From the Wavelet 2-D Compression tool, click the Residuals button. The
Moreon Residuals for Wavelet 2-D Compression window appears. Displayed
statistics include measures of tendency (mean, mode, median) and dispersion
(range, standard deviation). In addition, the tool provides frequency dis-
tribution diagrams (histograms and cumulative histograms). The same tool
exists for the Wavelet 2-D De-noising tool. Note the statistics displayed in
the above figure are related to the displayed image But not to the original
one. Usually this information is the same, but in some cases, Edge effects may
cause the original image to be cropped slightly. To see the exact statistics,
use the command line functions to get the desired image and then apply The
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desired MATLAB statistical function(s). the following figure show that

Figure 4.19: Image residuals
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5 Chapter Five: Conclusion and
Recommendations

5.1 Conclusion
In this thesis Image de-noising using wavelet transform has been discussed
in the first part of the thesis. the sources of noise in the image and the
algorithm used to remove it has been introduced in chapter two . In chap-
ter three wavelet transform which is widely used in different scientific ap-
plications including signal and image processing has been explained . This
ongoing growing success, which has been characterized by the adoption of
some wavelet-based schemes, is due to features inherent to the transform,
such as time-scale localization and multi-resolution capabilities The wavelet
de-noising techniques offers high quality and flexibility for the noise problem
of signals and image. We have taken the result by using matlab code , GUI
with matlab code and GUI .The result show that using DWT increase the
PSNR ,SNR in the image and decrease the MSE of de-noise image.Although
compression in Wavelet . As a result we get the compressed image as well
as noise free in vertical, horizontal and diagonal details and got energy ratio.
JPEG 2000 is a much better image solution than the original JPEG file for-
mat. Using a sophisticated encoding method, JPEG 2000 files can compress
files with less loss of, what we might consider, visual performance. In addi-
tion, the file format is less likely to be affected by ‘bit errors’ and other file
system errors due to its more efficient coding structure.

5.2 Recommendations
There is always room for improvement. Multi-wavelets are relatively a new
subject of study. Most current filters available have two, three or fourth order
of approximation. Future construction methods may add even higher order of
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approximation, while preserving the desirable features of current methods. It
most likely result in multi-filters that perform even better in image de-noising
and compression applications. There is a possibility that in future many more
multi-wavelet systems might be developed with matrix coefficients with higher
order, which could provide even better results in the field of image de-noising
and compression.

However, the current data compression methods might be far away from
the ultimate limits. Interesting issues like obtaining accurate models of im-
ages, optimal representations of such models, and rapidly computing such
optimal representations are the grand challenges facing the data compression
community. Image coding based on models of human perception, scalability,
robustness, error resilience, and complexity are a few of the many challenges
in image coding to be fully resolved and may affect image data compression
performance in the years to come. Although Future of image compression is
progressive for 2D image and its goes on 3D image compression also. For 3D
image compression as well as video compression used three dimensional math-
ematical Transforms with encoding techniques. In future image compression
centered high compression ratio with quality improvement.
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Appendix A

1 Image De-noising Code

1 c l e a r a l l ;
2 c l o s e a l l ;
3 c l c
4

5 xx = i m g e t f i l e ( ) ;
6 Io = imread ( xx ) ;
7

8 i f ( s i z e ( Io , 3 ) ==3)
9 Id = rgb2gray ( Io ) ;

10 e l s e
11 Id = Io ;
12 end
13

14 [M,N] = s i z e ( Id ) ;
15

16 i f l og (M) / log (2 ) ̸= f l o o r ( l og (M) / log (2 ) )
17 Dm = f l o o r ( l og (M) / log (2 ) ) ;
18 Mn = 2^Dm;
19 e l s e
20 Mn = M;
21 end
22 i f l og (N) / log (2 ) ̸= f l o o r ( l og (N) / log (2 ) )
23 Dn = f l o o r ( l og (N) / log (2 ) ) ;
24 Nn = 2^Dn;
25 e l s e
26 Nn = N;
27 end
28 Id = i m r e s i z e ( Id , [Mn Nn ] ) ;
29

30 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
31
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32 ww= menu( ' S e l e c t a wavelet fami ly ' , ' db1 ' , ' db2 ' , ' db3 ' , ...

