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Abstract 

Quantum mechanics is a physical theory dealing with the behavior of 

matter and waves on the scale of atoms and subatomic particles.  

The aim of this work is to use quantum mechanics to study the effect 

of friction on optical properties of matter namely lasing process. 

The research methodology is based on using quantum postulates and 

the notion of energy in the presence of friction to derive the quantum laws 

that determine lasing process in the presence of friction.  

In this study  Schrodinger  equation  was accounted for the effect of 

medium friction on the spatial evolution of  the quantum system. By 

considering  electrons  as vibrating  strings, the solution  of harmonic 

oscillator equation for resistive medium,  showed that   the electron mass is 

quantized. 

By solving  new Schrodinger equation, the wave function is shown to 

be spatially affected by friction. Therefore  the lasing can take place due to 

the fact  that the frictional effect of the incident beam excite atoms to  emit 

coherent photons. The effect of friction was also obtained within the 

framework of klein - Gordon equation, the wave function shows the 

possibility of lasing and the amplification factor depends on medium 

conductivity. This research shows the possibility of  lasing in the presence 

of friction with the framework of quantum laws. 
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 المستخلص

تهااتم راساساي ساالوا الماامو االموياال علاار المياتو  الاا س  يكانيكاا الكام  اار ن فياي ئيةيا ياي م

 امان ال س .

الهاف ما   ا ا الاساساي إسات ااك ميكانيكاا الكام لاساساي تاتكيف اليتكااا علار ال اوا    

للمامو ا رالأخص عمليي توليا الليةس . طفيقي   ا البحث تعتما علر إست ااك ئفضايال الضو يي 

ميكانيكا الكم امفهوك الطاقي ئر ايوم اليتكاا لستنباط  قواني  الكم التر تحام شافاط يااا  

 الليةس ئر ايوم اليتكاا.

تكيف إيتكاا الوسا  علار ئر   ا الاساسي تم استنباط  معاملي شفامينجف التر تتخ  ئر العتباس ت

تم يل معاملاي المهتاة  التغيف الأيااكر للمن ومي الكميي. ارإعتباس أن  اللكتفانال أاتاس مت ر ري

 مكممي. اللكتفان كتلي  أن اكم ايا  التوائقر للوس  اليتكاكر، 

رحياث أن  راليتكااا. الجايااو أتضا   أن الاالاي المويياي تتاتكف إياااكيا  معاملي شفامينجف يل تم 

يؤم  إلر إكااسو الا سال لااااس ، توليا الليةس ناتجا  م  يقيقي أن تتكيف إيتكاا الحةمي الياقطي

قاوسمي .  –س  معاملي كلاي  إطاالحصول علر تتكيف اليتكاا إيضا  ئر . كم تم ئوتونال متطايفو

 موااليي الوسا .ييث توض  الاالي الموييي إمكانيي توليا الليةس ايعتماا معامال التضا يم علار 

 .  ا البحث يوض  إمكانيي توليا الليةس ئر ايوم اليتكاا ئر إطاس القواني  الكميي
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Chapter One 

Introduction 

1-1: Introduction  

Quantum  mechanics is the theory that describes the dynamics of matter 

at the microscopic scale. It  is the only valid framework for describing the 

microphysical world[1,2]. 

It is vital for understanding the physics of solids, lasers, semiconductor 

and superconductor devices, plasmas, etc. In short, quantum mechanics is the 

founding basis of all modern physics: solid state, molecular, atomic, nuclear, 

and particle physics, optics, thermodynamics, statistical mechanics, and so 

on[3,4,5]. 

Despite the remarkable successes of quantum equations, but they suffer 

from noticeable set backs. For example, the quantum equation can not 

differentiate between the behavior of two particles subjected to the same 

potential, but one moves in free space and the other moves inside matter. This 

is in direct conflict whit experimental observations. Thus one needs new 

quantum equation that differentiates  between the two situations[6]. One of 

the important features of the medium is the friction effects. 

Friction is the force resisting the relative motion of solid surfaces, fluid 

layers, and material elements sliding against each other[7,8,9]. It  is the price 

for moving too fast. An attempt to induce a rapid change in the state of a 

system would be accompanied by additional entropy generation and will be 

encumbered by energy costs[10,11,12]. As an example of friction we can 

consider a body moving rapidly against a stationary background. Its kinetic 

energy is dissipated, generating heat and entropy in the environment, the 

amount of dissipation is proportional to the velocity[13,14,15,16]. 
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The friction is typically modeled by a phenomenological theory within 

classical mechanics. it is  extended to the quantum domain. There are ample 

examples of quantum frictional phenomena. These include friction observed 

in micro-mechanical systems at low temperatures,  in superfluid theory, and 

even in quantum cosmology  and more[17,18,19,20]. 

In particular, friction is the term widely used in descriptions of ion 

collisions. Frictional forces depend in this case on position and their range is 

comparable with the nuclear radius[21].  

Moreover, The real area of contact is made up of a large number of small 

regions of contact, where atom to atom contact takes place[22,23]. In most 

real physical systems friction plays an important role. It's precise description 

requires accounting[24] . 

Friction effects in all physical laws including quantum mechanics, 

unfortunately there is no room for effect of friction in these laws except some 

isolated attempts made by some researchers. 

1-2: Research problem 

The research problem is related to the fact that There is no theoretical 

model describes the  effect of friction on the lasing process. It requires 

modifying Schrodinger equation and Klein – Gordon equation for resistive 

medium.  

1-3: Objective of the Research 

The aim of this work is to construct a theoretical model that takes into 

describe frictional effect due to diffusion and interference  by deriving 

Schrodinger Equation, Klein-Gordon equation for frictional medium , and 

also explain the effect of  friction and diffusion on lasing intensity and 

amplification factor. 
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1-4: Research Methodology 

The research methodology is based on using quantum postulates and 

energy in the presence of friction to derive the quantum laws that determine 

lasing process in the presence of friction.   

  1-5: Thesis Layout  

 This work is organized as follows: chapter one is the 

introduction, and chapter two is theoretical background and literature 

review. Chapter three is the effect of friction and diffusion on the lasing 

process  while chapter four is devoted for   results and discussion.   
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Chapter Two 

Theoretical Background and Literature Review 

2-1: Introduction. 

This chapter is concerned with the theoretical background and literature 

review  of  laser and quantum equations. 

The different attempts were made to construct new quantum laws to 

explain some  physical phenomena. Some of them try to modify  Schrodinger 

equation and Klein – Gordon equation. Also there are some researchers have 

been written in study of  amplification of laser. But no one of them 

concentrate on the effects of friction on momentum  term in Schrodinger 

equation , and no one of them uses this equations to construct a quantum 

equation that accounts for lasing due to friction . Here in this chapter one tries 

to mention some of them. 

2-2: Laser and light Amplification 

Laser plays an important role in ours day life. Thus it is important study 

The laser properties . The stimulated emission beside spontaneously emission 

processes are studied here . The laser production is also discussed. 

2-2-1: Emission and Absorption of light: 

The atom now a day is considered as a system consisting of a central, 

positively charged nucleus surrounded by a number of negatively charged 

electrons revolving around the nucleus in certain orbits .Each orbit describes 

energy level .The energy is characterized by a principal quantum number 

denoted by n . The nearest level to the nucleus is called the ground state and 

its principal quantum number is equal to one. Each type of atom contains a 

certain amount of energy levels. If the atom contains additional energy states 

over and above its ground state it can emit or absorb photons .The absorption 

takes place when an electron makes a transition from a lower to a higher 

energy state , with a photon being absorbed in this process. In the emissions 
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process the electrons move from a higher state to a lower one. A photon with 

energy equal to the energy difference between the two levels     and    is 

released or absorbed in the emission or absorption process .The frequency   

of the photon is related to the energy difference between the two levels    and 

   according to the relation [25] 

                                                                                           (2.2.1) 

Where   is Planck’s constant. 

2-2-2:  Absorption process 

Absorption is the process by which a photon is absorbed by atom, the 

photon of frequency   passes through an atomic system with energy levels    

and    can absorb this photon if 

                                                                                          (2.2.2) 

As a result an electron leave    to   . The population of the lower level 

   will be depleted at a rate proportional both , i.e. 

    

  
                                                                                    (2.2.3) 

Where      is a constant of proportionality called Einstein coefficient. 

The produced      can be interpreted as .The probability per unit frequency 

that transitions are induced by the effect of the field [26,27].  

2-2-3:  spontaneous emission process 

spontaneous emission is the process by which an electron 

spontaneously without any outside influence, decays from a higher energy 

level to a lower one after an electron has been raised to the upper level by 

absorption. The population of the upper level2 decays spontaneously to the 

lower level1 at a rate proportional to the upper level population    ,i.e. [28]. 

    

  
                                                                                   (2.2.4) 

Where     is a constant of proportionality 

2-2-4:  Stimulated emission process 

The process is described by the Einstein coefficient    which gives the 

probability per unit energy density of the radiation field that electrons from 
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the excited state    are forced to return to its ground state     is a photon of 

energy           is incident on the atom .The rate of transition of 

electron from   to     is given by [29]. 

    

  
                                                                                  (2.2.5) 

The emitted and incident photon have the same frequency, direction 

and are in phase. 

Stimulated emission is one of the fundamental processes that led to the 

development of laser. This is because the coherence of the incident and 

emitted photon increases the light intensity . 

2-2-5:  Amplification of light and population inversion 

If a light of intensity    is incident on a medium, it’s intensity in active 

medium increases[30]. The intensity, I, of light at a distance Z inside the 

medium is given by 

                                                                                              (2.2.6) 

Where β is called amplification factor. 

If a light of radiation density ρ is incident on a medium the rate of 

electrons leaving level    is given by       , While the rate of electron 

coming to    from    by spontaneous and stimulated emission are given by  

      and        respectively [31,32,33]. Thus the rate of change of 

electrons in level1    is given by 

    

  
                                                                  (2.2.7) 

Similarly the rate of change of electrons in level2    is given by 

    

  
                                                                 (2.2.8) 

At equilibrium the number of atom    in level    is constant. Thus the rate of 

change of    vanishes, I.e. 

    

  
    

Thus a equation (2.2.8) becomes 

                        

If 
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Then              

                    

On the other hand the rate of electron transition 

    

  
      

from level2 is equal to the rate of photon emission 

  

  
   

Through the area A, I.e 

 
    

  
    

  

  
                                                                       (2.2.9) 

By reviewing of equation (2.2.9) and neglecting the process of spontaneous 

emission one gets 

                  
  

  
   

But since      , then, 

             
     

 
 

  

  
                                                    (2.2.10) 

Bearing in mind that 

           

  

  
 

  

  
         

    

 
                                                        (2.2.11) 

Hence 

 
  

 
         

  

 
    ;                                                       (2.2.12) 

            
  

 
      

             
  

 
 
                                                                     (2.2.13) 

Comparing (2.2.6) with (2.2.13) one finds that the amplification coefficient β 

is given by 

          
  

 
                                                                   (2.2.14) 

Thus according to equation (2.2.13) I increases when the radiation enters 

more and more inside the medium when 
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this requires that 

                                                                                         (2.2.15) 

Which means that the population    of the upper level    should be 

more than the population     of lower level    . this condition is called 

population inversion. 

2-2-6:  Excitation mechanism 

The excitation mechanism is a source of energy that excites or “pumps” the 

atoms in the active medium from a lower to a higher energy state in order to 

produce a population inversion. In gas lasers and semiconductors lasers the 

excitation mechanism usually consists of an electrical current flow through 

the active medium. Solid and liquid lasers most often employ optical pumps, 

for example, in a ruby laser the chromium atoms inside the ruby crystal may 

be pumped into an excited state by means of a powerful burst of light from a 

flash lamp containing xenon gas[34,35,36,37]. 

2-3: Friction in Quantum Mechanics. 

Friction is the price for moving too fast. An attempt to induce a rapid 

change in the state of a system would be accompanied by additional entropy 

generation and will be encumbered by energy costs. As an example of friction 

we can consider a body moving rapidly against a stationary background. Its 

kinetic energy is dissipated, generating heat and entropy in the environment. 

The amount of dissipation is proportional to the velocity. Another archtypical 

case of friction is a driven gas compression process. 

For a system that is thermally decoupled from its environment, rapid 

changes in the piston position that compresses the gas will result in internal 

heating of the gas and entropy generation. To restore the system 

to its slow quasi-static compression equivalent, heat has to be removed from 

the gas. This additional heat is equivalent to extra work against friction. 

Friction is typically modeled by a phenomenological theory within 

classical mechanics. How does it extend to the quantum domain? Can a first 
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principles model of friction be developed? There are ample examples of 

quantum frictional phenomena. These include friction observed in micro-

mechanical systems at low temperatures,  in superfluid theory, and even in 

quantum cosmology  and more. 

Are such quantum examples of friction essentially classical phenomena 

that endure into the quantum domain, or is there something distinctly 

quantum about (at least some kinds of) friction? In this review  will argue that 

the latter is the case—there are distinctly quantum types of friction. Even 

more so, quantum mechanics generally adds frictional affects above and 

beyond any classical ones, so that a quantum (and therefore fuller) description 

of the system will include more friction. 

