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Abstract 
 

       Super conductivity is one of the most important physic phenomenons that 

has a wide variety of applications in technology. It was successfully described 

by BCS theory. But recently some materials that act as a superconductor at 

higher temperatures, changes critical temperature due to the effect of pressure 

or isotope mass. This cannot be explained by BCS model. Some researchers 

suggest hoping mechanism for explaining high temperature super conductor’s 

behavior. But unfortunately the models proposed are complex and incomplete. 

The aim of this work is to use the generalized statistical physical model 

proposed by some researchers was used to explain the conditions that lead to 

hopping when kinetic energy exceeds coulomb potential, which agrees with 

that proposed by Hubbard model. The hopping also proved to take place below 

critical temperature, while it does not exist above this critical temperature. The 

hopping is also destroyed when magnetic field exceeds certain critical value. 

The flux is also quantized with in the frame work of this models. The results 

obtained by this model agree with observations and previous models. Thus one 

can conclude that generalized statistical model can successfully describe some 

superconducting phenomena. 
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 مستخلص
يعتبر التوصيل الفائق من أحد اهم الظواهر الفيزيائية التي لها تطبيقات واسعة في المجال التقني.      

حيثثك نانثثت توصثثي بنظريثثثة وثثاردين ونثثوحر ولثثثيفر بنجثثات. ول ثثن مثثثاترا اصثثوحت وعثث  المثثثواد  ات 
ير. وهث     التوصيل الفائق عند درجات الحرارة العالية تتغير درجتها الحرجة بتأثير الضغط ونتلة النظ

يمنن تفسيرها في ضوء نظرية واردين ونوحر وليفر. ل ا اقترت وع  الواحثين آلية القفز لتفسير سلوك 
ول ثثن لسثوء الحثث  فثان هثث   النمثا ة المقترحثثة معقثدة و يثثر  لفائقثة عنثثد درجثة الحثثرارة العاليثةالموصثتت ا

 منتملة.

بواسثطة وعث  الوثثاحثين  تثم اقتراحث , حصثائية سثتتدام نمثو ة معمثم للفيزيثاء ا هث ا الوحثك  يهثد     
لتفسير الظرو  المادية للقفز عندما تزيد طاقة الحرنة عن جهد نولوم, وه ا مثا يتفثق مثم نمثو ة هبثرد 

وتعتمد طريقة الوحك علي استتدام التحليل الرياضي المرت ز علي  قوانين ا حصائية المعممة . المقترت
وقثد ثبثت ان القفثز يحثدك عنثد درجثات حثرارة اقثل ي لثرو  القفثز .مم قيود الدرجة الحرجة للحصثول علث

نمثثا أن  مثن الدرجثثة الحرجثثة فثي حثثين   يحثثدك عنثثد درجثات الحثثرارة ادعلثثا  مثثن هث   الدرجثثة الحرجثثة.
القفز   يحدك عندما تزيد لدة المجال المغنطيسي عن قيمة حرجة معينة. نما أن الفي  ينون منمما 

هث   النتثائا التثي تثم الحصثول عليهثا مثن هث ا النمثو ة تتوافثق مثم التجثار   في اطار ه ا النمثو ة. نثل
وعلي  يمنن استنتاة ان نمو ة الفيزياء ا حصائية المعمم يمنن ان يفسثر وعث   .ومم النما ة الساوقة

 ظواهر ا حصائية المعممة.
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Chapter One 

Introduction 

1.1 The History of Superconductivity: 

        Superconductivity was discovered in 1911 in the Leiden laboratory of 

Kimberling .it noticed that the resistivity of Hg metal vanished abruptly at 

about 4K. Although phenomenological models with predictive power were 

developed in the0. 30’s and 40’s, the microscopic mechanism underlying 

superconductivity was not discovered until 1957 by Bardeen Cooper and 

Schrieffer (BCS). Superconductors have been studied intensively for their 

fundamental interest and for the promise of technological applications 

which would be possible if a material which super conducts at room 

temperature were discovered. Until 1986, critical temperatures (Tc  ’s) at 

which resistance disk appears were always less than about23K. In 1986, 

Bednorz and Mueller published a paper, subsequently recognized with the 

1987 Nobel Prize, for the discovery of a new class of materials which 

currently include members with Tc  of about 135K [1, 2, and 3]. Super 

conductivity (SC)is a phenomenon of exactly zero electrical resistance and 

expulsion of magnetic flux fields occurring in certain materials 

when cooled below characteristic critical temperature. 

Like ferromagnetism and atomic spectral lines, superconductivity is 

a quantum mechanical phenomenon. It is characterized by the Meissonier 

effect, the complete ejection of magnetic field lines from the interior of the 

superconductor as it transitions into the superconducting state. The 

occurrence of the Meissonier effect indicates that superconductivity cannot 

be understood simply as the idealization of perfect conductivity in classical 

physics [4, 5]. 

https://en.wikipedia.org/wiki/Electrical_resistance_and_conductance
https://en.wikipedia.org/wiki/Magnetic_field
https://en.wiktionary.org/wiki/cooling
https://en.wikipedia.org/wiki/Phase_transition
https://en.wikipedia.org/wiki/Ferromagnetism
https://en.wikipedia.org/wiki/Atomic_spectral_line
https://en.wikipedia.org/wiki/Quantum_mechanics
https://en.wikipedia.org/wiki/Meissner_effect
https://en.wikipedia.org/wiki/Meissner_effect
https://en.wikipedia.org/wiki/Magnetic_field
https://en.wikipedia.org/wiki/Perfect_conductor
https://en.wikipedia.org/wiki/Classical_physics
https://en.wikipedia.org/wiki/Classical_physics
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The electrical resistance of a metallic conductor decreases gradually as 

temperature is lowered. In ordinary conductors, such as copper or silver, 

this decrease is limited by impurities and other defects. Even near absolute 

zero, a real sample of a normal conductor shows some resistance. In a 

superconductor, the resistance drops abruptly to zero when the material is 

cooled below its critical temperature. An electric current flowing through a 

loop of superconducting wire can persist indefinitely with no power source 

[6, 7]. 

In1986,itwas discovered that some cup rate proves ceramic materials have a 

critical temperature above 90 K (−183 °C) [5].Such a high transition 

temperature is theoretically impossible for a conventional superconductor, 

leading the materials to be termed high-temperature superconductors. 

Liquid nitrogen boils at 77K, and superconductor at higher temperatures 

than this facilitates many experiments and applications that are less 

practical at lower temperatures [11, 12]. 

1.2 Research Problem :  

           The intensive research in scaled to appearance of many SC 

phenomena that cannot be explained theoretically. The research problem is 

related to the fact that (SC) model used to describe their phenomenology 

are in complete and complex [13, 14, 15]. 

1.3 Literature Review: 

         The SC phenomenology which can not be explained by ordinary 

theory opens windows for new theoretical models [16, 17, 18, 19 and 20]. 

Some of them try to explain conduction mechanism, while others try to 

explain pressure effect, isotope effect and phase diagram [21, 22, 23 and 

24]. Unfortunately these models are complex and in complete. 

 

https://en.wikipedia.org/wiki/Electrical_conductor
https://en.wikipedia.org/wiki/Copper
https://en.wikipedia.org/wiki/Absolute_zero
https://en.wikipedia.org/wiki/Absolute_zero
https://en.wikipedia.org/wiki/Electric_current
https://en.wikipedia.org/wiki/Superconducting_wire
https://en.wikipedia.org/wiki/Ceramic
https://en.wikipedia.org/wiki/Conventional_superconductor
https://en.wikipedia.org/wiki/High-temperature_superconductors
https://en.wikipedia.org/wiki/Liquid_nitrogen
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1.4 Aim of the work: 

The useful applications of SC in technology needs completes SC 

theory that can lead to discovery of new materials.  

One needs to use new statistical model and Schrodinger equation to explain 

some SC phenomena. 

1.5 Thesis Layout: 

          The thesis consists of four chapters. Chapters one and two are the 

introduction and theoretical back ground in (SC) chapters three and four are 

devoted for literature review and contribution respectively. 
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Chapter Two 

Superconductivity 

2.1 Introduction: 

This chapter describes basic properties of a superconductor beside 

phenomenology of superconductors, theoretical background, including 

London equation beside to flux quantization and Hubbard model [20, 21]. 

2.2 Superconductor Material Properties: 

         Superconductivity is characterized by Zero resistance, Meissonier 

effect, magnetic flux quantization, Josephson effects, and energy gap. 

We shall briefly describe these properties [17, 20, and 21]. 

2.2.1 Zero Resistance: 

        The phenomenon of superconductivity was discovered in 1911 by 

Kimberling ones [1], who measured extremely small electric resistance in 

mercury below. A certain critical temperature Tc  (≈ 4.2k) [see Fig (2.1)]. 

This zero resistance property can be confirmed by a never-decaying super 

current ring [17]. 

2.2.2Magnetic Properties: 

       Substances that become superconducting at finite temperatures will be 

called superconductor in the present text if a superconductor belowTc  is 

placedunder a weak magnetic field it repels the magnetic flux (field) B 

completely [20,21]. 
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This is called the Meissonier effect ,and it was discovered by Meissonier 

and Chosen field in 1933 [2]. 

 

The Meissonier effect can be demonstrated dramatically by a floating 

magnet as shown in Fig: 2.3. A small bar magnet above Tc  simply rests on 

Super conductor dish. If temperature Tc  is lowered below the magnet will 

float as indicated. The gravitational force exerted on the magnet is balanced 

by the magnetic pressure (part of electromagnetic stress tensor) due to the 

in homogeneous magnetic field (B-field) surrounding the magnet which is 

represented by the magnetic flux lines. The later more refined experiments 

reveal that the (B-field) experiments reveal that the (B-field) penetrates into 

the superconductor within a very thin surface layer.  

 

When the external field is applied parallel to the boundary, the (B-field) 

falls off exponentially 

B(x) = B(0)e
−x
λ                                                    (2.2.1) 
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λ is called a penetration depth, and it is on the order of 500 in most 

superconductors order of 500 at lowest temperatures it is small value on 

macroscopic scale allows us to speak of the superconductor as being 

perfectly diamagnetic penetration depth ʎ plays a very important role in the 

description of the magnetic properties [30, 31, and 23]. 

 

 2.3 Energy Gap: 

       If a continuous band of the excitation energy is separated by a finite 

gap εg  from the discrete ground-state energy level as shown in Fig. 2.5 this 

gap can be detected by photo-absorption [9]. Quantum tunneling [10]. Heat 

Capacity [11] and other experiments. The energy gap atTC turns out to be 

temperature-dependent. The energy gap as determined from the tunneling 

experiments [12] is shown in Fig. 2.6. The energy gap is zero at and reaches 

a maximum value εg  as temperature approaches toward. 

 

In true thermodynamic equilibrium, there can be no currents, super or 

normal. Thus we must deal with a non-equilibrium condition when 

discussing the basic properties of superconductors, such as zero resistance, 
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flux quantization, and Josephson effects. All of these arise from the super 

currents that dominate the transport and magnetic phenomena. When 

superconductors used to form a circuit with a battery and a steady state is 

established, all currents passing the superconductor are super currents. 

Normal currents due to the motion of electrons and other charged particles 

do not show up because no voltage difference can be developed in a 

homogeneous superconductor 

 

2.4 Type I and II Superconductors: 

         A type I superconductor is the one that in which the (B-field) remains 

zero inside the superconductor until suddenly the superconductivity is 

destroyed. 

 The field where this happens is called the critical field, HC[6]. 

The way magnetization M changes with H in a type I superconductor, as 

shown, the magnetization obeys. 

M = −μ0H                                       (2.4.1) 

 

Where 

B = μ0H − M = (μ0 + x)H = 0           

For all fields less than HC inside the superconductor, and then becomes zero  
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(or very close to zero) for fields above HC many superconductors, however, 

behave differently.  

In a type II superconductor there are two different critical fields, 

denoted HC1 , the lower Critical field and  HC2  the upper critical field. 

For small values of applied field H again Meissonier effect leads to 

 M = −μ0H and there is no magnetic flux density inside the sample,  

B = 0. However in a type II superconductor once the field exceeds HC1 , 

magnetic flux does start to enter the superconductor and hence B ≠ 0, and 

M  is closer to zero than the full V Meissonier effect value of −μ0H. Upon 

increasing the field H further the magnetic flux density gradually increases, 

until finally at H𝐂𝟐 the superconductivity is destroyed and M = 0. As a 

function of the temperature the critical fields vary, and they all approach 

zero at the critical temperature Tc . The typical phase diagrams of type I and 

type II superconductors as a function of H and T, are shown in Fig. (2.7). 

 

In type II superconductors the phase below HC1is normally denoted the 

Meissen state, while the phase between H𝐂𝟏 and H𝐂𝟐 is the vortex or 

Abrikosov state. 

The physical explanation of the thermodynamic phase 

between Hc1and HC2  was given by Abrikosov. He showed that the magnetic 

field can enter the superconductor in the form of vortices, each vortex 

consists of a region of circulating super current around a small central core 

which has essentially become normal metal. The magnetic field is able to 
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pass through the sample inside the vortex cores, and the circulating currents 

serve to screen out the magnetic field from the rest of the superconductor 

outside the vortex. 

It turns out that each vortex carries a fixed unit of magnetic flux 

φ0 =
h

2e
 

where h is Blank constant is the electron charge. And hence, if there are a 

total of Nv vortices in a sample of total area, A then the average magnetic 

flux density,B is 

B =
NV

A
.
h

2e
                                                   (2.4.2) 

It is instructive to compare this result for the number of vortices per unit 

area, 

NV

A
=

2eB

h
                                                     (2.4.3) 

With the similar expression derived earlier for the density of vortices in 

rotating super fluid 4He. There is in fact a direct mathematical analogy 

between the effect of a uniform rotation at angular frequency in a neutral 

super fluid, and the effect of a magnetic field, B in a superconductor [6, 7]. 

