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Abstract 

      In this research Total Lagrangian formulation for geometric nonlinear plane 

stress problems was developed. The formulation is based on Green strains and 

2nd Piola-Kirchoff stresses. The formulation was applied on two- dimensional 

elasticity using 4-node plane finite element. The formulation was implemented 

as a finite element program using MATLAB (2010b). The program was 

developed for linear and nonlinear analysis of plane stress structure subjected to 

different types of loading. 

       The solution of nonlinear equilibrium equation was obtained by incremental 

method with Newton-Raphson approach. The program was applied to obtain 

nodal displacements, direct stresses and shear stresses at integration points of 

element based on Green strains and 2nd Piola-Kirchoff stresses. 

      The accuracy of results was demonstrated by using three numerical 

examples for linear analysis. The results were in very good agreement when 

compared with results from references and known exact solutions. It was, also 

observed from Graphs and Tables that the results show high accuracy with mesh 

refinement and  increment applied load. 

     For the nonlinear analysis, the resulting displacements show good agreement 

when compared with known results or published papers results. 
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 تجريد

المستوي الواحد باستخدام  لمنشآت اجهاد خطية تم تطوير الصيغ الهندسية اللافي هذا البحث            

 واجهادات بيولا كريتشوفقرين  تبناء على انفعالا  (Total Lagrangianتقنين لاجرانج الكلي )

 ربب  عقد المحدد ة ثنائية الابعاد باستخدام  عنصر الانوالمر علي  هذه الصيغ طبقت, الثانية

( طورب 2010b)باستخدام  لغة البرمجة ماتلابعنصر محدد تطوير برنامج ب تطبيق الصيغ  تم          

  من الاحمال مختلفة نواعالمعرضة لا ي واللاخطى لمنشآت الاجهاد المُستويللتحليل الخط البرنامج 

ربابسون    -ة نيوتن طريقو  ل التزايديةحل معادلات الاتزان اللاخطية  بني علي طريقة الاحما         

والاجهادات المباشرة واجهادات القص عند نقاط  عند العقد للحصول علي الازاحات طبق البرنامج 

 . الثانية بناء علي انفعالات قرين واجهادات بيولا كرتشوف  (integration point) التكامل

تزايد في دقة النتائج م  زيادة عدد العناصر  وقد نلاحظ, ايضاً, من الجداول والمخططات, ان هنالك

 وازدياد الاحمال المطبقة  

 اعطت  النتائج المتحصل عليها  التحليل الخطي امثلة عددية, ثلاثة تم التحقق من دقة النتائج بأستخدام       

خطي فقد اعطت لاوالمنشوربة  اما في حالة التحليل ال المعروفة  الدقيقةمقاربنة بالحلول  جداً  اً جيد اتوافق

  م  النتائج المنشوربة في عدة اورباق علمية  اجيد اتوافق النتائج 
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Chapter one 

General introduction 

1.1 Introduction 

       The finite element method is a numerical technique for solution of 

differential equations. In this method all complexities of the problems like 

varying shape, boundary conditions and loads are maintained as they are, but the 

solutions obtained are approximate. 

      The finite element method originated as a method of stress analysis in the 

design of aircraft .It started as an extension of matrix method of structure 

analysis. Nowadays this method is used not only for the analysis of solid 

mechanics, but even in the analysis of fluid flow, heat transfer, electric and 

many other physical phenomena. In civil engineering is used this method 

extensively for the analysis of beams, space frames, plates, shells, foundations, 

Both static and dynamic problems can be handled by finite element method 

(Bhavikatti,2005). 

        Finite element method is a powerful technique for obtaining approximate 

solution with good accuracy. The particular advantages of finite element method 

have made it the most accepted design tool and the greatest advantage of it is 

ability to handle truly arbitrary geometry. Probably its other most important 

features are the ability to deal with general boundary conditions and to include 

non-homogeneous and anisotropic materials, nonlinear stress- strain relations, 

nonlinear strain-displacement relations and complicated loading conditions 

(Akasha, 2009). 

      Nonlinear finite element analysis is an essential component of computer-

aided design. Testing of prototypes is increasingly being replaced by simulation 
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with nonlinear finite element methods because this provides a more rapid and 

less expensive way to evaluate design concepts and design detail. 

Both analysts and developers of nonlinear finite element programs should 

understand the fundamental concepts of nonlinear finite element analysis. 

Without an understanding of the fundamentals, a finite element program is a 

black box that provides simulations. However, nonlinear finite element analysis 

confronts the analyst with many choices and pitfalls. Without an understanding 

of the implication and meaning of these choices and difficulties, an analyst is at 

a severe disadvantage (Belytschison, et. el, 2013). 

      Two sources of nonlinearity exist in the analysis of solid continua, namely, 

material and geometric nonlinearity. The former occurs when, for whatever 

reason, the stress strain behavior given by the constitutive relation is nonlinear, 

whereas the latter is important when changes in geometry, whether large or 

small, have a significant effect on the load deformation behavior. the geometric 

nonlinearity includes deformation-dependent boundary conditions and loading. 

         The nonlinear strain and stress measures in definition of stress-strain 

relation are one of key concepts of several nonlinearities. Strain is defined as 

change of the shape or geometry produced by applied load. The loads are 

defined by the general term stress (Kim,  2014). 

         To practically assess the stress state on the structure, strain must be 

measured. There are alternative strain measures used to derive finite element 

equations, such as Green's strain which is associated with 2nd Piola-Kirchhoff 

stress, engineering strain which is associated with engineering stress and 

logarithmic strain which is associated with true (Cauchy) stress. The Green's 

strain is most common definition applied to materials used in mechanical and 

structural engineering problems, which are subjected to small deformations. The 

engineering strain is expressed as the ratio of total deformation to initial 

dimension of the material body in which the loads are being applied. The 

logarithmic strain also called natural strain or true strain is based on the final 
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deformed dimension and considering an incremental strain and obtained by 

integrating this incremental strain (Akasha and Mohamed, 2012).  

          The fast improvements in computer hardware technology and slashing of 

cost of computers have boosted this method, since the computer is the basic 

need for its application of this method. A number of popular brand of finite 

element analysis packages are now available commercially. Some of the popular 

packages are STAAD-PRO, GT-STRUDEL, NASTRAN and ANSYS. Using 

these packages one can analyze several complex structures. 