Several important changes occur in the transition into quantum 

mechanics. First, the physics of an isolated system is strictly reversible and 

unitary. We will argue below that internal friction still occurs but its 

analytical description requires a proper extension of the classical concepts of 

entropy and temperature. 

Furthermore, we will point to a new mechanism that creates distinctly 

quantum internal friction. 

Secondly, the quantum description of the system plus its environment 

allows for entanglement correlations that have no classical analog. We will 

describe the quantum theory of open systems in some detail, and argue that in 

the quantum domain it is difficult to separate the system from its 

environment. 

This difficulty has led to misunderstandings and incorrect attempts to 

characterize friction. 

Finally, quantum fluctuations and zero-point energy change the nature 

of the environment, which leads to additional frictional forces. 

friction in both the classical and the quantum domains. We will argue 

that friction is manifested as two phenomena: 
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1. External friction amounts to the dissipation of kinetic energy from a small 

“open system” to its environment, creating entropy and heat. The relevance of 

kinetic energy is related to the isotropy of the environment, and the 

asymmetry of a particular direction of (non-zero) velocity. 

Irreversibility and the generation of heat and entropy are related to the 

disparity in the size and time scales of the systems, leading to effective 

irreversible memoryless dynamics and a large entropy generation. 

Heuristically, external friction is the attempt by the environment to lower the 

system to a “symmetric” velocity of zero. 

2. Internal friction, which is the generation of excitations (which are then 

typically dissipated by external friction) due to the disparity between the 

internal time-scales of the system and the external driving time scale. 

Heuristically, internal friction is the resistance of the system to rapid change. 

Both processes can have quantum contributions. Quantum fluctuations 

will generally function as an extra dissipative environment, while quantum 

non-commutativity will ensure that the system cannot perfectly follow 

external changes. 

2-3-1: Internal Friction 

Internal friction is induced in a system when its external constrains are 

changed rapidly. Consider a quantum system with a discrete energy spectrum 

(we will further assume non-degeneracy for simplicity). 

An ensemble will have some average energy 

           

Where           is the probability to find the system in a certain energy 

eigenstate. 

 A rapid change in external constraints corresponds to a change in some 

external semi-classical field in the system’s Hamiltonian. For the 

paradigmatic case of a gas in a piston the field will be related to the location 

of the potential barrier confining the gas particles. If the change to the 

external field is slow enough, the quantum adiabatic theorem assures us that 
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there will be no change in the energy populations and therefore the change in 

the energy will be due only to the change in energy levels. The energy in such 

a “quasistatic” process changes minimally in this sense. 

Now consider a faster change. The rapid change in energy levels can 

now lead to population changes, changing the energy beyond the “minimal” 

quasistatic change of the energy levels themselves. For simplicity, let us 

assume for now that we start from the ground state. Then we can only lose 

population density to higher states, so that we can only reach a higher (or 

equal) energy compared to the quasistatic change. Thus we receive a 

“resistance” to velocity: when we strive to drive the system quickly we need 

to invest more work. 

This process, by itself, is reversible. Simply reversing the field-change 

protocol will yield back the original state and the original energy. The 

evolution is reversible because it is a unitary dynamics. 

However, consider appending a non-unitary step to the process. Now 

we leave the field at its final value for a time, while bringing the system into 

contact with a heat bath at its original temperature (zero temperature, in this 

example). This will induce irreversible thermalization and loss of information 

about the original state. Such thermalization will convert the extra energy 

required into extra heat in the environment. 

This process can be generalized for a finite temperature. Allahverdyan 

and Nieuwenhuizen proved that, barring level-crossing, for a system initially 

at a thermal state the minimal work (energy) is reached by a quasistatic 

process. The derivation is too long to be repeated here, but in general it hinges 

on realizing that the state’s eigenvalues do not change during unitary 

evolution, and that for a smooth enough field-change protocol the adiabatic 

theorem ensures absence of transitions between states. Having an initial 

thermal state is not required, but it is necessary to have an initial state with 

decreasing occupations in the energy eigenbasis. Most importantly, the 

requirement for no level crossing is satisfied for a single varying field 
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parameter, a result known as the non-crossing rule. No level crossing, in turn, 

allows us to estimate the time scale required for the quasistatic limit as related 

to the inverse of the minimum energy level gap. We emphasize that if level-

crossing does occur, Allahverdyan and Nieuwenhuizen show that the 

quasistatic protocol may not be the optimal one. A quasistatic timescale for 

the adiabatic theorem can still be defined in this case. 

For a concrete example we turn to the paradigmatic case of ideal gas in 

a piston. For simplicity, weconsider spinless particles in one dimension and 

furthermore replace the square-well confining potential with an harmonic 

well. A change in piston size corresponds to changing the frequency of the 

harmonic potential. We are therefore dealing with an ensemble of time-

dependent harmonic oscillators. 

The harmonic oscillator has an adiabatic conserved quantity, 
 

   

(where    is the oscillator’s Hamiltonian) .This means that in the “quasistatic 

limit” of a slow change in frequency  (t), this quantity will be conserved. A 

quasistatic change from !i and energy   to    will therefore lead to a final 

energy of  
  

  
    . Since there is no heat exchange with any environment, 

it is only possible to interpret this energy change as work. This is the baseline 

quasistatic work that a faster change needs to be compared against. 

Treating faster, finite-time, frequency change protocol  (t) requires 

more mathematical tools. We can begin by considering the system initially at 

zero temperature. Then, the energy for any later time will be given by  

     
        

 
                                                                                  (2.3.1) 

where         is a parameter introduced by Husimi and is related to a 

quasistatic protocol: it is unity for a quasistatic change and increases the faster 

the change in frequency is. This makes the effects of non-adiabacity readily 

apparent but we would like to deal with the more general initial thermal Gibbs 

state. 
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To properly consider an initial thermal state, we turn to the concept of a 

dynamical Lie algebra. 

A dynamical Lie algebra is a Lie algebra generated by the Hamiltonian 

of the system. The idea is to look for a Lie algebra with elements       so that 

any operator within the algebra            will remain within the algebra 

under the dynamics generated by commutation with the Hamiltonian,         . 

This is most easily assured by taking as       all the operators within the 

Hamiltonian and then adding elements by commutation with the Hamiltonian 

until no new operators are generated. For the harmonic 

oscillator the Hamiltonian     
          

         can  considered to be 

comprised of  two time-independent operators     with time-dependant 

parameters,               , with         and        . The minimal 

completion of this algebra is then       
             ; it can be verified that  

               forms a closed S(1,1) Lie algebra under commutation. Alternative 

dynamical Lie algebras can be constructed by linear superpositions of these 

three operators. Using the creation and annihilation operators one such 

algebra is                . 

One advantage of using a dynamical Lie algebra is that it allows one to easily 

write down a state whose form is conserved by the dynamics. Consider the 

state 

ρ     
 

 
      

  β           
                                                            (2.3.2) 

Although this operator does not lie within the dynamical Lie algebra, 

its form is conserved in the dynamics. This can be verified by expanding the 

exponentials and examining the commutations order by order. Note that the 

thermal Gibbs state is obtained for    ; this corresponds to a state with no 

coherences and no position-momentum correlations. 

Another advantage of the dynamical Lie algebra is that it allows one to 

easily identify dynamical invariants of the motion. “Dynamica  invariants” are 
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quantities that remain constant, but are explicit functions of time-dependent 

parameters and of (implicitly time-dependent) expectation values; for the 

harmonic oscillator, the first such invariant was noted by Lewis. Korsch and 

Koshual used dynamical algebras to derive the dynamical invariants which lie 

within the algebra (i.e., invariants which are linear in the expectation values 

of the algebra’s operators), and Sarris and Proto demonstrated that for our 

state (Eq. (2.3.2)) it is possible to generalize further and derive dynamical 

invariants that are outside the algebra, consisting of higher powers of the the 

algebra’s expectation values (they actually consider maximum entropy states, 

     ρ                 ,  

 But a product form and exponential sum are interchangeable. One such 

invariant in our case was found to be  

  
  

 
 
  

 
    

  β     
 
     

                                                  (2.3.3) 

The normalization of the state (Eq.(2.3.2)) requires 

       β     
 
,  

So that      

   , and the maximum occurs only in the thermal state       

. 

We now have the tools to return to analyzing the time-dependent 

harmonic oscillator under a finite change of frequency. We assume an initial 

thermal state so that      and the state is diagonal in the energy eigenbasis. 

A quasistatic change from     to    will maintain the diagonal form, leading 

to another thermal state with      and some energy Ef , set by the constant 

C. Now consider what would have happened if we would have changed the 

field quickly. In general we would not expect the final state to be thermal, so 

that       and the invariance of C (Eq.(2.3.3)) now implies a higher energy. 

Reaching a final thermal state may be possible, but would require a 

specially-chosen protocol and even then will only lead to the same final 

energy, not a lower one. We conclude that for any initial thermal state a non-
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quasistatic protocol will generally lead to higher energies (than the quasistatic 

baseline), 

     
            

 

    as noted above, appending a thermalization stage will convert this extra 

energy into excess heat. 

We have demonstrated that driving the system at a finite rate will 

require excess energy to make the same change. But has it generated more 

entropy and increased the system’s temperature? To answer this we must first 

consider what entropy and temperature mean in the quantum domain. The 

entropy of quantum states is usually considered to be the von Neumann 

entropy: 

        ρ      ρ     

This quantity can be shown to be invariant to unitary transformation, 

and in particular to the Hamiltonian dynamics at hand. For our system, the 

von Neumann entropy can be shown to depend only on the dynamical 

invariant c. This entropy does not increase during the creation of the “internal 

friction” in this respect it appears that there is no friction! 

The paradox can be resolved by realizing that the von Neumann 

entropy is an idealized entropy, representing the information missing after all 

possible measurements have been made. This is not a measure that is 

necessarily relevant. Since we are interested in the dissipation and dynamics 

of energy it makes sense to consider an entropy that is related to energy. And 

indeed, if we look at the Shannon energy entropy,                  

 Where          is the probability of finding the system in the    energy 

state. 

A  non-quasistatic change always increases it. The two entropies are 

equal only when the state is diagonal in the energy eigenbasis, i.e., when 

    and the state is thermal. A finite rate of frequency change will generally 

lead to the development of coherence     and therefore to the deviation 

from the diagonal form in the energy eigenbase. Since the von Neumann 
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entropy is always smaller than any other Shannon entropy, the Shannon 

energy entropy will be higher in these cases internal friction indeed generates 

entropy. 

What about increasing the system’s temperature? Note that when 

    β no longer serve as the (inverse) temperature. To understand what the 

temperature is, we have to go back to its thermodynamic definition as the 

ratio between energy and entropy change. The Shannon energy entropy of our 

system is the same as that of a thermal oscillator with the same energy: 

       
  

 
     

    
  

    
  
      

 

    
  
                             (2.3.4) 

This is a concave monotonically increasing function of energy.  

However, are only true from the appropriate (quantum) perspective. We 

note that these effects are purely due to the fact that the system could not 

adiabatically follow the change in frequency, which is in turn due to the fact 

that the system’s Hamiltonian does not commute at different times: 

                                                                                     (2.3.5) 

which is a purely quantum feature. Quantum internal friction, therefore, stems 

from the non-Abelian nature of quantum algebra. 

In our treatment we separated out the thermalization phase from the 

driving phase. In realistic cases, however, driven systems will be at least 

weakly coupled to thermal environments. The two processes will occur 

simultaneously, implying that any external driving will be converted through 

dissipation to some quantum friction (although this effect may be negligible). 

Furthermore, residual interactions with the environment can also lead 

to dephasing noise. This will also be the effect of imperfect control over the 

external field. Since pure dephasing is identical to a weak measurement of the 

momentary energy, one would expect it to draw the state  the momentary 

energy eigenbasis, thereby approximating the quasistatic process and thus 

acting as a“quantum lubricant” that reduces friction. This indeed happens in 

some cases. However, in at least some cases pure dephasing of this sort can 

decrease efficiency. The effect of dephasing noise in general is still not 
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sufficiently understood, but it does not appear to eliminate quantum internal 

friction entirely even when it does function as a lubricant. 

It should be noted that, formally, there are frequency-change protocols 

that avoid generating friction (in these solutions Q(t) = 1 at some finite time 

   ). Using such protocols, it is seemingly possible to drive the system at a 

finite rate and still avoid friction. However, although it appears that such 

processes can occur in arbitrarily short time, that requires an arbitrarily large 

available energy. 

This can be understood in light of the energy-time uncertainty relation: 

an infinitely fast process would require an infinite variance in energy. An 

instantaneous frictionless solution is therefore not viable and any finite-period 

solution will result in dissipative losses to the environment on its points where 

         . In at least some cases, frictionless solutions also seem 

unstable under dephasing noise. In the realistic case of weak coupling, then, 

some frictional loss is unavoidable (although it may benegligible in practice). 

Our results are not limited to the harmonic oscillator - separate analysis 

reveals that it is valid for spin systems, and holds under continuous coupling 

to the bath for a three-level system . Since the underlying features that give 

rise to the phenomena are the non-commutative nature of the Hamiltonian at 

different times and the irreversible nature of thermalization, there is good 

reason to believe that this kind of quantum friction would be endemic in all 

realistic systems. 

