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ABSTRACT 

 

The proposed methods to solve optimal control problems are 

classified as direct methods and indirect methods. This thesis is based on 

solving optimal control problems using direct methods in which an 

optimal control problem is converted into a mathematical programming 

problem. The direct methods can be employed by using the 

parameterization technique which can be applied in three different ways: 

control parameterization, control-state parameterization and state 

parameterization. Here, we used control-state parameterization. 

This thesis presents numerical methods to solve unconstrained 

optimal control problems. The solution method is based on using the 

iteration approach to replace the nonlinear optimal control problem by a 

sequence of time-varying linear quadratic optimal control problems. Each 

of these problems is solved by converting it into quadratic programming 

problem. The control-state parameterization technique is done by using 

the Legendre polynomials to approximate the system state variables. 

The proposed method has been applied on several examples and 

we find that it gives acceptable results compared with some other 

methods. 
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 مستخلص

تصنف الطرق المقترحة لحل مشاكل التحكم الأمثل الى طرق مباشرة و غير مباشرة. يستند هذا البحث على 

حل مشاكل التحكم الأمثل باستخدام الطرق المباشرة التي يتم فيها تحويل مشكلة التحكم الأمثل الى مشكلة 

برمجة رياضية. الطرق المباشرة يمكن استخدامها عن طريق استخدام تقنية الباراميترايزيشن التي يمكن تطبيقها 

هنا  والحالة.  الدخل  باراميترايزيشن  و  الحالة,  باراميترايزيشن   ، الدخل  باراميترايزيشن  مختلفة:  طرق  بثلاث 

استخدمنا باراميترايزيشن الدخل والحالة.

على  الحل  طريقة  وتستند  المقيدة.  غير  الأمثل  التحكم  مشاكل  لحل  العددية  الطرق  الأطروحة  هذه  تقدم   

الامثل   التحكم  مشاكل  من  سلسلة  الخطية  غير  الأمثل  التحكم  مشكلة  محل  ليحل  التكرار  نهج  استخدام 

الخطية المتغيرة مع الزمن. كل هذه المشاكل يتم حلها عن طريق تحويلها إلى مشكلة البرمجة التربيعية. و تتم 

الــنــظــام.  حالة  متغيرات  لتقريب  لجندر  حدود  كثيرات  باستخدام  والحالة  الدخل  بــرامــيــتــرايــزيــشــن  تقنية 

الطرق  بعض  مع  مقارنة  مقبولة  نتائج  تعطي  أنها  ونجد  الأمثلة  من  العديد  على  المقترحة  الطريــقــة  طبقت  وقد 

الأخرى. 
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CHAPTER ONE 

INTRODUCTION  

1.1 Overview  

Classical control system design is generally a trial-and-error process in 

which various methods of analysis are used iteratively to determine the design 

parameters of an "acceptable" system. The acceptable performance is 

generally defined in terms of time and frequency domain criteria such as rise 

time, settling time, peak overshoot, gain and phase margin, and bandwidth. 

Radically different performance criteria must be satisfied, however, by the 

complex, multiple-input, multiple-output systems required to meet the 

demands of modern technology. For example, the design of a spacecraft 

attitude control system that minimizes fuel expenditure is not amenable to 

solution by classical methods. A new and direct approach to the combination 

of these complex systems, called optimal control theory, has been made 

feasible by the development of the digital computer.[1] 

Optimal control is an important science that deals with nonlinear 

Optimal Control Problem (OCP) and the main objective of optimal control is 

to find an optimal control that can be applied to the nonlinear system and to 

extrmize a certain cost function within the system's physical constraints. The 

methods of optimal control can be classified as direct and indirect methods. 

Indirect methods are generally converting OCP into two-point boundary value 

problem, then solving it by Hamilton-Jacobi-Bellman (HJB) equation or Euler 

Lagrange technique. The direct methods can be preceded using 

parameterization or discretization methods. 

Parameterization is the method that using polynomials in order the 

performance index and the constraints with these polynomials and the 

coefficients that make this representation valid. The indirect methods have 

many disadvantages such as: complete knowledge of system model is needed; 

difficulties to obtain exact solution of nonlinear OCPs using Euler Lagrange 
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or Hamilton-Jacobi-Bellman increasing; computational problem in using 

artificial co-states 𝜆𝜆𝑖𝑖𝑖𝑖, also there are many advantages of direct methods such 

as: direct methods convert dynamic OCP into a static optimization problem; 

there is no need to use co-states variables 𝜆𝜆𝑖𝑖𝑖𝑖 . Thus, researchers are 

encouraged to use direct parameterization methods which are based on 

orthogonal functions and polynomials. This Thesis will present a technique to 

solve the nonlinear optimal control problem by using Legendre scaling 

functions to parameterize the state and control for nonlinear optimal control 

problem combined with an iterative approach. 

1.2 Problem Statement  

The nonlinear optimal control problem can be stated as: Find an optimal 

control  𝑢𝑢∗(𝑡𝑡) on 0 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝑓𝑓  which minimizes the performance index: 

 

𝐽𝐽 = � (𝑥𝑥𝑇𝑇𝑄𝑄𝑥𝑥 + 𝑢𝑢𝑇𝑇𝑅𝑅𝑢𝑢)
𝑡𝑡𝑓𝑓

0
𝑑𝑑𝑡𝑡                                                                                  (1.1) 

 

Subject to: 

 

�̇�𝑥 = 𝑓𝑓(𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑡𝑡), 𝑡𝑡)      𝑥𝑥(0) = 𝑥𝑥0                                                                     (1.2)  

 

Where 𝑥𝑥 ∈ 𝑅𝑅𝑛𝑛 , 𝑢𝑢 ∈ 𝑅𝑅𝑚𝑚 , 𝑄𝑄 is 𝑛𝑛 × 𝑛𝑛, positive semidefinite matrix and 𝑅𝑅 is 

𝑚𝑚 × 𝑚𝑚  positive definite matrix, 𝑓𝑓 is continuously differentiable with respect 

to all its arguments. 

This problem is very difficult to solve using indirect method so that; we 

proposed to solve it using control state parameterization via Legendre 

polynomials  

1.3 Objectives 

i. Using Legendre function to approximate the state and control variables 

of OCPS to solve linear time invariant and linear time-varying OCPS. 
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ii. Solving nonlinear OCPS by converting it into a sequence of time 

varying quadratic OCPS. 

iii. Comparing the proposed method results with exact values and other 

methods results. 

1.4 Methodology 

 The proposed method is to convert the nonlinear OCPS into sequence 

of time varying OCPS using iterative approach, then the optimal 

problem is converted to quadratic programming problem, which it 

solved by MATLAB. 

 Using Legendre function to approximate the state and control variables 

of optimal control problems to solve linear time invariant and linear 

time-varying optimal control problems. 

1.5 Thesis Layout 

Chapter two the previous studies in optimal control problem will be reviewed, 

these studies include the methods of solving OCPs. In Chapter three wavelets 

and Legendre scaling function will be introduced. These introductions include 

the approximation via Legendre function of linear quadratic OCPs method, 

state and control variables parameterization via Legendre scaling function are 

also presented in chapter three. Chapter four describes a method for solving 

unconstrained nonlinear OCPs by converting nonlinear OCPs into a sequence 

of linear time-varying OCPs using iterative approach. The conclusions and 

recommendations are drawn in chapter five. 
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CHAPTER TWO 

OPTIMAL CONTROL PROBLEM 

2.1 Introduction 

The objective of optimal control is to determine an optimal control signal that 

forces the system to satisfy the system physical constraints and at the same 

time minimizes or maximizes a performance criterion.The formulation of an 

optimal control problem requires: 

1. A  set of first order deferential equations which represent 

mathematical model of the system to be controlled  

 

�̇�𝑥 = 𝑓𝑓(𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑡𝑡), 𝑡𝑡)   ,   𝑡𝑡 ∈  �𝑡𝑡0, 𝑡𝑡𝑓𝑓�                                                       (2.1) 

 

Where 𝑥𝑥(𝑡𝑡) ∈ 𝑅𝑅𝑛𝑛  is the state vector, 𝑢𝑢(𝑡𝑡) ∈ 𝑅𝑅𝑚𝑚  is the control vector, 

𝑓𝑓 is continuously differentiable with respect to all its arguments. 

2. A set of boundary conditions on the state variables which gives the 

value of the system states at the initial time 

 

𝑥𝑥(𝑡𝑡0) = 𝑥𝑥0                                                                                                   (2.2) 

 

Where 𝑥𝑥0 is a known vector of initial conditions. 

3. A performance index which describes some desired specifications, it 

selected by designer. An optimal control is defined as one that 

minimizes (or maximizes) the performance index. The performance 

index can be expressed as 

 

𝐽𝐽 = 𝜃𝜃�𝑥𝑥�𝑡𝑡𝑓𝑓�, 𝑡𝑡𝑓𝑓� + � 𝜑𝜑(𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑡𝑡), 𝑡𝑡)
𝑡𝑡𝑓𝑓

𝑡𝑡0

𝑑𝑑𝑡𝑡                                            (2.3) 
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Where 𝜃𝜃 and 𝜑𝜑 are scalar functions [1]. 

2.2 Statement of the Optimal Control Problem 

The optimal control problem is to find the optimal control 𝑢𝑢∗(𝑡𝑡)  that 

minimizes the following performance index: 

𝐽𝐽 = 𝜃𝜃�𝑥𝑥�𝑡𝑡𝑓𝑓�, 𝑡𝑡𝑓𝑓� + � 𝜑𝜑(𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑡𝑡), 𝑡𝑡)

𝑡𝑡𝑓𝑓

𝑡𝑡0

𝑑𝑑𝑡𝑡                                                         (2.4) 

 

Subject to: 

  

�̇�𝑥 = 𝑓𝑓(𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑡𝑡), 𝑡𝑡)       𝑥𝑥(𝑡𝑡0) = 𝑥𝑥0                                                                    (2.5) 

 

Where 𝑡𝑡 ∈ �𝑡𝑡0, 𝑡𝑡𝑓𝑓� , 𝑥𝑥 ∈ 𝑅𝑅𝑛𝑛  is the states vector, 𝑢𝑢 ∈ 𝑅𝑅𝑚𝑚  is the controls vector, 

𝑓𝑓 is assumed continuous differentiable function, while 𝜃𝜃 and 𝜑𝜑 are scalar 

functions. This problem, basically, can be solved by one of the following 

methods: 

 Bellman's dynamic programming method. 

 Variational method and Pontryagin's minimum principle (Euler-

Lagrange equations). 

 Direct methods using discretization or parameterization. 

These methods will briefly be discussed in the following sections. In general 

it is not possible to solve the problem (2.4)-(2.5) analytically. However, an 

analytical solution is possible for a special case of this problem, the linear 

quadratic optimal control problem, in which the performance index is 

quadratic and the system state equations are linear. This problem can be stated 

as follows: Find the optimal control that minimizes: 

 

𝐽𝐽 = 𝑥𝑥𝑇𝑇�𝑡𝑡𝑓𝑓�𝑆𝑆𝑥𝑥�𝑡𝑡𝑓𝑓� + � 𝜑𝜑(𝑥𝑥𝑇𝑇𝑄𝑄𝑥𝑥 + 𝑢𝑢𝑇𝑇𝑅𝑅𝑢𝑢)
𝑡𝑡𝑓𝑓

𝑡𝑡0

𝑑𝑑𝑡𝑡                                                (2.6) 
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Subject to 

�̇�𝑥 = 𝐴𝐴(𝑡𝑡)𝑥𝑥 + 𝐵𝐵(𝑡𝑡)𝑢𝑢      𝑥𝑥(𝑡𝑡0) = 𝑥𝑥0                                                                     (2.7) 

 

Where S and Q are positive semidefinite matrices and R is a positive definite 

matrix. For this problem the solution can be expressed in feedback form 

 

𝑢𝑢∗(𝑥𝑥, 𝑡𝑡) = −𝑅𝑅−1𝐵𝐵𝑇𝑇(𝑡𝑡)𝑃𝑃(𝑡𝑡)𝑥𝑥                                                                               (2.8) 

 

Where 𝑃𝑃(𝑡𝑡) is the solution of Riccati equation. 