2.5 Cooper Pairs: 

           We consider a metal atT~0. All states inside the Fermi sphere are 

filled with electrons while all states outside are empty 

In 1956 Cooper studied [18]. what would happen if two electrons were 

added to the filled Fermi sphere with equal but opposite moment p1̅̅̅ =  p2̅̅  ̅ 

Whose magnitude was slightly larger than the Fermi momentum 

pfAssuming that a weak attractive force existed he was able to show that 

the electrons form a bound system with an energy less than twice the Fermi 

energy, 

Epair < 2Ef. 
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The mathematics of Cooper pair formation will be outlined in [18]. What 

could be the reason for such an attractive force First of all one has to realize 

that the Coulomb repulsion between the two electrons has a very short 

range as it is shielded by the positive Ions and the other electrons in the 

metal. So the attractive force must not be strong if the electrons are several 

lattice constants apart. Already in 1950, Froehlich and, independently, 

Bardeen had suggested that a dynamical lattice polarization may create a 

weak attractive potential. Before going into details Let us look at a familiar 

example of attraction caused by the deformation of a medium: a metal ball 

is placed on an elastic membrane and deforms the membrane such that a 

potential well is created. A second Ball will feel this potential well and will 

be attracted by it. So effectively, the deformation of the elastic Membrane 

causes an attractive force between the two balls which would otherwise not 

notice each other. This visualization of a Cooper-pair is well known in the 

superconductivity community but it has the disadvantage that it is a static 

picture. 

Suppose you are cross-country skiing in very deep snow. You will find this 

quite cumber some; there is a lot of resistance. Now you discover a track 

made by you another skier, a Lope, and you will immediately realize that it 

is much more comfortable to ski along this track than in any other direction. 

The Lope picture can be adopted for our electrons. The first Electron flies 

through the lattice and attracts the positive ions. Because of their inertia 

they cannot follow immediately, the shortest response time corresponds to 

the highest possible lattice vibration frequency [19]. This is called the 

Debye frequency wD. The maximum lattice deformation lags behind the 

electron by a distance 

d = vf

2π

wD

 ~100− 1000nm 
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Obviously, the lattice deformation attracts the second electron because there 

is an accumulation of positive charge [8, 9, and 10]. 

The attraction is strongest when the second electron moves right along the 

track of the First one and when it is a distance d behind it, see Fig. 21. This 

explains why a Cooper pair is a much extended object, the two electrons 

may be several 100 to 1000 lattice constants apart. For a simple cubic 

lattice, the lattice constant is the distance between adjacent atoms. 

In the example of the cross-country skiers or the electrons in the crystal 

lattice, intuition suggests. That the second partner should preferably have 

the same momentum, p⃗ 2 = p⃗ 1 although opposite moment p⃗ 2 = −p⃗ 1are not 

so bad either. Quantum theory makes a unique choice only electrons of 

opposite 

Moment form a bound system, a Cooper pair. The quantum theoretical 

reason is the Pauli principle but there exists probably no intuitive argument 

why electrons obey the Pauli exclusion principle and thus extreme 

individualists while other particles like the photons in a laser or the atoms in 

super fluid helium do just the opposite and behave as extreme Conformists. 

One may get used to quantum theory but certain mysteries and strange 

feelings will remain. The binding energy of a Cooper pair turns out to be 

small,10−4 ,10−3, so low temperatures are needed to preserve the binding in 

spite of the thermal motion. According to Heisenberg’s Uncertainty 

Principle a weak binding is equivalent to a large extension of the composite 

system, in this case the above -mentionedd =  100 − 1000 nm. As a 

consequence, the Cooper pairs in a superconductor overlap each other. In 

the space occupied by a Cooper pair there is about a million other Cooper 

pairs. The situation is totally different from other composite systems like 

atomic nuclei or atoms which are tightly bound objects and well-separated 

from another. The strong overlap is an important prerequisite of the BCS 
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theory because the Cooper pairs must change their partners frequently. In 

order to provide a continuous binding [12].  

2.6 London Equations: 

       The London brother proposed a simple theory to explain the Meissonier 

effect ,the London equations provided an early simple model for describing 

experimental result. In 1935 theory of London brothers provides the first 

and second London equations, which relate the electric and magnetic fields 

EandB, respectively,in side superconductor to the current density J [1, 4].  

E = μ0λl
2

d

dt
Ј                                                   ( 2.6.1  ) 

B = −μ0λL
2∇ × Ј                                              (2.6.2) 

Where μ0  is the permeability of vacuum, the constant of proportionality in 

these expressions is the London penetration depthʎL, where ns the density 

of superconducting electron is, m is the electron mass. 

 

2.6.1 Derivation of first London equation: 

A potential difference applied along a conducting wire produces an electric 

field E, and hence the force F on any electron is given by: 

F = eE = m
dV

dt
                                                   (2.6.3) 

Where v stands for its velocity, electron undergo successive periods of 

acceleration interrupted by collision and during the average time relaxation 

time (scattering on defect s) τ between collisions. The velocity is given by 

which called the drift velocity. The negative sign means that the electrons 

move in a direction opposite to that of the electric field [35, 36, 38 and 39]. 

When the electron is assumed to move in a resistive medium, which have 

Frictional force proportional to the velocity, the electron equation of motion 

is given by. 
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v = −
eE

m
τ                                                         (2.6.4) 

This called the drift velocity. The negative sign means that the electrons 

move in a direction opposite to that of the electric field. When the electron 

is assumed to move in a resistive medium, which have, frictional force 

proportional to the velocity, the electron equation of motion is 

given by: 

m
dV

dt
= eE − m

V

τ
                                            (2.6.5) 

Where the frictional force is given by: 

F = ma,V = V0 + aτ = 0 + aτ = aτ 

F =
mV

τ
 

For steady state in normal metal, no acceleration exists. i.e. 

dV

dt
= 0 

Therefore 

V =
eE

m
τ                                                    (2.6.6) 

Hence the current density is given by: 

J = neν =
ne2τ

m
E = σE                                      (2.6.7) 

Where n the density of electrons, is electrical conductivity. 

In the two fluid models one has the temperature dependent expression for 

the super ns and normalnnelectrons densities respectively, 

nn(T) + ns(T) = n 

The total electron density n is independent of temperature and at T = 0 one 

have nn(0)= 0(0) andns(0) = n, and the simple theory predicts the 

following temperature dependences: 

ns(T) = n(
T

Tc

)
4

                                             (2.6.8) 
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Where Tc  is the critical temperature? 

For superconductor below Tcthe resistive force is zero, in this case equation 

(2.6.8) becomes 

dν

dt
 =

eE

m
                                                         (2.6.9) 

Taking the derivative of J in equation (2.6.10) with respect to time: 

E = m
dν

dt
= eE                                               (2.6.10) 

dJ

dt
= ne

dν

dt
=

ne2

m
E                                      (2.6.11) 

The term  
m

nse2
= ᴧ is phenomenological parameter equation (2.6.11) can 

thus be rewritten as: 

E =
d

dt
(AJ) = ᴧ

dJ

dt
                                        (2.6.12) 

This equation is known as the first London equation. 

2.6.2 Second London equation: 

          This equation is concerned with time-dependent fields, and is 

important For Meissonier effect. The electric current density is given quite 

generally by: 

J = nqν                                                         (2.6.13) 

Where n is concentration of carriers of charge q In the presence of a 

magneticfield described by the vector potentialA, the velocity v is related to 

the total momentum P by: 

p = mν +
q

c
ᴧ                   ν =

1

m
(p −

q

c
ᴧ)                (2.6.14) 

Where m is the mass, c the speed of light in vacuum Thus equation (2.6.13) 

can be written as 

J =
nq

m
p −

nq2

me
ᴧ                                                        (2.6.15) 
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In the superconducting state, the total momentum p is zero, although it not 

equalto zero in normal state .i.e.p =  0, and equation (2.6.15) reduces to: 

J = −
nq2

mc
A                                                           (2.6.16) 

For electrons, q = e, n = ns then: 

J = −
nse

2

mc
A                                                          (2.6.17) 

The vector potential is related to the magnetic field by 

B = ∇ × A                                                                (2.6.18) 

Equation (2.6.17) can be rewritten with the aid of (2.6.3) to be 

J = −
c

4πλL
2 A                                                           (2.6.19) 

This equation is known as the second London equation. 

Equation (2.6.17) can be expressed in another way by taking the curl of 

both sides and using equation (2.6.18) to obtain 

∇ × Ј = −
c

4πλL
2
(∇ ×A) = −

c

4πλL
2 B                               (2.6.20) 

B = −cᴧ∇ × Ј 

Where 

ᴧ =
m

nse
2

=
4πλL

2

e2
 

A phenomenological parameter is a phenomenological parameter. 

Equation (2.6.20) is another form of the second equation of London 

 [1, 2, and 5]. 

2.7 Josephson Effect:- 

         If one takes two SC separated by an oxide Layer quantum tunneling 

takes place. Consider two metals separated by an insulator, as in the Finger 

below 
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The insulator normally acts as a barrier to the flow of conduction electrons 

from one metal to the other. If the barrier is sufficiently thin (less than 10 or 

20  A), there is a significant probability that an electron, which impinges on 

the barrier, will pass from one metal to the other this is called tunneling. 

The concept that particles can tunnel through potential barriers is as old as 

quantum mechanics [1, 2, 3, 4]. 

When both metals are normal conductors, the current-voltage relation of 

sandwich or tunneling junction is home at low voltages, with the current 

directly proportional to the applied voltage. Discovered that if one of the 

metals becomes superconducting the current-voltage characteristic changes 

from the straight line to curve [5,6,7]. 
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In the superconductors there is an energy gap centered at the Fermi level at 

absolute zero no current can flow until the voltage is 

V =
Eg

2e
=

∆

e
 

Where 

∆=
Eg

2
 

The energy gap Eg corresponds to the break-up of electrons in the 

superconducting state, with the formation of two electrons and a hole in the 

normal state. 

The current starts wheneV = ∆. At temperatures different from zero there is 

a small current flow even at low voltage, because of electrons in the 

superconductor that are thermally excited across the energy gap. 

Under suitable conditions, remarkable effect can be observed associated 

with the tunneling of superconducting electron pairs from a superconductor 

through a layer of an insulator in to another superconductor. The effects of 

pair tunneling are quite unlike single particle tunneling and include. 

2.7.1 DC Josephson Effect: 

    Let ψ1 be probability amplitude of electron pairs on one side of a 

junction, and let ψ2be the amplitude the other side. For the simplicity, let 
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both superconductors be identical. For the present, we suppose that they are 

both at zero potential. 

The time dependent Schrödinger equation iℏ
∂ψ

∂t
= Hψ applied to the tow 

amplitudes gives: 

iℏ
∂ψ1

∂t
= ℏTψ2          ,          iℏ

∂ψ2

∂t
= ℏTψ1                  (2.7.1) 

Here ℏT represents the effect of the electron-pair coupling or transfer 

interaction across the insulator; thus the dimensions of a rate or frequency. 

It is a measure of the leakage of ψ1in to region 2, and ψ2 in to the region 1. 

If the insulator is very thick, T is zero and there is no pair tunneling. 

    Let 

ψ1 = n1/2eiθ1        ,             ψ2 = n
1
2eiθ2                            (2.7.2) 

Where n1  is the electron density in the region 1,θ1 the phase angle n2 

 Is the electron density in the region 2, θ2is the phase angle. 

Then: 

∂ψ1

∂t
=

1

2
n1

−1/2
eiθ1

∂n1

∂t
+ iψ1

∂θ1

∂t
= −Tψ2                (2.7.3) 

With the use of equation (2.7.1) in the form  

iℏ
∂ψ1

∂t
= −ℏTψ2 

 Similarly 

∂ψ2

∂t
=

1

2
n2

−1/2
eiθ2

∂n2

∂t
+ iψ2

∂θ2

∂t
= −Tψ1                      (2.7.4) 

Multiplying equation (2.7.3) by 

n
1

−
1

2eiθ1  With δ ≡ θ2 − θ1 

 One obtains: 

∂n1

2∂t
+ in1

∂θ1

∂t
= −iT(n1n2)

1
2eiδ                                (2.7.5) 

Multiplying equation (2.7.4) by 
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n2
−1/2

eiθ2  With δ ≡ θ2 − θ1 

One obtains: 

∂n2

2 ∂t
+ in2

∂θ2

∂t
= −iT(n1n2)

1
2eiδ                               (2.7.6) 

New equating the real and the imaginary parts of equation (2.7.5) and 

equation (2.7.6) similarly one gets: 

∂n1

∂t
= 2T(n1n2)

1
2sinδ               

∂n2

∂t
= −2T(n1n2)

1
2sinδ   (2.7.7) 

∂θ1

∂t
= −T(

n2

n1

)
1/2

conδ   
∂θ2

∂t
= −T (

n2

n1

)

1
2
            (2.7.8) 

Ifn1 ≈ n2 as for identical superconductors 1and 2, if follows from equation 

(2.7.8) 

∂θ1

∂t
=

∂θ2

∂t

∂

∂t
(θ2 − θ1) = 0                    (2.7.9) 

From equation (2.7.7) it is clear that: 

∂θ2

∂t
= −

∂n1

∂t
                                               (2.7.10) 

The current flow from 1to 2 is proportional to  
∂n2

∂t
, the same thing from 2 

to1 is proportional to −
∂n1

∂t
 . Therefrom one can concludes from equation 

(2.7.7) that the current J of the superconductor pairs across the junction 

depends on the phase difference δ as 

J =
∂n1

∂t
−

∂n2

∂t
= T(n1n2)

1
2  sinδ 

J = J0sinδ = J0 sin(θ2 − θ1)                                     (2.7.11) 

Where J0 is proportional to the transfer interaction T. The current J0 is the 

maximum zero-voltage current that can be passed though the junction. 