A constraint on the universal applicability of our results is the 

assumption of a thermal environment. 

  So far treated the thermalization and dephasing processes only 

roughly, so will now amend this lacuna by devoting the next section to 

examining more carefully how dissipation to the environment occurs. 

2-3-2: The origin of the friction 

The origin of the van der Waals friction (quantum friction) is closely 

related to the van der Waals interaction. Let us consider a smooth surface with 
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a neutral atom in close proximity. Despite the fact that a neutral atom has a 

zero mean electric dipole moment, is has also a nonzero electric dipole 

moment caused by the fluctuating current density due to quantum and thermal 

fluctuations .The short-lived electric dipole moment of an atom can induce 

another dipole moment on a surface or in an atom some distance away. The 

interaction between two dipole moments results in attraction or repulsion, and 

is called conservative van der Waals interaction. Any two electrically neutral 

extended bodies interact with each other in the same way. There are two 

different regimes that must be distinguished: 

- Separation between bodies  d  is small compared to the wavelength 

         

- The speed of the light,    - a characteristic frequency of the charge 

fluctuation; in this regime the interactions are determined by the fluctuations 

in an instantaneous Coulomb field. Retardation effects are negligible. 

- If d     retardation effects must be taken into account. 

The interaction between moving bodies is called “dissipative van der Waals 

interaction”. 

Let us suppose that we have two smooth parallel surfaces in proximity 

but not in contact. They must be separated by a wide band gap to prevent 

particles from tunneling across it. The surfaces are defined by their 

electromagnetic reflection coefficients only. 

If the surfaces are in relative motion the induced charge will lag 

slightly behind the fluctuating charge inducing it. This is the origin of the van 

der Waals friction. It is important that the friction arises in the absence of any 

roughness. Let us take a closer look at the origin of this friction. If the first 

body emits electromagnetic waves parallel and antiparallel to the moving 

direction, then in the rest reference frame of the second body these waves are 

opposite Dopler-shifted. Due to the frequency 

              dispersion of the reflection amplitude electromagnetic waves will 

reflect differently from the surface of the body. The same statement is true for 
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waves emitted by the second body. The surface will emit radiation field due to 

thermal fluctuation of the current density, but even at low temperature the 

surface will be surrounded by radiation field created by zero-point quantum 

fluctuations. 

Let us now attempt to describe van der Waals friction with the 

mechanism of the photon exchange. The forces mediated by photon can be 

long ranged, since there is no force preventing photon’s to leave a surface. 

That is why a photon is the main candidate to describe quantum friction. 

Quantum friction originates from two types of different 

processes: 

- The photons are created in both bodies with opposite momentum, and 

frequencies obey an equation 

 vq       ,  

  q  - the momentum transfer 

- The photon is created on one body and annihilated in another body. 

The theory of van der Waals friction is controversial, that is why many 

theories have been created and many different experiments have been carried 

out, but the obtained results are in sharp contradiction with each other. For 

example, Volokitin and Persson  and Pendry  theoretically proved that 

difference between the Dopler shift of two modes can lead to a frictional 

force, if the reflectivities of the surfaces depend on frequency. Pendry defends 

his work, maintaining that he derived this result using different lines of 

argument. In addition, the quantum-frictional effects have been observed 

experimentally. However, T. Philbin and U. Leonhardt showed using 

Lifshitz’s theory, that there is no lateral force, that is why no quantum friction 

between plates moving parallel. To prove their theory Philbin describe 

experiment that would seem to allow the extraction of unlimited energy from 

the quantum vacuum  if the lateral force exists[38].  
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2-3-3: friction between two surfaces in relative motion 

A straightforward calculation of the van der Waals friction based on the 

general theory of the fluctuating field developed by Rytov and applied by 

Lifshitz was carried out by Volokitin and Persson In their study, two semi-

infinite solids having smooth parallel surfaces separated by a distance d  and 

moving with velocity   relative to each other were observed. The two 

coordinate systems K and    associated with the first and the second solids. 

The interaction between the bodies was mediated by the fluctuating 

electromagnetic field. The fluctuating field between bodies was calculated by 

introduction a ‘random’ field into the Maxwell equations and substituting the 

boundary conditions on the surface of bodies. The relationship between the 

calculated fields was then determined by Lorentz transformation. The 

frictional stress that acts on the surface of the body can be calculated from the 

xz  - component of 

the Maxwell stress tensor  i : 

  
 

  
 d    z x

     x z
     z x

     x z
   z   

 

  
         (2.3.6) 

By substituting expressions for electric and magnetic field, changing the 

integration over   between the limits −  and   to integration only over 

positive values  , and neglecting the terms of order 
 

c
 

 

  the following results 

were obtained: 
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Rp→Rs+   30 d d2qqxe−2pd×ImR1pR2p− −e−2pdR1pR2P−n −qv−n +

RP→RSq> C                                                                 (2.3.7) 

This formula is general and can be easily transformed, e.g. for different 

distances d,temperature T, sliding velocities    etc[39]. 
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2-3-4: The frictional drag force between 2D electron systems 

Suppose we have electron 2-dimensional systems next to each other. A 

voltage is applied to the first system, while the second system remains open-

circuit. Since no current can flow in the second system, an electric field arises 

that opposes the frictional drag force from the first system. The frictional drag 

force between two isolated 2-dimensional electron systems separated by a 

barrier can be considered as the dissipative Van der Waals friction. The 

origins of the drag force are Coulomb interaction and an exchange of phonons 

between the layers. By using a described system it is easy to observe the 

dependence of the frictional drag force on the separation d , electron density n 

and temperature T. The idea of such a system was first proposed by 

Shevchenko and Lozovik and Yudson and few years later Coulomb drag 

between separated 2D electron gases was discussed by Pogrebinskii and Price 

and other. 

The frictional stress    v  that acts on the electrons in the first 

metallic plate due to the current density   ne   in the second plate must be 

calculated. Since current is not allowed to flow in the plate 1, an electric field 

E1 arises and cancels the frictional 

stress   : 

  
n e  

 
 

n n e 

  
 n n e ρ

  
                                            (2.3.8) 

n- carriers concentration per unit area, ρ  
  

  
 transresistivity, the ratio of the 

induced electric field in the first plate to the current density in the second 

plate[40]. 

2-4: Quantum diffusion: 

Quantum diffusion (QD) describes a wave packet spreading in a 

dissipative environment . Since quantum effects are significant for light 

particles mainly, QD is very essential for electrons, which on the other hand 

are very important in physics and chemistry. 
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QD has been experimentally observed. Studies on electron transport in 

solids are strongly motivated by the semiconductor industry, exploring 

nowadays quantum effects on nano‐scale. A contemporary review on electron 

quantum diffusion in semiconductors[41]. Traditionally, QD is theoretically 

described by means of the models of quantum state diffusion , quantum 

Brownian motion, quantum drift‐diffusion , etc. 

If a quantum particle, an electron for instance, moves in vacuum its wave 

function ψ evolves according to the Schrödinger equation 

    ψ     
   

  
    ψ                                    (2.4.1) 

where m is the particle mass and U is an external potential. Since the wave 

function is complex it can be generally presented in the polar form  

ψ       ρ      
    

where ρ      is the probability density to find the quantum particle in a given 

point r at time t and S(r, t) is the wave function phase.  

Introducing this presentation in Eq. (2.4.1) results rigorously in the 

following two equations , corresponding to the imaginary and real parts, 

respectively 

  ρ     ρ                                             (2.4.2) 

                 
  

ρ                 (2.4.3) 

Equation (2.4.2) is a continuity equation. Therefore, the velocity      
   

represents the flow in the probability space and Eq. (2.4.3) is its 

hydrodynamic‐like force balance. As is seen, the quantum effect is completely 

included in the quantum pressure tensor 

       
 

    ρ     ρ                              (2.4.4) 
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The description of the quantum evolution by these Madelung equations 

is identical to the Schrödinger picture and it is a matter of convenience which 

method will be employed.  

Equation (2.4.3) describes the force balance in vacuum. If the quantum 

particle moves in adissipative environment it will experience also a friction 

force, which is generally proportional to the particle velocity. Hence, the 

corresponding generalization of  Equation (2.4.3)  

                                     (2.4.5) 

where  

b is the particle friction constant  

   
 

    ρ

   ρ
  

Is the Bohm quantum potential being related to the quantum pressure tensor 

via the relation.  

      ρ    

Thus, the system of Equations (2.4.2) and (2.4.5) describes the 

probability spreading in a dissipative environment(QD). A speculative 

reversal back to a wave function via the Madelung presentation leads to a 

nonlinear Schrödinger equation . In the case of a free quantum particle     

the probability density is Gaussian 

 ρ     

    

     

      
 

  

 
                                            (2.4.6) 

 where  

       is the dispersion of the wave packet. 
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2-5: Relaxation time and Friction: 

For any particle having mass   and velocity   the force  exerted on it 

can be described[42] by the equation: 

 
  

  
                                                                               (2.5.1) 

Considering the particle as harmonic oscillator the velocity   is given by : 

                                                                              (2.5.2) 

Where 

   is the angular frequency 

   is the maximum velocity 

From equation (2.5.2) 

  

  
                                                                     (2.5.3) 

Substituting equation (2.5.3) in (2.5.1) yields 

                                                                         (2.5.4) 

if the particle moves in a resistive medium of coefficient   the 

equation of motion becomes 

                                                                             (2.5.5) 

Where  

                                                                                  (2.5.6) 
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But  

   
  

 
  

 

 
    

                                                                                  (2.5.7) 

According to equation (2.5.2) the force affect the velocity amplitude 

and frequency. The force also changes the energy of the system. 

Assuming that the frictional force affects the frequency only, one can 

assume 

                                                                        (2.5.8) 

    
  

  
                                                      (2.5.9) 

Substituting equation (2.5.4),(2.4.7) and (2.5.9)  in equation (2.5.5) yields 

                                                              (2.5.10) 

                                                                   (2.5.11) 

If one treat the particle as a harmonic oscillator, the energies for    , 

And   are given by: 

                  ,                                              (2.5.12) 

This means that E is affected by the frequency only. This conforms to 

our assumption that F affect the frequency only as far as F affect E. 

Thus the energy loss is given by 

                                                                      (2.5.13) 
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                                                                  (2.5.14) 

From equation (2.5.14) 

       
  

 
                                                           (2.5.15) 

The energy loss and relaxation time    of  it  can be found from uncertainty 

principle by using the relation: 

   
   

 
                                                                     (2.5.16) 

Inserting equation (2.5.16) and (2.5.15) in equation (2.5.11) yields 

  
 

 
                                                                        (2.5.17) 

2-6: Schrodinger and Klein-Gordon Equations 

The Schrödinger equation is the fundamental of quantum mechanics 

and the starting point for any improvement to the description of 

submicroscopic physical systems[43,44] . Although it cannot be proved or 

derived strictly, it has associated with it various formulations and 

derivations[45] .  

The Klein- Gordon equation is analog of the Schrödinger equation 

which tries to make quantum mechanics compatible with special relativity 

unlike the Schrödinger equation which is compatible only with Galilean 

relativity. Historically, the Klein-Gordon equation invented by Schrödinger 

even be for Klein and Gordon in the context of understanding the fine 

structure of the hydrogen spectrum but was abounded by him as it did not 

give him the right results[46].  

In this chapter we try to obtain the Schrödinger equation for a particle 

with energy E and momentum p traveling in the x direction, and then we 

apply the relativistic energy E to obtain the Klein-Gordon equation[47]. 

2-6-1: Derivation of Schrödinger Equation: 

Suppose the wave function for plane wave travelling in the x direction 

with a well defined energy and momentum that is[48,49] : 

    
 

         
                                                                      (2.6.1)  

Where  
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For a particle moving in a potential energy field we write the energy 

according to the relation  

  
  

  
                                                                              (2.6.2) 

Multiplying the both sides of equation (2.6.2) by ψ, one gets 

 ψ  
  

  
ψ      ψ                                                                (2.6.3) 

From equation (2.6.1) we see that for the equality to hold the product of 

energy times the wave function must be equal to the first derivation of the 

wave function with respect to time multiplied by i , that is[50,51,52]:  

  

  
  

  

 
  

 
         

   =  
  

 
  

 ψ   
 

 

  

  
  

 ψ    
  

  
                                                                                (2.6.4) 

Similarly by examining equation (2.6.4) we see that: 

  

  
 

 

 
   

 
         

  

 

   

   
 

  

  
    

 
         

  =  
 

  
    

          

   
                                                                           (2.6.5) 

Inserting equations (2.6.4) and (2.6.5) in equation (2.6.3) hence one get 

  
  

  
  

  

  

   

   
                                                                (2.6.6) 

Which is the famous Schrödinger equation. 