       MATLAB is commercial software and a trademark of The Math Works, 

Inc., It is an integrated programming system, and MATLAB is getting 

increasingly popular all fields of science and engineering. 

        MATLAB presently offers a nice combination of handy programming 

features with powerful built-in numerical capabilities. On the one hand, its m-

file programming environment allows researchers to implement moderately 

complicated algorithms in a structured and coherent fashion. On the other hand, 

its built-in, numerical capabilities empower researchers to solve more difficult 

problems. 

MATLAB is a high-level language specially designed for dealing with matrices. 

This makes it particularly suited for programming the finite element method. In 

addition, MATLAB will allow the user to focus on the finite element method by 

alleviating the programming burden (Khennan, 2013). 

1.2 Problem statement 

      For many structures, the relation between the deflection and the applied load 

is linear when the deflection is small. This includes small strain, small 

displacement, and small rotation. But in case of the large deflection the relation 

becomes nonlinear. 

      If the structure system is solved using the linearity assumption, the results 

may end up physically inexact, because the linear analysis uses the undeformed 

geometry which lead to invalid result. Also many engineering applications 

cannot be modeled as linear system when the deformation is large. 
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For above reasons the study focuses to using geometrically nonlinear analysis. 

      The available commercial packages are only used as a closed box. That is, 

given data in a certain format to give results in a well organized manner. Also, 

difficulty in obtaining original copies of these commercial packages leads to the 

need for developing finite element programs that are original and that can be 

easily modified. This helps in having an efficient research tool (Khennan, 2013). 

     Minimizing the overall cost of analysis and obtaining a good result of 

analysis reduce risk of resulting design errors. 

     Since MATLAB is getting increasingly popular computer software in all 

fields of engineering, especially in finite element analysis and design of 

structure, it was used in this research. 

1.3 Objectives   

      The objectives of the study are: 

1-  To use the MATLAB for programming of the plane stress/strain 

problems    using geometrically nonlinear finite element analysis. 

2-  To formulate the geometric nonlinear Total Lagrangian elasticity 

problems using plane stress/ strain isoparametric finite element based on 

Green's strain. 

3-  To develop a computer program based on the formulation. 

4-  To implement the program on computer using MATLAB language. 

5-  To verify and check the accuracy of the results obtained from application 

of  the program by comparison with known published results. 

1.4 Methodology of Research 

        The methodology of research as the following: 

1- Finite element formulation using 4-node plane stress/ strain element. 

2- The formulation based on Green strain was considered. Linear and 

geometrically nonlinear analysis based on Green strain was adopted. The 

nonlinear equilibrium equations solved using the incremental with 

Newton-Raphson method. 
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3- The main computer program in MATLAB language was developed and 

the formulation was implemented in it. The program was designed to 

carry out linear analysis and geometric nonlinear analysis based on Green 

stress, for linear elastic isotropic material. 

4- The program was applied and tested using numerical examples to 

obtain the displacement, direct stresses and shear stresses at integration 

points of the element. The results obtained were discussed, analyzed, and 

compared with known results. 

1.5 Outlines of research 

          This study covers three main areas, the introduction of finite 

element method (FEM) and the literature review, geometrically nonlinear 

formulation of plane stress/strain, implementation of the formulation into 

MATLAB program. The contents can be summarized as: 

Chapter one:   Contains general introduction of finite element method, 

problem, statement, objectives, methodology and outline of dissertation.  

Chapter two:  presents the literature review 

Chapter three:  contains the general description of nonlinear method and 

development of the formulation of geometric nonlinear plane strain/stress 

finite element. 

Chapter four: contains the description of the computer program 

Chapter five: presents the results and discussion of results, conclusions 

and recommendations for further work. 
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Chapter two 

Literature review 

2.1 Introduction to Finite Element Analysis Method  

      The finite element method is one of the numerical methods for solving 

differential equations that describe many engineering problems. The finite 

element method (FEM), originated in the area of structural mechanics, has been 

extended to other areas of solid mechanics and later to other fields such as heat 

transfer, fluid dynamics, and electromagnetism. In fact, FEM has been 

recognized as a powerful tool for solving partial differential equations and 

integrodifferential equations, it has become the numerical method of choice in 

almost all engineering and applied science areas. One of the reasons for FEM’s 

popularity is that the method results in computer programs versatile in nature 

that can solve many practical problems with least amount of training (Kim, 

2014). 

    In modern engineering design it is rare to find a project that does not require 

some type of finite element analysis. The greatest advantage of FEM is its 

ability to handle truly arbitrary geometry. Probably its next most important 

features are the ability to deal with general boundary conditions and to include 

non-homogeneous and anisotropic materials. These features mean that systems 

of arbitrary shape that are made up of numerous different material regions. Each 

material could have constant properties or the properties could vary with spatial 

location. To these very desirable features a large amount of freedom in 

prescribing the loading conditions and in the post processing of items such as 

the stresses and strains etc. 

    The classes of problems include stress analysis, heat conduction, electrical 

fields, magnetic fields, ideal fluid flow (Akin, 2000). 
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In comparison with classical methods, it's clearly seen that:  

1. In classical methods exact equations are formed and exact solutions are 

obtained where as in finite element analysis exact equations are formed but 

approximate solutions are obtained. 

2. Solution have been obtained for few standard cases by classical method, 

where as solutions can be obtained for all problems by FEM. 

3. FEM can handle structures with anisotropic properties without any difficulty, 

in classical methods when material property is not isotropic, solution for 

problems become very difficulty. 

4. If the structure consists of more than one material, it is difficult to use 

classical methods, but FEM can be used without any difficult. 

5. Problems with material and geometric nonlinearities cannot be handle by 

classical methods. (Bhavikatti,  2005). 

2.2 Using MATLAB in Finite Element Programming 

     Understanding basic program structure of finite element analysis is important 

for better comprehension of the FEM. MATLAB is especially convenient to 

write and understand FEM programs because a MATLAB program manipulates 

matrices and vectors with ease. MATLAB is interactive software which has 

been used in various areas of engineering and scientific applications, It is not a 

computer language in the normal sense but it does most of the work of a 

computer language, One attractive aspect of MATLAB is that it is relatively 

easy to learn, and it does not require in-depth knowledge on operational 

principles of computer programming like compiling and linking in most of other 

programming languages. 