With no applied voltage a DC current will flow across the junction, [figer :( 

3.7)] with a value between J0 and −J0 according to the value of the phase 

differenceθ2 − θ1. This is the DC Josephson Effect. 
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DC Currents flow under zero applied voltage up to a critical currentic; this is 

the DC Josephson Effect. At voltage above Vc  the junction has a finite Vℏ, 

this ACJosephsonEffect. 

 

2.7.2 AC Josephson Effect: 

     Let voltage V be applied across the junction. This can be done because 

the junction is an insulator. An electron pair experiences a potential energy 

difference qv on passing across the junction where –eV and a pair on the 

other side at eV.the equations of motion that replaces (2.7.1) is: 

iℏ
∂ψ1

∂t
= ℏTψ2–eVψ1           iℏ

∂ψ2

∂t
= ℏTψ1–eVψ2             (2.7.12) 

Proceeding as above to find in place of (3.7.5) the equation: 

1

2

∂n1

2 ∂t
+ in1

∂θ1

∂t
=

ien1V

ℏ
− iT(n1n2)

1
2eiδ                       (2.7.13) 

Taking the real parts on sides one gets: 

∂n1

2∂t
= 2T(n1n2)

1
2  sinδ                                        (2.7.14) 

The imaginary contribution also gives: 
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∂θ1

∂t
=

eV

ℏ
− T (

n2

n1

)

1
2
conδ                                 (2.7.15) 

Which differs from equation (2.7.8) by the term 
eV

ℏ
. 

Similarly as equation (2.7.13) the equation (2.7.6) for n2 takes the form: 

1

2

∂n2

2∂t
+ in2

∂θ2

∂t
= −i

eVn2

ℏ
− iT(n1n2)

1
2eiδ                (2.7.16) 

Hence equation real and imaginary parts one gets: 

∂n2

2∂t
= −2T(n1n2)

1
2sinδ                                      (2.7.17) 

∂θ2

∂t
= −

eV

ℏ
− T(

n2

n1

)

1
2
conδ                               (2.7.18) 

From (2.7.15) and (2.7.18) with n1 ≈ n2one nave: 

∂(θ2 − θ1)

∂t
=

∂δ

∂t
= −

2eV

ℏ
                                  (2.7.19) 

By integration of (2.7.19) that with a DC voltage across the junction the 

relative phase of the probity amplitudes vary as: 

δ(t) = δ(0)−
2eV

ℏ
t                                           (2.7.20) 

J = J0 sin [δ(0)−
2eV

ℏ
t]                                  (2.7.21) 

The current oscillates with frequency: 

ω =
eV

ℏ
t                                                       (2.7.22) 

Which says that a photon of energy ℏω = 2eV is emitted or absorbed when 

an electron pair crosses the barrier. By measuring the voltage and the 

frequency. It is possible to obtain a very precise value of 
e

ℏ
. [1, 2, 7, 9].  

 

2.7.3 Macroscopic Long-Ran Quantum Interference: 

     A DC magnetic field applied through a superconducting circuit 

containing two junctions causes the maximum super current to show 
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interference effects as a function of magnetic filed intensity. This effect can 

be utilized in sensitive magnetometers. 

2.8 Flux Quantization: 

           When a type II superconductor is immersed in an intermediate 

magnetic field to transfer it in to a mixed state, the bulk of the material is 

superconducting, but it is thread by thin filaments of normal material. The 

vortex Lines are oriented parallel to the external magnetic field and they  

serve as paths For the magnetic flux lines of the external field. A current 

circulates around the perimeter of each vortex line. These current shields 

The bulk of the superconductor from the magnetic field in the filaments, the 

flow of this current has the character of a vortex and that is why that the 

filaments were calling as vortex lines. 

Increasing the magnetic field would not cause an increase of the flux 

Associated with each vortex lines, instead. It will cause an increase in the 

number of vortex lines threading the superconductor. The stronger the 

external field the more densely will pack the vortex lines. The ends of the 

vortex lines at surface of a superconducting (type− II) material in the 

mixed state have been made visible by dusting the surface with powdered 

iron. 

The vortex lines are packet in the form of heaps having regular pattern on 

the Surface. Knowing the magnetic field intensity and the number of vortex 

lines per square cm, it was found that the mount of flux associated with 

each vortex line has a fixed value related to Planks constanth, and the 

electric charge of the electrone. 

The quantum of flux 

φ0 =
h

2e
= 2.07 × 10−7Tm2 

In general the flux 

φ = nφ0 



23 
 

Where  

n =  1, 2,3… 

This result confirms the significance of electron pairs in the composition of 

the Superconducting state. Flux quantization is a beautiful example of a 

long range quantum effect, in the instance of a ring the coherence of the 

superconducting state extends over the ring [9,10,11,12]. 

The electromagnetic field is an example of a boson field. The electric field 

Intensity E(r) acts qualitatively as field amplitude. The energy density 

may be 

Written as, in a semi classical approximation, 

E∗(r)E(r)

4π
≈ n(r)hω                                            (2.8.1) 

Where n(r) is the number of photons of frequency ω per unit volume. 

 Assume that the total number of photon in the volume is large in 

comparison with unity. Then 

E(r) ≈  (4πhω)
1
2n(r)

1
2eiθ(r)                                     (2.8.2) 

E∗(r) ≈ (4πhω)
1
2n(r)

1
2e−iθ(r)                               (2.8.3) 

Where φ(r) the phase of the field. 

Now introduce similar particle probability amplitudes into the description 

of particle bosons, where a particle is an electron pair (the analogy with 

photon is not exact, but it is helpful). 

The ground state of superconductor is made up of weakly-bound electron 

pairs, called cooper pairs. An electron pair will act as a boson, although a 

single electron is fermions. The arguments that follow apply specifically to 

boson gas with a very large number of bosons in the same orbital. we can 

then treat the boson probability amplitude as a classical quantity, just as the 

electromagnetic field is used for photons. The arguments do not apply to a 
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metal in the normal state because an electron in normal state acts as single 

unpaired fermions.  

First how that a charged boson gas obeys the London equation in theorem 

∇ × Ј = −
e2

4πλL
2 B = −

1

μ0λL
2 B                                    (2.8.4) 

Let ψ(r)be the particle probability amplitude. Suppose that the 

Concentration 

n = (r)ψ(r) = constant 

At absolute zero n is one-half of the concentration of electrons in the 

conduction band, for n refers to pairs. Then  

ψ(r) = n
1
2eiθ(r)(r) = n

1
2e−iθ(r)                                 (2.8.5) 

The phase φ(r)is important for what follows: make the good approximation 

thatψ(r)is classical amplitude rather than a quantum field operator. The 

velocity of a particle is: 

ν =
1

m
(p−

q

c
ᴧ) =

1

m
                                         (2.8.6) 

The particle flux is given by 

nv = (r)ψ(r)v= ψ∗(r)(−iħ∇ −
q

c
A

ψ(r)

m
) 

= ψ∗(r)(−iℏ∇−
q

c
A)

n1\2eiθr

m
 

ψ∗

m
(−iℏn1\2ieiθ(r)∇θ(r)−

q

c
Aeiθ(r)n1\2)

=
n1\2e−iθ(r)

m
(−in1\2ieiθ(r)h∇θ(r) −

q

c
Aeiθ(r)n1\2

=
n

m
(ℏ∇θ −

q

c
A) 

So that the electric density in the ring (which is a multiply -connected 

region) is: 

J = nqv = ψ∗(r)ψ(r)qv = nq(ℏ∇θ −
q

c
A)

1

m
            (2.8.7)    
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Taking the curl of both sides one obtains: 

∇ × J =
nq

m
(ℏ∇ ×∇θ(r) −

Q

C
× A) 

From equation (2.8.4)B = ∇ ×A, with use of the fact that the curl of the 

gradient of a scalar is identically zero, i.e.∇ × ∇θ = 0The above equation 

[2.6.2]. is one form of the London equation 

∇ × J =
nq2

mc
B                                                    (2.8.8) 

The quantization of the magnetic flux through a ring is a dramatic 

consequence of the equation of the electric current density J above. Let us 

take a close path Cthrough the interior of the superconducting material, well 

away from the surface. The Meissonier effect tells us that B and J are zero 

in the interior. Now from equation (2. 7.11) 

J = 0 if ℏ∇θc = qA                                    ( 2.8.9) 

However, we have 

∮∇θ × dL = θ2 − θ1                                    (2.7.10) 

Hence: 

cℏ∮ ∇θ × dL =
c

∮ A. dL
c

                            (2.8.11) 

For the change of phase ongoing once around the ring, the boson 

probability amplitude is measurable in the classical approximation, so that 

must be singing and  

θ2 − θ1 = 2πS                                            (2.8.12) 

Where S is an integer . Also have been the stocks theorem and the fact 

curl A = B: 

∮ A.dl
C

= ∮ (curlA)d.σ = ∮B. dσ = φ
c

(2.7.13) 
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2.9 Hubbard Model and Conduction: 

          Motivated by the successes of production and annihilation in 

quantizing field, encourages some physics to utilize the same framework to 

try to solve some long standing problems of condensed matter physic. This 

trial is not surprising as far as the system of fields consist of a large number 

of mediators carrying the field force, which is similar to condensed matter 

which consists of huge number of particles. The physics based on the notion 

of production operators utilized in solid state physics is called Hubbard 

model [16, 17]. 

2.9.1 Non- Interacting Electrons: 

The Hamiltonian of anon-interacting fermions on a lattice of L sites 

labeled by i, j takes the form [17]. 

H0 = ∑tijci
+

ij

cj                                                   (2.9.1) 

Localized at site j and described by the winner wave functionϕj. These 

Operators satisfy the anti-commutation relations 

{ci
+ , cj} = δij                                                        (2.9.2) 

The tij are coefficient defined to be 

tij = ⟨φi|[ℏ
2∇2/2m+ V0]|φj⟩ 

= ∫φi (x) |−
ℏ2∇2

2m
+ V0 |φj                                 ( 2.9.3) 

Where V0  stands for the crystal field interactionfor practical considerations 

tijis non zero, only when i, j are nearest neighbors, in which case it is 

usually denoted byt. ThusHoin (3.1) can be reduced to the form 

H̅0 = −t∑[ci
+cj + cj

+]

ij

 

Assuming the periodic boundary conditions, one can writ 
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ck+=
1

√L
∑eijkCj

+

k

                             (2.9.4) 

H0 = ∑εk

k

ck
+ck                                    (2.9.5) 

Where 

εk = −2tcos ka                                          (2.9.6) 

With L allowed k values in the first Brillion zone. The term here stands for 

the distance between two sites. 

If the number of electrons N is equal to the number of sitesL, i.e.N = L, 

In this situation each allowed k state can be occupied by two and spins. 

Hence the ground state of H0 is constructed by filling the lower half of the 

band which is denoted by continuous line. Since half of the band is filled, 

the situation,N = L, is called half filling. This state is known as a Fermi sea 

state, usually denoted by|FS〉, where 

|FS〉 = ∏ck↑
1 ck↓

1 |0〉 

With|0〉standing for the vacuum state in which the lattice is empty, kF is the 

maximum occupied k state known as Fermi wave vector. 

The fact that k states are occupied by two electrons comes from the fact that 

the number of allowed values of kisL. But since the occupied states are 

these for which εk < 0specially the k axis],only half of the k states between 

are empty. Thus the occupied k states are 
L

2
 [10, 11]. But as far as the 

number of electrons are 

N = L = 2x (L/2)  = 2x 

Number of k states. Hence each k state is occupied by two electrons of 

spins up and down. The Fermi sea state is the Eigen state of the 

Hamiltonian, thus 

H0|FS〉   = E0|FS〉                                  (2.9.7)  

The total energy  E0 is given by The Fermi sea state is the Eigen state of the 
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Hamiltonian, thus 

H0|FS〉   = E0|FS〉                                   (2.9.8) 

E0 = ∑ εknkσ

|k|<
πσ
2

= ∫ 2 × (−2t cos ka

π
2

−
π
2

) ×
dk

2π
               (2.9.9) 

The integral here is multiplied by 2 since each k state is occupied by two 

electrons, divide k by 2π  since the system is confined the first Brillion 

zone. If his system is excited an electron from one of the state is |k| < π/2 

Jump to higher state k+ q such that |k + q| > π/2, leaving a hole in the 

state k. if the electron spin is up↑ this new state a denoted by |ψn〉 where 

Ĥ0|ψn〉 = Ĥ0(cK+q↑
+ ck↑|FS〉 = εk

ph(q)ψn〉       (2.9.10) 

The energy of state ψn is given by 

εk
ph(q) = εk+q − εk                            (2.9.11) 

In this half-filled band one has a metal as far as the filled valence band and 

the empty conduction band overlap. The ground state of non-interacting 

electrons can be obtained by occupying the lowest states by maximum 

number of electrons as possible [17]. 

This is done by allowing each k state to be occupied by two electrons with  

↑ and ↓ Spins But since the number of allowed state sink space earedL, and 

since 

 L =  N =  number of electrons 

Hence only L/2 states are occupied, where 

2 electron x(
L

2
)states = L = N 

Thus half-filled 

Such occupation to minimize energy in the k − space can be performed by 

four possible ways in the real space, where four possible occupation of a 

single site. 

The above situation represents the case when the electron interaction is 
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neglected. When the electron-electron interaction is considered, one has to 

add to Hamiltonian the term 

V =
1

2
∑VμVβα Cμ

+CV
+CαCβ                            (2.9.12) 

Where the index α ≡ {σ, i} described the site i and spinσ.the two 

particle interactions is described by the term. 