2-6-2: Derivation of Klein-Gordon Equation: 

The Schrödinger equation was motivated by taking a look at the 

classical relation between energy and momentum of particle, quantization is 

done by replacing the physical quantities by operators corresponding to them 

and state or wave function on which they operate. These corresponding 

operators for the energy and momentum are given by[53,54,55]: 
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                                                                                           (2.6.7) 

    
 

  
                                                                                    (2.6.8) 

Assuming the case of a free particle one get the following relation between 

momentum and energy 

  
  

  
                                                                                     (2.6.9) 

Multiplying both sides of equation (2.6.9) by ψ, one gets  

 ψ  
  

  
ψ                                                                             (2.6.10) 

Substituting the operators in (2.6.7) and (2.6.8) to equation (2.6.10), one gets  

 ψ    
 ψ

  
                                                                            (2.6.11) 

 
  

  
ψ         ψ   

  

  

   

   
 

  

  
ψ   

  

  

   

   
                                                                     (2.6.12) 

Inserting equations (2.6.11) and (2.6.12) in equation (2.6.10), one gets  

  
 ψ

  
  

  

  

   

   
                                                                     (2.6.13) 

Equation (2.6.13) is a Schrödinger equation for a free particle. We could now 

assume that we could obtain the relativistic version of Schrödinger equation 

by simply repeating the same procedure with relativistic correlation between 

momentum and energy[56]. 

          
                                                                   (2.6.14) 

          
                                                                     (2.6.15) 

Where 

    ≡ energy of  particle  

P    ≡  particle  momentum                                            

C    ≡ speed of  light  

m0  ≡  mass  of rest electron 

Suppose the wave function for plane wave travelling in x direction is given 

by: 

    
 

         
                                                                    (2.6.16)  
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Multiplying both sides of equation (2.6.15) by ψ, one gets  

  ψ      ψ    
   ψ                                                        (2.6.17) 

From equation (2.6.16)  

  

  
  

  

 
  

 
         

    

   

   
 

    

  
  

 
         

   =  
  

  
  

 
         

 

   

   
  

  

  
   

          

   
                                                                  (2.6.18) 

Also from equation (2.6.16)  

  

  
 

  

 
  

 

 
       

  

   

   
 

    

  
  

 

 
       

  

   

   
  

  

  
   

          

   
                                                                   (2.6.19) 

Inserting equations (2.6.18) and (2.6.19) in equation (2.6.17), one gets  

      

   
         

   
   

   ψ                     

     

   
        

   
   

   ψ                                              (2.6.20) 

Which is the Klein-Gordon equation  

The Klein-Gordon equation describes a wide variety of physical phenomena 

such as in wave propagation in continuum mechanics and in the theoretical 

description of spin less particles in relativistic quantum mechanics[57]. 

2-7: Derivation of Schrodinger Equation from Variational 

Principle: 

In this work Schrödinger equation was derived from calculus of 

variations (variational principle), so  the methodology of calculus of 

variations was used. The variational principle one of great scientific 
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significance as they provide a unified approach to various mathematical and 

physical problems and yield fundamental exploratory ideas[58].   

2-8: Derivation of Klein-Gordon Equation from Maxwell's 

Electric Wave Equation: 

In this study Klein-Gordon equation was derived from Maxwell's 

equation.  Maxwell’s equation  for electric field was used to derive Einstein 

energy-momentum relation. This was done by using Plank photon energy 

relation beside wave solution in insulating no charged matter. Klein-Gordon 

quantum equation was also derived from the same Maxwell’s equation by 

utilizing resemblance between electric field vector and wave function in the 

intensity expression. However, the relation between polarization and electron 

rest mass was also used[59].  

2-9: Relativistic  Quantum Frictional Equation: 

In this model new special relativistic quantum equation was derived  by 

using the formal definition of force. This expression includes mass energy 

beside potential energy, with energy conserved. The effect of friction on 

energy lost is found by using uncertainty relation. The special relativistic 

energy  in the presence of friction  is  found. This relation  is used to find new 

special relativistic quantum equation. Treating particles as vibrating string the 

mass is quantized[42]. 

2-10: Modification of Schrödinger Equation in a Media: 

A collision phenomenon is one of the oldest quantum mechanical 

problems. It includes scattering process in which a particle or a beam of 

particles is scattered by a medium. The scattering quantum theory is very 

complex [60, 61, 62, 63,64]. Therefore it is very difficult to solve scattering 

quantum equations without doing certain approximations, or doing special 

treatments. For example the inelastic scattering process is explained by the so 

called optical potential in which an imaginary potential is inserted by hand in 

the energy expression [65,66, 67].  These problems motivate to propose a new 

quantum mechanical equation for scattering process [68]. 
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In this model new quantum Schrodinger Equations derived by using the 

expression of the electric decaying wave in a conducting medium. This 

expression is based on Maxwell’s equations.               

2-11: Schrodinger Quantum   Equation  From Classical  And 

Quantum Harmonic  Oscillator 

 New  Schrodinger Equation was derived by using Maxwell Equations 

for damping or non-damping electromagnetic wave, in the presence of 

friction. this equation reduces to ordinary Schrodinger Equation and shows 

quantized friction energy[69]. 

2-12: Quantization of Friction for Non Isolated Systems: 

In this model the plasma equation for a fluid having a pressure P is 

given by: 

                                                              (2.12.1) 

With F,    Standing for field and frictional forces respectively, where 

                                                                                  (2.12.2) 

n here is the particle number density and V is the potential per unit 

particle. 

According to this equation the particle energy in the presence of 

pressure and friction is given by: 

  
  

  
      

   

      
                                                 (2.12.3) 

   here is the relaxation time and T is the absolute temperature. 

According to this energy equation the new Schrödinger equation[70] is 

given by: 

  
  

  
  

  

  
        

   

      
                               (2.12.4) 

For particle in a box, the friction energy    is quantized, where: 
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2-13: Growth rate enhancement of free-electron laser by two 

consecutive wigglers with axial magnetic field 

 The study of free-electron laser (FEL) as a high-power tunable source 

of radiation has been the subject of many papers published by different groups 

all around the world. The radiation is generated by relativistic electron beam 

passing through a wiggler. In the conventional FEL configuration, the energy 

of a relativistic electron beam is transferred into high-frequency coherent 

radiation. Since the radiation wavelength varies with electron energy, it can 

be continuously tuned in frequency. The theory of conventional FEL has been 

studied extensively. Not only can the existence of an axial magnetic field 

focus on the electron beam, against the self-field, but it can also exploit the 

resonance between the frequency of the focussing device and the frequency of 

the wiggler. As a result, the axial magnetic field greatly increases the gain and 

growth rate in an FEL . The purpose of using a wiggler in an FEL is to impart 

sufficient transverse oscillatory motion to the electrons of the beam to interact 

with the radiation that is amplified. Recently, considerable attention has been 

paid to the interaction of a relativistic electron beam and electromagnetic 

wave in an FEL having one wiggler. But the study of FEL with two wigglers 

and magnetized electron beam is comparatively limited. The motivation for 

this work is to present an analytic the expression for the dispersion relation in 

an FEL consisting of a uniform axial magnetic field and a two-sectioned 

helical wiggler having opposite circular polarization. An FEL device 

operating with two undulators can provide an output linearly polarized field. 

In optical-Klystron FEL, two undulators having opposite polarization are 

employed because the output light may be linearly polarized. The particular 

configuration one has employed is that of a relativistic electron beam 

propagating along the z direction through an ambient magnetic field 

composed of two consecutive magnetic wigglers having opposite polarization 

and a uniform guide field [71]. 
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2-14: Comparison of Growth Rate of Electromagnetic Waves in 

Pre-bunched Cerenkov Free Electron Laser and Free Electron 

Laser 

The increase in the growth rate by using a pre-bunched electron 

beam in a Cerenkov free electron laser (CFEL) and Free electron laser (FEL) 

has been studied by Anuradha Bhasin and Bhupesh Bhatia.   

Cerenkov free electron laser (CFEL) is the widely used source of broad- band, 

high power microwave generation at short wavelengths. In this device, an 

electron beam passing through wave structure resonantly interacts with wave 

whose phase velocity equals the drift velocity of electrons and the wave 

grows at the expense of energy of the beam. Since the electron velocity 

cannot exceed the velocity of light, a slow wave structure is needed to slow 

down the phase velocity of electromagnetic modes. In case of Cerenkov free 

electron laser (CFEL). which employs a slow wave medium to slow down the 

phase velocity of transverse electric (TE) or transverse magnetic (TM) modes 

to less than c, the velocity of light so that they can be excited by a moderately 

relativistic electron beam by the process of cerenkov emission. A Cerenkov 

free electron laser generally employs two kinds of slow wave structures: 

(i) A dielectric whose dielectric constant is |ε| > 1 reduces the phase 

velocity of the radiation below c. A moderately relativistic electron 

beam can excite the electromagnetic radiation by cerenkov emission, 

(ii)  A plasma lining have a dielectric constant      
  

 

  
 can act as a 

slowing down medium for      so that ε >> 1 (where    is the 

electron plasma frequency and   is the radiation frequency). 

 A CFEL consisting of two dielectrically lined parallel plates driven by dense 

moderately relativistic electron beam has been studied and reported to 

produce coherent high power radiation from 375 micrometer to 1mm 

wavelengths. 

More recently, a lot of research work has been carried out in studying the 
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free electron laser by pre-bunched electron beams. A high power microwave 

free electron laser experiment has been performed using pre-bunched electron 

beam of 35Mev. Here when the electron beam is pre-bunched at a frequency 

close to an eigen frequency of the cavity, the oscillation build process is speed 

up and the radiation build time is shortened significantly. Free electron maser 

experiment with a pre-bunched electron beam has been demonstrated at Tel  

Aviv University. In this case, they utilize a 1.0A current pre-bunched electron 

beam obtained from a microwave tube. The electron beam is bunched at 

4.87GHz frequency and is subsequently accelerated to 70KeV . 

The bunched beam is injected into a planar wiggler (            , 

        ,where    is the wiggler field and    is the wiggler wavelength) 

constructed in a Halbach configuration with 17 periods. A theoretical model 

for gain and efficiency enhancement in a FEL using pre-bunched electron 

beam has been developed and studied by Beniwal et al. Sharma and Bhasin 

have studied the gain and efficiency enhancement in a slow wave FEL using 

pre-bunched electron beam in a dielectric loaded waveguide. They have found 

that the growth rate and gain of a slow wave FEL increase with the increase in 

modulation index and is maximum when the pre-bunched beam velocity is 

comparable to the phase velocity of the radiation wave. In this section, we 

develop a theoretical model of a pre-bunched CFEL and present the analytical 

analysis for the excitation of electromagnetic waves by a pre-bunched 

electron beam in a CFEL. We compare the increase in growth rate with the 

increase in the modulation index for pre-bunched CFEL with a pre-bunched 

FEL. The growth rate has been calculated at experimentally known CFEL and 

FEL parameters. Consider a dielectric loaded waveguide of effective 

permittivity    . A pre-bunched relativistic electron beam of density nb0, 

velocity    , relativistic gamma factor   
     

   
            

              [where Δ is the modulation index (its value lie from   to  ), 

    is the rest mass energy of the electrons, e is the electronic charge, 

           and     bare the 
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modulation frequency and wave number of the pre-bunched electron beam], 

respectively propagates through the waveguide An electromagnetic signal     

is also present in the interaction region [72] . 

2-15: Quantum mechanical lasing mechanism 

Quantum mechanical laws are used to find the wave function factor β 

in this form, quantum mechanical nano lasing mechanism. 

  
 

 
 

     

   
                                                                            (2.15.1) 

  , m,   ,    are the vibration amplitude atomic mass, polarization and 

external field amplitude respectively. Lasing takes place when 

                   ,                                                            (2.15.2) 

where   ,    are the number of emitted and incident photons respectively. 

Thus amplification exists when emitted photon exceed incident ones. 

The expression for amplification factor for population inversion shows lasing 

can takes place when lattice force    , which is related to collision and 

excitation rate, exceeds the external one   ,[73]. 

Where 

   
     

  
                                                                             (2.15.3) 

2-16: Effects of Fields on lasing of Thermally Vibrating Atoms 

and Electrons in The Presence of Electric and Magnetic Fields 

  This model was shown  The  effects of fields on lasing of thermally 

vibrating atoms and electrons in the presence of electric and magnetic 

Fields[74] . 

Ionized atoms emit radiation according to electromagnetic theory as for 

as accelerated and oscillating charged particle emit electromagnetic radiation. 

Two cases are considered here. The first case concerns with ionic crystals 

vibration while the second one concerns the electrons vibration. 



36 
 

2-17:  Phase effect between the Electric Internal Current Field 

and the External Current Field on Amplification of the Total 

Field and Intensity of the Electromagnetic Radiation 

  This  work was shown  the  Phase effect between the Electric Internal 

Current Field and the External Current Field on Amplification of the Total 

Field and Intensity of the Electromagnetic Radiation . This  work is  devoted  

for searching  new  mechanisms of  amplification of electromagnetic  

radiation which are related  to  the  phase  between  the  external  and the 

internal  fields.  It is found  that  amplification  takes place  if  external  and  

internal  fields  are  in  phase.  The  amplification  is  also  found  to  be  

related  to  the electrical  conductivity  of  the  medium,  in  which  imaginary  

conductivity  disappears. Thus  new  lasing  materials, can generate laser[75]. 

2-18: Derivation of Maxwell's Equation for Diffusion Current 

and Klein-Gordon Equation beside New Quantum Equation 

Form Maxwell's Equation for Massive Photon. 

  Maxwell's  equations accounting for  diffusion current  was  derived. 