' sym3 ' , ' c o i f 2 ' , ' b i o r 2 . 2 ' ) ;
33 switch ww
34 case 1
35 wname = ' db1 ' ;
36 case 2
37 wname = ' db2 ' ;
38 case 3
39 wname = ' db3 ' ;
40 case 4
41 wname = ' sym3 ' ;
42 case 5
43 wname = ' c o i f 2 ' ;
44 case 6
45 wname = ' b i o r 2 . 2 ' ;
46 end
47

48 s s = menu( ' S e l e c t the amount o f n i o s e add in dB ' , ' 2 dB ' , ' 5 ...

dB ' , ' 10 dB ' ) ;
49 switch s s
50 case 1
51 SNR = 2 ' ;
52 case 2
53 SNR = 5 ;
54 case 3
55 SNR = 10 ;
56 end
57

58 l e v = menu( ' S e l e c t the number o f decomposit ion l e v e l ' , ' 1 ...

l e v e l ' , ' 2 l e v e l ' , ' 3 l e v e l ' ) ;
59

60 c l e a r ww, c l e a r ss , c l e a r namef i l e , c l e a r pathname ;
61

62 f i g u r e (1 )
63 subplot (2 , 2 , 1) , imshow ( Id ) , t i t l e ( ' Or i g ina l Gray Image ' )
64

65 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
66

67 %// Adjust i n t e n s i t i e s in image I to range from 0 to 1
68 Im = double ( Id ) /255 ;
69

70 %// Add no i s e to image
71 randn ( ' seed ' ,212096) ;
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72 v = var (Im ( : ) ) / 10^(SNR/10) ;
73 I_noisy = imnoise (Im , ' gauss ian ' , 0 , v ) ;
74

75 subplot (2 , 2 , 2) , imshow ( I_noisy ) , t i t l e ( ' Noisy image ' )
76

77 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
78

79 Error1 = I_noisy − Im ; % c a l c u l a t e ...

the SNR by d e f i n a t i o n
80 SNR_1n = 10∗ log10 ( var (Im ( : ) ) / var ( Error1 ( : ) ) ) ; % ...

c a l c u l a t e the SNR by d e f i n a t i o n
81

82 [PSNRn, SNRn] = psnr ( I_noisy , Im) ; % ...

c a l c u l a t e the SNR by Matlab func t i on
83

84 mse_n = immse (Im , I_noisy ) ; % c a l c u l a t e ...

the mean square e r r o r by matlab func t i on
85

86 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
87

88 [CA,CH,CV,CD] = dwt2 ( I_noisy , wname) ;
89

90 n o i s e l e v = median ( abs (CD( : ) ) ) /0 .6745 ;
91

92 thresh = sq r t (2∗ log ( numel ( I_noisy ) ) ) ∗ n o i s e l e v ;
93

94 c l e a r CA, c l e a r CH, c l e a r CV, c l e a r CD;
95 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
96

97 [ c , l ] = wavedec2 ( I_noisy , lev , wname) ;
98

99 Y = wthresh ( c ( prod ( l ( 1 , : ) )+1 :end ) , 'h ' , thre sh ) ;
100

101 c_n = c ;
102 c_n( prod ( l ( 1 , : ) )+1 :end ) = Y;
103

104 Xr=waverec2 (c_n , l , wname) ;
105

106 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
107

108 [ PSNRr , SNRr ] = psnr (Xr , Im) ;
109 mse_r = immse (Im , Xr) ;
110
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111 Error2 = Xr − Im ; % c a l c u l a t e the ...

SNR by d e f i n a t i o n
112 SNR_r = 10∗ log10 ( var (Im ( : ) ) / var ( Error2 ( : ) ) ) ; % ...

c a l c u l a t e the SNR by d e f i n a t i o n
113

114 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
115

116 subplot (2 , 2 , 3) , imshow (Xr , [ ] ) , t i t l e ( ' Denoised Image ...