VμVβα = ∫ψβ
∗ (x)ψv

∗(x−)(|x− x−|)ψβ(x)ψα(x
−)dxdx−            (2.9.13) 

In metals the coulomb potential is screened and takes the form 

V(r) =
ek0t

r
K0 = KTF                                  (2.9.14) 

When all indices correspond to the same site j, Pauli Principle forces 

μ = α =↑  , β = v =↓ 

2.10 Exact Digitalization: 

         The digitalization process aims to find the space which constitutes the 

Eigen vectors of the Hamiltonian. This comes from the fact that the 

Hamiltonian matrix is diagonal in the Hamiltonian Eigen vectors space. In 

this  case the Eigen vector is the energy Eigen value while the 

corresponding coefficient is the energy of the state. This toy model consists 

of two sites labeled 0, 1. In this case the Hubbard model written explicitly 

(in unit which t = 1) as: 

H = Ht + HU 

= −( C0↑
+ C1↑ + C1↑

+ C0↑ + C0↓
+ C1↓ + C1↓

+ C0↓)+ (n0↑n0↓   + n1↑n1↓) 

(2.10.1) 

The first term stands for the kinetic hopping process while the second one 

represents the field contribution [27, 28]. 

2.10.1 Strong Correlations and Spin Physics  

As one already sees in previous section, the ground state of the two 

sites Hubbard model is a singlet with energy 



30 
 

ES
− =

U

2
− √

U2

4
+ 4t2 

The ground state wave function 

|Es
−〉 = 4|ψ2〉 + (𝖴 + √𝖴2 + 16|ψ3〉 

Since the first excited state is at Et = 0 the splitting between these two state 

for large 𝖴 ≫ t is 

 

−J = Es − Et =
𝖴

2
−

√𝖴2

4
+ √4t2  ≈

4t2

𝖴
                   (2.10.2) 

Therefore the singlet state is slightly below(−
4t2

𝖴
)the triplet state. This 

indicates that in large U limit, the low-energy physics of Hubbard model is 

given by spin fluctuations which are anti ferromagnetic (AF) (singlet has 

lower energy). This observation in a two site Hubbard model is indeed very 

general and it can be shown using a unitary Trans formation that the 

Hubbard model at large U limit can be mapped into the so called t − J 

model, where there are AF spin fluctuations along with hopping restricted to 

subspace with no double occupancy [17, 18]. 

2.11 Hubbard Model for Superconductivity and Mott 

Insulator: 

One of the most widely used models to describe HTSC is the 

Hubbard model. The electric conduction in this model is performed by 

hopping of valence electrons from site to site. Moreover, this model is used 

in most applications of condensed matter and many body systems. The 

Hubbard model is particularly applied to strongly correlated systems, 

including electronic correlated. An electronic system is said to be correlated 

when the electrons within it are not free. In the free electron model the 

conduction electrons move freely within the metal forming a free electron 
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Fermi gas, which obeys Pauli Exclusion Principle [20, 21, and 24]. 

The electron state can be described by using the winner Eigen functions  

 (Basis) ∅n (r− Ri) which describe electron localized at r on the atom at 

the position. In the standard Hubbard model each atom has only one 

electron non-degenerate orbital state. The actual atom, however, can have 

more than one orbit and more than two electrons in the corresponding state. 

This assumption stems. From the fact that the electrons in other states do 

not play significant role at low temperature, hence the Hamiltonian of the 

system takes the form [16].From the fact that the electrons in other states do 

not play significant role at low temperature, stands for the electron number 

operator. To simplify treatment one can use U to describe coulomb 

repulsion, and t to represent kinetic hopping. Hence the quantity U/t 

determines whether coulomb repulsion or hopping dominates. However, it 

is not possible to determine the relative importance of the two in relation to 

the Pauli Exclusion Principal, which depends on the probability of finding 

two electrons on the same site. This quantity can somewhat accounted for 

by the electron density per spin 

1

2N
∑cik

+ Cjk                                        (2.11.1) 

Each atom has space for at most two electrons, n can be in the range from 0 

to 1. Hubbard model is affected by three factors, one-site repulsions 

hopping and Pauli Exclusion Principle. When each atom has one electron, 

one has a perfect half-filled band. To put an extra electron on that system 

this needs to overcome coulomb repulsion. When U is big the band will 

split into two sub bands with a gap in the middle. For half filled band, 

i.e.n = 0.5 the Fermi energy will cross the energy gap. Thus the lower band 

is filled and stands for the valence band while the upper band is empty and 

behaves as a conduction band. Therefore the electron to become free needs 

very large energy to cross the energy gap Egto be free where 
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Egα∆Eα𝖴 → ∞ 

In this case, the material becomes an insulator called Mott insulator. If n is 

not perfectly equal to 0.5 the Fermi energy will cross either the upper or the 

lower Hubbard band. This can be understood in terms of Fermi Dirac 

statistics where. 

n =
1

[eβ(E−EF + 1]
 

eβ(E−Ef) =
1

n
− 1 

E − EF = ln (
1 − n

n
) 

EF = E + ln (
n

1 − n
)                            (2.11.2) 

For zero filling n = 0 

EF + E+ ln0 = E + Lne−∞ 

EF = E − ∞ → ∞                                  (2.11.3) 

Since the zero energy is at the interface of upper and lower band.   

Thus EF becomes far below the interface. ThereforeEF crosses the lower 

band. Hence there is no gap between conduction and valence band, as far  

as EF  Separates conduction and valence band. As a result the material is 

converted in to metal. 

EF = E + Ln∞ = E + lne∞ = E + ∞ → ∞ 

For complete filling n = 1 

 Hence Ef crosses the upper band. Again the material becomes a conductor 

as far as Ef , does not cross an energy gap. Thus electrons can easily 

become Conduction electron. 

2.12 Coherence Length: 

     The coherence length is a measure of the distance with in which the gab 

parameter cannot change drastically in a spatially in a spatially-varying 

magnetic field. The London equation is a local equation: it relates the 
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current density at a point so to the vector potential. However, the coherence 

length is a measure of the range over which average A to obtain J.Any 

spatial variation in the state of an electronic system requires extra kinetic 

energy. It is reasonable to restrict the spatial variation of J(r) in such away 

that the extra energy is less than the stabilization energy of the 

superconducting state. A suggestive argument (based on the uncertainty 

principle) for the coherence length at absolute zero follows. The electron 

motion can be described by the plane wave ψ(x) = eikx  considering that 

the electron have two states one characterized byk, and the other is 

characterized by k + q. Then the wave function of the electron in the 

superposition of two states is as follows: 

ϕ(x) = 2−
1
2(ei(k+q)x + eikx)                          (2.12.1) 

The probability density as associated with single plane wave is uniform in 

space where: 

ψ∗ψ = e−ikxeikx = 1                          (2.12.2) 

Where the probability φ∗φ is modulated by the wave vector q. probability 

|φ|2of two states  

= φ∗φ 

=
1

2
(ei(k+q)x + eikx)(ei(k+q)x + eikx) 

=
1

2
(2+ e−iqx + eikx) = 1 + cosqx              (2.12.3) 

The kinetic energy of the wave ψ(x)at a single state k is: 

H =
P2

2m
+ v                                          (2.12.4) 

For free electrons: 

v = 0       p =
ℏ

i

d

dx
        Hψ = Eψ,ψ(x) = eikx              (2.12.5) 

E =
ℏ2

2m
k2                                         (2.12.6) 
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The kinetic energy of the wave function φ is: 

〈E〉 = ∫φ∗Hφdx                                    (2.12.7) 

For  

V = 0H =
P2

2m

ℏ2

2m

d2

dx2
 

Then: 

〈E〉 = ∫ φ∗(−
ℏ2

2m

d2

dx2
)φdx 

=
1

2

ℏ2

2m
[(k + q)2 + k2]∫ϕ∗ϕdx 

=
1

2

ℏ2

2m
(k2 + 2kq+ k2) 

=
1

2

ℏ2

2m
(k2 + kq)                                (2.12.8) 

Where neglected q2  on the assumption that q << k comparing (2.11.6) and 

(2.11.8). The increase of energy requires for modulation is 
ℏ2kq

2m
. If this 

increase exceeds the energy gap Eg, superconductivity will destroyed. The 

critical value q0 of the modulation wave vector is defined by 

ℏ2q0

2m
kF = Eg                                  (2.12.9) 

Define an intrinsic coherence length λ0  related to the critical modulation by 

λ0 =
2π

q0

 

Sinceℏk = P = mV; then from (2.11.9) one obtains: 

λ0 =
2πℏ2

2mEg

kF 

=
πℏ

Eg

vF                                      (2.12.10) 

Where vF =
πℏkF

m
 the electron velocity at the Fermi surface on the BCS 
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theory, a similar result can be obtained i.e. 

λ0 =
2ℏvF

πEg

                                   (2.12.11) 

The intrinsic coherence length λ0  is characteristic of a pure superconductor. 

In impure materials and in allays the coherence length λc  is shorter then λ0  

this maybe understood qualitatively: impure material, the electron Eigen 

functions already have wiggles in them. Construct a given localized 

variation of current density with less energy from wave functions with 

wiggles then from smooth wave functions. 

2.13 High-Temperature Superconductors: 

 High temperature superconductors (HTC) are materials that behave 

as superconductors at unusually [29] high temperatures. The first high −Tc  

superconductor was discovered in 1986 by IBM researchers Georg Bednorz 

andK. Alex Muller [30,31,32]. Who were awarded the 1987 Nobel Prize in 

Physics "for their important break-through in the discovery of 

superconductivity in ceramic materials" [33]. Whereas "ordinary" or 

metallic superconductors usually have transition temperatures (temperatures 

below which they are superconductive) below 30 K (−243.2 °C), and must 

be cooled using liquid helium in order to achieve superconductivity, HTS 

have been observed with transition temperatures as high as 

138 K (−135 °C), and can be cooled to superconductivity using liquid 

nitrogen [2]. Until 2008, only certain compounds of copper and oxygen (so-

called "cuprite's") were believed to have HTS properties, and the term high-

temperature superconductor was used interchangeably with cuprate 

superconductor for compounds such as bismuth strontium calcium copper 

oxide (BSCCO) and yttrium barium copper oxide(YBCO). Several iron-

based compounds are now known to be superconducting at high 

temperatures [5, 6, and 7]. 

https://en.wikipedia.org/wiki/Superconductors
https://en.wikipedia.org/wiki/High-temperature_superconductivity#cite_note-arstechnica:-25-years-on-1
https://en.wikipedia.org/wiki/Johannes_Georg_Bednorz
https://en.wikipedia.org/wiki/Karl_Alexander_M%C3%BCller
https://en.wikipedia.org/wiki/Nobel_Prize_in_Physics
https://en.wikipedia.org/wiki/Nobel_Prize_in_Physics
https://en.wikipedia.org/wiki/Liquid_helium
https://en.wikipedia.org/wiki/Liquid_nitrogen
https://en.wikipedia.org/wiki/Liquid_nitrogen
https://en.wikipedia.org/wiki/BSCCO
https://en.wikipedia.org/wiki/YBCO
https://en.wikipedia.org/wiki/Iron-based_superconductor
https://en.wikipedia.org/wiki/Iron-based_superconductor
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In 2015, hydrogen sulfide(H2S) under extremely high pressure (around 150 

gaga scales) was found to undergo superconducting transition near 

203 K (−70 °C), the highest temperature superconductor known to date 

 [8, 9, 10]. For an explanation about Tc  (the critical temperature for 

superconductivity), see  Superconducting phase transition and the second 

bullet item of BCS theory Successes of the BCS theory 

2.13.1 Crystal Structures of High-Temperature Copper Oxides: 

        Copper HTC are one of the matrices having interesting proportion. The 

structure of high-Tccopper oxide or cuprate superconductors are often 

closely related to perovskite structure, and the structure of these compounds 

has been described as a distorted, oxygen deficient multi-layered perovskite 

structure. One of the properties of the crystal structure of oxide 

superconductors is an alternating multi-layer of CuO2 planes with 

superconductivity taking place between these layers. The more layers 

of CuO2 , the higher Tc  . This structure causes a large anisotropy in normal 

conducting and superconducting properties, since electrical currents are 

carried by holes induced in the oxygen sites of the CuO2 sheets. The 

electrical conduction is highly an isotropic, with a much higher conductivity 

parallel to the CuO2 plane than in the perpendicular direction. Generally, 

critical temperatures depend on the chemical compositions, caption 

substitutions and oxygen content. They can be classified as super stripes; 

i.e., particular realizations of super lattices at atomic limit made of 

superconducting atomic layers, wires, dots separated by spacer layers that 

give multiband and multiage superconductivity [15, 16, and 18]. 

 

 

https://en.wikipedia.org/wiki/Hydrogen_sulfide
https://en.wikipedia.org/wiki/Gigapascal
https://en.wikipedia.org/wiki/Critical_temperature
https://en.wikipedia.org/wiki/Superconductivity#Superconducting_phase_transition
https://en.wikipedia.org/wiki/BCS_theory#Successes_of_the_BCS_theory
https://en.wikipedia.org/wiki/Perovskite_%28structure%29
https://en.wikipedia.org/wiki/Superstripes
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2.13.2 𝐘 𝐁𝐚 𝐂𝐮𝐎Superconductors:- 

 

 

            

 

 

 

 

  The first superconductor found with T𝐜 >  77 K (liquid nitrogen boiling 

point) is yttrium barium copper oxide(ABa2Cu3O7−x); the proportions of 

the three different metals in the YBa2Cu3O7 superconductor are in the mole 

ratio of 1 to 2 to 3 for yttrium to barium to copper, respectively. Thus, this 

particular superconductor is often referred to as the 123 superconductor. 