      The power of MATLAB is represented by the length and simplicity of the 

code; Numerical calculation in MATLAB uses collections of well written 

scientific/mathematical subroutines as LINPACK and EIPACK.  MATLAB  

Provides Graphical user interface (GUI) as well as three dimensional graphical 

animations (Young, 1997). 
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2.3 Sources of Nonlinearity in Structures 

1- Geometric Nonlinearities 

      Geometric nonlinearities represent the cases when the relations among 

displacement quantities, whether translations and/or rotation are nonlinear. They 

can also occur when rotations are large, even with small deformation (Kim, 

2014). 

2- Material Nonlinearities 

      Material nonlinearity represents the case when the relation between stress 

and strain is not linear. This relation is often referred to as the constitutive 

relation. In the linear system the elastic modulus matrix [D] is constant, when 

the stress-strain relation cannot be represented by a constant matrix, [D]. 

3- Force Nonlinearities 

       Force nonlinearity occurs when the applied forces depend on deformations. 

Since force is a vector, its magnitude or direction can change according to the 

deformation of a structure. Force nonlinearity is often accompanied by 

geometric nonlinearity. 

4-Kinematic Nonlinearity  

         Kinematic nonlinearity is also called boundary nonlinearity, as the 

displacement boundary conditions depend on the deformation of the structure. 

When the boundary conditions change as a function of displacements, both the 

displacements and boundary conditions are unknown. 
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2.4 Total Lagrangian and Updated Lagrangian Formulations  

 

Fig (2.1) Configuration change during deformation 

        In The total Lagrangian formulation (T.L.) refers all the static and 

kinematic variables to the initial configuration. The updated Lagrangian (U.L.) 

formulation is based on the same process as in the T.L. formulation, but it's 

refers all static and kinematic variables to the last in equilibrium configuration 

 Comparison of T.L and U.L formulations is listed as follows: 

1- In the T.L formulation, all derivatives are with respect to initial coordinates 

where as in U.L formulation, all derivatives are with respect to the current 

coordinates. 

2- In the U.L formulation the calculated updated stresses represent the actual 

physical stresses (true stresses)  

3- The same assumptions are made in the linearization and indeed almost the 

same finite element stiffness and force vectors are calculated 

4- The linear strain displacement matrix is complicated in the total Lagrangian 

formulation than the Updated Lagrangian formulation because the effect of the 

term involving the initial displacement. 

2.5 Stress and Strain Measures 

         The description of deformation and the measure of strain are essential parts 

of nonlinear finite element continuum mechanics. In general structural 
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components or continuum bodies will exhibit large strain when undergoing a 

geometrically nonlinear deformation process. 

The main Stress measures are (Bathe et. el., 1975): 

1- Engineering stress  

  Defined in terms of the original area and the original geometry 

2- Cauchy (true) stress 

       Define in terms of current area and current deformed geometry. 

3- 1st Piola-Kirchhoff stress  

        Defined in terms of the original area and the current deformed  

Geometry 

4- 2nd Piola- Kirchhoff stress 

    Defined in terms of the initial area and current deformed geometry for 

small strain, the 2nd Piola-Kirchhoff stress can be interpreted as the true stress 

related to local axes that rotate with the material. 

The corresponding Strain measures are: 

1- Engineering strain 

eE = (𝐿 − 𝐿0)/𝐿0                                                                                       (2.1) 

     A measure preferred by structural engineers, and work conjugate to the 

engineering stress measure. 

2- Logarithmic (natural)strain 

eL = 𝑙𝑛(
𝐿

𝐿0
)                                                                                                 (2.2) 

      A measure that is incremental in form and work conjugate to the Cauchy 

stress measure. 

      This measure is typically used for large strain analysis. 

3- Green Lagrange strain 

eG = (𝐿
2 − 𝐿0

2)/2𝐿0                                                                              (2.3) 

It is work conjugate to the 2nd Piola-Kirchhoff stress measure.  
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2.6 Brief description of the finite element method 

     In solid mechanics the unknown field variable is displacement. In a 

continuum, these unknowns are infinite. The finite element procedure reduces 

such unknowns to a finite number by dividing the solution region into small 

parts called elements and by expressing the unknown field variables in terms of 

assumed approximating shape functions within each element. The 

approximating functions are defined in terms of field variables of specified 

nodal points. Once these are found the field variables at any point can be found 

by using the interpolating shape functions. 

     After selecting elements nodal unknowns, the next steps in finite element 

analysis is to determine element properties for each element. The element 

stiffness matrix and load vector are given mathematically, by the relationship: 

           [K]e{𝛿}𝑒 = {𝐹}𝑒                                                                            (2.4) 

Where 

 [K]e is the element stiffness matrix 

{𝛿}𝑒 Is element nodal displacement vector and {𝐹}𝑒is element nodal force vector  

    The element of stiffness matrix 𝑘𝑖𝑗 represents the force in coordinate 

direction,I, due to a unit displacement in coordinate direction j. Four methods 

are available for formulating these element properties. direct approach, variation 

approach, weighted residual approach and energy balance approach. Any one of 

these methods can be used for assembling element properties. In solid 

mechanics variation approach is commonly employed to assemble stiffness 

matrix and nodal force vector (Bhavikatti, 2005). 

       Element properties are used to assemble global properties/ structural 

properties to get system equation; 

                  [𝐾]{𝛿} = {𝐹}                                                                                (2.5) 

Where 

 [K] Is the global stiffness matrix 

{𝛿} Is global nodal displacement vector and {𝐹}is global nodal force vector  
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   Then the boundary conditions are imposed. And the solution of these 

simultaneous equations gives the nodal unknowns. Using these nodal values 

additional calculations are made to get the required gradients e.g. stresses and 

strains.  

       Thus, the steps involved in the finite element analysis are: 

1. Select suitable field variables and the elements. 

2. Discritize the continua 

3. Select interpolation functions. 

4. Find the element properties. 

5. Assemble element properties to get global properties. 

6. Impose the boundary conditions. 

7. Solve the system of equations to get the nodal unknowns. 

8. Make additional calculations to get the required values. 

2.7 Previous Studies 

    There are many applications of plane stress/strain element in different fields 

of analysis. 

      Pida, Yang and Soedel, 1989 used large strain 8-node plane stress 

Isoparametric finite element for prediction of rubber fraction. The formulation is 

based on total Lagrangian and incremental formulation. 