2.3 Dynamic Programming 

Dynamic programming is a commonly used method of optimally solving 

complex problems by breaking them down into simpler problems, the use of 

the principle of optimality, usually known as dynamic programming, to derive 

an equation for solving optimal control problem was first proposed by 

Bellman [2]. The application of this principle on continuous optimal control 

problem has led to the invention of the famous Hamilton-Jacobi-Bellman 

(HJB) equation. It is a nonlinear first order hyperbolic partial differential 

equation which is used for constructing a nonlinear optimal feedback control 

law. For the optimal control problem (2.4)-(2.5), the HJB equation is given 

by: 

 

𝜕𝜕𝐽𝐽∗(𝑥𝑥(𝑡𝑡), 𝑡𝑡)
𝜕𝜕𝑡𝑡

= −min
𝑢𝑢(𝑡𝑡)

�𝜑𝜑(𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑡𝑡), 𝑡𝑡) +
𝜕𝜕𝐽𝐽∗(𝑥𝑥(𝑡𝑡), 𝑡𝑡)

𝜕𝜕𝑥𝑥
𝑓𝑓(𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑡𝑡), 𝑡𝑡)�   (2.9) 

 

And the boundary condition is: 

 

𝐽𝐽∗�𝑥𝑥�𝑡𝑡𝑓𝑓�, 𝑡𝑡𝑓𝑓� = 𝜙𝜙�𝑥𝑥�𝑡𝑡𝑓𝑓�, 𝑡𝑡𝑓𝑓�                                                                              (2.10) 



7 
 

To obtain a solution of Equation (2.9), we proceed in two steps. The first step 

is to perform the indicated minimization. This leads to a control law of the 

form: 

 

𝑢𝑢∗ = 𝜓𝜓 �
𝜕𝜕𝐽𝐽∗

𝜕𝜕𝑥𝑥
, 𝑥𝑥, 𝑡𝑡�                                                                                                (2.11) 

 

The second step is to substitute (2.11)back into (2.9) and solve the nonlinear, 

partial differential equation: 

 

−
𝜕𝜕𝐽𝐽∗(𝑥𝑥, 𝑡𝑡)

𝜕𝜕𝑡𝑡
= 𝜑𝜑(𝑥𝑥,𝜓𝜓, 𝑡𝑡) +

𝜕𝜕𝐽𝐽∗(𝑥𝑥, 𝑡𝑡)𝑇𝑇

𝜕𝜕𝑥𝑥
𝑓𝑓(𝑥𝑥,𝜓𝜓, 𝑡𝑡)                                           (2.12) 

 

For 𝐽𝐽∗(𝑥𝑥, 𝑡𝑡), subject to the boundary condition (2.10). Then the gradient of 

𝐽𝐽∗(𝑥𝑥, 𝑡𝑡) with respect to 𝑥𝑥 is computed, and the optimal feedback control law is 

obtained as follows: 

 

𝑢𝑢∗ = 𝜓𝜓 �
𝜕𝜕𝐽𝐽∗

𝜕𝜕𝑥𝑥
, 𝑥𝑥, 𝑡𝑡� = Φ(𝑥𝑥, 𝑡𝑡)                                                                             (2.13) 

 

The derivation of HJB equation can be found in any standard optimal control 

textbook, for example [3]. This equation is a sufficient condition for 

optimality. The HJB equation is satisfied for all time-state pairs (𝑥𝑥(𝑡𝑡), 𝑡𝑡) by 

the optimal value function 𝐽𝐽∗(𝑥𝑥(𝑡𝑡), 𝑡𝑡). An advantage of using the HJB 

approach to solve the optimal control problem is that we obtain optimal 

feedback control law. However, the HJB equation does not in general, possess 

classical solution, that is, solutions 𝐽𝐽∗(𝑥𝑥(𝑡𝑡), 𝑡𝑡) which are differentiable with 

respect to 𝑡𝑡 and 𝑥𝑥. In general it is not possible to solve (2.12) analytically. 

However, in the case of linear quadratic optimal control problem (2.6)-(2.7), 

the HJB equation reduces to Riccati differential equation, which is given by: 
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−�̇�𝑃(𝑡𝑡) = 𝐴𝐴𝑇𝑇(𝑡𝑡)𝑃𝑃(𝑡𝑡) + 𝑃𝑃(𝑡𝑡)𝐴𝐴(𝑡𝑡) + 𝑄𝑄 − 𝑃𝑃(𝑡𝑡)𝐵𝐵(𝑡𝑡)𝑅𝑅−1𝐵𝐵𝑇𝑇(𝑡𝑡)𝑃𝑃(𝑡𝑡)           (2.14) 

𝑃𝑃�𝑡𝑡𝑓𝑓� = 𝑆𝑆                                                                                                               (2.15) 

 

This result can be obtained if the value 𝐽𝐽∗ = 𝑥𝑥𝑇𝑇  𝑃𝑃(𝑡𝑡)𝑥𝑥 is substituted in the 

HJB equation. 

2.4 Necessary Conditions of Optimality 

The Necessary condition of optimality can be divided into two categories as 

follows: 

2.4.1 Euler-Lagrange equations 

The necessary conditions can be derived by the methods of calculus of 

variations which are based on the fact that, at each stationary point, the 

variation in the cost function should vanish for arbitrary variation in the 

control [4]. To solve the optimal control problem (2.4)-(2.5), we shall use 

Lagrange multipliers 𝜆𝜆(𝑡𝑡) ∈ 𝑅𝑅𝑛𝑛  to adjoin the system state equations (2.5), to 

the performance index (2.4). Therefore, the augmented performance index is 

given by: 

 

𝐽𝐽𝐴𝐴 = 𝜃𝜃�𝑥𝑥�𝑡𝑡𝑓𝑓�, 𝑡𝑡𝑓𝑓� + � [𝜑𝜑(𝑥𝑥,𝑢𝑢, 𝑡𝑡) + 𝜆𝜆𝑇𝑇(𝑓𝑓(𝑥𝑥,𝑢𝑢, 𝑡𝑡) − �̇�𝑥)]
𝑡𝑡𝑓𝑓

𝑡𝑡0

𝑑𝑑𝑡𝑡                     (2.16) 

 

Introducing the Hamiltonian function H defined by: 

 

𝐻𝐻(𝑥𝑥,𝑢𝑢, 𝜆𝜆, 𝑡𝑡) = 𝜑𝜑(𝑥𝑥,𝑢𝑢, 𝑡𝑡) + 𝜆𝜆𝑇𝑇𝑓𝑓(𝑥𝑥,𝑢𝑢, 𝑡𝑡)                                                          (2.17) 

 

We can rewrite equation(2.16) in the form: 

 

𝐽𝐽𝐴𝐴 = 𝜃𝜃�𝑥𝑥�𝑡𝑡𝑓𝑓�, 𝑡𝑡𝑓𝑓� + � 𝐻𝐻(𝑥𝑥,𝑢𝑢, 𝜆𝜆, 𝑡𝑡)𝑑𝑑𝑡𝑡
𝑡𝑡𝑓𝑓

𝑡𝑡0

−� 𝜆𝜆𝑇𝑇�̇�𝑥
𝑡𝑡𝑓𝑓

𝑡𝑡0

𝑑𝑑𝑡𝑡                                  (2.18) 
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Applying the integration by parts for the last term in the above equation we 

get: 

 

� 𝜆𝜆𝑇𝑇�̇�𝑥
𝑡𝑡𝑓𝑓

𝑡𝑡0

𝑑𝑑𝑡𝑡 = 𝜆𝜆𝑇𝑇�𝑡𝑡𝑓𝑓�𝑥𝑥�𝑡𝑡𝑓𝑓� − 𝜆𝜆𝑇𝑇(𝑡𝑡0)𝑥𝑥(𝑡𝑡0) −� �̇�𝜆𝑇𝑇𝑥𝑥
𝑡𝑡𝑓𝑓

𝑡𝑡0

𝑑𝑑𝑡𝑡                             (2.19) 

 

And therefore equation (2.18) becomes 

 

𝐽𝐽𝐴𝐴 = 𝜃𝜃�𝑥𝑥�𝑡𝑡𝑓𝑓�, 𝑡𝑡𝑓𝑓� − 𝜆𝜆𝑇𝑇�𝑡𝑡𝑓𝑓�𝑥𝑥�𝑡𝑡𝑓𝑓� + 𝜆𝜆𝑇𝑇(𝑡𝑡0)𝑥𝑥(𝑡𝑡0) + � �𝐻𝐻(𝑥𝑥,𝑢𝑢, 𝜆𝜆, 𝑡𝑡) + �̇�𝜆𝑇𝑇𝑥𝑥�𝑑𝑑𝑡𝑡
𝑡𝑡𝑓𝑓

𝑡𝑡0

 

(2.20) 

The original problem (2.4)-(2.5) has been converted to the problem of 

minimizing (2.20) without constraints. To achieve the stationary state, the 

first order effect of control variations on the cost function must be zero 

for 0 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝑓𝑓  . Assuming that the initial time 𝑡𝑡0 and final time 𝑡𝑡𝑓𝑓  are fixed, 

and then the first variation of 𝐽𝐽𝐴𝐴 due to control variation is: 

 

𝛿𝛿𝐽𝐽𝐴𝐴 = ��
𝜕𝜕𝜃𝜃
𝜕𝜕𝑥𝑥

− 𝜆𝜆𝑇𝑇� 𝛿𝛿𝑥𝑥�
𝑡𝑡=𝑡𝑡𝑓𝑓

+ �𝜆𝜆𝑇𝑇𝛿𝛿𝑥𝑥|𝑡𝑡=𝑡𝑡0 + � �
𝜕𝜕𝐻𝐻
𝜕𝜕𝑢𝑢

𝛿𝛿𝑢𝑢 + �
𝜕𝜕𝐻𝐻
𝜕𝜕𝑥𝑥

+ �̇�𝜆𝑇𝑇� 𝛿𝛿𝑥𝑥� 𝑑𝑑𝑡𝑡
𝑡𝑡𝑓𝑓

𝑡𝑡0

 

(2.21) 

Since 𝜆𝜆(𝑡𝑡) is arbitrary so far, we may set it to be:  

 

�̇�𝜆𝑇𝑇 = −
𝜕𝜕𝐻𝐻
𝜕𝜕𝑥𝑥

= −𝜆𝜆𝑇𝑇
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

−
𝜕𝜕𝜑𝜑
𝜕𝜕𝑥𝑥

                                                                              (2.22) 

 

With boundary condition: 

 

𝜆𝜆𝑇𝑇�𝑡𝑡𝑓𝑓� = �𝜕𝜕𝜃𝜃
𝜕𝜕𝑥𝑥

 �
𝑡𝑡=𝑡𝑡𝑓𝑓

                                                                                                (2.23) 
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Equation (2.22) is called costate equation and the Lagrange multiplier 𝜆𝜆(𝑡𝑡) is 

called the costate. Since the initial condition 𝑥𝑥(𝑡𝑡0) is fixed, this 

implies 𝛿𝛿𝑥𝑥(𝑡𝑡0) vanishes. Therefore, equation (2.21) reduced to: 

 

𝛿𝛿𝐽𝐽𝐴𝐴 = � �
𝜕𝜕𝐻𝐻
𝜕𝜕𝑢𝑢

𝛿𝛿𝑢𝑢� 𝑑𝑑𝑡𝑡
𝑡𝑡𝑓𝑓

𝑡𝑡0

                                                                                        (2.24) 

 

For a local minimum, it is necessary that 𝛿𝛿𝐽𝐽𝐴𝐴 vanishes for arbitrary 𝛿𝛿𝑢𝑢, hence 

it is necessary that: 

 

𝜕𝜕𝐻𝐻
𝜕𝜕𝑢𝑢

= �
𝜕𝜕𝑓𝑓
𝜕𝜕𝑢𝑢
�
𝑇𝑇

𝜆𝜆 + �
𝜕𝜕𝜑𝜑
𝜕𝜕𝑢𝑢
�
𝑇𝑇

= 0        ,       𝑡𝑡0 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝑓𝑓                                        (2.25) 

 

Equations (2.5), (2.22), (2.23) and (2.25) are necessary conditions to be 

satisfied by optimal solutions of the problem, when the final time is fixed. 

These equations are called the Euler-Lagrange equations. In summary, to find 

the optimal control 𝑢𝑢∗(𝑡𝑡) that minimizes the performance index (2.4) subject 

to the system Equation (2.5), the following equations must be solved 

 

�̇�𝑥 = 𝑓𝑓(𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑡𝑡), 𝑡𝑡)                                                                                             (2.26) 

𝑥𝑥(𝑡𝑡0) = 𝑥𝑥0                                                                                                             (2.27) 

�̇�𝜆 = −�
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥
�
𝑇𝑇

𝜆𝜆 − �
𝜕𝜕𝜑𝜑
𝜕𝜕𝑥𝑥
�
𝑇𝑇

                                                                                    (2.28) 

𝜆𝜆�𝑡𝑡𝑓𝑓� = �
𝜕𝜕𝜙𝜙
𝜕𝜕𝑥𝑥
�
𝑇𝑇

                                                                                                    (2.29) 

 

Where 𝑢𝑢∗(𝑡𝑡) is determined by: 

 

�
𝜕𝜕𝑓𝑓
𝜕𝜕𝑢𝑢
�
𝑇𝑇

𝜆𝜆 + �
𝜕𝜕𝜑𝜑
𝜕𝜕𝑢𝑢
�
𝑇𝑇

= 0                                                                                        (2.30) 
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Thus, the solution of the optimal control problem is determined by a two-

point boundary value problem, expressed by the state equation (2.26) with 

the initial condition (2.27) and the costate equation (2.28) with the final 

condition (2.29). 