The unit cell of YBa2Cu3O7 consists of three pseudo cubic elementary 

perovskite unit cells. Each perovskite unit cell contains a Y or Ba atom at 

the center: Ba in the bottom unit cell, Y in the middle one, and Ba in the top 

unit cell. Thus, Y and Ba are stacked in the sequence [Ba–Y–Ba] along the 

c-axis. All corner sites of the unit cell are occupied by Cu, which has two 

different coordination’s,Cu(1) and Cu(2), with respect to oxygen. There 

are four possible crystallographic sites for oxygen: 

O(1),O(2),O(3)and O(4) [23,24,25]. The coordination polyhedral of Y 

and Ba with respect to oxygen is different. The tripling of the perovskite 

unit cell leads to nine oxygen atoms, whereas YBa2Cu3O7 has seven 

oxygen atoms and, therefore, is referred to as an oxygen-deficient 

perovskite structure. The structure has a stackin of different 

layers (CuO) (BaO)(CuO2)(Y)(CuO2)(BaO)(CuO). One of the key features 

of the unit cell of Y YBa2Cu3O7−x (YBCO) is the presence of two layers 

of CuO2 . The role of the Y plane is to serve as a space between two CuO2 

https://en.wikipedia.org/wiki/Liquid_nitrogen
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planes. InYBCO, the Cu–O chains are known to play an important role for 

superconductivity. Tcis maximal near 92 K when x ≈ 0.15 and the structure 

are orthorhombic. Superconductivity disappears at x ≈ 0.6, where the 

structural transformation of YBCO occurs from orthorhombic to tetragonal 

[21]. 

2.13.3 𝐁𝐢-, 𝐓𝐋- and Hg-Based High-𝐓𝐜  Superconductors 

         The crystal structure of Bi-, TL- and Hg-based high-TC 

superconductors are very similar [25]. LikeYBCO, the perovskite-type 

feature and the presence of CuO2 layers also exist in these superconductors. 

However, unlike YBCO,Cu–O chains are not present in these 

superconductors. The YBCO superconductor has an orthorhombic structure, 

whereas the other high-TcTc  superconductors have a tetragonal structure. 

The Bi–Sr–Ca–Cu–O system has three superconducting phases forming a 

homologous series as Bi2Sr2Can− 1CunO4 + 2n+ x (n = 1,2and3). These 

three phases areBi − 2201,Bi − 2212 and Bi− 2223, having transition 

temperatures of 20,85 and110 K, respectively, where the numbering system 

represent number of atoms for Bi,Sr, Ca and Cu respectively [26] . The two 

phases have a tetragonal structure which consists of two sheared 

crystallographic unit cells. The unit cell of these phases has double Bi–O 

planes which are stacked in a way that the Bi atom of one plane sits below 

the oxygen atom of the next consecutive plane. The Ca atom forms a layer 

within the interior of the CuO2  layers in both Bi − 2212 and Bi − 2223; 

there is no Ca layer in the Bi − 2201 phase. The three phases differ with 

each other in the number of CuO2 planes; Bi − 2201,Bi − 2212 and Bi−

2223 phases have one, two and three CuO2 planes, respectively. The c axis 

lattice constants of these phases' increases with the number of CuO2 planes 

(see table below). The coordination of the Cu atom is different in the three 
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phases. The Cu atom forms an octahedral coordination with respect to 

oxygen atoms in the 2201 phase, whereas in 2212, the Cu atom is 

surrounded by five oxygen atoms in apyramidal arrangement. In the 2223 

structure, Cu has two coordination's with respect to oxygen: one Cu atom is 

bonded with four oxygen atoms in square planar configuration and another 

Cu atom is coordinated with five oxygen atoms in a pyramidal arrangement 

[27]. 

 

2.13.2 Magnetic Properties 

     All known high-Tc  superconductors are Type − II superconductors. In 

contrast to Type− I superconductors, which expel all magnetic fields due 

to the Meissonier effect, Type− II superconductors allow magnetic fields 

to penetrate their interior in quantized units of flux, creating "holes" or 

"tubes" of normal metallic regions in the superconducting bulk called 

vortices. Consequently, high-Tc  superconductors can sustain much higher 

magnetic fields. 

Ongoing research 

 

The question of how superconductivity arises in high-temperature 

superconductors is one of the major unsolved problems of theoretical 

condensed matter physics. The mechanism that causes the electrons in these 

crystals to form pairs is not known [5]. Despite intensive research and many 

https://en.wikipedia.org/wiki/Type-I_superconductor
https://en.wikipedia.org/wiki/Meissner_effect
https://en.wikipedia.org/wiki/Electrical_conduction#Metals
https://en.wikipedia.org/wiki/Quantum_vortex
https://en.wikipedia.org/wiki/Condensed_matter_physics
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promising leads, an explanation has so far eluded scientists. One reason for 

this is that the materials in question are generally very complex, multi-

layered crystals improving the quality and variety of samples also gives rise 

to considerable research, both with the aim of improved characterization of 

the physical properties of existing compounds, and synthesizing new 

materials, often with the hope of increasing TC . Technological research 

focuses on making HTS materials in sufficient quantities to make their use 

economically viable and optimizing their properties in relation to 

applications [40, 41, 42]. 

2.13.3 Possible Mechanism 

   There have been two representative theories for high-temperature or 

unconventional superconductivity. Firstly, weak coupling theory suggests 

superconductivity emerges from anti ferromagnetic spin fluctuations in a 

doped system [43,44,45,46]. According to this theory, the pairing wave’s 

function of the cuprate HTS should have a dx2 − y2 symmetry. Thus, 

determining whether the pairing wave function has d − wave symmetry is 

essential to test the spin fluctuation mechanism. That is, if the HTS order 

parameter (pairing wave function) does not have d-wave symmetry, and 

then a pairing mechanism related to spin fluctuations can be ruled out. 

(Similar arguments can be made for iron-based superconductors but the 

different material properties allow a different pairing symmetry.) Secondly, 

there was the interlayer coupling model, according to which a layered 

structure consisting of BCS − type (s-wave symmetry) superconductors can 

enhance the superconductivity by itself [58]. By introducing an additional 

tunneling interaction between each layer, this model successfully explained 

the anisotropic symmetry of the order parameter as well as the emergence 

of the HTS. Thus, in order to solve this unsettled problem, there have been 

https://en.wikipedia.org/wiki/Technological_applications_of_superconductivity
https://en.wikipedia.org/wiki/Unconventional_superconductivity
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numerous experiments such as photoemission spectroscopy, specific heat 

measurements, etc. Up to date the results were ambiguous; some reports 

supported the d symmetry for the HTS whereas others supported the s 

symmetry. This muddy situation possibly originated from the indirect 

nature of the experimental evidence, as well as experimental issues such as 

sample quality, impurity scattering, twinning, etc. [26, 27]. 

 

Fig (2.12) Junction experiment supporting the d symmetry: 

The Meissonier effect or a magnet levitating above a superconductor 

(cooled by liquid nitrogen) 

An experiment based on flux quantization of a three-grain ring of 

YBa2Cu3O7  (YBCO) was proposed to test the symmetry of the order 

parameter in the HTS. The symmetry of the order parameter could best be 

probed at the junction interface as the Cooper pair’s tunnel across a 

Josephson junction or weak link [69]. It was expected that a half-integer 

flux, that is, a spontaneous magnetization could only occur for a junction of 

d symmetry superconductors. But, even if the junction experiment is the 

strongest method to determine the symmetry of the HTS order parameter, 

the results have been ambiguous. J. R.Kirtleyand C.C. TsueiThought that 

the ambiguous results came from the defects inside theHTS, so that they 

designed an experiment where both clean limit (no defects) and dirty limit 

(maximal defects) were considered simultaneously [70]. In the experiment, 

the spontaneous magnetization was clearly observed inYBCO, which 

https://en.wikipedia.org/wiki/Photoemission_spectroscopy
https://en.wikipedia.org/wiki/Specific_heat_capacity
https://en.wikipedia.org/wiki/Meissner_effect
https://en.wikipedia.org/wiki/Liquid_nitrogen
https://en.wikipedia.org/wiki/File:Meissner_effect_p1390048.jpg
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supported the d symmetry of the order parameter inYBCO. But, since YBCO 

is orthorhombic, it might inherently have an admixture of s symmetry. So, 

by tuning their technique further, they found that there was an admixture of 

s symmetry in YBCO within about 3%[71]. Also, they found that there was 

pure dx2 − y2 order parameter symmetry in the tetragonal Tl2Ba2CuO6 

[72]. 

2.14 Qualitative Explanation of the Spin-Fluctuation 

Mechanism: 

            Main article: Resonating valence bond theory despite all these years, 

the mechanism of high-Tcsuperconductivity is still highly controversial, 

mostly due to the lack of exact theoretical computations on such strongly 

interacting electron systems. However, most rigorous theoretical 

calculations, including phenomenological and diagrammatic approaches, 

converge on magnetic fluctuations as the pairing mechanism for these 

systems. The qualitative explanation is as follows: 

In a superconductor, the flow of electrons cannot be resolved into 

individual electrons, but instead consists of many pairs of bound electrons, 

called Cooper pairs. In conventional superconductors, these pairs are 

formed when an electron moving through the material distorts the 

surrounding crystal lattice, which in turn attracts another electron and forms 

a bound pair. This is sometimes called the "water bed" effect. Each Cooper 

pair requires a certain minimum energy to be displaced, and if the thermal 

fluctuations in the crystal lattice are smaller than this energy the pair can 

flow without dissipating energy. This ability of the electrons to flow 

without resistance leads to superconductivity. In a high-Tc  superconductor, 

the mechanism is extremely similar to a conventional superconductor, 

except, in this case, phonons virtually play no role and their role is replaced 

https://en.wikipedia.org/wiki/Resonating_valence_bond_theory
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by spin-density waves. Just as all known conventional superconductors are 

strong phonon systems, all known high − Tc superconductors are strong 

spin-density wave systems, within close vicinity of a magnetic transition to, 

for example, an antiferromagnetic. When an electron moves in a high − Tc  

superconductor, its spin creates a spin-density wave around it. This spin-

density wave in turn causes a nearby electron to fall into the spin depression 

created by the first electron (water-bed effect again). Hence, again, a 

Cooper pair is formed. When the system temperature is lowered, more spin 

density waves and Cooper pairs are created, eventually leading to 

superconductivity. Note that in high − Tc  systems, as these systems are 

magnetic systems due to the Coulomb interaction, there is a strong 

Coulomb repulsion between electrons. This Coulomb repulsion prevents 

pairing of the Cooper pairs on the same lattice site. The pairing of the 

electrons occurs at near-neighbor lattice sites as a result. This is the so-

called d − wave pairing, where the pairing state has a node (zero) at the 

origin [50,51,52] 
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Chapter Three 

Literature Review 

3.1 Introduction: 

          Many attempts were made to cure setback of scThis chapter is 

concerned with some of these attempts [54, 55, 56, 57, 58, 60, 61]. The 

attempts exhibited have mainly concerned electrical and magnetic 

properties   

3.2 Effect of Magnetic Field on Super conduction Complex 

Resistance according to Quantum Mechanics 

          In the work of Dirar [57].Plasma equation was used to describe 

electron motion easily. This is since electrons are charged .For pressure 

exerted by the gas plasma equation becomes: 

mn
dv

dt
= −∇P + F                                     (3.2.1) 

But for pressure exerted by the medium on the electron gas, the equation 

become: 

mn
dv

dx
= ∇P + F = ∇P− ∇V                 (3.2.2) 

In one dimensions, the equation becomes: 

mn
dv

dx

dx

dt
=

d(nKT)

dx
−

dnv

dx
 

mn
vdv

dx
=

d

dx
[nKT− nv] 

Thus in integration both sides by assuming n to be constant, or in-

dependent ofk, yields: 

n

2
mv2 = nKT − nV+ c 
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1

2
mv2 + V − KT =

c

n
= constant = E 

This constant of motion stands for energy, thus: 

E =
p2

2m
+ V − KT                                   (3.2.3) 

Multiplying by Ѱ yields: 

Eψ =
p2

2m
ψ+ Vψ − KTψ                              (3.2.4) 

According to the wave nature of particles: 

ψ = Ae
i
ħ
(px−ET)

 

iℏ
∂ψ

∂t
= Eψ 

−ℏ2∇2ψ = p2ψ                                  (3.2.5) 

iℏ
∂ψ

∂t
=

−ℏ2

2m
∇2ψ+ Vψ − KTψ                 (3.2.6) 

The time in dependent equation becomes: 

−ℏ2

2m
∇2ψ + Vψ− KTψ = Eψ                       (3.2.7) 

Consider the case when these electrons wave subjected to constant crystal 

fieldV0 .This assumption is quite natural as far as particles are distributed 

homogenously. Thus equation (3.2.7) becomes: 

−ℏ2

2m
∇2ψ+ V0ψ − kτ = Eψ                        (3.2.8) 

One can suggest the solution to be 

ψ = AeiKx                               (3.2.9) 

A direct substitution yield: 

(
ℏ2

2m
K2 + V0 − KT)ψ = Eψ 

Therefore: 

K =
√2m(E+ KT − V0

ℏ
                       (3.2.10) 
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This wave number is related to the momentum according to the relation: 

p = mv = ℏK = √2m(E+ KT − V0           (3.2.11) 

This relation can be used to find the quantum resistance R of a certain 

material. According to classical laws: 

R =
v

t
                                 (3.2.12) 

For harmonic oscillator: T = V 

For electron accelerated by potential .The work done is related to the 

potential V and kinetic energy k according to the relation: 

W = V =
1

2
mv2                  (3.2.13) 

But since the current is gives by. 

I = nevA                                      (3.2.14) 

R =
mv2

2nevA
=

mv

2neA
=

p

2neA
        (3.2.15) 

From (3.2.12) and (3.2.13): 

R =
√2m(E+ KT + V)

2neA
             (3.2.16) 

Splitting R to real part Rs and imaginary part Ri 

R = Rs + jRi                      (3.2.17) 

According to equation (3.2.16) R Becomes pure imaginary, when: 

E+ KT − V0 < 0 

KT < V0 − E 

T <
(V0 − E   )

K
                 (3.2.18) 

Thus the critical temperature is given by: 

TC =
V0 − E

K
 

Thus equation (3.2.16) becomes: 
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R =
√2mk(T − TC)

2enA
              (3.1.19) 

Which r enquires 

V0 > E For T < TC  

Thus R becomes 

R =
i√2mk(T − TC)

2enA
                       (3.2.20) 

R = jRi                                               (3.2.21) 

Using Equation (3.2.16) yields 

Rs = 0                                           (3.2.22) 

Thus the superconductivity resistance vanishes for all T less than the critical 

value. 