     Mohamed, 1983 used both Green strain and engineering strain measures to 

solve thin beam problems. He also, proposed total Lagrangian modified 

incremental equations for a two-dimensional state of stress based on the 

engineering strains. 

           Cook, 1995 stated that geometric nonlinearity (as opposed to material 

nonlinearity) arises when deformations are large enough to significantly affect 

applied load. The goal of analysis is to construct the nonlinear relation between 

applied load and the resulting deformation. He assumed that the surfaces are 

sufficiently thin that large displacements are possible without yielding of the 

material. 
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         Zienkiewicz, 2000 introduced the geometric nonlinear analysis using the 

Lagrangian formulation, with incremental procedure combined with Newton-

Raphson iterative techniques. 

         Mohammed, 2009 performed the geometric nonlinear analysis of 

isoparametric Quadrilateral Elements and the formulation of 4-noded 

quadrilateral isoparametric element. He also developed finite element analysis 

code to model the geometric nonlinear solid element, and verified of the code by 

some examples and comparison with analytical solution 

       Mohamed and Adam, 2003 presented a finite element formulation for large 

deformation analysis of shells; the three-dimension 8-noded isoparametric finite 

element was adopted. A Total Lagrangian formulation by using Engineering 

strain and Green strain were used in derivation of the geometric element 

stiffness matrix. The nonlinear equilibrium equations were solved by combined 

incremental load and Newton-Raphson method. 

         Mellierr, 1969 presented a thesis on a finite element analysis for 

geometrically nonlinear large displacement problems in thin elastic plates and 

shells. In his study only stable equilibrium configuration was considered 

Engineering strains were assumed to remain small, the geometrical stiffness of 

the resulting eighteen degree of freedom triangular element was derived from a 

purely geometrical stand point. The geometrical stiffness was linked with the 

standard small displacement stiffness and was used in the linear incremental 

approach to obtain numerical solution to the large displacement problems. 

        Akasha and Mohamed, 2012 developed a formulation for geometric 

nonlinear plane stress/strain based on logarithmic strain. That formulation was 

coupled with modifying a formulation based on a engineering strain. A 

geometric nonlinear Total Lagrangian formulation was adopted for two –

dimensional elasticity using 4-node plane finite elements. The solution of 

nonlinear equation was obtained by Newton-Raphson method. 

       AbdElazeez, 2015 developed a formulation for geometric nonlinear finite 

element of cantilever beam based on Green strain. The formulation was 
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implemented on computer by using MATLAB program. The incremental 

method was used in solving nonlinear equilibrium equations.  

2.8 Nonlinear solution techniques 

2.8.1 Introduction 

     The finite element formulation for nonlinear problems requires to solution 

techniques to solve the system of nonlinear equations. The solution procedure 

may even influence the formulation of the problem. 

Different methods are available according to the way to calculate the 

displacement increment, as follows: 

2.9.2 Newton-Raphson Method 

       This method is popular in numerical analysis to find the roots of nonlinear 

equations. Basically, most numerical methods for solving a system of nonlinear 

equations assume an initial estimate,𝒖𝟎 and find its increment,∆𝒖 so that new 

estimate,,𝒖𝟎 + ∆𝒖 , is close to the solution to equation (3.33). In order to find 

the increment, the nonlinear equations are locally approximated by linear once. 

This process is repeated until the original nonlinear equations are satisfied as 

shown in Fig (2.2).  

 

Fig (2.2) Newton-Raphson method 
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2.9.3 Modified Newton-Raphson Method 

       At the iteration process the Newton-Raphson Method requires forming the 

Jacobian matrix and the system of linearized equations should be solved for each 

increment of solution. Computationally, these are expensive tasks. In the finite 

element framework, building the tangent stiffness matrix and solving the matrix 

equation are the two most computationally intensive procedures. The modified 

Newton-Raphson method is an attempt to make these procedures less expensive. 

Instead of formulating a new tangent stiffness matrix at each iteration, the initial 

tangent stiffness matrix is repeatedly used in all iterations as shown in Fig (2.3). 

 

Fig (2.3) Modified Newton-Raphson method 

2.9.4 Incremental Force Method 

        The idea of the incremental force method is to apply the load in increments. 

Within each load increment, the procedure is the same as the standard Newton-

Raphson method. The next load increment is applied after the solution 

corresponding to the current load increment has converged. The converged 

solution at each increment is then used as an initial estimate of the next 

increment as shown in Fig (2.4). 
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Fig (2.4) Incremental force method 

         The following chapter presents the finite element formulation of 4- node 

element and theory of geometrically nonlinear plane stress/strain problems.  
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Chapter Three 

Geometrically Non-linear Finite Element Analysis of Plane 

Stress/Strain Problems 

3.1 Introduction 

       Geometric nonlinearity arises when change in geometry whether large or 

small, has a significant effect on the load deformation behavior. Geometric 

nonlinearity includes deformation-dependent boundary conditions and loading. 

      As a direct consequence of geometric nonlinearity, the stiffness matrix of the 

finite element model is not constant. It is a function of the residual displacement. 

Therefore, an iterative procedure is required to obtain the equilibrium state.  

        For a given load, there are two main Lagrangian formulations depending on 

the configuration to which the variables involved in each step are referred. 

These are: 

1. The Total Lagrangian formulation where all variables are referred to 

initial configuration in Fig (3.1). 

  

 

 

Fig (3.1) Total Lagrangian 

2. The Updated Lagrangian formulation where all the variables are 

referred to the configuration at the beginning of the load step 

considered in Fig (3.2). 

 

Fig (3.2) Updated Lagrangian 
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3.2 Formulations of The 4-node Isoparametric Plane Stress/ 

Strain Element: 

 3.2.1 Introduction 

      The bilinear quadratic element as shown in Fig (3.3) and Fig (4.3) is a two 

dimensional finite element with both local and global coordinates. It is 

characterized by linear shape functions in each of the x and y directions. This 

element can be used for plane stress or plain strain problems in elasticity. It is a 

generalization of the 4-node rectangular element (Pattan, 2008). 

       A Total Lagrangian formulation based on 4-node isoparametric plane 

stress/strain using Green's strain with 2nd Piola-Kirchhoff is adopted in this 

chapter. 