Bbased on Wavelet ' )
117

118 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
119 % %
120 % % Saionary wavele based deno i s i ng
121 % %
122 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
123

124 [ ca , chd , cvd , cdd ] = swt2 ( I_noisy , lev , wname) ; % s i z e o f each ...

marix depend on the number o f l e v e l s
125

126 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
127

128 n o i s e l e v 2 = median ( abs ( cdd ( : ) ) ) /0 .6745 ;
129

130 thresh2 = sq r t (2∗ log ( numel ( I_noisy ) ) ) ∗ n o i s e l e v 2 ;
131

132 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
133

134 Yhd = wthresh ( chd , 'h ' , thresh2 ) ;
135 Yvd = wthresh ( cvd , 'h ' , thresh2 ) ;
136 Ydd = wthresh ( cdd , 'h ' , thresh2 ) ;
137

138 Xr2 = iswt2 ( ca , Yhd , Yvd , Ydd , wname) ;
139 subplot (2 , 2 , 4) , imshow (Xr2 , [ ] ) , t i t l e ( ' Denoised Image ...

Based on Stat ionary wavelet ' )
140 c l e a r ca , c l e a r chd , c l e a r cvd , c l e a r cdd ;
141 c l e a r Yhd , c l e a r Yvd , c l e a r Ydd ;
142 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
143 [ PSNRrs , SNRrs ] = psnr (Xr2 , Im) ;
144 mse_rs = immse (Im , Xr2 ) ;
145 % c a l c u l a t e the SNR by d e f i n a t i o n
146 Error2s = Xr2 − Im ;
147 % c a l c u l a t e the SNR by d e f i n a t i o n
148 SNR_rs = 10∗ log10 ( var (Im ( : ) ) / var ( Error2s ( : ) ) ) ;
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149

150 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
151 % %
152 % % Result o f Test ing the a lgor i thms
153 % %
154 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
155

156 tx0 = s p r i n t f ( 'The wavelet fami ly i s %s \nThe number o f ...

decomposit ion l e v e l i s %d\nwith %d dB SNR added to ...

image\n ' ,wname , lev ,SNR) ;
157 di sp ( tx0 )
158 tx1 = s p r i n t f ( 'The peak s i g n a l to no i s e r a t i o o f the no i sy ...

image i s %f ' ,PSNRn) ;
159 di sp ( tx1 )
160 tx2 = s p r i n t f ( 'The s i g n a l to no i s e r a t i o o f the no i sy image ...

i s %f ' ,SNRn) ;
161 di sp ( tx2 )
162 tx3 = s p r i n t f ( 'The mean squared e r r o r o f the no i sy image i s ...

%f ' ,mse_n) ;
163 di sp ( tx3 )
164 tx10 = s p r i n t f ( ' \n Resu l t s o f Denois ing Algorithm Based on ...

DWT \n ' ) ;
165 di sp ( tx10 )
166 tx4 = s p r i n t f ( 'The peak s i g n a l to no i s e r a t i o o f the ...

r e con s t ruc t ed image i s %f ' ,PSNRr) ;
167 di sp ( tx4 )
168 tx5 = s p r i n t f ( 'The s i g n a l to no i s e r a t i o o f the ...

r e con s t ruc t ed image i s %f ' ,SNRr) ;
169 di sp ( tx5 )
170 tx6 = s p r i n t f ( 'The mean squared e r r o r o f the r e cons t ruc t ed ...

image i s %f ' ,mse_r ) ;
171 di sp ( tx6 )
172

173 tx11 = s p r i n t f ( ' \n Resu l t s o f Denois ing Algorithm Based on ...