When an external magnetic field of flux density B is applied, the total 

medium field is given by. 

Bm = B− Bi                                          (3.2.23) 

Where Bi is the internal flux density. The corresponding potential applied 

on electrons or charges is given by  Vm  , thus the total potential in equation 

(3.2.7) becomes. 

V = V0 ± Vm                                                (3.2.24) 

Vm = mL (
eħ

2m
)Bm = C0

−1Bm 

When the net magnetic potential opposes the crystal field 

V = V0 − Vm = V0 − C0
−1Bm                      (3.2.25) 

In this case one can rewrite the expression of R in equation (3.2.16) to be 

R =
√2mK(E+ kT − V0 + Vm

2enA
=

√2mk(T− TC + Tm)

2enA
 

R =
√2mk(T+ Tm − Tc)

2enA
(3.2.26) 

Consider now the case when 
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Tm ≥ TC                            (3.2.27) 

According to equation (3.2.23), (3.2.25) and (3.2.27) this critical value is 

given by 

Bc = c0(2mKTC) + Bic                         (3.2.28) 

In this case the term under the square root is positive always. This means 

that, it 

R = RS + jRi                                     (3.2.29) 

Ri = 0          Rs ≠ 0                           (3.2.30) 

This means that the superconductivity is destroyed when applying an 

external magnetic field having strength to satisfy equation (3.2.1). 

In this work resistance is considered as sum of real superconducting part 

and imaginary part as equation (3.2.17) shows. The effect of subjecting 

superconducting to magnetic field is studied where the magnetic field inside 

superconducting is considered as consisting of external and internal field 

(see equation (3.2.23)). Equation (29) shows that when an external 

magnetic field exceeds a certain critical value given by (28), the 

superconducting state is destroyed since   Rs ≠ 0as equation (30) indicates.   

3.3 Quantum Effect of magnetic field in destroying 

superconductivity: 

        In the work of Azakaria [54]. Another direct approach can also be 

found by considering the pressure exerted by thermal particle. In this case 

(3.3.1) the Hamiltonian becomes: 

Ĥ =
P̂

2m
+ KT − V                             (3.3.1) 

For spin repulsive force: 

V = −V0  

Thus: 

Ĥ =
P̂

2m
+ KT − V0                            (3.3.2) 
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Thus the average energy which is equal to the classical energy is given by: 

Ĥ = 〈
p̂

2m
〉+ KT − V0                       (3.3.3) 

Resistance for harmonic oscillator where, 

x = x0e
iwt ,   v = iwt,   T =

1

2
m|v|2 =

1

2
mω2x2,V =

1

2
Kx2 =

1

2
mω2x2

= T, H = T + V = 2V , eVE = V =
H

2
 

Where Ve is the potential, thus  

Ve =
H

2e
 

Using the quantum definition of [10]: 

R =
Ve

I
 

R = R+ + R−                                   (3.3.4) 

Where one split Rot positive and negative one. 

When: 

E0 + KT − V0 < 0                           (3.3.5) 

R− =
E0 + KT − V0

2el
 , R+ = 0                  (3.3.6) 

From equation (3.3.5) and (3.3.6) the superconductivity resistance RS 

Vanishes i.e: 

R+ = RS = 0                                      (3.3.7) 

When: 

KT < V0 − E0  

T <
V0 − E0

K
                                 (3.3.8) 

Thus the critical temperature is given by: 

TC =
V0 − E0

K
                                   (3.3.9) 

Again for TCto be positive V0 > E0 
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Thus for: 

T < TC                                      (3.3.10) 

RSC = R+ = 0                                 (3.3.11) 

In the case when external magnetic field of flux density Bm and potential 

Vm resulting from both external and internal to magnetic field are given by: 

BmB− BI                                            (3.3.12) 

Vm = V − Vi                                      (3.3.13) 

Where Bi and Vi  stands for the internal magnetic density and potential 

respectively .when the magnetic field attract electron. The Hamiltonian and 

the average energy in equation (3.3.1), (3.3.2) and (3.3.3) are given. 

Ĥ =
P̂2

2m
+ KT + Vm − V0 

〈Ĥ〉 = E0 + KT + Vm − V0                   (3.3.14) 

Thus according to equation (3.3.4) the quantum resistance is given by: 

R =
KT + E0 − V0 + Vm

2eL
= R+ + R−   (3.3.15) 

In view of equation (3.3.9) and by denoting Vm to be 

Vm = KTm = ml (
eħ

2m
)Bm = Cm−1Bm        (3.3.16) 

Equation (3.3.15) reads 

R =
k(T + Tm − TC

2eL
                     (3.3.17) 

When 

Tm > TC                                      (3.3.18) 

Thus the critical Vm  and Bare given by (3.3.18), (3.3.12) to be 

BC = BmC + Bic = cmVmc + Bic = cmkTC + Bic(3.3.19) 

In this case R is positive always. No matter what the value of T is therefore 

R = R+ + R− =
k(T + Tm − TC)

2eL
      (3.3.20) 

Thus, 
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R+ ≠ o Always, when condition (3.3.18) is satisfied. 

This work is concerned with applying external magnetic field. the external 

magnetic field incorporates itself in the resistance relation (3.3.15) via the 

medium potential terms as shown by equation (3.3.12) and (3.3.13).The 

quantum resistance consist of positive superconducting part beside negative 

part according to equation (3.3.15).The critical magnetic flux density is 

given by equation (3.3.19).The superconducting resistance does not vanish 

and the superconducting state is destroyed. When the magnetic flux density 

exceeds this critical value. 

3.4 New Derivation of simple Josephson Effect relation using 

new quantum mechanical equation: 

       In the paper of Rashida, etal [55], the Newtonian energy E is a sum of 

kinetic and potential energyv, i.e: 

E =
1

2
mv2 + V =

p2

2m
+ V                    (3.4.1) 

Where m, v,p are the mass, velocity momentum respectively .According to 

a theorem of Bloch [7].in such superconductors momentum Pis zero. 

p =
mv2

2
+

qA

c
 

Hence equation (3.4.1)  

E = V                                        (3.4.2) 

 This is related to the fact that in Josephson Effect the tunneling potential is 

considered to be larger than kinetic term squaring both sides’ yields: 

E2 = V2                            (3.4.3) 

Multiplying both sides byψ, one gets: 

E2ψ = V2ψ                                  (3.4.4) 

The wave function of a free particle s given by: 

ψ = Ae
i
h
(px−Et)                                    (3.4.5) 
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Differentiating both sides with respect x and t 

−ℏ2
∂2

∂t2
= E2ψ                                    (3.4.6) 

Similarly 

Substitute (3.4.6) in (3.4.4) to get 

−ℏ2
∂2ψ

∂t2
= V2ψ                              (3.4.7) 

3.4.1 Josephson Effect Equation: 

         In Josephson Effect electron have small kinetic energy compared to 

the potential. Thus Schrödinger Equation (3.4.7) in which kinetic term is 

neglected is suitable for describing the Josephson Effect. To derive 

Josephson Effect equation, consider the solution. 

ψ = D sin(αt + φ)                             (3.4.8) 

The tunneling potential is constant inside a superconductor, thus 

V = V0                                              (3.4.9) 

From (3.4.9), one can differentiate with respect to time twice to get 

∂ψ

∂t
= αDcos( ∝ t + φ   ) 

∂2ψ

∂t2
= −α2Dsin(αt + φ) = −α2ψ                (3.4.10) 

 Substituting (3.4.10) in (3.4.11) in (3.4.8) to obtain: 

+ℏ2α2ψ = V0
2ψ 

α2 =
V0

2

ℏ2
 

α = ±
V0

ℏ
                                     (3.4.11) 

By Substituting (3.4.11) in (3.4.8) and choosing a negative single, that is in 

dealing with the change in potential energy one gets 

ψ = D sin (
eV0

ℏ2
t + φ)                            (3.4.12) 



53 
 

J = e
∂n

∂t
= e

∂|ψ|2

∂t
= 2e|ψ|

d|ψ|

dt

= 2eDsin(αt + φ)(−
e

ℏ
V0) cos(αt + φ)   (3.4.13) 

−2
e2DV0

ℏ
sinθ cosθ 

θ = φ −
e

ℏ
V0  

By using mathematical identity 

sin2θ = 2 sinθ cosθ 

One can rewrite Equation (3.4.13) to be 

J =
e2DV0

ℏ
sin (2φ −

2eV0t

ℏ
) = Asin (2φ −

2eV0t

ℏ
) (3.4.13) 

2φ = δ(0) 

The current density is given by 

J = J0 sin(∂(0)−
2eV

ℏ
t)                   (3.4.14) 

This is the Josephson Effect equation: 

The new energy equation based on Newtonian, mechanics is used to derive 

anew quantum Equation (3.4.8).This new quantum equation is based on 

Newtonian energy with no kinetic term. This derivation resembles simple 

derivation of Schrödinger equation except the fact that the kinetic term is 

neglected this equation is used to drive simple Josephson current density 

equation. This equation (3.4.16) is the same as the old one, but derived 

using simple arguments. 

3.5 Complex Quantum Resistance Model: 

          In the work of Asma Altambori [56].Plasma equation describes the 

electron motion. This is since the electrons be behaves as ionized particles. 

For pressure exerted by the gas plasma equation becomes: 

mn
dv

dt
= −∇p + F                             (3.5.1) 
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But for pressure exerted by the medium on the electron gas, the equation 

become: 

mn
dv

dt
= ∇p− ∇v                            (3.5.2) 

In one dimension, the equation becomes: 

mn
dv

dx

dx

dt
=

d(nKT)

dx
−

dnv

dx
 

mn
vdv

dx
=

d(nKT)

dx
−

dnv

dx
 

Where V is the potential for one particle 

mn
d1/2v2

dx
=

d

dx
[nKT− nV] 

Thus in integrating both sides by assuming to be constant, or in –dependent 

of K, yields: 

n

2
mv2 = nKT − nV+ c 

1

2
mv2 + V − KT =

C

n
= constant = E 

This constant of motion stands for energy, thus: 

E =
p2

2m
+ v − KT                                      (3.5.3) 

Multiplying by, yields: 

Eψ =
p2

2m
ψ + Vψ − KTψ                       (3.5.4) 

According to the wave nature of particles: 

ψ = Ae
i(px−Et)

ℏ  

iℏ
∂ψ

∂t
= Eψ 

−ℏ2∇2ψ= p2ψ                                               (3.5.5) 

iℏ
∂ψ

∂t
=

−ℏ2

2m
∇2ψ+ Vψ − KTψ               (3.5.6) 
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The time in dependent equation becomes: 

−ℏ2

2m
∇2ψ+ Vψ − KTψ = Eψ                 (3.5.7) 

Consider the case when these electrons wave subjected to constant crystal 

field v0.this assumption is quite natural as far as particles are distributed 

homogenously. Thus equation (3.5.7) becomes: 

−ℏ2

2m
∇2ψ+ V0ψ − KTψ = Eψ                  (3.5.8) 

One can suggest the solution to be: 

ψ = Aeikx                                            (3.5.9) 

A direct substitution yields 

(
ℏ2

2m
K2 + V0 − KT   )ψ = Eψ 

Therefore: 

K =
√2m(E+ KT − V0

ℏ
                 (3.5.10) 

This wave number K is related to the momentum according to the relation: 

p = mv = ħK = √2m(E+ KT − V0)             (3.5.11) 

This relation can be used to find the quantum resistance R of a certain 

material. According to classical laws: 

R =
V

I
                                    (3.5.12) 

For electrons accelerated by the potential. The wave done is related to the 

potential and Kinetic energy K according to the relation 

w = V =
1

2
mv2                          (3.5.13) 

But since the current I is gives by. 

I = nevA                                    (3.5.14) 

R =
mv2

2nevA
=

mv

2neA
=

p

2neA
                (5.5.15) 
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From (3.5.12) and (3.5.13): 

R =
√2m(E+ KT − V0)

2neA
                      (3.5.16) 

Splitting R to real part Rsand imaginary part RiRJ 

R = Rs + Ri                                   (3.5.17) 

According to equation (3.5.16) R becomes pure imaginary, when 

E = KT − V0 < 0 

KT < V0 − E 

T <
(V0 − E)

K
                               (3.5.18) 

Thus the critical temperature is given by: 

TC =
V0 − E

K
 

This requires: 

V0 > E 

In this case (see equation (3.5.17)). 

R = jRi 

RS = 0                                       (3.5.19) 

Thus the superconductivity resistance RS Becomes zero beyond a certain 

critical temperature given by equation (3.5.17).which require binding 

energy to dominate. 

3.5.1 Energy gap and photon absorption: 

         Such that the magnetic flux density inside the medium is given by: 

Bm = Be(Nu − Nd)                          (3.5.20) 

Where BE is the magnetic flux density of one electron, If photon beams was 

absorbed this will change Bmby the transition of electrons from ground 

state to the excited state. If the number of incident photons is Npthe new 

internal flux density is given by: 

Bm = Be(Nu − Nd + 2Np)              (3.5.21) 
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This change the potential of electrons to be Vmand split the energy levels to 

be 

Vm = mL (
eℏ

2m
)Bm                           (3.5.22) 

Thus the energy gap is given by: 

Eg =
eℏ

2m
Bm                                    (3.5.23) 

Here one assumes that any electron is affected by the magnetic field of this 

pinning gas. When electrons are affected by internal magnetic field there 

distance in equation (3.5.16) and by the definition of Tcin equation (3.5.19) 

is given by: 

R =
√2m(E+ KT − V0)

2neA
= Rs + jRi         (3.5.24) 

Where 

KTm = Vm                                         (3.5.25) 

The superconductivity is destroyed when, 

Tm ≥ Tc                                           (3.5.26) 

Thus 

Vm ≥ KTC                                         (3.5.27) 

Since Vm is proportional to Bm according to equation (3.5.23) the energy 

gap corresponds to the minimum voltage that destroys superconductivity. 