 

 

 

 

 

 

 

Fig (3.3) 4-node Isoparametric Element 
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Fig (3.4) 4-node Gauss points: (a) 2x2 rule,(b) Gauss element 

3.2.2 Stress-Strain relations: 

          In the two-dimensions the stresses and stain components are defined as 

(Akasha, 2009 and Mohamed et. el., 2013): 

 {ε} = {

εx
εy
γxy
}              For Green's strain                                                           (3.1) 

Consider the material is an isotropic, the stresses are defined by: 

{𝜎} = {

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

} = [𝐷]{𝜀}  For Green's strain                                                        (3.2)                                     

Where D is elasticity matrix, in case of isotropic material,  

[𝐷] =
𝐸

(1+𝑣)(1−2𝑣)
[

1 − 𝑣 𝑣 0
𝑣 1 − 𝑣 0

0 0
1−2𝑣

2

]      For plane strain case               (3.3a) 

[𝐷] =
𝐸

1−𝑣2
[

1 𝑣 0
𝑣 1 0

0 0
1−𝑣

2

]                      For plane stress case                         (3.3b)                 

It is using the shape function for the geometry for defining the geometry at any 

point within the element in terms of nodal vectors as: 

𝑥 = ∑ 𝑁𝑖𝑥𝑖
4
𝑖=1     ,     𝑦 = ∑ 𝑁𝑖𝑦𝑖

4
𝑖=1                                                                 (3.4a) 
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{
𝑥
𝑦} = [

𝑁1 0
0 𝑁1

𝑁2 0 𝑁3
0 𝑁2 0

0 𝑁4 0
𝑁3 0 𝑁4

]

{
 
 
 

 
 
 
𝑥1
𝑦1
𝑥2
𝑦2
𝑥3
𝑦3
𝑥4
𝑦4}
 
 
 

 
 
 

 =[𝑁]{𝑋𝑒}              (3.4b)      

Where the  𝑁𝑖 the shape function element as: 

𝑁1 =
(1−𝑟)(1−𝑠)

4
, 𝑁2 =

(1+𝑟)(1−𝑠)

4
, 𝑁3 =

(1+𝑟)(1+𝑠)

4
, 𝑁4 =

(1−𝑟)(1+𝑠)

4
                (3.5) 

since 𝑟 and 𝑠 are the natural coordinates. 

The displacement at any point is defined in terms of nodal displacements as: 

{
𝑢
𝑣
} = [

𝑁1 0
0 𝑁1

𝑁2 0 𝑁3
0 𝑁2 0

0 𝑁4 0
𝑁3 0 𝑁4

]

{
 
 
 

 
 
 
𝑢1
𝑣1
𝑢2
𝑣2
𝑢3
𝑣3
𝑢4
𝑣4}
 
 
 

 
 
 

   =[𝑁]{𝑑𝑒}              (3.6) 

The relation between the Cartesian and natural coordinates can be obtained 

using chain rule of partial differential as: 

𝜕𝑁𝑖

𝜕𝑟
=

𝜕𝑁𝑖

𝜕𝑥

𝜕𝑥

𝜕𝑟
+
𝜕𝑁𝑖

𝜕𝑦

𝜕𝑥

𝜕𝑟

𝜕𝑁𝑖

𝜕𝑠
=

𝜕𝑁𝑖

𝜕𝑥

𝜕𝑦

𝜕𝑠
+
𝜕𝑁𝑖

𝜕𝑦

𝜕𝑦

𝜕𝑠

               Or                                                            

{

𝜕

𝜕𝑟
𝜕

𝜕𝑠

} = {

𝜕𝑥

𝜕𝑟

𝜕𝑦

𝜕𝑟
𝜕𝑥

𝜕𝑠

𝜕𝑦

𝜕𝑠

}{

𝜕

𝜕𝑥
𝜕

𝜕𝑦

} = [𝐽] {

𝜕

𝜕𝑥
𝜕

𝜕𝑦

}                                                                (3.7)  

Where  [𝐽] is Jacobian matrix 

It relates derivatives of function in local coordinate system to derivative in 

global coordinate system which obtained by solving (3.7) as: 
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{

𝜕

𝜕𝑥
𝜕

𝜕𝑦

} = [𝐽]−1 {

𝜕

𝜕𝑟
𝜕

𝜕𝑠

}                                                                                        (3.8)                                                                                                                                                                      

Since  𝑁𝑖  is function in natural coordinates (𝑟,𝑠) the Jacobian matrix can be 

evaluated as: 

[𝐽𝑒] = [

𝜕𝑥

𝜕𝑟

𝜕𝑦

𝜕𝑟
𝜕𝑥

𝜕𝑠

𝜕𝑦

𝜕𝑠

] =

[
 
 
 
 
 
∑

𝜕𝑁𝑖
𝜕𝑟

4

𝑖=1

𝑥𝑒𝑖 ∑
𝜕𝑁𝑖
𝜕𝑟

𝑦𝑒
𝑖

4

𝑖=1

∑
𝜕𝑁𝑖
𝜕𝑠

4

𝑖=1

𝑥𝑒𝑖 ∑
𝜕𝑁𝑖
𝜕𝑠

4

𝑖=1

𝑦𝑒
𝑖
]
 
 
 
 
 

 

[𝐽] = [

𝜕𝑁1

𝜕𝑟

𝜕𝑁2

𝜕𝑟
𝜕𝑁1

𝜕𝑠

𝜕𝑁2

𝜕𝑠

𝜕𝑁3

𝜕𝑟

𝜕𝑁4

𝜕𝑟
𝜕𝑁3

𝜕𝑠

𝜕𝑁4

𝜕𝑠

] [

𝑥1 𝑦1
𝑥2 𝑦2
𝑥3 𝑦3
𝑥4 𝑦4

]                                                          (3.9) 

 

Using the values of 𝑁𝑖 and substituting their derivatives in (3.9) to gives: 

[𝐽] = [

−(1−𝑠)

4

(1−𝑠)

4
−(1−𝑟)

4

−(1+𝑟)

4

(1+𝑠)

4

−(1+𝑠)

4
(1+𝑟)

4

(1+𝑟)

4

] [

𝑥1 𝑦1
𝑥2 𝑦2
𝑥3 𝑦3
𝑥4 𝑦4

]                                          (3.10) 