Remarks: 

1- If 𝜑𝜑(𝑥𝑥,𝑢𝑢, 𝑡𝑡) and 𝑓𝑓(𝑥𝑥,𝑢𝑢, 𝑡𝑡) are not functions of time explicitly, then the 

Hamiltonian is constant during all optimal path. 

2- In the case of free end time, the following necessary condition is 

obtained for optimality with free end time. 

 

           �
𝜕𝜕𝜃𝜃
𝜕𝜕𝑡𝑡

+ 𝐻𝐻�
𝑡𝑡=𝑡𝑡𝑓𝑓

= 0                                                                                     (2.31) 

 

From this equation, it is clear that if the terminal cost 𝜃𝜃�𝑥𝑥�𝑡𝑡𝑓𝑓�, 𝑡𝑡𝑓𝑓� does 

not depend on the time explicitly, then 

 

            �𝐻𝐻 |𝑡𝑡=𝑡𝑡𝑓𝑓 = 0                                                                                                (2.32) 

 

Therefore, if 𝐻𝐻 also does not depend explicitly on time, then 𝐻𝐻 = 0 for 

all 0 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝑓𝑓 . 

3- It is assumed in the previous derivations that the final state 𝑥𝑥�𝑡𝑡𝑓𝑓� is 

free. If the final state is fixed. 

 

            𝑥𝑥�𝑡𝑡𝑓𝑓� = 𝑥𝑥𝑓𝑓                                                                                                  (2.33) 

 

Then (2.29) is replaced by (2.33). 
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2.4.2 Pontryagin minimum principle 

In real problems, the control variables are usually bounded; therefore we can't 

differentiate the Hamiltonian with respect to the control, Equation (2.30). Let 

the bounded control lie in the subset 𝑈𝑈 ∈ 𝑅𝑅𝑚𝑚 . In this case, the necessary 

conditions are derived from the Minimum Principle which was developed by 

Pontryagin. 

Pontryagin minimum principle: 

Suppose that  𝑢𝑢∗(𝑡𝑡) is the optimal control with corresponding optimal 

trajectories  𝑥𝑥∗(𝑡𝑡), and let the Hamiltonian be defined by Equation (2.17). In 

order that  𝑢𝑢∗(𝑡𝑡) and  𝑥𝑥∗(𝑡𝑡) be optimal of the problem (2.4)-(2.5), then there 

must exist a costate vector  𝜆𝜆∗(𝑡𝑡) such that the following conditions hold: 

 

�̇�𝜆 = −
𝜕𝜕𝐻𝐻𝑇𝑇

𝜕𝜕𝑥𝑥
                                                                                                            (2.34) 

𝜆𝜆�𝑡𝑡𝑓𝑓� = �
𝜕𝜕𝜃𝜃
𝜕𝜕𝑥𝑥
�
𝑇𝑇

                                                                                                     (2.35) 

 

And 

 

𝐻𝐻( 𝑥𝑥∗,  𝑢𝑢∗,  𝜆𝜆∗, 𝑡𝑡) ≤ 𝐻𝐻( 𝑥𝑥∗,𝑢𝑢,  𝜆𝜆∗, 𝑡𝑡)                                                                  (2.36) 

 

For any 𝑡𝑡 ∈ �𝑡𝑡0, 𝑡𝑡𝑓𝑓� and for all controls 𝑢𝑢(𝑡𝑡) ∈ 𝑈𝑈, this indicates that the 

optimal control must minimize the Hamiltonian. Inequality (2.36) is very 

useful to obtain the optimal control if the control is bounded by inequality 

constraints. It should be pointed out that Pontryagin's minimum principle is a 

generalization of the calculus of variations approach. The difference between 

the calculus of variations approach and the minimum principle is that 

Equation (2.30) is replaced by (2.36). 

From the previous discussion, it is clear that the variational approach and the 

minimum principle lead to a nonlinear two-point boundary value problem 
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which is very difficult to solve analytically. There are a very large number of 

methods which have been proposed to obtain numerical solutions of the HJB 

equation and the nonlinear two-point boundary value problem. These methods 

are called indirect methods. There is another class of methods to solve the 

optimal control problem, called direct methods. The direct methods are based 

on solving the optimal control problem by transforming it into a nonlinear 

programming problem. 

2.5 Indirect Methods 

These are the methods that based on solving the optimal control problem 

using HJB equation or the nonlinear two-point boundary value problem. 

These methods can be divided into two categories as follows:  

2.5.1 Closed loop control methods 

Some of the methods which were proposed to obtain the feedback 

optimal control are summarized as follows: 

 The first approach to obtain feedback optimal control is based on using the 

power series expansion to solve either the HJB equation or the nonlinear 

two-point boundary value problem successively to obtain an approximate 

optimal feedback control law. This approach has been applied by Lukes 

[5], to find an approximate solution of HJB equation of the infinite horizon 

general nonlinear optimal control problem. The solution of HJB equation 

is reduced to solving successively systems of linear algebraic equation. 

Using the same idea, Willemstein [6] extended Lukes' work to handle the 

finite time nonlinear optimal control problem. The work of Lukes has been 

applied by Garrard and Jordan [7] to control F-8 fighter aircraft. The 

power series technique has also been used by Nishikawa, Sannomiya and 

Itakura [8] to obtain the approximate optimal solution of finite time 

quadratic performance index subject to the perturbed system given by 

 

�̇�𝑥 = 𝐴𝐴(𝑡𝑡)𝑥𝑥 + 𝜖𝜖𝑓𝑓(𝑥𝑥, 𝑡𝑡) + 𝐵𝐵(𝑡𝑡)𝑢𝑢                                                                   (2.37) 
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This optimal control problem was solved by expanding the costate by a 

power series with respect to 𝜖𝜖, and the solution was reduced to solving a 

sequence of linear partial differential equations. Also, similar idea was 

applied by Yoshida and Loparo [9] to solve the finite and the infinite time 

quadratic performance indices subject to the system: 

 

�̇�𝑥 = 𝑓𝑓(𝑥𝑥) + 𝐵𝐵𝑢𝑢                                                                                               (2.38) 

 

In this case, the vector 𝑥𝑥[𝑘𝑘] was used to express the function f(x) in a 

power series about the origin and also to express the costates by a power 

series of unknown parameters. The solution of the finite time optimal 

control problem was reduced to solving a Riccati equation and a sequence 

of ordinary linear differential equations, while the solution of the infinite 

time optimal control problem was reduced to solving sequence of 

algebraic equations. 

 The second approach to obtain the optimal feedback control is to obtain 

the neighboring optimal feedback control which can be obtained either by 

linearizing the necessary conditions of the optimality around the optimal 

solution or expanding the performance index up to the second order and 

the constraints up to the first order around the optimal solution [4]. 

 The third approach to find the optimal feedback control law is based on 

writing the nonlinear state equations into a linear form state equation as 

follows:  

 

�̇�𝑥 = 𝑓𝑓(𝑥𝑥,𝑢𝑢, 𝑡𝑡) = 𝐴𝐴(𝑥𝑥,𝑢𝑢, 𝑡𝑡)𝑥𝑥 + 𝐵𝐵(𝑥𝑥,𝑢𝑢, 𝑡𝑡)𝑢𝑢                                               (2.39) 

 

And then the quadratic optimal control problem is solved by solving the 

following Riccati equation: 

 



15 
 

�̇�𝑃(𝑥𝑥,𝑢𝑢, 𝑡𝑡) = 𝑃𝑃(𝑥𝑥,𝑢𝑢, 𝑡𝑡)𝐴𝐴(𝑥𝑥,𝑢𝑢, 𝑡𝑡) + 𝐴𝐴𝑇𝑇(𝑥𝑥,𝑢𝑢, 𝑡𝑡)𝑃𝑃(𝑥𝑥,𝑢𝑢, 𝑡𝑡) 

−𝑃𝑃(𝑥𝑥,𝑢𝑢, 𝑡𝑡)𝐵𝐵(𝑥𝑥,𝑢𝑢, 𝑡𝑡)𝑅𝑅−1𝐵𝐵𝑇𝑇(𝑥𝑥,𝑢𝑢, 𝑡𝑡)𝑃𝑃(𝑥𝑥,𝑢𝑢, 𝑡𝑡) + 𝑄𝑄                                 (2.40) 

 

And the optimal control is given by: 

 

𝑢𝑢∗(𝑥𝑥, 𝑡𝑡) = −𝑅𝑅−1𝐵𝐵𝑇𝑇(𝑥𝑥,𝑢𝑢, 𝑡𝑡)𝑃𝑃(𝑥𝑥,𝑢𝑢, 𝑡𝑡)𝑥𝑥(𝑡𝑡)                                                (2.41) 

 

Thus for a given state 𝑥𝑥 the optimal control is found by simultaneously 

solving Equations (2.40) and (2.41). This method was developed by 

Burghart [10], Wernli and Cook [11]. 

 The fourth approach to use linear quadratic model-Riccati equation 

method is essentially based on the linear quadratic problem and its closed-

loop solution, which requires the integration of the Riccati differential 

equation, can be found in Nedeljkovic [12]. 

2.5.2 Open loop control methods 

The optimal open loop control methods are based on solving the 

nonlinear two-point boundary value problem. Some of these methods are: 

gradient methods, quasilinearization, penalty function methods, and 

neighboring extremal methods. These are standard methods to solve the 

optimal control problems, for details of these methods can refer to [4, 1]. 

2.6 Direct Methods 

This is another major class of methods for solving the optimal control 

problems. These methods offer some advantages when applied to optimal 

control problems. The first advantage is that the difficult dynamic optimal 

control problem can be converted into static parameters optimization problem 

which is easier than the original one; the second advantage is that there are 

well-developed algorithms to solve the nonlinear programming problems; the 

third advantage is that it is possible to treat different types of constraints 

easily. 
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Due to these attractive features of the direct methods and the drawbacks, 

mentioned earlier, of the indirect methods, a number of authors have used the 

direct methods to solve the optimal control problem. The direct methods are 

based on obtaining the solution through a direct minimization of the 

performance index, subject to constraints, of the optimal control problem. 

These methods can be applied by converting the nonlinear optimal control 

problem into a nonlinear mathematical programming problem [13- 19]. 

The optimal control problem can be converted into a mathematical 

programming problem by using either the discretization or the 

parameterization techniques. The work in this thesis is based on using the 

parameterization technique to convert the optimal control problem into 

mathematical programming problem. 

2.6.1 Discretization methods 

All discretization approaches divide the time interval into 𝑛𝑛𝑖𝑖 segments as: 

𝑡𝑡0 < 𝑡𝑡1 < 𝑡𝑡2 < ⋯ < 𝑡𝑡𝑛𝑛𝑖𝑖 = 𝑡𝑡𝑓𝑓  where the time points are referred to as mesh 

points, grid points or nodes. One approach to apply this method is to 

discretize both the state variables and the control variables, therefore we have 

the following sequence of unknown values of state variables and control 

variables 𝑧𝑧 = (𝑥𝑥0, 𝑥𝑥1, … 𝑥𝑥𝑛𝑛𝑖𝑖 ,𝑢𝑢0,𝑢𝑢1, … ,𝑢𝑢𝑛𝑛𝑖𝑖−1). 

Then the system state equations are replaced by a set of algebraic equations 

which are considered as equality constraints. Hence this problem can be 

solved using any of the nonlinear programming techniques. One of the 

disadvantages of this approach is the high dimensionality of the vector z. 

Another approach is to discretize the control variables only 

𝑧𝑧 = (𝑢𝑢0,𝑢𝑢1, … ,𝑢𝑢𝑛𝑛𝑖𝑖−1) and then the system state equations have to be 

integrated to find the state variables as a function of the control variables. 
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2.6.2 Parameterization methods 

The parameterization technique is an essential part of this thesis; therefore we 

will explain this approach in some details. The parameterization technique 

can be applied in one of the following three forms 

1. Control parameterization: The control parameterization [14, 15] is based 

on approximating the control variables by choosing an appropriate 

structure with finitely many unknown parameters as follows 

 

𝑢𝑢𝑙𝑙(𝑡𝑡) = �𝑏𝑏𝑖𝑖
(𝑙𝑙)Φ𝑖𝑖(𝑡𝑡)

𝑁𝑁

𝑖𝑖=0

           𝑙𝑙 = 1,2, … ,𝑚𝑚                                          (2.42) 

 

Where 𝑏𝑏𝑖𝑖 's are unknown parameters and Φ𝑖𝑖(𝑡𝑡) denotes an appropriate set 

of functions forming a basis of a finite dimensional control space. The 

state variables are obtained as a function of the unknown parameters of the 

control variables, by integrating the system state equations. And by 

substituting the approximated control variables and the corresponding state 

variables into the performance index, the optimal control problem can be 

converted into a static parameters programming problem, which can be 

solved easier than the original one. The control parameterization approach 

is the most widely used parameterization approach. 