Maxwell's equations are  used  to derive  Klein- Gordon  equation  by  

replacing  the  electric  field  intensity  by  the  wave  function.  Anew  

quantum equation which accounts for relativistic rest mass energy beside 

potential energy as well as medium friction is  also derived[76]. 

2-19: Schrodinger Equation in Presence of Thermal and 

Resistive Energy 

In the work new energy relations was made. The energy of ordinary 

Schrödinger equation includes kinetic and potential energy .However, there 

are other energy types which should be considered, for example the energy 

lost E by friction for oscillating 

system[77]. 
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2-20: The Quantum Expression of the Role of Effective Mass in 

the Classical Electromagnetic Theory Form & in Absence of 

Binding Energy 

 this a quantum model proposed to the change of electron mass in 

Crystal . The conventional expression for the effective mass was introduced to 

account for the effect of the crystal field on the mass. This definition is based 

on the expression of energy (E) for a free particle[78]. 

2-21: The Schrodinger equation with friction from the quantum 

trajectory perspective 

Similarity of equations of motion for the classical and quantum 

trajectories is used to introduce a friction term dependent on the wavefunction 

phase into the time-dependent Schrödinger equation. 

The term describes irreversible energy loss by the quantum system. The 

force of friction is proportional to the velocity of a quantum trajectory. The 

resulting Schrödinger equation is nonlinear, conserves wavefunction 

normalization, and evolves an arbitrary wavefunction into the ground state of 

the system (of appropriate symmetry if applicable). Decrease in energy is 

proportional to the average kinetic energy of the quantum trajectory 

ensemble. Dynamics in the high friction regime is suitable for simple models 

of reactions proceeding with energy transfer from the system to the 

environment. 

Examples of dynamics are given for single and symmetric and 

asymmetric double well Quantum molecular dynamics with dissipation, 

relevant to many processes in chemistry, physics, and biology, is a Long 

standing theoretical challenge. Dissipation describes interaction of the 

actively rearranging “system” with the “bath,” representing the environmental 

degrees of freedom. 

With few exceptions, the numerically exact simulations of such 

quantum processes occurring in condensed phase, have been performed, using 

path integral Monte Carlo methods for models consisting of a low-
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dimensional system coupled to a bath of harmonic oscillators. Inclusion of 

friction directly into the Schrödinger equation may be viewed as a simple way 

to mimic the effect of energy transfer from the system to the environment 

while limiting quantum dynamics calculations to the system degrees of 

freedom. Such picture is simplistic, yet it might be useful for some processes. 

For example, the quantum transition state theory of dissipative tunneling 

reproduces measurement of the H/D motion on Pt(111) surface with few 

adjustable parameters. 

The force of friction, often taken for processes in condensed phase as 

linear in velocity of a particle, is most straightforwardly incorporated into 

equations of motion of a classical particle, characterized by position xt and 

momentum pt, 

dp
t

dt
   d  x 

dx
 
x xt

  p
t
           

dxt

dt
 

p
t

m
                                       (2.21.1) 

The trajectory evolves under the influence of an external potential    x which 

is a function of the Cartesian coordinate x; parameter   denotes the friction 

coefficient. 

The friction-generating term for the time-dependent Schrödinger 

equation (TDSE) is obtained from the analogy between classical mechanics 

and the Madelung-de Broglie-Bohm formulation of TDSE. The friction term 

depends on the phase of the evolving wavefunction. The resulting TDSE is 

nonlinear; the time-dependent wavefunction conserves normalization, while 

the total energy of the wavefunction decreases with time to the zero-point 

energy value. On a finite time-scale in the high friction regime such quantum 

evolution may represent a reactive system losing energy to the environment.  

For simplicity, we consider one-dimensional Schrödinger equation in 

Cartesian coordinates, −  < x <  , and work in atomic units, 

i  

 t
ψ x t  H ψ x t                                                                      (2.21.2)      

The wave function ψ(x, t) is considered normalizable. The Hamiltonian of the 

system is 
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H   
  

 m  x 
   x                                                                       (2.21.3) 

The equivalent, hydrodynamic or quantum trajectory (also Bohmian) 

formulation of the TDSE (2.21.2) is based on a polar form of the 

wavefunction expressed in terms of real amplitude A(x, t) and phase S(x, t), 

ψ x t     A x t  exp  S x t                                                    (2.21.4) 

Using equation (2.20.4), the conventional TDSE (2.21.2) yields a system of 

two equations: 

 s

 t
  

 

 m
 

 s

 x
 

 

                                                                  (2.21.5) 

 A 

 t
  

 

m

 s

 x

 A
 

 x
 

A 

m

  S

 x 
                                                              (2.21.6) 

Function U, 

  x t   
 

 mA

  

 x 
                                                                      (2.21.7) 

Is the quantum potential entering evolution equations on par with the external 

classical potential    x  , and formally generating all quantum-mechanical 

effects. Equation (2.21.6) is an equation of continuity of the wavefunction 

density A
2
(x, t); equation (2.21.5) connects quantum and classical mechanics 

once the gradient of the wave function phase is associated with the trajectory 

momentum 

p x t  
 s x t 

 x
                                                                             (2.21.8) 

Differentiation of equation (2.21.5) defines time-evolution of p(x, t), 

 p

 t
  

p

m

 p

 x
 

 

 x
                                                                 (2.21.9)          

which in the Lagrangian frame-of-reference gives Newton’s equation of 

motion for the quantum trajectory (xt, pt), 

 p
t

 t
   

 

 x
      

x xt

                                                              (2.21.10) 

 xt

 t
 

p
t

m
                                                                                        (2.21.11) 

An interested reader may find overviews of theory and implementations 
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based on quantum trajectories. By analogy with classical equation (2.21.1), 

the friction term   p is subtracted from the right-hand-side of  Eq. (2.21.10) 

leading to 

 p

 t
  

p

m

 p

 x
 

 

 x
       p                                               (2.21.12) 

 (Other functional forms of friction may be introduced at this step.) 

Integrating equation (2.21.12) with respect to x using equation (2.21.8), the 

evolution of S with friction becomes 

 
 s

 t
 

p 

 m
      s    t                                                (2.21.13) 

The constant of integration C(t) can be defined on physical grounds: the 

overall phase of a wave function should not affect its evolution, including 

wave functions describing eigenstates. 

This requirement is satisfied by the choice, 

C t     s x t                                                                        (2.21.14) 

Together with equation (2.21. 6) unchanged by friction, the conventional 

TDSE with friction becomes 

i
 

 t
ψ x t  H ψ x t    s   s  ψ x t                                    (2.21.15)   

where   

S   argψ x t                                                                              (2.21.16) 

A similar equation termed the Schrödinger-Langevin equation has been 

proposed for a Brownian particle. The expression includes random potential 

term and is obtained from the Langevin equation for the Heisenberg 

operators. The idea of quantum trajectory evolution with friction has been 

used for the Caldeira-Leggett equation for the density matrix  and, with ad 

hoc friction, to stabilize the numerical implementation of the quantum 

trajectory formulation of Eqs. (2.21. 7), (2.21.10), and (2.21.11). Equation 

(2.21.15) derived above has simple form and, being directly related to the 

quantum and classical Newton’s equations of motion, allows straightforward 

analysis and interpretation of its solutions. 
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The TDSE (2.21.15) is nonlinear due to the friction term dependent on 

the evolving wave function. The time-evolution of ψ  x t  

 i
 

 t
ψ  x t   H    s   s  ψ  x t                                       (2.21.17)  

The wavefunction dissipates energy and evolves into the ground state of the 

system, similar to the imaginary time evolution with the quantum Boltzmann 

operator, i.e., to thermal cooling of a wavefunction. Unlike the imaginary time 

evolution, friction does not change the wave function norm: 

N    ψ t  ψ t   

dN

dt
 i  ψ H ψ    s   s  ψ  dx  i   ψ  H ψ    s   s  ψ dx    

(2.21.18)                                                    

The total energy of the system, E, decreases with time until the systems 

comes to rest. Note that with the definition of Eq. (2.21.14) the explicit 

contribution of the friction term to the total energy is zero, 

   ψ t  H    s   s  ψ t    ψ t  H  ψ t                             (2.21.19) 

Differentiation of Eq. (2.20.16) with respect to time gives integration by parts 

simplifies the expression to 

  

 t
 i  ψ  H    s   s   H ψdx  i   ψ H  H    s   s  ψdx  

i s,H                                                                                     (2.21.20) 

  

 t
  

 

m
  

 s

 x
 

 

 ψ  dx   
  p  

m
                                              (2.21.21) 

Equation (2.21.21) gives a simple visualization of the wavefunction dynamics 

with friction. Decrease of the total energy due to friction is proportional to the 

classical kinetic energy of the system. k  
 p  

  m 
  , associated with the 

momenta of quantum trajectories p defined by Equation (2.20. 8). The total 

energy stops changing once the systems comes to rest, i.e., the quantum 

trajectories do not move: p = 0. Formally, any eigenstate is characterized by 

the zero momentum p, however application of the nonlinear friction term to a 
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non-eigenstate wavefunction adds a mixture of eigenstates at each timestep 

until the lowest energy state is reached. 

Let us verify that dynamics with friction reduces a general wavefunction to 

the ground state (for symmetric     , to the lowest energy state of the same 

symmetry as       ). 

Consider the short-time evolution of a wavefunction initially comprised of the 

ground state,   , and the first excited state,   , of a harmonic oscillator of 

unit mass and frequency, 

H  
 

 

  

 x 
 

x 

 
 H  n  

 

 
 n  

 

 
  n  ,         n = 0,1                    (2.21.22) 

The initial wavefunction has a small contribution of φ1 added to φ0, 

ψ x    
 

   d
 
  φ

 
 x  id φ

 
 x                                               (2.21.23) 

The phase of ψ(x, 0) is (   denotes the imaginary part) 

S x        ψ   ψ

 x
 dx  arctan  d  x                                 (2.21.24) 

The constant of integration may be left unspecified because  s  is 

subtracted from S in Eq. (2.21.25). For the wavefunction and phase given by 

equations (2.21.23) and (2.21.24),  s    . Expanding the time-dependent 

solution to Equation (2.21.15) through the first orders in time increment t and 

coefficient d and projecting the result onto the eigenstates φ0 and φ1 we find 

that the relative population of the excited state φ1, 

  t  
     ψ x t    

     ψ x t    
 d

      t  o d 
t                                 (2.21.25)                   

is lower than its initial value,  (0) = d2. Therefore, in the course of dynamics 

with friction a wavefunction evolves to the lowest energy eigenstate (of the 

symmetry of the system if applicable)[79]. 

2-22: String Theory 

 In physics, string theory is a theoretical framework in which the point-

like particles of particle physics are replaced by one-dimensional objects 

called strings. 
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String theory aims to explain all types of observed elementary particles 

using quantum states of these strings. 

In addition to the particles postulated by the standard model of particle 

physics, string theory naturally incorporates gravity, and so is a candidate for 

a theory of everything, a self-contained mathematical model that describes all 

fundamental forces and forms of matter. 

Besides this hypothesized role in particle physics, string theory is now 

widely used as a theoretical tool in physics, and has shed light on many 

aspects of quantum field theory and quantum gravity[80]. 

The discovery of string theory as a potential unified theory was 

something of an accident. In a context unrelated to the unification of forces, 

researchers in the 1970's wondered what theory one might be able to write 

down to describe a fundamental quantum string - an object with a finite 

spatial extent, which could not be described in terms of deeper constituents. It 

was certainly an interesting new mathematical problem in a physical context.  

Such a string would be described classically by giving the location of 

an object extended like a (straight or curved) line in space at a given time. The 

string could be closed, like a loop, or open, with two end points.  

Just as a particle has an intrinsic mass, a string would have an intrinsic 

tension. Just as a particle is subject to the laws of special relativity, a string 

would also be relativistic. Finally, one would have to devise a "quantum 

mechanics" of strings in analogy with that for point particles. The presence of 

an intrinsic tension means that string theory possesses an inherent mass scale, 

a fundamental parameter with the dimensions of mass. This defines the 

energy scale at which "stringy" effects (effects associated to the oscillation of 

the string) become important.  

Without even doing a calculation, one can predict from experience that 

a quantum string should have infinitely many, discretely spaced oscillation 

modes, very much like the string of a musical instrument. All these modes 

would effectively be localised in the neighbourhood of the string, and would 
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behave like elementary particles with different masses related to the 

oscillation frequency of the string. Thus a single species of string would 

produce lots of particle-like excitations.  

The details ought to have been relatively straightforward, but several 

unexpected results emerged. A string is like a collection of infinitely many 

point particles, constrained to fit together to form a continuous object. Thus it 

effectively has infinitely many degrees of freedom  always a dangerous thing! 

The mathematics of relativistic strings was fairly straightforward at the level 

of classical theory, but on attempting to promote it to a quantum theory, 

researchers discovered that the total number of spacetime dimensions is fixed 

uniquely to be 26. So, quantum strings could exist only in a world with 25 

(rather than 3) spatial dimensions, plus time. The excitement of finding for the 

first time a mathematical consistency condition that determines the number of 

spacetime dimensions, rather than treating this number as an experimental 

input, was somewhat tempered by the absurd value predicted for this number.  