The inverse of Jacobin  [𝐽]−1 = [

𝜕𝑟

𝜕𝑥

𝜕𝑠

𝜕𝑥
𝜕𝑟

𝜕𝑦

𝜕𝑠

𝜕𝑦

] =  
1

det [𝐽]
[

𝜕𝑦

𝜕𝑟

−𝜕𝑦

𝜕𝑟
−𝜕𝑥

𝜕𝑠

𝜕𝑥

𝜕𝑠

] 

[𝐽]−1 = [𝐽∗] = [
𝐽∗11 𝐽∗12
𝐽∗21 𝐽∗22

] , where   det [J] = 
𝜕𝑥

𝜕𝑟
×
𝜕𝑦

𝜕𝑠
−
𝜕𝑦

𝜕𝑟
×
𝜕𝑥

𝜕𝑠
 

And  𝐽∗11, 𝐽
∗
12, 𝐽

∗
21 𝑎𝑛𝑑  𝐽

∗
22  are the elements of Jacobin inverse matrix 

The derivatives of displacement in Cartesian coordinates can be expressed in 

terms of natural coordinates as: 
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{
  
 

  
 
𝜕𝑢

𝜕𝑥
𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑥
𝜕𝑣

𝜕𝑦}
  
 

  
 

=

[
 
 
 
 
𝐽∗11 𝐽∗12
𝐽∗21 𝐽∗22

0 0
0 0

0 0
0 0

𝐽∗11 𝐽∗12
𝐽∗21 𝐽∗22]

 
 
 
 

{
  
 

  
 
𝜕𝑢

𝜕𝑟
𝜕𝑢

𝜕𝑠
𝜕𝑣

𝜕𝑟
𝜕𝑣

𝜕𝑠}
  
 

  
 

                                                     (3.11) 

 

3.2.3 Incremental Formulations for Geometrically Nonlinear Plane Stress/ 

Strain Element 

The Green strains  𝜀 and their variation 𝛿𝜀 are defined in terms of the nodal 

variables in finite element representation as (Kim, 2014 and Bathe, et. el., 1975): 

{ε} = {

εx
εy
γxy
} =

{
 
 

 
 

𝜕𝑢

𝜕𝑥
𝜕𝑣

𝜕𝑦

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥}
 
 

 
 

+
1

2

[
 
 
 
 
𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑦
0

0 0
𝜕𝑢

𝜕𝑦

𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑦

𝜕𝑢

𝜕𝑥

0
𝜕𝑣

𝜕𝑥
𝜕𝑣

𝜕𝑥]
 
 
 
 

{
  
 

  
 
𝜕𝑢

𝜕𝑥
𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑥
𝜕𝑣

𝜕𝑦}
  
 

  
 

                                (3.12) 

Or  {𝜀} = {𝜀0} + {𝜀𝐿}                                                                                     (3.13)                                                                                              

  Where {𝜀0} is the linear strain vector,{𝜀𝐿} is non-linear strain component 

            Let             [𝐴] =

[
 
 
 
 
𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑦
0

0 0
𝜕𝑢

𝜕𝑦

𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑦

𝜕𝑢

𝜕𝑥

0
𝜕𝑣

𝜕𝑥
𝜕𝑣

𝜕𝑥]
 
 
 
 

                                                 (3.14)                                                   

Where [A] is the matrix containing displacement derivatives w. r. t Cartesian 

coordinates 
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And                         {𝜃} =

{
  
 

  
 
𝜕𝑢

𝜕𝑥
𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑥
𝜕𝑣

𝜕𝑦}
  
 

  
 

                                                                  (3.15) 

Where: 

 {𝜃} Is vector containing displacement derivatives 𝑤.𝑟.𝑡. Cartesian Coordinates. 

Then the non-linear strain is: 

             {𝜀𝐿} =
1

2
[𝐴]{𝜃}                                                                               (3.16) 

The displacements are defined in terms of nodal parameters using the 

appropriate shape functions, thus 

𝑢 = ∑ 𝑁𝑖𝑢𝑖
4
𝑖=1   𝑎𝑛𝑑  𝑣 = ∑ 𝑁𝑖𝑣𝑖

4
𝑖=1        𝑜𝑟  {

𝑢
𝑣
} = [𝑁]{𝑎}                          (3.17)   

And there derivatives:                              

{𝜃} = [𝐺]{𝑎}                                                                                                  (3.18) 

Where: 

{𝑎} = [𝑢1 𝑣1 𝑢2 𝑣2 𝑢3 𝑣3 𝑢4 𝑣4]𝑇                                            (3.19)                                             

Is vector of nodal displacements and: 

                  [G] =

[
 
 
 
 
 
 
𝜕𝑁1

𝜕𝑥
0

𝜕𝑁2

𝜕𝑥
0

𝜕𝑁3

𝜕𝑥
0

𝜕𝑁4

𝜕𝑥
0

𝜕𝑁1

𝜕𝑦
0

𝜕𝑁2

𝜕𝑦
0

𝜕𝑁3

𝜕𝑦
0

𝜕𝑁4

𝜕𝑦
0

0
0

𝜕𝑁1

𝜕𝑥
𝜕𝑁1

𝜕𝑦

0
0

𝜕𝑁2

𝜕𝑥
𝜕𝑁2

𝜕𝑦

0
0

𝜕𝑁3

𝜕𝑥
𝜕𝑁3

𝜕𝑦

0
0

𝜕𝑁4

𝜕𝑥
𝜕𝑁4

𝜕𝑦 ]
 
 
 
 
 
 

                          (3.20)                                                                                                                  

 [𝐺]  Is the matrix containing shape function derivatives w.r.t. Cartesian 

coordinates. 
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 From equations (3.12) and (3.17) {𝜀0}  can be obtained as: 

{𝜀0} =

{
 
 

 
 

𝜕𝑢

𝜕𝑥
𝜕𝑣

𝜕𝑦

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥}
 
 

 
 

=

[
 
 
 
 
𝜕

𝜕𝑥
0

0
𝜕

𝜕𝑦

𝜕

𝜕𝑦

𝜕

𝜕𝑥]
 
 
 
 

{
𝑢
𝑣
}                                                                (3.21) 

       𝑜𝑟 {𝜀0} = [B0]{𝑎} 

 In the Total Lagrangian formulations, the infinitesimal strain-displacement 

transformation [B0] becomes (Kim, 2014 and Bathe, et. el., 1975): 

[B0] =

[
 
 
 