2. Control-state parameterization 

The control-state parameterization approach [17, 18] is based on 

approximating both the state variables and the control variables by a 

sequence of known functions with unknown parameters as follows: 

 

       𝑥𝑥𝑗𝑗 (𝑡𝑡) = �𝑎𝑎𝑖𝑖 (𝑗𝑗 )Φ𝑖𝑖(𝑡𝑡)
𝑁𝑁

𝑖𝑖=0

           𝑗𝑗 = 1,2, … ,𝑛𝑛                                             (2.43) 
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𝑢𝑢𝑙𝑙(𝑡𝑡) = �𝑏𝑏𝑖𝑖
(𝑙𝑙)Φ𝑖𝑖(𝑡𝑡)

𝑁𝑁

𝑖𝑖=0

           𝑙𝑙 = 1,2, … ,𝑚𝑚                                              (2.44) 

 

Where 𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖  are unknown parameters, and Φ𝑖𝑖(𝑡𝑡) is an appropriate set of 

functions. Using this method, the optimal control problem can be 

converted into a nonlinear mathematical programming problem. 

3. State parameterization 

The idea of the state parameterization is to approximate only the system 

state variables by a sequence of given functions with unknown parameters 

as:  

 

𝑥𝑥𝑗𝑗 (𝑡𝑡) = �𝑎𝑎𝑖𝑖 (𝑗𝑗 )Φ𝑖𝑖(𝑡𝑡)
𝑁𝑁

𝑖𝑖=0

            𝑗𝑗 = 1,2, … ,𝑛𝑛                                           (2.45) 

 

And then the control variables are obtained from the state equations [16, 

20]. 
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CHAPTER THREE 

LINEAR QUADRATIC OPTIMAL CONTROL 

PROBLEM 

3.1 Introduction  

The Legendre function is one of the wavelets, so that we need to Know what 

is the wavelets, wavelets are mathematical functions that cut up data into 

different frequency components, and then study each component with a 

resolution matched to its scale. They have advantages over traditional Fourier 

methods in analyzing physical situations where the signal contains 

discontinuities and sharp spikes. Wavelets were developed independently in 

the fields of mathematics, quantum physics, electrical engineering, and 

seismic geology. Interchanges between these fields during the last ten years 

have led to many new wavelet applications such as image compression, 

turbulence, human vision, radar, and earthquake prediction [21]. Wavelets 

constitute a family of functions constructed from dilation and translation of a 

single function called the mother wavelet. When the dilation parameter 𝑎𝑎 and 

the translation parameter 𝑏𝑏 vary continuously, we have the following family 

of continuous wavelets as [22] 

 

𝜓𝜓𝑎𝑎 ,𝑏𝑏(𝑡𝑡) = |𝑎𝑎|−1/2𝜓𝜓�
𝑡𝑡 − 𝑏𝑏
𝑎𝑎

� , 𝑎𝑎, 𝑏𝑏 ∈ ℝ , 𝑎𝑎 ≠ 0                                         (3.1) 

 

3.2 Legendre Wavelets 

Legendre wavelet 𝜓𝜓𝑛𝑛 ,𝑚𝑚 = 𝜓𝜓(𝑘𝑘,𝑚𝑚, 𝑡𝑡) has four arguments  𝑛𝑛 = 1,2,3, . . , 2𝑘𝑘−1 

, 𝑘𝑘 can assume any positive integer, 𝑚𝑚 is the order for Legendre polynomials 

and 𝑡𝑡 is the normalized time. They are defined on the interval [0, 1] as: 
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𝜓𝜓𝑛𝑛 ,𝑚𝑚(𝑘𝑘,𝑚𝑚, 𝑡𝑡) = ��𝑚𝑚 +
1
2

 2
𝑘𝑘
2𝑃𝑃𝑚𝑚 (2𝑘𝑘𝑡𝑡 − 2𝑛𝑛 + 1),       𝑓𝑓𝑓𝑓𝑓𝑓 

2𝑛𝑛 − 2
2𝑘𝑘

≤ 𝑡𝑡 ≤
2𝑛𝑛
2𝑘𝑘

                  0,                                               𝑓𝑓𝑡𝑡ℎ𝑒𝑒𝑓𝑓𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒

�  

       (3.2) 

 

Where 𝑛𝑛 = 1,2,3, . . , 2𝑘𝑘−1 ,𝑚𝑚 = 0,1, … ,𝑀𝑀 − 1,  𝑃𝑃𝑚𝑚 (𝑡𝑡) are known Legendre 

polynomials of order m and defined for the time interval and 𝑡𝑡 ∈ [−1,1] and 

satisfy the following formula: 

 

 𝑃𝑃0(𝑡𝑡) = 1 

 𝑃𝑃1(𝑡𝑡) = 𝑡𝑡                                                                                                                (3.3)   

 𝑃𝑃𝑚𝑚+1(𝑡𝑡) = �
2𝑚𝑚 + 1
𝑚𝑚 + 1

� 𝑡𝑡 𝑃𝑃𝑚𝑚 (𝑡𝑡) − �
𝑚𝑚

𝑚𝑚 + 1
� 𝑡𝑡 𝑃𝑃𝑚𝑚−1(𝑡𝑡) ,𝑚𝑚 = 1,2,3, … 

 

There are many scientists generating function for the Legendre polynomials 

one of them is Rodrigues, he gives analytical form of Legendre polynomial -

called Rodrigues' formula- as [24]: 

 

 𝑃𝑃𝑚𝑚 (𝑡𝑡) =
1

2𝑚𝑚𝑚𝑚!
𝑑𝑑𝑚𝑚

𝑑𝑑𝑥𝑥𝑚𝑚
(𝑡𝑡2 − 1)𝑚𝑚                                                                           (3.4) 

 

Now for 𝑀𝑀 = 3, 𝑘𝑘 = 2 ⟹ 𝑛𝑛 = 2 using (3.4) we have three Legendre 

polynomials  𝑃𝑃𝑚𝑚  for 𝑚𝑚 = 0,1,2 as shown:  

 

 𝑃𝑃0(𝑡𝑡) = 1 

 𝑃𝑃1(𝑡𝑡) = 𝑡𝑡                                                                                                                 (3.5) 

 𝑃𝑃2(𝑡𝑡) = 0.5(3𝑡𝑡2 − 1) 

 

Now by using (3.2) we can find Legendre function for 𝑀𝑀 = 3 and 𝑘𝑘 = 2 as 

shown in below equations:  
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�
𝜓𝜓1,0(𝑡𝑡) = √2

𝜓𝜓1,1(𝑡𝑡) = √6(4𝑡𝑡 − 1)
𝜓𝜓1,2(𝑡𝑡) = √2.5 [3(4𝑡𝑡 − 1)2 − 1]

�     0 ≤ 𝑡𝑡 < 0.5                                         (3.6) 

 

�
𝜓𝜓2,0(𝑡𝑡) = √2

𝜓𝜓2,1(𝑡𝑡) = √6(4𝑡𝑡 − 3)
𝜓𝜓2,2(𝑡𝑡) = √2.5 [3(4𝑡𝑡 − 3)2 − 1]

�     0.5 ≤ 𝑡𝑡 < 1                                         (3.7) 

 

The below figure show the Legendre wavelet for  𝑀𝑀 = 3 and 𝑘𝑘 = 2 

 

Figure 3.1: Legendre wavelets for 𝑀𝑀 = 3 ,  𝑘𝑘 = 2   

 

3.3 Function Approximation  

A function 𝑓𝑓(𝑡𝑡) defined over [0, 1] may be expanded as 

 

𝑓𝑓(𝑡𝑡) = � � 𝐶𝐶𝑛𝑛 ,𝑚𝑚𝜓𝜓𝑛𝑛 ,𝑚𝑚(𝑡𝑡)
∞

𝑚𝑚=0

 
∞

𝑛𝑛=1

                                                                              (3.8) 

𝐶𝐶𝑛𝑛 ,𝑚𝑚 = �𝑓𝑓(𝑡𝑡),𝜓𝜓𝑛𝑛 ,𝑚𝑚(𝑡𝑡)� 
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If the infinite series in Equation (3.8) is truncated, then it can be written as: 

 

𝑓𝑓(𝑡𝑡) ≅ � � 𝐶𝐶𝑛𝑛 ,𝑚𝑚𝜓𝜓𝑛𝑛 ,𝑚𝑚

𝑀𝑀−1

𝑚𝑚=0

2𝑘𝑘−1

𝑛𝑛=1

(𝑡𝑡) = 𝐶𝐶𝑇𝑇Ψ(𝑡𝑡)                                                          (3.9) 

 

where 𝐶𝐶 and Ψ(𝑡𝑡) are 𝑁𝑁 × 1 (𝑁𝑁 = 2𝐾𝐾−1𝑀𝑀) matrices given by: 

 

𝐶𝐶 = �𝐶𝐶1,0,𝐶𝐶1,1, … ,𝐶𝐶1,𝑀𝑀−1,𝐶𝐶2,0, … ,𝐶𝐶2,𝑀𝑀−1, … ,𝐶𝐶2𝐾𝐾−1,𝑀𝑀−1�
𝑇𝑇                           (3.10) 

Ψ(𝑡𝑡) = �𝜓𝜓1,0,𝜓𝜓1,1, … ,𝜓𝜓1,𝑀𝑀−1,𝜓𝜓2,0, … ,𝜓𝜓2,𝑀𝑀−1, … ,𝜓𝜓2𝐾𝐾−1,𝑀𝑀−1�
𝑇𝑇
 

 

3.4 Some Properties of Legendre Wavelets 

The integration of the vector Ψ(𝑡𝑡), can be obtained as: 

 

� Ψ(𝜏𝜏)𝑑𝑑𝜏𝜏
𝑡𝑡

0
= 𝑃𝑃Ψ(𝑡𝑡)                                                                                            (3.11) 

 

Where P is 𝑁𝑁 × 𝑁𝑁  operational matrix for integration and is given in [25] as: 

 

𝑃𝑃 =
1

2𝐾𝐾
�

𝐿𝐿 𝐹𝐹 ⋯ 𝐹𝐹
𝑂𝑂 𝐿𝐿 ⋯ 𝐹𝐹
⋮ ⋮ ⋱ ⋮
𝑂𝑂 𝑂𝑂 ⋯ 𝐿𝐿

�                                                                                     (3.12) 

 

Where F and L are 𝑀𝑀 × 𝑀𝑀 matrices given by: 

 

𝐹𝐹 = �

2 0 ⋯ 0
0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0

� 
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`𝐿𝐿 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 1 1

√3
 0 ⋯ 0 0 0

−√3
3

0 √3
3√5

⋯ 0 0 0

0 − √5
5√3

0 ⋱ 0 0 0

0 0 − √7
7√5

⋱ 0 0 0
⋮ ⋮ ⋮ ⋱ ⋱ ⋱ ⋮
0 0 0 ⋯ − √2𝑀𝑀−3

(2𝑀𝑀−3)√2𝑀𝑀−1
0 √2𝑀𝑀−3

(2𝑀𝑀−3)√2𝑀𝑀−1

0 0 0 ⋯ 0 − √2𝑀𝑀−1
(2𝑀𝑀−1)√2𝑀𝑀−3

0 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

                                                                                                                                 (3.13) 

 

The integration of multiplication of Legendre scaling function and its 

transpose in the interval [0, 1] is equal to identity matrix as follows 

 

� Ψ(𝑡𝑡)ΨT(𝑡𝑡)𝑑𝑑𝑡𝑡
1

0
= 𝐼𝐼𝑁𝑁                                                                                          (3.14) 

 

Where 𝐼𝐼𝑁𝑁  is identity matrix of dimension 𝑁𝑁 . One of the important properties 

of Legendre wavelet is multiplication of two Legendre function 

 

CTΨ(𝑡𝑡)ΨT(𝑡𝑡) = ΨT(𝑡𝑡)C�                                                                                     (3.15) 

 

For 𝐾𝐾 = 2 ,𝑀𝑀 = 3 

 

Ψ(𝑡𝑡) = �𝜓𝜓1,0,𝜓𝜓1,1,𝜓𝜓1,2,𝜓𝜓2,0,𝜓𝜓2,1,𝜓𝜓2,2�
𝑇𝑇                                                       (3.16) 

𝐶𝐶 = �𝐶𝐶1,0,𝐶𝐶1,1,𝐶𝐶1,2,𝐶𝐶2,0,𝐶𝐶2,1,𝐶𝐶2,2�
𝑇𝑇                                                                  (3.17) 

 

Using Equation (3.16) we get: 
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Ψ(𝑡𝑡)ΨT(𝑡𝑡)