Enthusiasm was further dampened by the discovery that even in 26 

spacetime dimensions, the string has an additional unpleasant feature. Its 

spectrum of particle-like excitations includes one particle whose mass is an 

imaginary number a "tachyon", generally believed to be an unphysical object.  

Never easily put off by such obstacles, theorists noticed that the theory 

held yet another surprise. After the tachyon, the next particle in the spectrum 

of the oscillating string was a spin-2 particle with vanishing mass. A massless 

particle can propagate to very large distances, so the force that it mediates is a 

long-range force[81, 82].  

The natural starting point is to consider the action 
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which is simply the area of the two-dimensional worldvolume that the string 

sweeps out. 

Here          labels the p spatial and temporal coordinates of the string:  , 

 . Here      is a length scale that determines the size of the string. 

2-22-1: Open Strings 

Strings come in two varieties: open and closed. To date we have tried 

to develop as many formulae and results as possible which apply to both. 

However now we must make a decision and proceed along slightly different 

but analogous roots. Open strings have two end points which traditionally 

arise at     and    . We must be careful to ensure that the correct 

boundary conditions are imposed. In particular we must choose boundary 

conditions so that the boundary value problem is well defined. This requires 

That 

                                                                                (2.22.2) 

at      .  

2-22-2: Closed Strings 

 Now  consider a closed string, so that       . The resulting 

“boundary condition” is more simple: 

                     . 

 This is achieved by again taking n to be an integer. However we now have 

two independent sets of left and right moving oscillators. Thus the mode 

expansion is given by 

             
  

 
   

  
 

 
          

   
 

 
          

   

             

note the absence of the factor of 2 in front of      . The total momentum of 

such a string is calculated as before to give 
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so again    is the spacetime momentum of the string. 
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Chapter Three 

The Effect Of Friction and Diffusion On The lasing 

process 

3-1: Introduction 

Friction plays an important role inside ordinary matter. One of the most 

effect of it is electrical resistance and heat. This chapter is concerned with the 

effect of friction in describing diminishing of wave intensity due to the 

decrease of incident beam by inelastic scattering. It also describe quantum 

lasing mechanism.    

3-2: Friction Effect On Momentum Term In Schrodinger 

Equation  

When particle move in frictional medium , the  frictional energy and 

relaxation time    of  it  can be found from uncertainty principle by using the 

relation:  

     
 

 
                                                                                        (3.2.1) 

Where     is the relaxation time.  

To find the corresponding frictional momentum one can use special 

relativistic energy – momentum relation. According to this (SR) relation the 

relativistic frictional energy given by     

                                                                                               (3.2.2) 

Where   is the speed  of light. 

Thus using (3.2.1) and (3.2.2) yields: 

   
  

 
  

 

  
                                                                                  (3.2.3) 
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Which is the momentum loss by friction . 

For any system moving with velocity v , the momentum is given by  

                                                                                                (3.2.4)  

Thus  the total momentum for frictional medium is given by  

                                                                                             (3.2.5) 

For the situation in which there is both a kinetic energy and a potential 

present, the total energy of the system in Newtonian mechanics ( SR for law 

speed) is given by    

  
      

 

  
     

Thus  

  
  

  
 

   

 
 

  
 

  
                                                                    (3.2.6) 

Multiplying both sides of  equation (3.2.6)  by ψ  , yields 

 ψ  
  

  
ψ  

   

 
ψ  

  
 

  
ψ   ψ                                                    (3.2.7) 

Relation (3.2.7) can be used to find Schrodinger equation for particles moving 

in a resistive medium. This wave function for a free particle of momentum P 

and E. This wave function is given by  

   
 

 
       

                                                           

  

  
 

  

 
 

 

 
       

  

Thus  

   
  

  
 

  

 
   

   
 

 
                                                                                  (3.2.8) 
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Differentiating again   .r.t     x  gives  

     
   

   
  

  

  
 

 

 
       

 

Hence  

    
   

   
  

  

  
                           

                                                                                   (3.2.9) 

The wave function can also be differentiated   .r.t   t to get  

  

  
  

 

 
  

 

 
       

                                     

  

  
  

 

 
    

    
 

 

  

  
                      

     
  

  
                                                                                (3.2.10) 

By Substituting equations (3.2.3) ,(3.8),(3.2.9) and (3.2.10) in equation  

(3.2.7) the modified  Schrodinger equation , yields 

  
  

  
  

  

  
    

  

   
   

  

      
                             (3.2.11) 

From relation between the  friction and  the relaxation time [40] the 

coefficient of  friction    is given by  

  
 

 
                                                                                         (3.2.12) 

Thus Schrodinger equation  is given by  

  
  

  
  

  

  
    

   

   
   

    

     
                              (3.2.13) 

In the absence of friction  

                                                                                           (3.2.14) 
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The  equation (3.2.13) reduces to ordinary Schrodinger equation 

  
  

  
  

  

  
                                                                   (3.2.15) 

The time independent Schrodinger equation (3.2.13) can be written in the 

form  

    
  

  
    

   

   
   

    

     
                                  (3.2.16) 

3-2-1: Harmonic Oscillator Solution 

Electrons moving in a circular orbit around the nucleus is a harmonic 

oscillator. This is since for such motion  

            

                                                  (3.2.17)  

To find solution for harmonic oscillator, consider the wave function  is given 

by  

                                                                                        (3.2.18) 

Which can be differentiated equation (3.2.18) respect to   position   to get 

                                                              

                                                               (3.2.19) 

substituting equations (3.2.18) and (3.2.19)   in equation  (3.2.16) yields: 

    

  
  

    

 
   

  

  
    

    

   
  

  

   
   

  

      
     

                                                                                                (3.2.20)    

For  

 
    

 
  

  

   
                                                                               (3.2.21) 
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The wave number is given by  

  
 

  
                                                                                         (3.2.22) 

Substituting equations ( 3.2.21) and (3.2.22) in equation ( 3.2.20) ,yields : 

 
  

  
      

    

 
 

    

 
     

    

  
 

    

 
 

    

  
         

Thus  

 
  

  
                                                                            (3.2.23) 

Comparing this expression it is clear that this is typical to that of the ordinary 

harmonic oscillator. For Harmonic Oscillator the potential and energy  are 

given by: 

  
 

 
                                                                                         (3.2.24)                                

     
 

 
                                                                                (3.2.25) 

Which is the ordinary energy for oscillator in the absence of friction. 

However the wave function in equation(3.2.18) for k  given by equation 

(3.2.22) takes the form: 

ψ    
 

                                                                                      (3.2.26) 

which represents a decaying wave function this means that friction decreases 

the number of particles.     

 Consider now the solution 

        
     

            
       

                                                                           (3.2.27) 
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Substituting equations ( 3.2.24),(3.2.25) and (3.2.26) in equation (3.2.23) 

,yields : 

 
  

  
            

 

 
        

 

 
                                           

 
  

  
           

 

 
       

 

 
                               (3.2.28) 

Comparing the free terms and coefficients of  2
 on both sides yields:     

    
     

 
 

 

 
         

   
 

   
   

  
   

  
                                                                                 (3.2.29) 

Thus  

  
  

 
     

 

 
         

   
 

 
   

 

 
                                                                   (3.2.30) 

Thus from equation (3.2.29) and (3.2.30) : 

   

  
  

 

 
   

 

 
    

       
 

 
 

 
      

  
 

    
 

 
 

 
  

                                                                     (3.2.31) 

This means that The  mass is quantized 
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3-3:  String Quantum Mechanical Lasing Due To Friction 

The lasing process is  based on the spatial evolution of the photon 

beam. Thus one needs to modify Schrodinger equation to take care of the 

effect of friction on the spatial evolution of the wave function. 

3-3-1: Laser amplification  

Consider the frictional momentum given according to equation (4.3.1), 

when neglecting rest mass term, to be 

   
  

 
                                                                                          (3.3.1) 

     
 

  
                                                                                    (3.3.2) 
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ψ  

   

 
ψ  

  
 

  
ψ   ψ                                                  (3.3.3) 

   
 

 
                                                                                      (3.3.4) 

From equations (3.3.3),(3.3.4). 

 
  

  
    

    

 
   

  
 

  
ψ                                            (3.3.5) 

 The wave function is given by  

                                                                                        (3.3.6) 

                                                                               (3.3.7) 

                                                               (3.3.8) 

Substituting equations(3.3.2), (3.3.7)and (3.3.8) in equation (3.3.5) , yields: 

    

  
  

    

 
   

  

  
    

    

   
  

  

   
   

  

                            (3.3.9)   

This equation can be made reduced to Schrodinger equation  by assuming   
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Thus  

   
 

  
                                                                                 (3.3.10) 

Which can be written  

 
  

  
     

    

  
 

    

 
 

    

  
          

 
  

  
          

    

 
                                                (3.3.11) 

From equations (3.3.6) and (3.3.10) 

   
 

  
                                                                                 (3.3.12) 

Thus the number of electrons are given by  

               

    
 

  
     

 

  
     

 

  
                                                 (3.3.13) 

We assume that n is the number of excited electrons, then the number of 

emitted photons    is proportional to it. Hence  

          
  

                                                                    (3.3.14) 

Comparing with laser amplification condition  

                                                                                     (3.3.15) 

  
 

  
                    

This lasing can take place. 

The fact that  
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Is related to the fact that smaller relaxation time    means very small distances 

between adjacent atoms. which means existence of more intensive excited 

states. 

For harmonic oscillator  

 
  

  
                                                                         (3.3.16) 

Where  

  
 

 
                                                                                    (3.3.17) 

      
 

 
                                                                          (3.3.18) 

Thus comparing equation (3.3.11) and(3.3.18) yields  

      
 

 
      

    

  
                                                  (3.3.19) 

For  

  
  

  
  

  

  
                                                                (3.3.20) 

    
  

  
    

   

   
   

    

     
                               (3.3.21)  

But comparing equations (3.3.3),(3.3.4),(3.3.11),(3.3.20) and (3.3.21) yields  

  
  

  
                                                                                  (3.3.22) 

Let: 

                                                                                   (3.3.23) 

To get  

  
  

  
                                                                                 (3.3.24) 

The solution for   given  
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                                                                     (3.3.25) 

The periodicity condition for harmonic oscillator yields 

                                                                                 (3.3.26) 

                                                                                       (3.3.27) 

                       

Thus   

                                                 

         

Hence  

                                                                                 (3.3.28) 

Thus  

  
    

 
                                                          (3.3.29) 

            

From (3.3.25) and (3.3.29) 

                                                                       (3.3.30) 

Thus from (3.3.19) and (3.3.30) 

    

  
 

  

  
         

 

 
          

 

 
    

                    
 

 
                                                               (3.3.31) 

3-4:  Derivation of Klein – Gordon  Equation For Frictional Medium 

According  to Klein – Gordon equation : 
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The wave function of a free particle is given by: 

   
 

 
       

                                                                           (3.4.1) 

Differentiating (3.4.1) with respect to t yields: 

  
  

  
                                                                                   (3.4.2) 

      

   
                                                                             (3.4.3) 

Differentiating (3.4.1) with respect to position gives 

 

 
 ψ                                                                                     (3.4.4) 

                                                                                   (3.4.5) 

For frictional medium  harmonic model[80] propose that  

   
 

 

 
     

 

 
  

                                                                                (3.4.6) 

Where  the quantities    and     are  respectively the conductivity and 

permittivity  

From equation (3.4.6) 

  

  
  

 

 
     

 

 
                                                        (3.4.7) 

From equation (4.4.7) 

   
 

  
 

 

 
                                                                          (3.4.8) 

Where  the quantities    and     are  respectively the conductivity and 

permittivity  

The energy operator becomes  

     
 

  
   

 

 
                                                                           (3.4.9) 
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But from Klein – Gordon equation  

            
                                                                (3.4.10) 

Thus the energy operator takes the form: 

                                                                                            (3.4.11) 

Inserting equation(3.4.9) in equation (3.4.11) the energy eigen equation 

becomes   

  
  

  
   

 

 
                                                                        (3.4.12) 

From equations  (3.4.4),  (3.4.10) and (3.4.12). one gets  

   
 

  
   

 

 
 

 
     

 

 
  

 
    

                                   (3.4.13) 

      

   
     

 

  

  
     

  
             

      

      

   
      

  

  

  
             

  
    

                   (3.4.14) 

For very poor conductor or insulator 

     

Thus one gets 

      

   
           

                                                 (3.4.15) 

Consider a photon moving inside a medium. It is equation can be solved by 

suggesting the solution  

                                                                                (3.4.16) 

To get: 
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                                                                     (3.4.17) 

For a photon moving in free space or insulator one substitute (3.4.17) in 

(3.4.15) to get  

              
                                                          (3.4.18) 

But the wave equation for free particle is  

     
 

 
       

                                                                     (3.4.19) 

A direct comparison of equation (3.4.19) with (3.4.16) gives:  

                     ,                                                         (3.4.20)   

Inserting (3.4.20) in (4.4.18) gives  

              
       

          
                                                                     (3.4.21) 

Which is the ordinary energy – momentum relativistic relation. For a photon 

in  a conductor  however, substituting (3.4.18) in (3.4.14) yields  

                         
    

  
   

                 (3.4.22) 

Using relation (3.4.20) in equation (3.4.22) yields 

                  
    

  
   

                                   (3.4.23) 

Using relation (3.4.21), one can simplify (3.4.22) to get  

         
    

  
 

   
  

      
                                                                      (3.4.24) 

According to special relativistic energy – momentum the energy given by  
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                                                                                    (3.4.25) 

Inserting equation (3.4.25) in equation (3.4.24) yields 

                    
  

      
   =     

  

   
                                           (3.4.24) 

From equation (3.4.20) 

    
  

   
                                                                            (3.4.25) 

   
 

   
                                                                              (3.4.26)  

Inserting equation (3.4.26) in(3.4.16) yields   

    
 

   
     

                                                               (3.4.27) 

Thus the number of photons is given by  

              
 

  
 
                                                  (3.4.28) 

This a gains means that lasing can take place.  
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Chapter Four 

Results and Discussion  

4-1: Discussion   

The difference between matter and free space manifests itself through 

frictional term in the expression of momentum as shown by equation(3.2.3). 