Stat ionary DWT \n ' ) ;
174 di sp ( tx11 )
175 tx7 = s p r i n t f ( 'The peak s i g n a l to no i s e r a t i o o f the ...

r e con s t ruc t ed image i s %f ' ,PSNRrs) ;
176 di sp ( tx7 )
177 tx8 = s p r i n t f ( 'The s i g n a l to no i s e r a t i o o f the ...

r e con s t ruc t ed image i s %f ' , SNRrs ) ;
178 di sp ( tx8 )
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179 tx9 = s p r i n t f ( 'The mean squared e r r o r o f the r e cons t ruc t ed ...

image i s %f ' , mse_rs ) ;
180 di sp ( tx9 )
181

182 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
183 c l e a r tx0 , c l e a r tx1 , c l e a r tx2 , c l e a r tx3 ;
184 c l e a r tx4 , c l e a r tx5 , c l e a r tx6 , c l e a r tx7 ;
185 c l e a r tx8 , c l e a r tx9 , c l e a r tx10 , c l e a r tx11 ;

2 Image in Wavelet Transform Representation

1 c l c ;
2 c l e a r a l l ;
3 y=imread ( ' 1 . j p g ' ) ;
4 X=rgb2gray ( y ) ;
5 imshow (X)
6 %%To perform a s i n g l e−l e v e l decomposit ion o f the image ...

us ing the b i o r 3 . 7 wavelet ,
7 %type
8

9 [ cA1 , cH1 , cV1 , cD1 ] = dwt2 (X, ' b i o r 3 . 7 ' ) ;
10 %%%%%%%To cons t ruc t the l e v e l −one approximation and d e t a i l s ...

(A1 , H1 , V1 , and D1) from the
11 %%c o e f f i c i e n t s cA1 , cH1 , cV1 , and cD1
12 A1 = upcoef2 ( ' a ' , cA1 , ' b i o r 3 . 7 ' , 1 ) ;
13 H1 = upcoef2 ( 'h ' , cH1 , ' b i o r 3 . 7 ' , 1 ) ;
14 V1 = upcoef2 ( ' v ' , cV1 , ' b i o r 3 . 7 ' , 1 ) ;
15 D1 = upcoef2 ( 'd ' , cD1 , ' b i o r 3 . 7 ' , 1 ) ;
16 %%%%%%%%%%%%To d i sp l ay the r e s u l t s o f the l e v e l 1 ...

decomposit ion , type
17 %colormap (map) ;
18 subplot ( 2 , 2 , 1 ) ; image ( wcodemat (A1, 192 ) ) ;
19 t i t l e ( ' Approximation A1 ' )
20 subplot ( 2 , 2 , 2 ) ; image ( wcodemat (H1, 192 ) ) ;
21 t i t l e ( ' Hor i zonta l De ta i l H1 ' )
22 subplot ( 2 , 2 , 3 ) ; image ( wcodemat (V1, 192 ) ) ;
23 t i t l e ( ' V e r t i c a l De ta i l V1 ' )
24 subplot ( 2 , 2 , 4 ) ; image ( wcodemat (D1, 192 ) ) ;
25 t i t l e ( ' Diagonal Deta i l D1 ' )
26
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27 %%%6 Regenerate an image by s i n g l e−l e v e l Inve r s e Wavelet ...

Transform.
28 %To f i n d the i n v e r s e transform , type
29 Xsyn = idwt2 (cA1 , cH1 , cV1 , cD1 , ' b i o r 3 . 7 ' ) ;
30 %%%To perform a l e v e l 2 decomposit ion o f the image ( again ...

us ing the b i o r 3 . 7 wavelet ) ,
31 %type
32 [C, S ] = wavedec2 (X, 2 , ' b i o r 3 . 7 ' ) ;
33 %To ex t r a c t the l e v e l 2 approximation c o e f f i c i e n t s from C, type
34 cA2 = appcoef2 (C, S , ' b i o r 3 . 7 ' , 2 ) ;

3 Image Compression

1 %WAVELET BASED COMPRESSION
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3

4 %removes a l l va r i ab l e s , g l oba l s , f u n c t i o n s and
5 %MEX l i n k s (MATLAB loads and runs a d i f f e r e n t entry po int ...

symbol f o r C or Fortran MEX− f i l e s )
6 c l e a r a l l ;
7 % CLOSE ALL c l o s e s a l l the open f i g u r e windows.
8 c l o s e a l l ;
9 %read the image