=

⎣
⎢
⎢
⎢
⎢
⎡
𝜓𝜓10𝜓𝜓10 𝜓𝜓10𝜓𝜓11 𝜓𝜓10𝜓𝜓12 𝜓𝜓10𝜓𝜓20 𝜓𝜓10𝜓𝜓21 𝜓𝜓10𝜓𝜓22
𝜓𝜓11𝜓𝜓10 𝜓𝜓11𝜓𝜓11 𝜓𝜓11𝜓𝜓12 𝜓𝜓11𝜓𝜓20 𝜓𝜓11𝜓𝜓21 𝜓𝜓11𝜓𝜓22
𝜓𝜓12𝜓𝜓10 𝜓𝜓12𝜓𝜓11 𝜓𝜓12𝜓𝜓12 𝜓𝜓12𝜓𝜓20 𝜓𝜓12𝜓𝜓21 𝜓𝜓12𝜓𝜓22
𝜓𝜓20𝜓𝜓10 𝜓𝜓20𝜓𝜓11 𝜓𝜓20𝜓𝜓12 𝜓𝜓20𝜓𝜓20 𝜓𝜓20𝜓𝜓21 𝜓𝜓20𝜓𝜓22
𝜓𝜓21𝜓𝜓10 𝜓𝜓21𝜓𝜓11 𝜓𝜓21𝜓𝜓12 𝜓𝜓21𝜓𝜓20 𝜓𝜓21𝜓𝜓21 𝜓𝜓21𝜓𝜓22
𝜓𝜓22𝜓𝜓10 𝜓𝜓22𝜓𝜓11 𝜓𝜓22𝜓𝜓12 𝜓𝜓22𝜓𝜓20 𝜓𝜓22𝜓𝜓21 𝜓𝜓22𝜓𝜓22⎦

⎥
⎥
⎥
⎥
⎤

            (3.18)   

     

𝜓𝜓𝑖𝑖𝑗𝑗 𝜓𝜓𝑘𝑘𝑙𝑙 = 0,    𝑖𝑖𝑓𝑓 𝑖𝑖 ≠ 𝑘𝑘 

𝜓𝜓𝑖𝑖0𝜓𝜓𝑖𝑖𝑗𝑗 = √2𝜓𝜓𝑖𝑖𝑗𝑗  

𝜓𝜓𝑖𝑖1𝜓𝜓𝑖𝑖1 =
4
√10

𝜓𝜓𝑖𝑖2 + √2𝜓𝜓𝑖𝑖0 

We can reduce Equation (3.18) as: 

 

Ψ(𝑡𝑡)ΨT(𝑡𝑡) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡√2𝜓𝜓10 √2𝜓𝜓11 √2𝜓𝜓12 0 0 0
√2𝜓𝜓11 √2𝜓𝜓10 + 4

√10
𝜓𝜓12

4
√10

𝜓𝜓11 0 0 0

√2𝜓𝜓12
4
√10

𝜓𝜓11 √2𝜓𝜓10 + 20
7√10

𝜓𝜓12 0 0 0

0 0 0 √2𝜓𝜓20 √2𝜓𝜓21 √2𝜓𝜓22

0 0 0 √2𝜓𝜓21 √2𝜓𝜓20 + 4
√10

𝜓𝜓22
4
√10

𝜓𝜓21

0 0 0 √2𝜓𝜓22
4
√10

𝜓𝜓21 √2𝜓𝜓20 + 20
7√10

𝜓𝜓22⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  

(3.19) 

By using vector 𝐶𝐶 in Equation (3.17), the 6 × 6 matrix C�  can be written as: 

 

C� = �B1 O
O B2

�                                                                                                        (3.20) 

 

Where Bi  matrices given by: 

  

⎣
⎢
⎢
⎢
⎢
⎡√2𝜓𝜓𝑖𝑖0 √2𝜓𝜓𝑖𝑖1 √2𝜓𝜓𝑖𝑖2

√2𝜓𝜓𝑖𝑖1 √2𝜓𝜓𝑖𝑖0 +
4
√10

𝜓𝜓𝑖𝑖2
4
√10

𝜓𝜓𝑖𝑖1

√2𝜓𝜓𝑖𝑖2
4
√10

𝜓𝜓𝑖𝑖1 √2𝜓𝜓𝑖𝑖0 +
20

7√10
𝜓𝜓𝑖𝑖2⎦

⎥
⎥
⎥
⎥
⎤

                                                         (3.21) 
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3.5 LTI Optimal Control Problem Reformulation  

The linear quadratic optimal control problem can be stated as follows:  

Find an optimal control 𝑢𝑢∗(𝑡𝑡) that minimizes the following quadratic 

performance index 

 

𝐽𝐽 = � (𝑥𝑥𝑇𝑇𝑄𝑄𝑥𝑥 + 𝑢𝑢𝑇𝑇𝑅𝑅𝑢𝑢)
𝑡𝑡𝑓𝑓

0
𝑑𝑑𝑡𝑡                                                                                (3.22) 

 

Subject to: 

 

�̇�𝑥 = 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝑢𝑢      𝑥𝑥(0) = 𝑥𝑥0                                                                               (3.23)  

 

Where 𝑥𝑥 ∈ 𝑅𝑅𝑛𝑛 , 𝑢𝑢 ∈ 𝑅𝑅𝑚𝑚 , 𝐴𝐴,𝐵𝐵 are 𝑛𝑛 × 𝑛𝑛,𝑛𝑛 × 𝑚𝑚 real-valued matrices 

respectively. 𝑄𝑄 is a positive semidefinite matrix and 𝑅𝑅 is a positive definite 

matrix, 𝑡𝑡 ∈ �0, 𝑡𝑡𝑓𝑓�. Because Legendre wavelets are defined on the time 

interval 𝑡𝑡 ∈ [0,1] and since our problem is defined on the interval 𝑡𝑡 ∈ �0, 𝑡𝑡𝑓𝑓� it 

is necessary before using Legendre wavelets to transform the time interval of 

the optimal control problem into the interval 𝑡𝑡 ∈ [0,1]  . We can obtained that 

by using: 

 

𝜏𝜏 =
𝑡𝑡
𝑡𝑡𝑓𝑓

                                                                                                                     (3.24) 

𝑑𝑑𝑡𝑡 = 𝑡𝑡𝑓𝑓𝑑𝑑𝜏𝜏                                                                                                               (3.25) 

 

Then the optimal control problem became as: 

 

𝐽𝐽 = 𝑡𝑡𝑓𝑓 � (𝑥𝑥𝑇𝑇𝑄𝑄𝑥𝑥 + 𝑢𝑢𝑇𝑇𝑅𝑅𝑢𝑢)
1

0
𝑑𝑑𝜏𝜏                                                                            (3.26) 

𝑑𝑑𝑥𝑥
𝑑𝑑𝜏𝜏

= 𝑡𝑡𝑓𝑓(𝐴𝐴𝑥𝑥 + 𝐵𝐵𝑢𝑢)                                                                                               (3.27) 
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3.5.1 Control state parameterization 

The basic idea is to approximate the state and control variables by a finite 

series of LSF as follows: 

𝑥𝑥𝑖𝑖(𝑡𝑡) = � � 𝑎𝑎𝑖𝑖𝑛𝑛𝑚𝑚𝜓𝜓𝑛𝑛𝑚𝑚 (𝑡𝑡)
𝑀𝑀−1

𝑚𝑚=0

2𝐾𝐾−1

𝑛𝑛=1

           𝑖𝑖 = 1,2, … , 𝑖𝑖                                       (2.28) 

𝑢𝑢𝑖𝑖(𝑡𝑡) = � � 𝑏𝑏𝑖𝑖𝑛𝑛𝑚𝑚𝜓𝜓𝑛𝑛𝑚𝑚 (𝑡𝑡)
𝑀𝑀−1

𝑚𝑚=0

2𝐾𝐾−1

𝑛𝑛=1

           𝑖𝑖 = 1,2, … , 𝑓𝑓                                       (2.29) 

 

We can write these two equations in compact form as: 

𝑥𝑥𝑖𝑖(𝑡𝑡) = �𝐼𝐼𝑖𝑖 ⊗ ΨT(𝑡𝑡)� 𝑎𝑎                                                                                     (3.30) 

𝑢𝑢𝑖𝑖(𝑡𝑡) = �𝐼𝐼𝑓𝑓 ⊗ ΨT(𝑡𝑡)� 𝑏𝑏                                                                                     (3.31) 

𝑎𝑎𝑖𝑖 = �𝑎𝑎1,0
𝑖𝑖 ,𝑎𝑎1,1

𝑖𝑖 , … , 𝑎𝑎1,𝑀𝑀−1
𝑖𝑖 ,𝑎𝑎2,0

𝑖𝑖 , … , 𝑎𝑎2,𝑀𝑀−1
𝑖𝑖

,, … , 𝑎𝑎2𝐾𝐾−1,𝑀𝑀−1
𝑖𝑖 �     𝑖𝑖 = 1,2, … , 𝑖𝑖 

𝑎𝑎 = [𝑎𝑎1,  𝑎𝑎2 ,  𝑎𝑎3 , … , 𝑎𝑎𝑖𝑖]𝑇𝑇                                                                                   (3.32) 

𝑏𝑏𝑖𝑖 = �𝑏𝑏1,0
𝑖𝑖 , 𝑏𝑏1,1

𝑖𝑖 , … , 𝑏𝑏1,𝑀𝑀−1
𝑖𝑖 , 𝑏𝑏2,0

𝑖𝑖 , … , 𝑏𝑏2,𝑀𝑀−1
𝑖𝑖

,, … , 𝑏𝑏2𝐾𝐾−1,𝑀𝑀−1
𝑖𝑖 �     𝑖𝑖 = 1,2, … , 𝑓𝑓  

 𝑏𝑏 = [𝑏𝑏1,  𝑏𝑏2 ,  𝑏𝑏3 , … , 𝑏𝑏𝑓𝑓]𝑇𝑇                                                                                  (3.33) 

 

Where 𝑎𝑎 and 𝑏𝑏 are 𝑁𝑁𝑖𝑖 × 1 , 𝑁𝑁𝑓𝑓 × 1 respectively  

 

Ψ(𝑡𝑡) = �𝜓𝜓1,0,𝜓𝜓1,1, … ,𝜓𝜓1,𝑀𝑀−1,𝜓𝜓2,0, … ,𝜓𝜓2,𝑀𝑀−1, … ,𝜓𝜓2𝐾𝐾−1,𝑀𝑀−1�
𝑇𝑇               (3.34) 

 

To approximate the state equation via LSF Equation (3.23) can be integrated 

as: 

𝑥𝑥(𝑡𝑡) − 𝑥𝑥0 = � 𝐴𝐴𝑥𝑥(𝜏𝜏)
𝑡𝑡

0
𝑑𝑑𝜏𝜏 + � 𝐵𝐵𝑢𝑢(𝜏𝜏)

𝑡𝑡

0
𝑑𝑑𝜏𝜏                                                        (3.35) 
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3.5.2 Initial condition 

Here the initial value of state are approximated using LSF 

𝑥𝑥0 =
√2

2𝑘𝑘/2 �𝐼𝐼𝑖𝑖 ⊗ ΨT(𝑡𝑡)� [𝛼𝛼0
1  𝛼𝛼0

2 … 𝛼𝛼0
𝑖𝑖] 

= 𝛿𝛿 �𝐼𝐼𝑖𝑖 ⊗ ΨT(𝑡𝑡)� 𝑔𝑔0                                                                                          (3.36) 

 

Where  𝑔𝑔0 = [𝛼𝛼0
1  𝛼𝛼0

2 … 𝛼𝛼0
𝑖𝑖], 𝛿𝛿 = √2

2𝑘𝑘/2  and  𝛼𝛼0
𝑖𝑖 =

[𝑥𝑥𝑖𝑖(0)  0  0 … 0  𝑥𝑥𝑖𝑖(0)  0  0 … 0  𝑥𝑥𝑖𝑖(0)  0  0 … 0].    By substituting Equations 

(3.30), (3.31) and (3.36) into (3.35) we get: 

 

�𝐼𝐼𝑖𝑖 ⊗ ΨT(𝑡𝑡)� 𝑎𝑎 − 𝛿𝛿 �𝐼𝐼𝑖𝑖 ⊗ ΨT(𝑡𝑡)� 𝑔𝑔0  

= � 𝐴𝐴�𝐼𝐼𝑖𝑖 ⊗ ΨT(𝑡𝑡)� 𝑎𝑎
𝑡𝑡

0
𝑑𝑑𝜏𝜏 + � 𝐵𝐵 �𝐼𝐼𝑓𝑓 ⊗ ΨT(𝑡𝑡)� 𝑏𝑏

𝑡𝑡

0
           (3.37)  

 

Using properties of Legendre function and Kronecker product Equation 

(3.37)  can reduce to: 

 

�(𝐴𝐴⊗ 𝑃𝑃𝑇𝑇) − 𝐼𝐼𝑁𝑁𝑖𝑖�𝑎𝑎 + (𝐵𝐵 ⊗ 𝑃𝑃𝑇𝑇)𝑏𝑏 = −𝛿𝛿𝑔𝑔0                                                  (3.38) 