 
𝜕𝑁1

𝜕𝑥
0

𝜕𝑁2

𝜕𝑥
0

𝜕𝑁3

𝜕𝑥
0

𝜕𝑁4

𝜕𝑥
0

0
𝜕𝑁1

𝜕𝑦
0

𝜕𝑁21

𝜕𝑦
0

𝜕𝑁3

𝜕𝑦
0

𝜕𝑁3

𝜕𝑦

𝜕𝑁1

𝜕𝑦

𝜕𝑁1

𝜕𝑥

𝜕𝑁2

𝜕𝑦

𝜕𝑁2

𝜕𝑥

𝜕𝑁3

𝜕𝑦

𝜕𝑁3

𝜕𝑥

𝜕𝑁4

𝜕𝑦

𝜕𝑁4

𝜕𝑥 ]
 
 
 
 

                                  (3.22) 

Taking the variation of equation (3.16) gives: 

𝛿{𝜀𝐿} =
1

2
[𝐴]𝛿{𝜃} +

1

2
[𝐴]𝛿{𝜃} = [𝐴]𝛿{𝜃} = [𝐴][𝐺]𝛿{𝑎} = [𝐵𝐿]𝛿{𝑎}       (3.23)                                           

In which  

[𝐵𝐿] = [𝐴][𝐺]      Or  

The linear strain matrix  [𝐵𝐿] in total Lagrangian formulation becomes (Kim, 

2014 and Bathe, et .el., 1975): 

[BL]

=

[
 
 
 
 
 
 
 
 𝐹11

𝜕𝑁1
𝜕𝑥

𝐹21
𝜕𝑁1
𝜕𝑥

𝐹11
𝜕𝑁2
𝜕𝑥

𝐹21
𝜕𝑁2
𝜕𝑥

𝐹11
𝜕𝑁3
𝜕𝑥

𝐹21
𝜕𝑁3
𝜕𝑥

𝐹11
𝜕𝑁4
𝜕𝑥

𝐹21
𝜕𝑁4
𝜕𝑥

𝐹12
𝜕𝑁1
𝜕𝑦

𝐹22
𝜕𝑁1
𝜕𝑦

𝐹12
𝜕𝑁2
𝜕𝑦

𝐹22
𝜕𝑁2
𝜕𝑦

𝐹12
𝜕𝑁3
𝜕𝑦

𝐹22
𝜕𝑁3
𝜕𝑦

𝐹12
𝜕𝑁4
𝜕𝑦

𝐹22
𝜕𝑁4
𝜕𝑦

(𝐹11
𝜕𝑁1
𝜕𝑦

+𝐹12
𝜕𝑁1
𝜕𝑥

)

(𝐹21
𝜕𝑁1
𝜕𝑦

+𝐹22
𝜕𝑁1
𝜕𝑥

)

(𝐹11
𝜕𝑁2
𝜕𝑦

+𝐹12
𝜕𝑁2
𝜕𝑥

)

(𝐹21
𝜕𝑁2
𝜕𝑦

+𝐹22
𝜕𝑁2
𝜕𝑥

)

(𝐹11
𝜕𝑁3
𝜕𝑦

+𝐹12
𝜕𝑁3
𝜕𝑥

)

(𝐹21
𝜕𝑁3
𝜕𝑦

+𝐹22
𝜕𝑁3
𝜕𝑥

)

𝐹11
𝜕𝑁4
𝜕𝑦

+𝐹12
𝜕𝑁4
𝜕𝑥

)

𝐹21
𝜕𝑁4
𝜕𝑦

+𝐹22
𝜕𝑁1
𝜕𝑥

)]
 
 
 
 
 
 
 
 

 

                                                                                                       (3.24) 
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Where {Fij} is the deformation gradient vector which can be written as: 

{𝐹} = {𝐹11 𝐹12 𝐹21  𝐹22}
𝑇 = {1 +

𝜕𝑢

𝜕𝑥
     

𝜕𝑢

𝜕𝑦
   
  𝜕𝑣

𝜕𝑥
    1 +

𝜕𝑣

𝜕𝑦
}𝑇                          (3.25) 

Using equations (3.22) and (3.23) and taking the variation of equation (3.13) 

gives: 

𝛿{𝜀} = [𝐵0]𝛿{𝑎} + [𝐵𝐿]𝛿{𝑎} = ([𝐵0] + [𝐵𝐿])𝛿{𝑎} = [𝐵]𝛿{𝑎}                  (3.26)                                 

In which  

[𝐵] = [𝐵0] + [𝐵𝐿]                                                                                         (3.27) 

3.3 Formulation of Geometrically Nonlinear Plane Stress/Strain 

Element: 

       In this section the 2nd Piola-Kirchhoff stresses and the Green Lagrangian 

strain are used in total Lagrangian formulations. The solution of the resulting 

nonlinear equations is obtained by incremental and Newton-Raphson method. 

3.3.1 Stress-Strain relations 

[𝜎] = {

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

} =   [𝐷] {

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦
}       𝑜𝑟    [𝐷]{𝜀}                                             (3.28) 

Where [𝐷] is given by (3.3) for plane stress and plane strain.  

For Green's strain and 2nd Piola-Kirchhoff stresses 
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3.3.2 Strain-Displacement Relations: 

 

 

 

 

 

 

 

 

Fig (3.5) Deformed and Undeformed shape 

          Referring to Fig (3.4), the position vector for point P(x, y) after 

deformation is: 

�⃗� = (𝑥 + 𝑢)𝑖 + (𝑦 + 𝑣)𝑗                                                                              (3.29) 

In which 𝑢 and 𝑣 are components of displacement in the global axes directions 

The displacement gradient vectors are given from equation (3.29) by: 

𝑔 𝑥 =
𝜕𝑅⃗⃗⃗⃗  ⃗

𝜕𝑥
= (1 +

𝜕𝑢

𝜕𝑥
) 𝑖 +

𝜕𝑣

𝜕𝑥
𝑗 

𝑔 𝑦 =
𝜕𝑅⃗⃗⃗⃗  ⃗

𝜕𝑦
= (

𝜕𝑢

𝜕𝑦
) 𝑖 + (1 +

𝜕𝑣

𝜕𝑥
)𝑗                                                                       (3.30) 

3.3.3 Green Lagrangian Strain 

      The Green's strains are defined by a vector: 