Thus, 

Eg = CmVmg                                     (3.5.28) 

But according to equation (3.5.28) the minimum magnetic energy that can 

destroy superconductivity is, 

Vmg = KTc                                         (3.5.29) 

Thus equation (3.5.29) indicates that the energy gap takes the form 

Eg = CmKTc                                      (3.5.30) 
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It is very interesting to note that this expiration forEgconformsto the well 

known ordinary relation .In this model the photon plays a double role. 

When it is incident and absorbed by the superconductivity it increases the 

internal field by causing more electron with spin down to be in an excited 

state. This increase in the internal fieldBmcauses splitting of energy levels 

by the amount 

∆E = gmgμβHm                             (3.5.31) 

Cooper pairs are bound together by attractive force. The minimum energy 

which destroy the pairs and superconducting is called energy gap. It is clear 

that energy gap in equation (3.5.29) is related o energy splitting; in addition 

to the fact that the increase of magnetic field and magnetic potential above 

energy gap destroySC.This means that according to cooper version energy 

gap represents binding energy. It is very important to note that the relation 

(3.5.31) for energy gap which relates it to the critical temperature agrees 

with the ordinary one. 

The effect of external magnetic field on superconducting can be explained 

by Hubbard model by assuming that the external field increase Fermi 

energy. This increase can be explained on the basis of the relation between 

Fermi energy and free carriers concentration it is known that magnetic 

energy increases electrons energy. This can enable more electrons to be free 

by entering conduction band (CB) from the valence band (VB).According 

to hopping and Mott model, the Fermi level .By increasing external, field 

Fermi level can be assumed in the lower continuous band. Thus no gap 

exists between (CB) and (VB) which are separated by Fermi level. Upon 

increasing externalB, the free electrons and holes increases thus EFmove up 

word till it becomes inside energy gap between the lower band and upper 

banding this case the lower band which becomes (VB) and the upper band 

which becomes (CB).Thus an energy gap is produced between (VB) and 
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(CB) ,which prevent electrons from hopping easily. Thus the material 

becomes an insulator. 

3.6 Using the tight binding approximation in deriving the 

quantum critical temperature superconductivity equation 

3.6.1 Plasma equation: 

        In the work of R.Abd Elhai [ 58 ]. For fluid of particle of massm, 

number densityn, velocityv, forceF, and pressure p the equation of motion 

is given by: 

mn[
∂v

∂t
+ v.∇v] = F − ∇p                            (3.6.1) 

If F is a field force then 

F = n∇V 

Where V is the potential of one particle in one dimension 

mn[
∂v

∂t
+ v

∂v

∂x
] = −n∇V − ∇p = −n

dV

dx
−

dp

dx
 

dv =
∂v

∂t
dt +

∂v

∂x
dx 

dv

dt
=

∂v

∂t
+

∂v

∂x

dx

dt
=

∂v

∂t
+ v

∂v

∂x
                         (3.6.2) 

 

Thus according to Equation (3.6.1) in one dimension 

mn
dv

dt
= −n

dV

dx
−

dp

dx
                                      (3.6.3) 

 3.6.2 Schrodinger Temperature Dependent Equation: 

      Anew expression of energy can be found from the plasma equation to 

do this one can use (3.6.3) to get 

nm
dv

dx

dx

dt
= −n

dV

dx
−

dp

dx
 

Multiplying both sides by dx and integrating yields 

mn∫vdv = −n∫dV − ∫dp 



60 
 

Considering the pressure to be p = γnKT in general, thus 

mn
v2

2
= −nV − P = −nV − γnKT 

Hence 

m
v2

2
+ V + γKT = const 

 This constant conserved quantity looks like the ordinary energy beside the 

ordinary thermal energy term γKT . 

E =
p2

2m
+ V + γKT                                         (3.6.4) 

 To find Schrodinger equation for it, consider the ordinary wave function 

Ѱ = Ae
i
ℏ
(px−Et) 

Differentiating both sides by t and x yields 

∂Ѱ

∂t
= −

i

ℏ
EѰ → iℏ

∂Ѱ

∂t
= EѰ 

∂2Ѱ

∂x2
= −

p2

ℏ2
Ѱ → −ℏ2∇2Ѱ= p2Ѱ                          (3.6.5) 

Multiplying both sides of equation (3.6.3) by Ѱ yields 

EѰ =
p2

2m
Ѱ + VѰ + γKTѰ 

Substituting Equation (3.6.4), one gets 

iℏ
∂Ѱ

∂t
= −

ℏ2

2m
∇2Ѱ+ VѰ + γKTѰ 

  This equation represents Schrödinger equation when thermal motion is 

considered .The solution for time free potential can be 

Ѱ = e
−

i
ħ(Et)u →

∂Ѱ

∂t
= −

i

ħ
EѰ 

Eu = −
ℏ2

2m
∇2u + Vu + γKTu                         (3.6.6) 

For constant potential, the solution can be 

u = eikx , V = V0  
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Inserting this solution in equation (3.6.6) yields 

Eu =
ℏ2K2

2m
u + V0u + γKTu 

E =
ℏ2K2

2m
+ V0 + γKT 

If one set the kinetic term to be E0 =
ħ2K2

2m
 

One can thus write the energy in the form 

E = E0 + V0 + γKT                                      (3.6.7) 

  This quantum energy expiration involves a thermal term beside kinetic and 

potential term. 

 3.6.3 Quantum Resistance: 

     The resistance,per unit length (L = 1) per unit area (A = 1) can be 

found from the ordinary definition of ,Z. The resistance z is defined to be 

the ratio of the potential, u, to the current per unit area, i.e. 

z =
u

I
=

u

ЈA
=

u

Ј
=

u

nev
=

mu

nep
                        (3.6.8) 

With n and standing for the free hole or electron density and charge 

respectively, while ρ represent the momentum of electron of mass m, where 

p = mv. 

Where the wave function takes the form 

Ѱ = AeiKx                                                  (3.6.9) 

  This selection of Ѱ comes from the fact that the resistance property comes 

from the motion of the free charge. The potential u is related to the 

Hamiltonian H through the relation 

H = eu 

Thus for freely moving charge one gets: 

Ĥ = eu =
1

2
mv2 =

p̂2

2m
= −

ħ2

2m
∇2  
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In view of equation (3.6.9) and according to the correspondence principle V 

take the form 

u =
〈Ĥ〉

e
=

∫ Ѱ̅ĤѰdx

e
=

∫ Ѱ̅p̂2Ѱdx

2me
=

ℏ2K2

2me
∫Ѱ̅Ѱdx =

ℏ2K2

2me
     (3.6.10) 

While p becomes 

p = 〈p̂〉 = ∫Ѱ̅ p̂ Ѱdx = ħk ∫Ѱ̅  Ѱdr= ℏk                   (3.6.11) 

Thus   inserting equation (3.6.10), (10) in (3.6.7) one obtains 

Z =
mℏ2k2

2me2ℏkn
=

ℏk

2e2n
= (

h

2π
)(

2π

λ
)

1

2e2n
 

z =
h

2λe2n
=

hf

2fλe2n
=

hf

2e2nv
=

hf√με

2e2n
= ℏω

√με

2e2n
   (3.6.12) 

v = λf =
1

√με
                                           (3.6.13) 

eu =
1

2
mv2 = k                                          (3.6.14) 

 The expression for z can also be found by inserting Equation (3.6.14) in to 

get 

z =
u

Ј
=

u

nev
=

mv2

2ne2v
=

mv

2ne2
=

p

2ne2
=

h

2λne2
 

z =
hf

2λfe2n
=

hf

2e2nv
=

hf√με

2e2n
=

ℏω√με(1+ x)

2e2n
     (3.6.15) 

 It is important to note that his quantum resistance expression resembles the 

one found by T Sui [3] where one uses De Broglie hypothec ωesis [4], 

i.e.p = h/λ  

 3.6.4 Calculation OF Electric Susceptibility: 

   Consider holes in a conductor having resistive forceFr, magnetic force Fm 

and pressure force Fp beside the electric force Fethe equation motion then 

becomes [3]: 

F = Fr + Fm + FeFp
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Where 

Fp = −∇p, Fr = −
mv

τ
, Fm=Bev ,Fe = eE = eE0e

iωt 

P, x,m,v,τ, B, e and E stands for the pressure, displacement ,mass, velocity, 

relaxation time, magnetic flux density ,electron charge and electric field 

intensity respectively. Thus the equation of motion takes form. 

mẍ = −
mv

τ
+ Bev+ eE − ∇p                           (3.6.16) 

The solution of this equation can be suggested to be: 

x = x0e
iωt 

v = v0e
iωt 

E = E0
iωT                                           (3.6.17) 

Inserting (3.6.17) in (3.6.16) yields 

−mω2x = (−
mv0

E0τ
+

Bev0

E0

−
kT∇n

E0

+ e)E       (3.6.18) 

X =
(−

mv0

E0τ
+

Bev0

E0
−

kT∇n
E0

+ e)E 

mω2
 

p = ε0XE = +eNx                                  (3.6.19) 

Thus inserting Equation (3.6.18) in (3.6.19) yields 

ε0XE = eN
(−

mv0

E0τ
+

Bev0

E0
−

kT∇n
E0

+ e) E 

mω2
 

x =
eN

mω2ε0E0
 (

mv0

τ
− Bev0 − kT∇n− eE0)      (3.6.20) 

The electric flux density assumes the following relation 

D = εE = ε0E + χε0E = ε0(1+ χ)E = P+ ε0E 

The electric permittivity is given by 

ε = ε0(1+ χ)                                      (3.6.21) 

   The electric permittivity is thus given according to equation (20) to be. 

ε = ε0(1 + χ)   
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= ε0 [1 +
eN

mω2E0

(
mv0

τ
− Bev0 + KT∇n− eE0)]   (3.6.22) 

The resistance Z can be found by inserting (3.6.22) in (3.6.15) to get: 

Z =
ħω

2ne2
√με0√1 +

eN

mω2ε0E0

(kt∇n +
mv0

τ
− Bev0 − eE0)     (3.6.23) 

z =
ℏω

2ne2
 √με0

√
mω2ε0E+ eN(kt∇n +

mv0

τ
− Bev0 − eE0)

mω2ε0E0

 

Thus the critical temperature is given by 

Tc =
(Beτ− m)v0

τK∇n
+

(e − mω2ε0)E0

EnK∇n
                   (3.6.24) 

 If the internal field B result from N0 atoms each having average flux 

density μB then [5]. 

B = μBN0                                            (3.6.25) 

Therefore Tc  can take the form 

Tc =
( μBN0eτ− m)v0

τK∇n
+

( e − mω2ε0)E0

eNK∇n
             (3.6.26) 

 3.6.5 Tight binding critical temperature and energy gap: 

       In tight binding model [5] the energy of electrons in the crystal is given 

by 

ε = ε0 + α1 + 2γcos ka                                (3.6.27) 

Where ε0  is the energy in the absence of crystal field, while the other terms 

describe the effect of the crystal field. The energy ε0  can split into two 

terms the kinetic part which can describe the thermal motion in the form 

f0

2
KT beside the potential term −V0  for attractive force or bounded particle. 

Thus one can write 

ε0 =
ℏ2k0

2

2m
+

f0
2

KT − V0                           (3.6.28) 
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E =
ℏ2k0

2

2m
+ γ KT+ V 

ε0 =
f0
2

KT − V0 − α0  

α0 =
ℏ2K2

2m
 

f0 Degrees of freedom. 

The terms describing the effect of the crystal force are 

α1 = ⟨∅m|Ĥcry|∅m⟩ 

γ = ⟨∅j|Ĥcry|∅m⟩                                   (3.6.29) 

α = α0 + α1 

In view of Equation (3.6.27) and (3.6.28) 

ε =
f0
2

KT − V0 + α + 2γcos ka               (3.6.30) 

Here Hcry stands for the crystal force Hamiltonian part, while ∅mand ∅jare 

the states of particles located at the site m and j respectively. 

 The superconductor is characterized by the existence of energy gap can be 

under stood here in two ways .if the electrons or holes are not free. This 

requires E to negative. Thus equation (3.6.28) and (3.6.27) needs 

ε =
f0
2

KT − V0 + α + 2γcos ka < 0                 (3.6.31) 

Or the max value of ε where cos ka = −1 is less than zero, i.e. 

εmax =
f0
2

KT − V0 + α + 2γC0Ska < 0               (3.6.32) 

f0
2

KT ≤ V0 − α + 2γ 

For constant attractive crystal force 

Hcry = −Vcry  

α1= ⟨∅m|HCry|∅m⟩ = −⟨∅m|VCRY|∅m⟩ = −VCryδmm 

γ = ⟨∅j|−VCry|∅m⟩ = −VCry ⟨∅j|∅m⟩ = −Vcryδjm=0    (3.6.33) 
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f0
2

KT ≤ V0 − α 

Thus the critical temperature is given by 

f0
2

KT = V0 − α                                       (3.6.34) 

Substituted equation (3.6.34) beside equation (3.6.33) in equation (3.6.31) 

one gets 

ε =
f0
2

KT −
f0
2

kTc                                        (3.6.35) 

The energy gap∆ s equal to the difference between zero energy in 

conduction band and the negative energy in the valence band. Thus 

∆= 0 − ε =
f0
2

KTc −
f0
2

kT 

Since this relation holds for T < Tc  one can neglect T since it is small to get 

∆=
f0
2

KTc  

Equation (3.6.31) can also be utilized to get the forbidden energy states 

which characterizes superconductors, where 

coska =
ε −

f0
2

KT+ V0 − α

2γ
 

The energy is forbidden when coska ≥ 1 

ε −
f0
2

KT + V0 − α

2γ
≥ 1 

ε −
f0
2

KT + V0 − α ≥ 2γ 

f0
2

KT + α − ε − V0 ≤ −2γ 

f0
2

KT ≤ ε + V0 − 2γ− α 

Thus the critical temperature 
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f0
2

KTc = ε + V0 − 2γ− α                            (3.6.36) 

The forbidden energy is thus related to the critical temperature through the 

relation 

ε =
f0
2

KTc − V0 + 2γ+ α                             (3.6.37) 

If the particle has a 4-degree of freedom, 3-transltional and one vibration. 