 

3.5.3 Performance index approximation 

Substitute (3.30), (3.31) into (3.22) we get: 

 

𝐽𝐽 = � �𝑎𝑎𝑇𝑇 ��𝐼𝐼𝑖𝑖 ⊗ Ψ(𝑡𝑡)�𝑄𝑄 �𝐼𝐼𝑖𝑖 ⊗ ΨT(𝑡𝑡)�� 𝑎𝑎
1

0

+ 𝑏𝑏𝑇𝑇 ��𝐼𝐼𝑓𝑓 ⊗ Ψ(𝑡𝑡)�𝑅𝑅 �𝐼𝐼𝑓𝑓 ⊗ ΨT(𝑡𝑡)�� 𝑏𝑏� 𝑑𝑑𝑡𝑡                             (3.39) 

Equation (3.39) can reduce to : 

𝐽𝐽 = [𝑎𝑎𝑇𝑇 𝑏𝑏𝑇𝑇] �𝑄𝑄 ⊗ 𝐼𝐼𝑁𝑁 0𝑁𝑁𝑖𝑖×𝑁𝑁𝑓𝑓
0𝑁𝑁𝑓𝑓×𝑁𝑁𝑖𝑖 𝑅𝑅 ⊗ 𝐼𝐼𝑁𝑁

� �𝑎𝑎𝑏𝑏�                                                              (3.40)  
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𝐽𝐽∗ = 𝑍𝑍𝑇𝑇𝐻𝐻𝑍𝑍 

 Where 𝑍𝑍𝑇𝑇 = [𝑎𝑎𝑇𝑇 𝑏𝑏𝑇𝑇] and 𝐻𝐻 = �𝑄𝑄 ⊗ 𝐼𝐼𝑁𝑁 0𝑁𝑁𝑖𝑖×𝑁𝑁𝑓𝑓
0𝑁𝑁𝑓𝑓×𝑁𝑁𝑖𝑖 𝑅𝑅 ⊗ 𝐼𝐼𝑁𝑁

�    

 

3.5.4 Additional constraints  

Science the Legendre function consists from different sections we must add 

constraints to insure the continuity of these sections. There are 2𝑘𝑘−1 − 1 Points 

at which the continuity of the state and control variables has to ensure. 

Theses points are: 

 

𝑡𝑡𝑖𝑖 =
𝑖𝑖

2𝑘𝑘−1        𝑖𝑖 = 1,2, … , 2𝑘𝑘−1 − 1                                                                  (3.41) 

 

So there are (2𝑘𝑘−1 − 1)𝑖𝑖 equality constraints for state given by:  

 

�𝐼𝐼𝑖𝑖 ⊗ Ψ′(𝑡𝑡)�𝑎𝑎 = 0�2𝑘𝑘−1−1�𝑖𝑖×1                                                                               (3.42) 

 

Where  

 

Ψ′ = 

⎣
⎢
⎢
⎢
⎢
⎡
𝜓𝜓1𝑚𝑚(𝑡𝑡1) −𝜓𝜓2𝑚𝑚(𝑡𝑡1) 0 0 0 0

0 𝜓𝜓2𝑚𝑚(𝑡𝑡2) −𝜓𝜓3𝑚𝑚(𝑡𝑡2) 0 0 0
0 0 𝜓𝜓3𝑚𝑚(𝑡𝑡3) 0 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋱
0 0 0 ⋯ 𝜓𝜓�2𝑘𝑘−1−1�𝑚𝑚  �𝑡𝑡2𝑘𝑘−1−1� 𝜓𝜓�2𝑘𝑘−1�𝑚𝑚�𝑡𝑡2𝑘𝑘−1−1�⎦

⎥
⎥
⎥
⎥
⎤

 

(3.43) 

 

Ψ′  is (2𝑘𝑘−1 − 1) × 𝑁𝑁 and (2𝑘𝑘−1 − 1)𝑓𝑓 equality constraints for control given 

by: 

 

�𝐼𝐼𝑓𝑓 ⊗ Ψ′(𝑡𝑡)�𝑏𝑏 = 0�2𝑘𝑘−1−1�𝑓𝑓×1                                                                            (3.44) 
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By combining (3.38), (3.42) and (3.44) we have  

�

(𝐴𝐴⊗ 𝑃𝑃𝑇𝑇) − 𝐼𝐼𝑁𝑁𝑖𝑖 (𝐵𝐵 ⊗ 𝑃𝑃𝑇𝑇)
�𝐼𝐼𝑖𝑖 ⊗ Ψ′(𝑡𝑡)� 0�2𝑘𝑘−1−1�𝑖𝑖×𝑁𝑁𝑓𝑓  

0�2𝑘𝑘−1−1�𝑓𝑓×𝑁𝑁𝑖𝑖  �𝐼𝐼𝑓𝑓 ⊗ Ψ′(𝑡𝑡)�
� �𝑎𝑎𝑏𝑏� = �

−𝛿𝛿𝑔𝑔0
0�2𝑘𝑘−1−1�𝑖𝑖×1 

0�2𝑘𝑘−1−1�𝑓𝑓×1 

�                          (3.45) 

𝐹𝐹𝑍𝑍 = ℎ 

Where 𝐹𝐹 =

⎣
⎢
⎢
⎡(𝐴𝐴⊗ 𝑃𝑃𝑇𝑇) − 𝐼𝐼𝑁𝑁𝑖𝑖 (𝐵𝐵 ⊗ 𝑃𝑃𝑇𝑇)

�𝐼𝐼𝑖𝑖 ⊗ Ψ′(𝑡𝑡)� 0�2𝑘𝑘−1−1�𝑖𝑖×𝑁𝑁𝑓𝑓  

0�2𝑘𝑘−1−1�𝑓𝑓×𝑁𝑁𝑖𝑖 �𝐼𝐼𝑓𝑓 ⊗ Ψ′(𝑡𝑡)� ⎦
⎥
⎥
⎤

  and   ℎ = �
−𝛿𝛿𝑔𝑔0

0�2𝑘𝑘−1−1�𝑖𝑖×1 

0�2𝑘𝑘−1−1�𝑓𝑓×1 

� 

 

3.6 Numerical Example 1 [26] 

Find the optimal control 𝑢𝑢∗(𝑡𝑡) that minimizes 

𝐽𝐽 = � �𝑥𝑥2 +
1
2
𝑢𝑢2�

1

0
𝑑𝑑𝑡𝑡 

Subject to 

�̇�𝑥 =
1
2
𝑥𝑥 + 𝑢𝑢      𝑥𝑥(0) = 1 

With the exact solution for the performance index  𝐽𝐽 = 0.8641644978  

We solved this problem when 𝑘𝑘 = 2 and 𝑀𝑀 = 3 so 𝑁𝑁 = 6. Then we 

approximate the state and control variables as 

𝑥𝑥𝑖𝑖(𝑡𝑡) = � � 𝑎𝑎𝑛𝑛𝑚𝑚𝜓𝜓𝑛𝑛𝑚𝑚 (𝑡𝑡)
2

𝑚𝑚=0

2

𝑛𝑛=1

   

𝑢𝑢𝑖𝑖(𝑡𝑡) = � � 𝑏𝑏𝑛𝑛𝑚𝑚𝜓𝜓𝑛𝑛𝑚𝑚 (𝑡𝑡)
2

𝑚𝑚=0

2

𝑛𝑛=1

  

For 𝑘𝑘 = 2 and 𝑀𝑀 = 3 we get: 

�
𝜓𝜓1,0(𝑡𝑡) = √2

𝜓𝜓1,1(𝑡𝑡) = √6(4𝑡𝑡 − 1)
𝜓𝜓1,2(𝑡𝑡) = √2.5 [3(4𝑡𝑡 − 1)2 − 1]

�     
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�
𝜓𝜓2,0(𝑡𝑡) = √2

𝜓𝜓2,1(𝑡𝑡) = √6(4𝑡𝑡 − 3)
𝜓𝜓2,2(𝑡𝑡) = √2.5 [3(4𝑡𝑡 − 3)2 − 1]

� 

Ψ(𝑡𝑡) = �𝜓𝜓1,0,𝜓𝜓1,1,𝜓𝜓1,2,𝜓𝜓2,0,𝜓𝜓2,1,𝜓𝜓2,2�
𝑇𝑇

 

𝑎𝑎 = �𝑎𝑎1,0,𝑎𝑎1,1,𝑎𝑎1,2,𝑎𝑎2,0,𝑎𝑎2,1,𝑎𝑎2,2�  

𝑏𝑏 = �𝑏𝑏1,0, 𝑏𝑏1,1,𝑏𝑏1,2, 𝑏𝑏2,0, 𝑏𝑏2,1, 𝑏𝑏2,2�    

𝛿𝛿 =
√2

2𝑘𝑘/2 =
1
√2

 

𝑔𝑔0 = [1 , 0 , 0 , 1 , 0 , 0] 

There are: 

2𝑘𝑘−1 − 1 = 1 points 

this 𝑡𝑡1 = 𝑖𝑖
2𝑘𝑘−1 = 0.5 

So there are (2𝑘𝑘−1 − 1)𝑖𝑖 = 1 equality constraints for state given by:  

�𝐼𝐼𝑖𝑖 ⊗ Ψ′(𝑡𝑡)�𝑎𝑎 = 0�2𝑘𝑘−1−1�𝑖𝑖×1                    

and (2𝑘𝑘−1 − 1)𝑓𝑓 = 1 equality constraints for control given by:  

�𝐼𝐼𝑓𝑓 ⊗ Ψ′(𝑡𝑡)�𝑏𝑏 = 0�2𝑘𝑘−1−1�𝑓𝑓×1                    

Ψ′  is (2𝑘𝑘−1 − 1) × 𝑁𝑁 so that Ψ′  is 1 × 6 matrix 

Ψ′ = �𝜓𝜓1,0(0.5),𝜓𝜓1,1(0.5),𝜓𝜓1,2(0.5),−𝜓𝜓2,0(0.5),−𝜓𝜓2,1(0.5),−𝜓𝜓2,2(0.5)� 

Ψ′ = [1.4142 2.4495 3.1623 −1.4142 2.4495 −3.1623] 

 By solving the corresponding quadratic programming problem we obtained 

the optimal value of performance index 𝐽𝐽∗ = 0.864198473010324 

𝑒𝑒𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 3.397521032433293𝑒𝑒 − 05. 

The Figures 3.2 - 3.5 show the Example 1 control and state trajectories for 

different values of  and 𝑀𝑀 . 

Table 3.1 shows the values of performance index and error according to 

different values of 𝐾𝐾 and 𝑀𝑀. The comparison of results between the method 

used in this thesis and other method are drawn in table 3.2. 
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Figure 3.2: Example1 optimal state trajectory for = 2 , 𝑀𝑀 = 3 

 

 

Figure 3.3: Example 1 optimal control trajectory for = 2 ,  𝑀𝑀 = 3 
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Figure 3.4: Example 1 optimal state trajectory for = 2 , 𝑀𝑀 = 4 

 

 

Figure 3.5: Example 1 optimal and control trajectory for = 2 , 𝑀𝑀 = 4 
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Figure 3.6: Example 1 optimal state trajectory for = 3 , 𝑀𝑀 = 3 

 

 

Figure 3.7: Example 1 optimal control trajectory for = 3 , 𝑀𝑀 = 3 
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Table 3.1: Optimal Values of performance index for Example (1) 

k, M J Error 

𝑘𝑘 = 2 ,𝑀𝑀 = 3 

 

0.864198473010324 3.397521032433293𝑒𝑒

− 05 

𝑘𝑘 = 2 ,𝑀𝑀 = 4 

 

0.864164513248718 

 

1.544871797154457𝑒𝑒

− 08 

𝑘𝑘 = 3 ,𝑀𝑀 = 3  0.864168451296065 

 

3.953496064523776𝑒𝑒

− 06 

 

 

Table 3.2: Comparison the Optimal Value of Example (1) with other method 

 Method J Error 

Exact value  0.8641644978 0 

Kafash and 

Delavarkhalafi 

[26] 

 Restarted State 

Parameterization 

0.8643546452 1.9 𝑒𝑒 − 04 

 

This research Legendre 0.864164513248718 1.5𝑒𝑒 − 08 

 

 

3.7 Numerical Example 2 [17] 

𝑚𝑚𝑖𝑖𝑛𝑛𝑚𝑚𝑖𝑖𝑧𝑧𝑒𝑒 𝐽𝐽 =
1
2
� �[𝑥𝑥1 𝑥𝑥2] �2 0

0 2� �
𝑥𝑥1
𝑥𝑥2
� + 0.01𝑢𝑢2� 𝑑𝑑𝑡𝑡

1

0
 

𝑆𝑆𝑢𝑢𝑏𝑏𝑗𝑗𝑒𝑒𝑆𝑆𝑡𝑡 𝑡𝑡𝑓𝑓  

�𝑥𝑥1̇
𝑥𝑥2̇
� = �0 1

0 −1� �
𝑥𝑥1
𝑥𝑥2
� + �01� 𝑢𝑢 

�𝑥𝑥1(0)
𝑥𝑥2(0)� = � 0

−1� 

 

With the exact solution for the performance index  𝐽𝐽 = 0.069360940 



35 
 

 

Figures 3.8-3.13 show Example 2 optimal control and state trajectories 

according to different values of  𝐾𝐾 𝑎𝑎𝑛𝑛𝑑𝑑 𝑀𝑀. Table 3.3 shows the values of 

performance index and error according to different values of  𝐾𝐾 and 𝑀𝑀. The 

comparison of results between the method used in this thesis and other 

method are drawn in table 3.4. 