Two terms recognize friction, according to equation(3.2.11). This equation 

reduces to ordinary Schrodinger equation in the absence of friction(see 

equation(3.2.15)).  

Since string theory treats particles as harmonic oscillators it is thus 

quite obvious to try harmonic solutions. Suggesting solution equation(3.2.18) 

for the  spatially oscillating system, the wave number is imaginary according 

to equation(3.2.22). This leads to spatially decaying wave function(3.2.26). 

This wave function (3.2.26). This wave function can describe inelastic 

scattering press in which the number of particles in a beam is reduced, where   

         
  

         

It is very interesting to note that the energy E equation(3.2.25) shows 

no change of energy per particle. This means that energy loss due to friction 

changes the number of particles and does not change the energy of a single 

particle. This resembles inelastic scattering , which leads to atomic excitation 

that changes their energy by an amount (  ). Here the increase or decrease 

due to friction and collision is caused by the change of the number of excited 

atoms. 

Due to string  theory electrons in any atom behaves as a harmonic 

oscillator. Thus it is natural to solve the Schrodinger equation for harmonic  

oscillator  in the presence of friction Schrodinger equation becomes in the 

form(3.3.9). The wave number K is imaginary as shown by equation(3.3.10). 
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Thus the wave function and the number of particles increases with x as 

equations(3.3.12) and (3.3.13) indicates. This means that amplification can 

take place according to equation (3.3.14). This is since the number of emitted 

photons    is proportional to the number of excited electrons n given by 

equation(3.3.13). This means that resistive medium can induce laser. This is 

due to the fact that collision process takes place in a resistive medium. This 

collision leads to electrons excitation. The smaller collision time   the larger 

the number of excited electrons, which causes a larger number of photons to 

be emitted. Thus amplification factor β should increase as   decreases. This is 

strictly what is equation (3.3.15) state. 

It is very interesting to note that the wave number as well as the momentum 

are quantized as shown by equation (3.3.31).           

The  Klein-Gordon equation for frictional medium shown in equation 

(3.4.14) . For free space the equation reduces to ordinary energy – momentum 

relativistic relation. However for conductor it predict that lasing can take 

place. This expression for lasing is similar to that obtained  by some 

researchers.   
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4-2: Conclusion  

The modified spatial Schrodinger equation  and klein- Gordon that 

accounts for the effect of friction shows that friction affect on the wave  

function. This effect shows the possibility of lasing due to the effect of 

friction which causes atoms to gain energy by friction to emit coherent 

photons when one treats electrons and photons as vibrating strings.  
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4-3: Recommendations 

1.  This  Quantum equations prediction needs to be used to see how 

physical fields affect physical quantities and material properties 

2. The effect of Quantum friction on lasing process should also extend to 

include a wide variety of theoretical models 

3. This equations can be applied to describe elementary particles 

interactions . 
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Abstract: Schrodinger equation for resistive medium is obtained through momentum operator. This new equation reduces to ordinary 

Schrodinger equation in the absence of friction. This equation describes spatially decaying wave function when particles are treated as 
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1. Introduction  
 

Quantum mechanics is the body of scientific laws that 

describe the wacky behavior of photons, electrons and the 

other particles that make up the universe. It helps us 

understand the nature and behavior of matter and energy on 

the atomic and subatomic level [1]. 

 

Quantum mechanics include two independent formulations. 

The first formulation, called matrix mechanics, was 

developed by Heisenberg (1925) to describe atomic structure 

starting from the observed spectral lines. Inspired by Planck’s 

quantization of waves and by Bohr’s model of the hydrogen 

atom, Heisenberg founded his theory on the notion that the 

only allowed values of energy exchange between 

microphysical systems are those that are discrete: quanta. 

Expressing dynamical quantities such as energy, position, 

momentum and angular momentum in terms of matrices, he 

obtained an eigenvalue problem that describes the dynamics 

of microscopic systems; the diagonalization of the 

Hamiltonian matrix yields the energy spectrum and the state 

vectors of the system. Matrix mechanics was very successful 

in accounting for the discrete quanta of light emitted and 

absorbed by atoms. 

 

The second formulation, called wave mechanics, was due to 

Schrödinger (1926); it is a generalization of the de Broglie 

postulate. This method, more intuitive than matrix mechanics, 

describes the dynamics of microscopic matter by means of a 

wave equation, called the Schrodinger equation; instead of 

the matrix eigenvalue problem of Heisenberg, Schrödinger 

obtained a differential equation. The solutions of this 

equation yield the energy spectrum and the wave function of 

the system under consideration. In 1927 Max Born proposed 

his probabilistic interpretation of wave mechanics: he took 

the square moduli of the wave functions that are solutions to 

the Schrodinger equation and he interpreted them as 

probability densities [2,3]. 

 

These two ostensibly different formulations Schrödinger’s 

wave formulation and Heisenberg’s matrix approach were 

shown to be equivalent. Dirac then suggested a more general 

formulation of quantum mechanics which deals with abstract 

objects such as kets (state vectors), bras, and operators. The 

representation of Dirac’s formalism in a continuous basis the 

position or momentum representations gives back 

Schrödinger’s wave mechanics. As for Heisenberg’s matrix 

formulation, it can be obtained by representing Dirac’s 

formalism in a discrete basis. In this context, the approaches 

of Schrödinger and Heisenberg represent, respectively, the 

wave formulation and the matrix formulation of the general 

theory of quantum mechanics. 

 

Combining special relativity with quantum mechanics, Dirac 

derived in 1928 an equation which describes the motion of 

electrons. This equation, known as Dirac’s equation, 

predicted the existence of an antiparticle, the positron, which 

has similar properties, but opposite charge, with the electron; 

the positron was discovered in 1932, four years after its 

prediction by quantum mechanics. 

 

In summary, quantum mechanics is the theory that describes 

the dynamics of matter at the microscopic scale. Fine! But is 

it that important to learn? This is no less than an otiose 

question, for quantum mechanics is the only valid 

framework for describing the microphysical world. 

 

It is vital for understanding the physics of solids, lasers, 

semiconductor and superconductor devices, plasmas, etc. In 

short, quantum mechanics is the founding basis of all 

modern physics: solid state, molecular, atomic, nuclear, and 

particle physics, optics, thermodynamics, statistical 

mechanics, and so on. Not only that, it is also considered to 

be the foundation of chemistry and biology. 

 

Despite the remarkable successes of quantum equations, but 

they suffer from noticeable set backs. For example, the 

quantum equation can not differentiate between the behavior 

of two particles subjected to the same potential, but one 

moves in free space and the other moves inside matter. This 

is in direct conflict whit experimental observations. Thus 

one needs new quantum equation that differentiates between 
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the two situations. This is done in section(2). Section (3) is 

concerned with harmonic oscillator solution, sections (4) and 

(5) are the discussion and conclusion.  

 

2. Friction Effect on Momentum Term in 

Schrodinger Equation  
 

The ordinary quantum mechanical laws no terms feeling the 

effect of friction [4]. Recently some attempts made by 

M.Dirar and others[5,6] recognize the effect of friction on 

energy. This effect shows how energy and wave function 

decays with time due to friction effect. 

 

When particle move in frictional medium , the frictional 

energy of it is given. 

𝐸f =   
ℏ

τ
 i                                (1) 

Where τ is the relaxation time.  
 
To find the corresponding frictional momentum one can 
use special relativistic energy – momentum relation. 
According to this (SR) relation the relativistic frictional 
energy gives by  

𝐸f = 𝐶𝑃f                                      (2) 

Thus using (1) and (2) yields: 

𝑃f =
𝐸f

𝐶
=  

ℏ

𝑐𝜏
 𝑖                            (3) 

Which is the momentum loss by friction . 

For any system moving with velocity v , the momentum is 
given by  

P = mv                                     (4) 

Thus the total momentum for frictional medium is given by  

 P = P − Pf  (5) 

For the situation in which there is both a kinetic energy and a 

potential present, the total energy of the system in Newtonian 

mechanics ( SR for law speed) is given by  

E =
 P−Pf 

2

2m
+ V  

Thus  

E =
P2

2m
−

PPf

m
+

Pf
2

2m
+ V                                 (6) 

Multiplying both sides of equation (6) by ψ , yields 

 

Eψ =
P2

2m
ψ −

PPf

m
ψ +

Pf
2

2m
ψ + Vψ                 (7) 

Relation (7) can be used to find Schrodinger equation for 

particles moving in a resistive medium. This wave function 

for a free particle of momentum P and E. This wave function 

is given by  

𝜓 = 𝑒
𝑖

ℏ
(𝑃𝑥−𝐸𝑡)

  
𝜕𝜓

𝜕𝑥
=

𝑖𝑃

ℏ
𝑒
𝑖

ℏ
(𝑃𝑥−𝐸𝑡)

  

Thus  

∇𝜓 =
𝜕𝜓

𝜕𝑥
=

𝑖𝑃

ℏ
𝜓  

𝑃𝜓 =
ℏ

𝑖
∇𝜓                               (8) 

Differentiating again ω.r.t x gives  

 ∇2𝜓 =
𝜕2𝜓

𝜕𝑥2 = −
𝑃2

ℏ2 𝑒
𝑖

ℏ
(𝑃𝑥−𝐸𝑡)

 

Hence  

∇2𝜓 =
𝜕2𝜓

𝜕𝑥2 = −
𝑃2

ℏ2 𝜓  

𝑃2𝜓 = −ℏ2∇2𝜓                               (9) 

The wave function can also be differentiated ω.r.t t to get  

𝜕𝜓

𝜕𝑡
= −

𝑖

ℏ
𝐸𝑒

𝑖

ℏ
(𝑃𝑥−𝐸𝑡)

  

𝜕𝜓

𝜕𝑡
= −

𝑖

ℏ
𝐸𝜓  

𝐸𝜓 = −
ℏ

𝑖

𝜕𝜓

𝜕𝑡
  

𝐸𝜓 = 𝑖ℏ
𝜕𝜓

𝜕𝑡
                                           (10) 

By Substituting equations (3) ,(8),(9) and (10) in equation 

(7) the modified Schrodinger equation , yields 

𝑖ℏ
𝜕𝜓

𝜕𝑡
= −

ℏ2

2𝑚
∇2𝜓 −

ℏ2

mc τ
∇𝜓 −

ℏ2

2mC2τ2 𝜓 + V𝜓        (11) 

The coefficient of friction γ is given by  

γ =
m

τ
                                                  (12) 

Thus Schrodinger equation is given by  

𝑖ℏ
𝜕𝜓

𝜕𝑡
= −

ℏ2

2𝑚
∇2𝜓 −

ℏ2γ

m2c
∇𝜓 −

ℏ2𝛾2

2m3C2 𝜓 + V𝜓       (13) 

In the absence of friction  

γ = 0                                              (14) 

The equation (13) reduces to ordinary Schrodinger equation 

𝑖ℏ
𝜕𝜓

𝜕𝑡
= −

ℏ2

2𝑚
∇2𝜓 + V𝜓                          (15) 

The time independent Schrodinger equation (13) can be 

written in the form  

E𝜓 = −
ℏ2

2𝑚
∇2𝜓 −

ℏ2γ

m 2c
∇𝜓 −

ℏ2𝛾2

2m3C2 𝜓 + V𝜓         (16) 

 

3. Harmonic Oscillator Solution 
 

Electrons moving in a circular orbit around the nucleus is a 

harmonic oscillator. This is since for such motion  

F = ma = −mω2r  

V = − Fds = mω2  r 2πrdθ = mω2 2π 2r2  ~ Kr2 

(17)  

To find solution for harmonic oscillator, consider the wave 

function is given by  

𝜓 = 𝑒𝑖𝑘𝑥𝑢(𝑥)                             (18) 

Which can be differentiated ω.r.t to x to get 

∇𝜓 = 𝑖𝑘𝑒𝑖𝑘𝑥𝑢 + 𝑒𝑖𝑘𝑥∇𝑢  

∇2𝜓 = −𝑘2𝑒𝑖𝑘𝑥𝑢 + 2𝑖𝑘𝑒𝑖𝑘𝑥∇𝑢 + 𝑒𝑖𝑘𝑥∇2𝑢        (19) 

substituting equations (18) and (19) in equation (16) yields: 

ℏ2𝑘2

2𝑚
𝑢 −

𝑖𝑘ℏ2

𝑚
∇𝑢 −

ℏ2

2𝑚
∇2𝑢 −

𝑖𝑘ℏ2

𝑚𝑐𝜏
𝑢 −

ℏ2

𝑚𝑐𝜏
∇𝑢

−
ℏ2

2mC2τ2
u + Vu 

= Eu                                              (20)  

For  

 
𝑖𝑘ℏ2

𝑚
= −

ℏ2   

𝑚𝑐𝜏
                                         (21) 

The wave number is given by  

𝑘 =
𝑖

𝑐𝜏
                                               (22) 

Substituting equations ( 21) and (22) in equation ( 20) 

,yields : 

−
ℏ2

2𝑚
∇2𝑢 +  −

𝑖𝑘ℏ2

𝑚
+
𝑖𝑘ℏ2

𝑚
 ∇𝑢

+  
ℏ2𝑘2

2𝑚
−
ℏ2𝑘2

𝑚
+
ℏ2𝑘2

2𝑚
 𝑢 + Vu = Eu 

Thus  

−
ℏ2

2𝑚
∇2𝑢 +  Vu = Eu                         (23) 

Comparing this expression it is clear that this is typical to 

that of the ordinary harmonic oscillator. For Harmonic 

Oscillator the potential and energy are given by: 

V =
1

2
𝑘𝑥2                               (24)  
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E =  𝑛 +
1

2
 ℏ𝜔                      (25) 

Which is the ordinary energy for oscillator in the absence of 

friction. However the wave function in equation(18) for k 

given by equation (22) takes the form: 

ψ = 𝑒−
𝑥

𝑐𝜏𝑢 𝑥                                (26) 

which represents a decaying wave function this means that 

friction decreases the number of particles.  