ε = 2kTc − V0 + 2γ+ α                                     (3.638) 

In view of equation (3.6.33) and (3.6.29), since Plank constand is very 

small and for very small crystal field and for bound force ε ≈ 2kTc, since 

the energy gap ∆is the difference between bound valence energy E. Thus 

mum free conduction electron energy zero. Thus  

∆= E− 0 = 2kTc                                         (3.6.39) 

Which shows linear relation between∆ and Tc, thus it resembles the 

empirical relation. Where the energy gap is found to be ∆~1.75kTc[6]. 

3.7 Summary and Critique 

      Many Attempts were made to be the defects of HTSC [41, 42, 43, 44, 

45, 46, 47, and 48]. These attempts are either complex or incomplete. In the 

models discussed temperature dependent Schrodinger equation was used 

successfully. But none of them tries to speak about hopping mechanism and 

flux quantization. 
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Chapter Four 

Hopping Mechanisms and Flux Quantization 

4.1 Introduction: 

             Superconductor (SC) is one of the most important phenomena in 

modern physic it is based on Barden, cooper and Schrieffer theory (BCS). 

But at high temperature above 135.this theory suffers it cannot explain how 

the resistivity abruptly drops to zero below critical temperature Tc  

Beside the explanation of the so called pseudo gap, and isotope and 

pressure effects. In addition to the phase transition from insulating to super 

conductivity state [1, 2]. 

This model is proposed to cure some of these draw backs. 

This new model can explain why the resistance drops to zero below Tc  

abruptly, beside the expression for isotope and pressure effect. It also gives 

an expression which is mathematically simple and is in conformity with 

experimental result is such as the phase change from insulator to 

superconductor the from work of this model [5]. 

4.2 Generalized Statistical model Laws Super Conductor: 

             The generalized statistical model was proposed by some authors to 

solve so of the length standing problems in material science [91]. 

According to this version the number of particles having local energy E and 

moving in a medium having average energy  E̅ is given by. 

n = n0e
−E
E̅                                        (4.2.1) 

This expression can be used to try to describe the hopping mechanism [6]. 
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To do this considers electrons hopping in superconductor having uniform 

coulomb attractive field. In this attractive the potential is negative. Thus the 

energy is given by. 

E̅ = −Vc                                           (4.2.2) 

Assume now the local energy is equal to kinetic energy T beside potential 

energy which result again from attractive Coulomb force. Therefore. 

E = T + V = T − Vc                       (4.2.3) 

Inserting equation (4.2.2) in equation (4.2.1) yields. 

n = n0e
E
Vc                                         (4.2.4) 

It is well known that hopping process takes place when the kinetic energy 

exceeds coulomb potential, i.e. 

T ≫ VC                                              (4.2.5) 

Thus according to equation (4.2.3) and (4.2.4) 

E ≫ 0                                           (4.2.6) 

n = n0e
E
Vc → large                       (4.2.7) 

This means that hopping take place as far as n which reflects hopping 

probability is large. 

In superconductivity, when coulomb attraction dominate, it follows that 

[See equation (4.2.3)] 

Vc ≫ T                                      (4.2.8) 

Hence 

E = T − VC = −|E| 

|E| → ∞                                  (4.2.9) 

A direct substitution of (4.2.9) in (4.2.4) yields 

n = n0e
−
|E|

V c  = n0e
−∞ = 0               (4.2.10) 
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This means that when coulomb attraction dominates, no hopping takes 

place when the coulomb potential dominates. This conforms to what is 

written in the literature [7]. 

The SC hopping mechanism can also be studied by considering a large 

coulomb repulsive potential resulting from the repulsion between the 

electron which needs to hope and the electron which exists in the atom to 

which the electron needs to hope, 

In this case the local repulsive energy becomes 

E = V                                     (4.2.11) 

The average uniform energy can be assumed to result from thermal energy 

and average attractive positive ionic field. In this case the average energy 

become 

E̅ = KT − V0                                     (4.2.12) 

Substituting (4.2.11) and (4.2.12) in equation (4.2.1) yields 

n = n0e
V

V0−KT                                   (4.2.13) 

Hopping takes place when the probability is large. This requires 

V0 > KT 

KT < V0                                      (4.2.14) 

Thus the critical temperature Tc  is given by 

V0 = KTc                                     (4.2.15) 

Thus hopping is large when 

T < T c                                      (4.2.16) 

Which is ordinary SC condition since coulomb repulsion V is large. 

Thus 

e
V

K(Tc−T) → ∞                              (4.2.17) 

Hence according to equation (4.2.13) 

n0 → 0                                         (4.2.18) 

To make n finite 
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But when 

T > Tc                                          (4.2.19) 

KT > KTc  

KT > V0                                       (4.2.20) 

Thus from (4.2.13) 

C = V0 − KT < 0 

C = −|C|                                 (4.2.21) 

Thus equation (4.2.13) reads 

n = n0e
−V
|c|                                (4.2.22) 

For very large repulsive force 

V → ∞ 

e
−V
|C| → 0 

Thus from (4.2.18) and (4.2.22) equation (4.2.13) gives 

n → 0                                      (4.2.23) 

Thus no hopping takes place when 

T > Tc                                         (4.2.24) 

Thus SC is destroyed 

Another attractive approach   can be suggested by assuming the electron 

moving in uniform repulsive electron field, and subjected to coulomb 

repulsive potential. In the case 

E = V        E̅ = V0                     (4.2.25) 

n = n0e
−

V
V0                                    (4.26) 

In this case hopping can take place when no local field exist or when it is 

very small. In this case 

V = 0                                       (4.2.27) 

This can forms with the fact that the electric local field  E vanishes inside SC 

n = n0e
−0 =  n0                    (4.2.28) 
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The electrons are driven here by the uniform field. 

But when very large external magnetic field is applied, such that the local 

field becomes extremely large, i.e. 

V = Vm → ∞                              (4.2.29) 

In this case equation (4.2.22) gives 

n =  n0e
−∞ → o                                (4.2.30) 

Thus no hopping takes place and the conductivity is destroyed due to the 

existence of external magnetic field. 

4.3 Super conductivity on the basic of generalized statistical 

Model: 

         The generalized statistical model, which was proposed by some 

authors, generalized the statistical distribution laws by using plasma 

equation [92]. 

According to the model, Maxwell distribution law can be generalized to be 

written in the form. 

n = n0e
−E
E̅                                            (4.3.1) 

With nstanding for the number of particles E̅ represent the average field 

over the whole sample, While Estands for the local field. It is well known 

that the SC is characterized by infinite conductivity. In this work one can 

assume the conductivity to be in the form 

σ =
neτ

m
                                             (4.3.2) 

τis the relaxation time. The infinite conductivity can result from infinite 

relaxation time ore very large number of charges. Let us choose the latter 

possibility. It is well known at inside SC the electric field vanishes 

E = 0                                              (4.3.3) 

 

Thus 
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 σ =
j

E
=

j

0
→ ∞                             (4.3.4) 

If one assumes that the only uniform field is the electric one, it follows that 

E̅ = V(electric) = 0                   (4.3.5) 

One can assume also the existence of local coulomb attractive force. This 

means that 

E = −Vc                                        (4.3.6) 

Inserting (4.3.5) and (4.3.6) in (4.3.1) yields 

n = n0e
Vc
0 = n0e

∞ → ∞                  (4.3.7) 

Thus according to equation (4.3.2) and (4.3.7) 

σ = ∞                                         (4.3.8) 

This means that the conductivity is infinite 

Consider now an external magnetic field of potential Vm  enters theSC. Thus 

according to equation (4.3.5) 

E̅ = Vm                                         (4.3.9) 

Thus inserting (4.3.6) and (4.3.9) in equation (4.3.1) 

n = n0e 
Vc
Vm ≠ ∞                             (4.3.10) 

i.e., n is finite. Thus (4.3.8) according to equation (4.3.2) 

σ =
neτ

m
≠ ∞                                  (4.3.11) 

Hence the conductivity is finite and the SCconverted to ordinary conductor. 

The effect of magnetic field in destroying super conductivity can also be 

found by considering Local repulsive electric coulomb field of potential 

V.Thus 

E = V                                       (4.3.12) 

Consider know the average uniform field is result from coulomb attraction 

between hopping electron and the host atom in which the electron exists 

before hopping. Assume also that this electron a requires uniform thermal 

energy this means that the uniform energy is given by 
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E̅ = KT − V0                          (4.3.13) 

Substitute (4.3.13) and (4.3.12) in (4.3.1) to get 

n = n0e
V

V0−KT                         (4.3.14) 

The hopping process take place, when 

n → large                                (4.3.15) 

This requires 

V → large                                (4.3.16) 

And 

V0 > KT 

KT < V0                                   (4.3.17) 

If one write 

V0 = KTc                                   (4.3.18) 

Thus hopping take place when 

KT < KTc  

T < Tc                                         (4.3.19) 

Which agree with SCdefinition but if a uniform magnetic field of potential 

Vm is applied such that the uniform energy becomes [see equation (4.3.13), 

(4.3.18)] 

E̅ = KT − KTc + Vm                    (4.3.20) 

Thus equation (4.3.14) reads 

n = n0e
V

KTc−KT−Vm                        (4.3.21) 

When 

Vm ≥ KTc  

KTm ≥ KTc                              (4.3.22) 

Thus 

c = K(Tc − Tm − T) < 0 

When 

c = −|c|                               (4.3.23) 
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Tm > Tc                               (4.3.24) 

For all values of T i.e. 

Vm > KTc                           (4.3.25) 

The minimum magnetic potential which destroyed SC is 

Vmc = KTc                          (4.3.26) 

This conforms to the expression of the energy gap 

Substituting (4.3.23) in (4.3.21) 

n = n0e
−V
|c| → 0                         (4.3.27) 

When 

V → ∞ 

When coulomb potential is large the flux quantization can be obtained by 

considering the local energy to be consisting of imaginary term representing 

energy loss in hopping process the energy loss may result from coulomb 

repulsion or magnetic interaction which decreases electron total energy. 

In this case the local energy E can be written as [5] 

E = E1 + iE2                            (4.3.28) 

Therefore from (4.3.1) and (4.3.28) 

n = n0e
−
(E1+iE2)

E̅ = n0e
−
E1
E  [cos

E2

E̅
+ i sin

E2

E
  (4.3.29) 

Since n is real it follows that the imaginary part vanishes, 

sin
E2

E̅
= 0 

This requires 

E2

E̅
= (n +

1

2
)π                        (4.3.30) 

Where E2may be assumed to represent energy loss due to the interaction of 
external field B with diamagnetic momentum. 
Where 

μ = iA                                     (4.3.31) 
Thus the magnetic energy losses is given by 
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E2 = μ. B = iAB = (fe)∅                    (4.3.32) 
Assuming electrons as harmonic oscillator are can write 

E̅ = hf                                                   (4.3.33) 
Thus inserting (4.3.33),(4.3.32) in (4.3.30) yields 

(fe)∅

hf
= 2π(n +

1

2
) 

Thus the flux is given by 

∅ =
2π(n +

1
2
)h

e
                          (4.3.34) 

This means that the flux is quantized 

4.4 Discussion: 

      The conductivity of SC in equation (4.3.2) is found to be infinite when 

the uniform electric field vanishes and the local field is attractive coulomb 

field as shown by equation (4.3.5) and (4.3.6) beside the GSM 

expression(4.3.1) for n. 

The GSM can explain the SC mechanism by hopping process. In the first 

approach a verge uniform energy can be assumed to be an attractive 

coulomb potential [see equation (4.2.2)], while the local field energy, as 

proposed by Hubbard model is the kinetic and potential energy. The 

Probability n is large, and hopping takes place as shown by equations 

(4.2.7) when the kinetic energy is Large. 

These agree with that proposed by Hubbard model. But when the kinetic 

energy is less than the potential no hopping takes place, since the 

probability vanishes [as equation (4.2.10)]. 

When thermal energy is considered as contributing to the uniform energy 

[see equation (4.2.12)]. 

For repulsive Coulomb force shown by relation (4.2.11) 

Hopping is possible ifT exceeds a critical value Tcshown by equation 

(4.2.15). This strikingly agrees with observation. It is also very interesting 

to note that when T is greater thanTc   , the probability n vanishes [see 

equation (4.2.23)] and no hopping take place. Hopping can also exist when 
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no local field exist as shown by equation (4.2.28) which conforms with the 

fact the inside SC 

The electric field vanishes. When very strong magnetic field is applied SC 

is destroyed as shown by equation (4.2.29) and (4.2.30). 

This agree with the fact that very strong external magnetic field should of 

course exceeds critical values above which SC is destroyed. 

By assuming the uniform energy to result from thermal beside coulomb 

attraction, and considering the local energy to be repulsive coulomb energy 

[see equation (4.3.12) m (4.3.13), (4.3.14)] 

The presence of external magnetic field destroyed sc as shown is equation 

[(4.3.20), (4.3.26)]. 

This agrees with observation it is very interesting to note that the critical 

magnetic energy value shown in equation (4.3.26) is typical to the energy 

gap Eg above which the sc is destroyed. Using the expression for number of 

particles inGSM, the flux is shown to be quantized with an ordinary 

expression. 

4.5 Conclusion: 

         It can also successfully is describe some magnetic properties of 

superconductors. 

The generalized statistical physical model can successfully describeSC 

hopping conduction mechanism proposed by Hubbard. 
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