 

 

Figure 3.8: Example 2 optimal state trajectories for  𝑀𝑀 = 7 ,𝑘𝑘 = 2 
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Figure 3.9: Example 2 optimal control trajectory for  𝑀𝑀 = 7 , 𝑘𝑘 = 2 

 

 

Figure 3.10: Example 2 optimal state trajectories for  𝑀𝑀 = 8 , 𝑘𝑘 = 2 
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Figure 3.11: Example 2 optimal control trajectory for  𝑀𝑀 = 8 , 𝑘𝑘 = 2 

 

 

Figure 3.12: Example 2 optimal state trajectories for  𝑘𝑘 = 3 ,𝑀𝑀 = 7 
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Figure 3.13: Example 2 optimal control trajectory for  𝑘𝑘 = 3 ,𝑀𝑀 = 7 

 

Table 3.3: Optimal Values of performance index for Example (2) 
k, M  J Error 

𝑀𝑀 = 7 , 𝑘𝑘 = 2 

 

0.069384847631541 

 

2.390763154117015𝑒𝑒

− 05 

𝑀𝑀 = 8 , 𝑘𝑘 = 2 

 

0.069361250298555 

 

3.102985551561854𝑒𝑒

− 07 

 

𝑀𝑀 = 7 ,𝑘𝑘 = 3  

 

 0.069361200683422 2.606834219182064𝑒𝑒

− 07 

 

 

 

 

t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

u*
 (t

)

-2

0

2

4

6

8

10

12

14



39 
 

Table 3.4: Comparison the Optimal Value of Example (2) with other method 

 Method J Error 

Exact value  0.06936094 

 

0 

C. P. NEUMAN 

and A. SEN 

Cubic Splines 

[17] 

0.06989 5.3𝑒𝑒 − 04 

 

This research Legendre 0.069361200683422 2.6𝑒𝑒 − 07 

 

In this section, we proposed a numerical method for solving linear time in-

variant quadratic optimal control problems. In this method we used Legendre 

wavelet to approximate controls and states of the system using a finite length 

of Legendre function. Then we solved two examples, the first example 

contains one state and the second example contains two states, compared with 

other researches, our research gives better or comparable results with other 

researches.  

As we saw in this chapter we converted the difficult linear quadratic optimal 

control problem into a quadratic programming problem which was easy to 

solve, and solved it by MATLAB program. 

We conclude from Tables 3.1 and 3.3 that when we increase 𝑘𝑘 or 𝑀𝑀 we can 

obtain the results of performance index 𝐽𝐽 more closed to the exact value. .  

3.8 LTV Optimal Control Problem Reformulation  

The linear time varying quadratic optimal control problem can be stated as 

follows:  

Find an optimal control 𝑢𝑢∗(𝑡𝑡) that minimizes Equation (3.22) 

Subject to 

�̇�𝑥 = 𝐴𝐴(𝑡𝑡)𝑥𝑥(𝑡𝑡) + 𝐵𝐵(𝑡𝑡)𝑢𝑢(𝑡𝑡)      𝑥𝑥(0) = 𝑥𝑥0                                                        (3.46)  

The different between LTI and LTV that 𝐴𝐴 ,𝐵𝐵 are function of  𝑡𝑡 in LTV but 

𝐴𝐴 𝑎𝑎𝑛𝑛𝑑𝑑 𝐵𝐵 are constant in LTI, so that we use the most of equations in LTI. 
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3.8.1 Time varying approximation 

Since the time varying elements  𝐴𝐴(𝑡𝑡) 𝑎𝑎𝑛𝑛𝑑𝑑 𝐵𝐵(𝑡𝑡) are known matrices we 

can approximate them using Legendre function as: 

 

𝐴𝐴(𝑡𝑡) = � � 𝐴𝐴𝑛𝑛𝑚𝑚𝜓𝜓𝑛𝑛𝑚𝑚 (𝑡𝑡)
𝑀𝑀−1

𝑚𝑚=0

2𝐾𝐾−1

𝑛𝑛=1

                                                                            (2.47) 

𝐵𝐵(𝑡𝑡) = � � 𝐵𝐵𝑛𝑛𝑚𝑚𝜓𝜓𝑛𝑛𝑚𝑚 (𝑡𝑡)
𝑀𝑀−1

𝑚𝑚=0

2𝐾𝐾−1

𝑛𝑛=1

                                                                            (2.48) 

 

Where 𝐴𝐴𝑛𝑛𝑚𝑚  𝑎𝑎𝑛𝑛𝑑𝑑 𝐵𝐵𝑛𝑛𝑚𝑚   are: 

 

𝐴𝐴𝑛𝑛𝑚𝑚 = � 𝐴𝐴(𝑡𝑡)𝜓𝜓𝑛𝑛𝑚𝑚 (𝑡𝑡)
2𝑛𝑛
2𝑘𝑘

2𝑛𝑛−2
2𝑘𝑘

𝑑𝑑𝑡𝑡                                                                             (2.49) 

𝐵𝐵𝑛𝑛𝑚𝑚 = � 𝐵𝐵(𝑡𝑡)𝜓𝜓𝑛𝑛𝑚𝑚 (𝑡𝑡)
2𝑛𝑛
2𝑘𝑘

2𝑛𝑛−2
2𝑘𝑘

𝑑𝑑𝑡𝑡 

Α = [𝐴𝐴10 𝐴𝐴11 ⋯ 𝐴𝐴1,𝑀𝑀−1 ⋯ 𝐴𝐴2,𝑀𝑀−1 ⋯ 𝐴𝐴2𝐾𝐾−1,𝑀𝑀−1] 

Β = [𝐵𝐵10 𝐵𝐵11 ⋯ 𝐵𝐵1,𝑀𝑀−1 ⋯ 𝐵𝐵2,𝑀𝑀−1 ⋯ 𝐵𝐵2𝐾𝐾−1,𝑀𝑀−1] 

𝐴𝐴(𝑡𝑡) = 𝛢𝛢Ψ                                                                                                            (3.50)  

𝐵𝐵(𝑡𝑡) = 𝛣𝛣Ψ                                                                                                            (3.51) 

 

3.8.2 Control state parameterization 

The basic idea is to approximate the state and control variables using 

Equations (2.28) and (2.29) 

To approximate the state equation via LSF Equation (3.46) can be integrated 

as: 

𝑥𝑥(𝑡𝑡) − 𝑥𝑥0 = � 𝐴𝐴(𝜏𝜏)𝑥𝑥(𝜏𝜏)
𝑡𝑡

0
𝑑𝑑𝜏𝜏 + � 𝐵𝐵(𝜏𝜏)𝑢𝑢(𝜏𝜏)

𝑡𝑡

0
𝑑𝑑𝜏𝜏                                            (3.52) 
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by substituting Equations (3.50), (3.51) , (3.30)and (3.31) into (3.52) we 

get: 

ΨT𝑎𝑎 − 𝛿𝛿ΨT𝑔𝑔0  = � 𝐴𝐴ΨΨT𝑎𝑎
𝑡𝑡

0
𝑑𝑑𝜏𝜏 + � 𝐵𝐵ΨΨT𝑏𝑏

𝑡𝑡

0
𝑑𝑑𝜏𝜏                                     (3.53)  

 

Using Legendre properties Equation (3.53) can reduce to:  

 

�(𝑃𝑃𝑇𝑇 ⊗ 𝐼𝐼𝑖𝑖)A� − 𝐼𝐼𝑁𝑁𝑖𝑖� 𝑎𝑎 + (𝑃𝑃𝑇𝑇 ⊗ 𝐼𝐼𝑖𝑖)B�𝑏𝑏 = −𝛿𝛿𝑔𝑔0                                           (3.54) 

 

By combining (3.54)  and the additional constraints, we have:  

 

�
(𝑃𝑃𝑇𝑇 ⊗ 𝐼𝐼𝑖𝑖)A� − 𝐼𝐼𝑁𝑁𝑖𝑖 (𝑃𝑃𝑇𝑇 ⊗ 𝐼𝐼𝑖𝑖)B�

(Ψ′(𝑡𝑡) ⊗ 𝐼𝐼𝑖𝑖) 0�2𝑘𝑘−1−1�𝑖𝑖×𝑁𝑁𝑓𝑓  

0�2𝑘𝑘−1−1�𝑓𝑓×𝑁𝑁𝑖𝑖 �𝐼𝐼𝑓𝑓 ⊗ Ψ′(𝑡𝑡)�
� �𝑎𝑎𝑏𝑏� = �

−𝛿𝛿𝑔𝑔0
0�2𝑘𝑘−1−1�𝑖𝑖×1 

0�2𝑘𝑘−1−1�𝑓𝑓×1 

�                       (3.55) 

𝐹𝐹𝑍𝑍 = ℎ 

Where 𝐹𝐹 =

⎣
⎢
⎢
⎡(𝑃𝑃

𝑇𝑇 ⊗ 𝐼𝐼𝑖𝑖)A� − 𝐼𝐼𝑁𝑁𝑖𝑖 (𝑃𝑃𝑇𝑇 ⊗ 𝐼𝐼𝑖𝑖)B�
�Ψ′(𝑡𝑡) ⊗ 𝐼𝐼𝑖𝑖� 0�2𝑘𝑘−1−1�𝑖𝑖×𝑁𝑁𝑓𝑓  

0�2𝑘𝑘−1−1�𝑓𝑓×𝑁𝑁𝑖𝑖 �𝐼𝐼𝑓𝑓 ⊗ Ψ′(𝑡𝑡)� ⎦
⎥
⎥
⎤

  and  ℎ = �
−𝛿𝛿𝑔𝑔0

0�2𝑘𝑘−1−1�𝑖𝑖×1 

0�2𝑘𝑘−1−1�𝑓𝑓×1 

� 

 

3.9 Numerical Example 3 [27] 

𝐽𝐽 =
1
2
� �𝑥𝑥2(𝑡𝑡) + 𝑢𝑢2(𝑡𝑡)� 𝑑𝑑𝑡𝑡

1

0
 

�̇�𝑥 = 𝑡𝑡𝑥𝑥 + 𝑢𝑢  , 𝑥𝑥(0) = 1 

We solve this problem for: 

𝑘𝑘 = 2 ,𝑀𝑀 = 3 

𝐽𝐽 = 0.484290813333797 

Figures 3.14-3.21 shows the optimal trajectories for several values of 

𝑘𝑘 and 𝑀𝑀.  
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Figure 3.14: Example 3 optimal control trajectory for  𝑘𝑘 = 2 ,𝑀𝑀 = 3 

 

 

Figure 3.15: Example 3 optimal state trajectory for  𝑘𝑘 = 2 ,𝑀𝑀 = 3 
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Figure 3.16: Example 3 optimal state trajectory for  𝑘𝑘 = 2 ,𝑀𝑀 = 4 

 

 

Figure 3.17: Example 3 optimal control trajectory for  𝑘𝑘 = 2 ,𝑀𝑀 = 4 

t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x*
 (t

)

0.7

0.75

0.8

0.85

0.9

0.95

1

t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

u*
 (t

)

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0



44 
 

 

Figure 3.18: Example 3 optimal state trajectories for  𝑘𝑘 = 3 ,𝑀𝑀 = 3 

 

 

Figure 3.19: Example 3 optimal control trajectory for  𝑘𝑘 = 3 ,𝑀𝑀 = 3 
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Figure 3.20: Example 3 optimal state trajectory for  𝑘𝑘 = 2 ,𝑀𝑀 = 5 

 

 

Figure 3.21: Example 3 optimal control trajectory for  𝑘𝑘 = 2 ,𝑀𝑀 = 5 
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Table 3.5 shows the optimal performance index of Example 3 for different 

values of  𝑘𝑘 and 𝑀𝑀, the comparison of our method and another method is 

shown in table 3.6. 

   

Table 3.5: Optimal Values of performance index for Example (3) 
k, M J 

𝑀𝑀 = 3 , 𝑘𝑘 = 2 

 

0.484290813333797 

𝑀𝑀 = 3 , 𝑘𝑘 = 3 

 

0.484274888299967 

 

𝑀𝑀 = 4 , 𝑘𝑘 = 2 

 

0.484267796666342 

 

𝑀𝑀 = 5 , 𝑘𝑘 = 2 

 

0.484267700378673 

 

 

Table (3.6): Comparison the Optimal Value of Example (3) with other method 

 Method J 

Gamal N. 