10 input_image1=imread ( ' cameraman.t i f ' ) ;
11 %di sp l ay input image
12 %add no i s e
13 input_image=imnoise ( input_image1 , ' s p e ck l e ' , . 01 ) ;
14 f i g u r e ;
15 imshow ( input_image ) ;
16 %give the number o f decomposit ion l e v e l which must be ...

i n t e g e r and should not exceed 3
17 % n=input ( ' ente r the decomposit ion l e v e l ' ) ;
18 n=4;
19 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20 [Lo_D,Hi_D,Lo_R,Hi_R] = w f i l t e r s ( 'dB2 ' ) ;
21 % computes four f i l t e r s a s s o c i a t e d with the orthogona l or ...

b io r thogona l
22 % wavelet named in the s t r i n g 'wname ' .
23 % The four output f i l t e r s are :
24 % LO_D, the decomposit ion low−pass f i l t e r
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25 % HI_D, the decomposit ion high−pass f i l t e r
26 % LO_R, the r e c o n s t r u c t i o n low−pass f i l t e r
27 % HI_R, the r e c o n s t r u c t i o n high−pass f i l t e r
28 % Ava i l ab l e wavelet names 'wname ' are :
29 % Daubechies : ' db1 ' or ' haar ' , ' db2 ' , . . . , ' db45 '
30 %C o i f l e t s : ' c o i f 1 ' , . . . , ' c o i f 5 '
31 %Symlets : ' sym2 ' , . . . , ' sym8 ' , . . . , ' sym45 '
32 %Dis c r e t e Meyer wavelet : 'dmey '
33 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
34

35 %wavedec2 − Multi−l e v e l 2−D wavelet decompos i t i on .
36 [ c , s ]=wavedec2 ( input_image , n ,Lo_D,Hi_D) ;
37

38 % g i v e s the wavelet decomposit ion o f the matrix input_image ...

at l e v e l n , us ing the
39 % wavelet named in s t r i n g 'wname ' or low pass and high pass
40 % Outputs are the decomposit ion vec to r C and the
41 %correspond ing bookkeeping matrix S .
42 di sp ( ' the decomposit ion vec to r Output i s ' ) ;
43 di sp ( c ) ;
44 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
45

46 %Thresholds f o r wavelet 2−D using Birge−Massart s t r a t e g y .
47 [ thr , nkeep ] = wdcbm2( c , s , 1 .5 , 3∗ prod ( s ( 1 , : ) ) ) ;
48

49 % give l e v e l −dependent th r e sho ld s ' thr ' and numbers o f ...

c o e f f i c i e n t s to be kept ' nkeep '
50 % f o r compres s ion . ' thr ' i s obta ined us ing a wavelet ...

c o e f f i c i e n t s
51 %s e l e c t i o n r u l e based on Birge−Massart s t r a t e g y .
52 %disp ( ' l e v e l −dependent thre sho lds ' ) ;
53 %disp ( thr ) ;
54 %disp ( ' numbers o f c o e f f i c i e n t s to be ' ) ;
55 %disp ( nkeep ) ;
56 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
57 %compress ion us ing wavelet pa c k e t s .
58 [ compressed_image ,TREED, comp_ratio ,PERFL2] ...

=wpdencmp( thr , ' s ' ,n , 'dB2 ' , ' th r e sho ld ' , 5 , 1 ) ;
59 di sp ( ' compress ion r a t i o in percentage ' ) ;
60 di sp ( comp_ratio )
61 % retu rns a compressed ve r s i on compressed_image o f input
62 % s i g n a l ' thr ' (2−D) obtained by wavelet packet ...

c o e f f i c i e n t s t h r e s h o l d i n g .
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63 % The a d d i t i o n a l output argument TREED i s thed
64 % wavelet packet bes t t r e e decomposit ion o f ...

compressed_image.
65 % PERFL2 and PERF0 are L^2 recovery and compress ion ...