 Consider now the solution 

𝑢 = 𝐶0𝑒
𝛼𝑥2

  

∇𝑢 = 2𝛼𝑥𝐶0𝑒
𝛼𝑥2

= 2𝛼𝑥𝑢  

∇2𝑢 =  2𝛼 + 4𝛼2𝑥2 𝑢                    (27) 

Substituting equations ( 24),(25) and (26) in equation (23) 

,yields : 

−
ℏ2

2𝑚
 2𝛼 + 4𝛼2𝑥2 𝑢 +

1

2
𝑘𝑥2𝑢 =  𝑛 +

1

2
 ℏ𝜔𝑢  

−
ℏ2

2𝑚
 2𝛼 + 4𝛼2𝑥2 +

1

2
𝑘𝑥2 =  𝑛 +

1

2
 ℏ𝜔       (28) 

Comparing the free terms and coefficients of 𝑥2
 on both sides 

yields:  

 −
2ℏ2𝛼2

𝑚
+

1

2
𝑘 = 0  

𝛼2 =
𝑚

4ℏ2 𝑘  

𝛼 =
 𝑚𝑘

2ℏ
                                     (29) 

Thus  

 −
ℏ2

𝑚
𝛼 =  𝑛 +

1

2
 ℏ𝜔  

𝛼 = −
𝑚

ℏ
 𝑛 +

1

2
 𝜔                         (30) 

Thus from equation (29) and (30) : 
 𝑚𝑘

2ℏ
= −

𝑚

ℏ
 𝑛 +

1

2
 𝜔  

𝑘 = 2𝑚 𝑛 +
1

2
 

2

𝜔2  

𝑚 =
𝑘

2 𝑛+
1

2
 

2
𝜔2

                             (31) 

This means that The mass is quantized 

 

4. Discussion  
 

The difference between matter and free space manifests itself 

through frictional term in the expression of momentum as 

shown by equation (3). Two terms recognize friction, 

according to equation(11). This equation reduces to ordinary 

Schrodinger equation in the absence of friction(see 

equation(15)).  

 

Since string theory treats particles as harmonic oscillators it is 

thus quite obvious to try harmonic solutions. Suggesting 

solution equation (18) for the spatially oscillating system, the 

wave number is imaginary according to equation(22). This 

leads to spatially decaying wave function (26). This wave 

function (26). This wave function can describe inelastic 

scattering press in which the number of particles in a beam is 

reduced, where  

n~ ψ 2 = 𝑒−
2𝑥
𝑐𝜏  

It is very interesting to note that the energy E equation(25) 

shows no change of energy per particle. This means that 

energy loss due to friction changes the number of particles 

and does not change the energy of a single particle. This 

resembles inelastic scattering , which leads to atomic 

excitation that changes their energy by an amount (ℏω). Here 

the increase or decrease due to friction and collision is 

caused by the change of the number of excited atoms. 

 

5. Conclusion 
 

The effect of friction on Schrodinger equation leads to 

describing the inelastic scattering process. It shows that in 

the elastic scattering number of particles is not conserved 
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ABSTRACT  

 

Background: Lasers have numerous applications and can be considered as one of the main technological outputs of quantum 
physics. Due to string theory electrons in any atom behaves as a harmonic oscillator. Thus, it is natural to solve the Schrodinger 
equation for harmonic oscillator in the presence of friction Schrodinger equation. Objectives: The absence of a relation between 
frictional effects in quantum mechanics relativity and Laser amplification led to conduct a theoretical study so as to verify the Laser 
amplification due to friction. String theory treats particles as harmonic oscillators. Methods In this work Schrodinger equation for 
frictional medium is derived, and the Harmonic oscillator solved for resistive medium. Results: The results showed no change of 
energy per particle. This means that energy loss due to friction changes the number of particles and does not change the energy of a 
single particle. This resembles inelastic scattering, which leads to atomic excitation that changes their energy by an amount (ℏω). Here 
the increase or decrease due to friction and collision is caused by the change of the number of excited atoms. Conclusions: The    
Schrodinger equation for frictional medium is derived; Harmonic oscillator solution for resistive medium shows the possibility of lasing 
within the framework of string theory. 
Keywords: Friction, lasing, String theory, Harmonic oscillator, Schrodinger equation. 

1. INTRODUCTION  
 

In physics the discovery of the laser (light amplification by stimulated emission of radiation) was based on Einstein’s 
theory of stimulated emission of radiation. However, it was only in the 1950’s that this theoretical study led to the 

creation of lasers. Nowadays lasers found numerous applications and can be considered as one of the main technological 

outputs of quantum physics [1]. 
 

The most important features of quantum mechanics leading to laser theory were obtained already in the old quantum 
mechanics: i.e. the discrete structure of energy levels for atoms and the quantum structure of electromagnetic radiation; 

spontaneous and stimulated emission and absorption. Here the discrete structure of energy levels of atoms was simply 

postulated by Bohr to derive the stability of atoms. Then Einstein (motivated by Plank’s study on black body radiation) 
postulated the quantum structure of radiation [2, 3]. 

 
By using the quantum structures for atoms and radiation and thermo dynamical considerations, he derived spontaneous 

and stimulated emissions and absorption which are fundamental in laser theory.  
However, the “old fashioned considerations” in the spirit of Bohr and Einstein clarify the basic assumptions leading to the 

functioning of the laser in a more intuitive and less formal way [4, 5, 6]. 

Although quantum equations explain many subatomic phenomena; but it fails to account the effect of resistive medium. 
Some attempts were made by M. Dirar et al. (2015) and Lutfi et al. (2016), but they concentrate on the effects of friction 

on the time evolution of the physical system [7, 8]. Rare attempts to account for spatial effects.  The principle objective 
of this study is to verify the Laser amplification due to friction. 

 
2. LASER AMPLIFICATION  
 

For any system moving with velocity v, the momentum is given by:  

                                                                                             (1) 

 

STRING QUANTUM MECHANICAL LASING DUE TO FRICTION 
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Thus the total momentum for frictional medium is given by:  

 ̃                                                                                          (2) 

For the situation in which there is both a kinetic energy and a potential present, the total energy of the system in 

Newtonian mechanics ( SR for law speed) is given by:    

  
(    )

 

  
   

Thus:  

  
  

  
 
   

 
 
  
 

  
                                                                      (3) 

Multiplying both sides of  Eq. (3)  by ψ  , yields: 
 

 ψ  
  

  
ψ  

   

 
ψ  

  
 

  
ψ   ψ                                                       (4) 

Relation (4) can be used to find Schrodinger equation for particles moving in a resistive medium.  

Consider: 

    (
ℏ

  
)                                                                                   (5) 

 

   
ℏ

 
                                                                                      (6) 

From Eq.s (4), (6): 

 
ℏ 

  
    

   ℏ

 
   

  
 

  
ψ                                                    (7) 

 The wave function is given by:  

       ( )                                                                                (8) 

                                                                                    (9) 

                                                                        (10) 

Substituting Eq.s (5), (9) and (10) in Eq. (7), yields: 

ℏ   

  
  

  ℏ 

 
   

ℏ 

  
    

  ℏ 

   
  

ℏ 

   
   

ℏ 

      
                  (11) 

This equation can be made reduced to Schrodinger equation by assuming:   

  ℏ 

 
 
ℏ 

   
 

Thus:  

   
 

  
                                                                                        (12) 

Which can be written: 

 
ℏ 

  
    (

ℏ   

  
 
ℏ   

 
 
ℏ   

  
)        

 
ℏ 

  
       (  

ℏ   

 
)                                                      (13) 
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From Eq.s (8) and (12): 

   
 

  
  ( )                                                                          (14) 

Thus the numbers of electrons are given by:  

  | |    ̅ 

  ( 
 

  
  ) ( 

 

  
  )   

 

  
                                                       (15) 

We assume that n is the number of excited electrons, then the number of emitted photons    is proportional to it. Hence:  

        
  

  

                                                                      (16) 

Comparing with laser amplification condition:  

     
                                                                                 (17) 

  
 

  
 

This lasting can take place. 

The fact that:  

  
 

 
 

Is related to the fact that smaller relaxation time   means very small distances between adjacent atoms. Which means 
existence of more intensive excited states. 

For harmonic oscillator:  

 
ℏ 

  
                                                                      (18) 

Where:  

  
 

 
   

                                                                            (19) 

   (  
 

 
)ℏ                                                                     (20) 

Thus comparing Eq.(13) and(14) yields:  

   (  
 

 
)ℏ    

ℏ   

  
                                                   (21) 

For  

 ℏ
  

  
  

ℏ 

  
                                                               (22) 

    
ℏ 

  
    

ℏ  

   
   

ℏ   

     
                                          (23) [9]. 

But comparing Eq.s (4), (6), (13), (21) and (23) yields:  

 ℏ
  

  
                                                                           (24) 

Let: 

   ( ) ( )                                                                     (25) 

To get:  
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 ℏ
  

  
                                                                        (26) 

The solution for   gives:  

     
 
   

ℏ                                                                (27) 

The periodicity condition for harmonic oscillator yields: 

 (   )   ( )                                                               (28) 

                                                                               (29) 

                       

Thus:   

                                                 

         

Hence:  

                                                                             (30) 

Thus:  

  
    

 
                                                           (31) 

            

From Eq.(27) and Eq. (31): 

  ℏ    ℏ                                                               (32) 

Thus from (21) and (32): 

ℏ   

  
 
  

  
      (  

 

 
) ℏ  ℏ  (  

 

 
)ℏ  

 (  
 

 
)ℏ                                                                 (33) 

 
3. DISCUSSION  
 
Due to string theory electrons in any atom behaves as a harmonic oscillator. Thus, it is natural to solve the Schrodinger 
equation for harmonic oscillator in the presence of friction Schrodinger equation becomes in the form Eq.(11). The effect 

of friction on Schrodinger equation leads to describing the inelastic scattering process. The wave number K is imaginary 
as shown by Eq.(12). Thus the wave function and the number of particles increases with x as Eq.s(14) and (15) 

indicates. This means that amplification can take place according to Eq. (16). This is since the number of emitted photons 
   is proportional to the number of excited electrons n given by Eq. (15). This means that resistive medium can induce 

laser. This is due to the fact that collision process takes place in a resistive medium. This collision leads to electrons 

excitation. The smaller collision time   the larger the number of excited electrons, which causes a larger number of 
photons to be emitted. Thus amplification factor β should increase as   decreases. This is strictly what is Eq. (17) stated. 

It is very interesting to note that the wave number as well as the momentum is quantized as shown by Eq. (33). 

This a study agrees with some attempts, one of them is proposed by Lutfi Mohammed AbdAlgadir and others [8]. It is a 
Schroedinger quantum equation from classical and quantum harmonic oscillator, from this model shows Schrödinger 

equation and energy Eigen equations are affected by friction. Another attempt was also made by Mobarak Ibrahim and 

others to construct a quantum relativistic equation and string mass quantization, this expression includes mass energy 
beside potential energy, with energy conserved. The special relativistic energy in the presence of friction is found. 

Treating particles as vibrating string the mass is quantized [7]. But no one of them uses this equation to construct a 
quantum equation that accounts for lasing  
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 4. CONCLUSION 
 

The spatial quantum effect on particles and quantum systems manifests themselves via the momentum. The    
Schrodinger equation for frictional medium is derived; Harmonic oscillator solution for resistive medium shows possibility 

reference of lasing. 

This study concludes that atomic excitation that changes their energy by an amount (ℏω). Here the increase or 
decrease due to friction and collision is caused by the change of the number of excited atoms. 
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