Elnagar [27] 

Spectral 

Chebyshev 

0.48426764 

This research Legendre 0.484267700378673 

 

 

Table 3.6 shows the comparison between our research and other researches to 

solve the previous problem, from the table we notice that our method is good 

compared with other methods. In this section we solved the OCP time-

varying systems using Legendre scaling function; we applied this method at a 

numerical example to see the effectiveness of the method and compared with 

other methods.  Solving time-varying optimal control problem is very 
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important because we must need it to solve the nonlinear optimal control 

problem in the next chapter. 
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NONLINEAR QUADRATIC OPTIMAL 

CONTROL PROBLEM 

4.1 Introduction 

                In this chapter, we extend the method described in the previous 

chapter to solve nonlinear optimal control problems; one of the methods to 

solve the unconstrained nonlinear optimal control problem is to convert it into 

a nonlinear programming problem by using the direct methods. The nonlinear 

mathematical programming problem, in its turn, can be solved using different 

methods, in particular the sequential quadratic programming method, which 

replaces the nonlinear mathematical programming problem by a sequence of 

quadratic programming problems. 

 In this thesis, the nonlinear optimal control problem is converted directly into 

a sequence of quadratic programming problems, without converting it into 

nonlinear programming problem. This approximation can be achieved by an 

iterative approach [28]. 

Using the iterative approach, the nonlinear optimal control problem is 

replaced by a sequence of time-varying linear quadratic optimal control 

problems and then each of these problems is converted into a quadratic 

programming problem by using the control state parameterization via 

Legendre polynomials. Since the obtained quadratic programming problem is 

subject to equality constraints only, it can be solved in one iteration by matrix 

vector multiplication. 

4.2 Iteration Approach 

The iteration approach is based on the replacement of the original nonlinear 

system by a sequence of linear time-varying systems, whose solutions will 

converge to the solution of the nonlinear problem. 

Consider a nonlinear system of the form: 

�̇�𝑥(𝑡𝑡) =  𝐴𝐴[𝑥𝑥(𝑡𝑡)]𝑥𝑥(𝑡𝑡) + 𝐵𝐵[𝑥𝑥(𝑡𝑡)]𝑢𝑢(𝑡𝑡);   𝑥𝑥(0) =  𝑥𝑥0                                          (4.3) 
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�̇�𝑥(1)(𝑡𝑡) =  𝐴𝐴[𝑥𝑥0]𝑥𝑥(1)(𝑡𝑡) + 𝐵𝐵[𝑥𝑥0]𝑢𝑢(1)(𝑡𝑡)                                                           (4.4) 

�̇�𝑥(2)(𝑡𝑡) =  𝐴𝐴�𝑥𝑥(1)(𝑡𝑡)�𝑥𝑥(2)(𝑡𝑡) + 𝐵𝐵�𝑥𝑥(1)(𝑡𝑡)�𝑢𝑢(2)(𝑡𝑡) 

                                 ⋮ 

�̇�𝑥(𝑖𝑖)(𝑡𝑡) =  𝐴𝐴�𝑥𝑥(𝑖𝑖−1)(𝑡𝑡)�𝑥𝑥(𝑖𝑖)(𝑡𝑡) + 𝐵𝐵�𝑥𝑥(𝑖𝑖−1)(𝑡𝑡)�𝑢𝑢(𝑖𝑖)(𝑡𝑡) 

with initial conditions 𝑥𝑥(1)(0) =  𝑥𝑥(2)(0) = ⋯ = 𝑥𝑥(𝑖𝑖)(0) = 𝑥𝑥0 at each 

iteration. 

The sequence of solutions x(𝑡𝑡) converges uniformly on any compact time 

interval to the nonlinear solution 𝑥𝑥(𝑡𝑡) 

4.3 Problem Reformulation 

To solve the nonlinear optimal control problem (4.1)- (4.2) using the 

proposed algorithm, the first step is to apply the iteration method, by 

expanding the state Equations (4.2) up to the first order around nominal 

trajectories 𝑥𝑥(𝑡𝑡)(𝑘𝑘),𝑢𝑢(𝑡𝑡)(𝑘𝑘), and by expanding the performance. Then the 

optimal control problem is reduced to the following sequence of problems: 

Minimize 

𝐽𝐽(𝑖𝑖) = � �𝑥𝑥(𝑖𝑖)𝑇𝑇𝑄𝑄𝑥𝑥(𝑖𝑖) + 𝑢𝑢(𝑖𝑖)𝑇𝑇𝑅𝑅𝑢𝑢(𝑖𝑖)�
𝑡𝑡𝑓𝑓

0
𝑑𝑑𝑡𝑡 

�̇�𝑥(𝑖𝑖) =  𝐴𝐴�𝑥𝑥(𝑖𝑖 − 1)�𝑥𝑥(𝑖𝑖) +  𝐵𝐵�𝑥𝑥(𝑖𝑖 − 1)�𝑢𝑢(𝑖𝑖)      𝑥𝑥(𝑖𝑖)(0) = 𝑥𝑥0 

We can solve this problem using previous technique  

In the first step 𝑖𝑖 = 1 

𝐽𝐽(1) = � �𝑥𝑥(1)𝑇𝑇𝑄𝑄𝑥𝑥(1) + 𝑢𝑢(1)𝑇𝑇𝑅𝑅𝑢𝑢(1)�
𝑡𝑡𝑓𝑓

0
𝑑𝑑𝑡𝑡 

�̇�𝑥(1) =  𝐴𝐴(𝑥𝑥0)𝑥𝑥(1) +  𝐵𝐵(𝑥𝑥0)𝑢𝑢(1)      𝑥𝑥(1)(0) = 𝑥𝑥0 

This is LTI optimal control problem it can easily solved and obtain the output: 

𝑥𝑥(1)(𝑡𝑡),𝑢𝑢(1)(𝑡𝑡)𝑎𝑎𝑛𝑛𝑑𝑑 𝐽𝐽∗(1) 

𝑖𝑖 = 2 

𝐽𝐽(2) = � �𝑥𝑥(2)𝑇𝑇𝑄𝑄𝑥𝑥(2) + 𝑢𝑢(2)𝑇𝑇𝑅𝑅𝑢𝑢(2)�
𝑡𝑡𝑓𝑓

0
𝑑𝑑𝑡𝑡 
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�̇�𝑥(2) =  𝐴𝐴 �𝑥𝑥(1)(𝑡𝑡)� 𝑥𝑥(2) +  𝐵𝐵 �𝑥𝑥(1)(𝑡𝑡)� 𝑢𝑢(2)      𝑥𝑥(2)(0) = 𝑥𝑥0 

𝑥𝑥(1)(𝑡𝑡),𝑢𝑢(1)(𝑡𝑡) are given from previous step, the problem became LTV 

optimal control problem, it can solved as in chapter three, after solving  the 

problem the output is 𝑥𝑥(2),𝑢𝑢(2)𝑎𝑎𝑛𝑛𝑑𝑑 𝐽𝐽∗(2),all the next problems are LTV 

optimal control problem 

𝑖𝑖 = 3 

𝐽𝐽(3) = � �𝑥𝑥(3)𝑇𝑇𝑄𝑄𝑥𝑥(3) + 𝑢𝑢(3)𝑇𝑇𝑅𝑅𝑢𝑢(3)�
𝑡𝑡𝑓𝑓

0
𝑑𝑑𝑡𝑡 

�̇�𝑥(3) =  𝐴𝐴�𝑥𝑥(2)�𝑥𝑥(3) +  𝐵𝐵�𝑥𝑥(2)�𝑢𝑢(3)      𝑥𝑥(3)(0) = 𝑥𝑥0 

𝑥𝑥(2),𝑢𝑢(2) are given from previous step after solving the problem the output is 

𝑥𝑥(3),𝑢𝑢(3)𝑎𝑎𝑛𝑛𝑑𝑑 𝐽𝐽∗(3). We continue increasing the number of iteration  𝑖𝑖 until 

� 𝐽𝐽∗[𝑖𝑖] −  𝐽𝐽∗[𝑖𝑖−1]� became very small. 

4.4 Numerical Example 4 [29] 

Find optimal control law 𝑢𝑢(𝑡𝑡) which minimizes 

𝐽𝐽 =
1
2
� [𝑥𝑥2(𝑡𝑡) + 𝑢𝑢2(𝑡𝑡)]

1

0
𝑑𝑑𝑡𝑡 

Such that the bilinear system dynamics 

�̇�𝑥(𝑡𝑡) =  −2𝑥𝑥(𝑡𝑡) +  𝑥𝑥(𝑡𝑡)𝑢𝑢(𝑡𝑡) +  3𝑢𝑢(𝑡𝑡) ,    𝑥𝑥(0) = 5 

We solve this problem for 𝑘𝑘 = 2,𝑀𝑀 = 5. Firstly we rewrite the problem as: 

𝐽𝐽(𝑖𝑖) =
1
2
� �𝑥𝑥(𝑖𝑖)�

2(𝑡𝑡) +  �𝑢𝑢(𝑖𝑖)�
2(𝑡𝑡)

1

0
𝑑𝑑𝑡𝑡 

�̇�𝑥(𝑖𝑖)(𝑡𝑡) =  −2𝑥𝑥(𝑖𝑖)(𝑡𝑡) +  �𝑥𝑥(𝑖𝑖−1) + 3�𝑢𝑢(𝑖𝑖)(𝑡𝑡) 

𝑖𝑖 = 1, we get: 

𝑥𝑥(0) = 𝑥𝑥(0) = 5 

𝐽𝐽(1) =
1
2
� �𝑥𝑥(1)�

2(𝑡𝑡) +  �𝑢𝑢(1)�
2(𝑡𝑡)

1

0
𝑑𝑑𝑡𝑡 

�̇�𝑥(1)(𝑡𝑡) =  −2𝑥𝑥(1)(𝑡𝑡) +  8𝑢𝑢(1)        𝑥𝑥(1)(0) = 5 
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By solving the above LTI OCPs we get the optimal value 

𝐽𝐽 = 1.220274788157110. For = 2 , we have: 

𝐽𝐽(2) =
1
2
� �𝑥𝑥(2)�

2(𝑡𝑡) +  �𝑢𝑢(2)�
2(𝑡𝑡)

1

0
𝑑𝑑𝑡𝑡 

�̇�𝑥(1)(𝑡𝑡) =  −2𝑥𝑥(2)(𝑡𝑡) +  �𝑥𝑥(1) + 3�𝑢𝑢(2)(𝑡𝑡)       𝑥𝑥(2)(0) = 5 

By solving the above LTV OCPs we get the optimal 

value 𝐽𝐽 = 1.520044796167813. Continue increasing  𝑖𝑖 and listed 𝐽𝐽 as shown 

in table 4.1.Table 4.2 shows comparison between the optimal value of 

example 4 with other method.  

 

   Table 4.1: Values of example (4) performance index for each iteration 

Iteration J 

1 1.220274788157110 

2 1.520044796167813 

3 1.488960969923553 

4 1.489546563552286 

 

 

Table 4.2: Comparison the Optimal Value of Example (4) with other method 

 Method J 

B. M. Mohan & Sanjeeb 

Kumar Kar [29] 

Block Pulse 

Functions and Legendre 

Polynomials 

1.4851 

This research Legendre 1.4895 

 

Figure 4.1 and Figure 4.2 show the optimal state trajectory and the optimal 

control trajectory of Example 4. 
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Figure 4.1: Example 4 optimal state trajectory 

 

 

Figure 4.2: Example 4 optimal control trajectory  
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

In this thesis, we proposed numerical methods to solve several types of 

optimal control problems. These methods are based on using the iteration 

approach and on parameterizing the system control, state variables using 

Legendre polynomials. Applying the proposed methods, convert the linear 

optimal control problem into quadratic programming problem and convert the 

nonlinear optimal control problem into sequence of quadratic optimal control 

problems. This method has several advantages such as: easy approximation; 

no integration of the state equations or co-state equations is needed; explicit 

formula is derived to approximate the quadratic performance index; small 

quadratic programming problems are to be solved. When the method is 

applied on several test examples which were solved by other researchers 

using different methods, the computational results of the proposed algorithms 

give better or same results in comparison with some other methods. 

5.2 Recommendations   

The work of this thesis can be extended in two ways: 

• In control-state parameterization with large number of unknown 

parameters which have to be determined 𝑎𝑎𝑖𝑖  and 𝑏𝑏𝑖𝑖 ; the system state 

equations have to be replaced by a large number of equality 

constraints; so control parameterization can be used instead of  

control-state parameterization. 

• Using Laguerre or Hermite functions instead of Legendre function and 

solve the same examples which solved with Legendre Functions and 

compare the results with my results.   
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