s c o r e s in p e r c e n t a g e s .
66

67 %Multi−l e v e l 2−D wavelet r e c o n s t r u c t i o n .
68 re_ima1 = waverec2 ( c , s , 'dB2 ' ) ;
69 re_ima=uint8 ( re_ima1 ) ;
70 subplot ( 1 , 3 , 1 ) ;
71 imshow ( input_image ) ;
72 t i t l e ( ' i /p image ' ) ;
73 subplot ( 1 , 3 , 2 ) ;
74 imshow ( compressed_image ) ;
75 t i t l e ( ' compressed image ' ) ;
76 subplot ( 1 , 3 , 3 ) ;
77 imshow ( re_ima ) ;
78 t i t l e ( ' r e con s t ruc t ed image ' ) ;

4 RGB Images Compression

1 % Wavelet image compress ion − RGB images
2 c l e a r a l l ;
3 c l o s e a l l ;
4 % % Reading an image f i l e
5 % im = input ( ' Enter a image ' ) ;
6 X=imread ( ' cameraman.t i f ' ) ;
7 % input t ing the decomposit ion l e v e l and name o f the wavelet
8 % n=input ( ' Enter the decomposit ion l e v e l ' ) ;
9 n=4;

10 % wname = input ( ' haar ' ) ;
11 x = double (X) ;
12 NbColors = 255 ;
13 map = gray ( NbColors ) ;
14 x = uint8 ( x ) ;
15 %Conversion o f RGB to Graysca le
16 % x = double (X) ;
17 % xrgb = 0 .2990 ∗x ( : , : , 1 ) + 0 .5870 ∗x ( : , : , 2 ) + 0 .1140 ∗x ( : , : , 3 ) ;
18 % c o l o r s = 255 ;
19 % x = wcodemat ( xrgb , c o l o r s ) ;
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20 % map = pink ( c o l o r s ) ;
21 % x = uint8 ( x ) ;
22 % A wavelet decomposit ion o f the image
23 [ c , s ] = wavedec2 (x , n , 'dB2 ' ) ;
24 % wdcbm2 f o r s e l e c t i n g l e v e l dependent th r e sho ld s
25 alpha = 1 . 5 ; m = 2 .7 ∗prod ( s ( 1 , : ) ) ;
26 [ thr , nkeep ] = wdcbm2( c , s , alpha ,m)
27 % Compression
28 [ xd , cxd , sxd , per f0 , p e r f l 2 ] = wdencmp( ' lvd ' , c , s , 'dB2 ' ,n , thr , 'h ' ) ;
29 di sp ( ' Compression Ratio ' ) ;
30 di sp ( pe r f 0 ) ;
31 % Decompression
32 R = waverec2 ( c , s , 'dB2 ' ) ;
33 rc = uint8 (R) ;
34 % Plot o r i g i n a l and compressed images .
35 subplot (221) , image ( x ) ;
36 colormap (map) ;
37 t i t l e ( ' Or i g ina l image ' )
38 subplot (222) , image ( xd ) ;
39 colormap (map) ;
40 t i t l e ( ' Compressed image ' )
41 % Disp lay ing the r e s u l t s
42 xlab1 = [ '2−norm r e c . : ' , num2str ( p e r f l 2 ) ] ;
43 xlab2 = [ ' % −− zero c f s : ' , num2str ( pe r f 0 ) , ' %' ] ;
44 x l a b e l ( [ xlab1 xlab2 ] ) ;
45 subplot (223) , image ( rc ) ;
46 colormap (map) ;
47 t i t l e ( ' Reconstructed image ' ) ;
48 %Computing the image s i z e
49 di sp ( ' Or i g ina l Image ' ) ;
50 imwrite (x , ' o r i g i n a l . t i f ' ) ;
51 i m f i n f o ( ' o r i g i n a l . t i f ' )
52 di sp ( ' Compressed Image ' ) ;
53 imwrite (xd , ' c o m p r e s s e d . t i f ' ) ;
54 i m f i n f o ( ' c o m p r e s s e d . t i f ' )
55 di sp ( ' Decompressed Image ' ) ;
56 imwrite ( rc , ' d e c om p r e s s ed . t i f ' ) ;
57 i m f i n f o ( ' d e c om p re s s ed . t i f ' )
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