𝑣  �⃗�  

𝑟  

P 

X

,i 

Y

,j 

v

j 

g

x 

y 

g

y 

Undeformed

 
x

i 

Deformed 

u

i 

P 

 
P 
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{ε} = {

εx
εy
γxy
} = {

1

2
(gx. gx − 1)

1

2
(gy. gy − 1)

gx. gy

}                                                                    (3.31)                                                             

From equation (3.30) 

gx. gx = [(1 +
𝜕𝑢

𝜕𝑥
) 𝑖 +

𝜕𝑣

𝜕𝑥
𝑗] . [(1 +

𝜕𝑢

𝜕𝑥
) 𝑖 +

𝜕𝑣

𝜕𝑥
𝑗] = (1 +

𝜕𝑢

𝜕𝑥
)
2

+ (
𝜕𝑣

𝜕𝑥
)
2

= 1 + 2
𝜕𝑢

𝜕𝑥
+ (

𝜕𝑢

𝜕𝑥
)
2

+ (
𝜕𝑣

𝜕𝑥
)
2

 

Similarly: 

gy. gy = [(
𝜕𝑢

𝜕𝑦
) 𝑖 + (1 +

𝜕𝑣

𝜕𝑦
) 𝑗] . [(

𝜕𝑢

𝜕𝑦
) 𝑖 + (1 +

𝜕𝑣

𝜕𝑥
) 𝑗] = (

𝜕𝑢

𝜕𝑦
)
2

+ (1 +
𝜕𝑣

𝜕𝑦
)
2

= 1 + 2
𝜕𝑣

𝜕𝑦
+ (

𝜕𝑣

𝜕𝑦
)
2

+ (
𝜕𝑢

𝜕𝑦
)
2

 

And 

gx. gy = [(1 +
𝜕𝑢

𝜕𝑥
) 𝑖 +

𝜕𝑣

𝜕𝑥
𝑗] . [(

𝜕𝑢

𝜕𝑦
) 𝑖 + (1 +

𝜕𝑣

𝜕𝑦
) 𝑗]

= (1 +
𝜕𝑢

𝜕𝑥
)
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
(1 +

𝜕𝑣

𝜕𝑦
) 

                           =
𝜕𝑢

𝜕𝑦
+
𝜕𝑢

𝜕𝑦

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑥
+
𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦
 

                           =
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
+
𝜕𝑢

𝜕𝑦

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦
 

Subsisting in equation (3.31) the strains become: 

{ε} = {

εx
εy
γxy
} =

[
 
 
 
 
 
𝜕𝑢

𝜕𝑥
+
1

2
(
𝜕𝑢

𝜕𝑥
)
2
+
1

2
(
𝜕𝑣

𝜕𝑥
)
2

𝜕𝑣

𝜕𝑦
+
1

2
(
𝜕𝑣

𝜕𝑦
)
2
+
1

2
(
𝜕𝑢

𝜕𝑦
)
2

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
+
𝜕𝑢

𝜕𝑦

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑥

𝜕𝑣

𝜕𝑦]
 
 
 
 
 

                                                       (3.32) 
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3.3.4 Tangent Stiffness Matrix due to Green Strains: 

         From  virtual work, the equilibrium equations can be written as: 

{𝜑} = ∫ [𝐵]𝑇{𝜎}𝑑𝑣
𝑣

− {𝑓} = 0                                                                    (3.33)                                                                            

Where: 

{𝜑} Is the difference between external and internal generalized forces  

{𝑓} Is the vector of external forces 

{𝜎} Is the 2nd Piola-Kirchhoff stresses vector 

The stiffness matrix is obtained by taking the variation of equation (3.33) w.r.t 

the nodal variables {a} 

𝛿{𝜑} = ∫ [𝐵]𝑇𝛿{𝜎}𝑑𝑣
𝑣

+ ∫ 𝛿[𝐵]𝑇{𝜎}𝑑𝑣
𝑣

                                                   (3.34) 

The discertized element of volume 𝑑𝑣 = ℎ 𝑑𝑒𝑡 𝐽 𝑑𝑟 𝑑𝑠 

Where ℎ Is the thickness of the element 

Using equation (3.26) and (3.24) 

{𝜎} = {

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

} =   [𝐷] {

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦
}       𝑜𝑟    {𝜎} = [𝐷]{𝜀} 

And 

𝛿{𝜎} = [𝐷]𝛿{𝜀} = [𝐷][𝐵]𝛿{𝑎}  

Therefore  ∫ [𝐵]𝑇𝛿{𝜎}𝑑𝑣
𝑣

= (∫ [𝐵]𝑇[𝐷][𝐵]𝑑𝑣
𝑣

) 𝛿{𝑎} = ([𝐾0] + [𝐾𝐿])𝛿{𝑎}         

(3.35) 

Where the matrix [𝐾0] represents to the small displacement stiffness matrix and 

is given by: 
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[𝐾0] = ∫[𝐵0]
𝑇[𝐷][𝐵0]𝑑𝑣                                                                              (3.36)                                                                                    

And the matrix  [𝐾𝐿] = ∫([𝐵0]
𝑇[𝐷][𝐵𝐿] + [𝐵𝐿]

𝑇[𝐷][𝐵0] + [𝐵𝐿][𝐷][𝐵𝐿])𝑑𝑣         

(3.37) 

Where [𝐾𝐿] Is the linear strain stiffness matrix 

From equation (3.25) 

         [𝐵]𝑇 = [𝐵0]
𝑇 + [𝐵𝐿]

𝑇 

By taking the variation of [𝐵]𝑇 and using equation (3.23) we have: 

𝛿[𝐵]𝑇 = 𝛿[𝐵𝐿]
𝑇 = [𝐺]𝑇𝛿[𝐴]𝑇 

Therefore   

∫ 𝛿[𝐵]𝑇{𝜎}𝑑𝑣
𝑣

= ∫ [𝐺]𝑇𝛿[𝐴]𝑇{𝜎}𝑑𝑣
𝑣

= [𝐾𝜎]𝛿{𝑎}                                       

(3.38)                                                   

Where [𝐾𝜎] is a symmetric matrix depending on the stress level and is known as 

the initial stress matrix 

Using equations (3.26), (3.14) & (3.18) 
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[𝐴]𝑇{𝜎} =

[
 
 
 
 
 
 
 
 
𝜕𝑢

𝜕𝑥
0

𝜕𝑢

𝜕𝑦
𝜕𝑣

𝜕𝑥
0

𝜕𝑣

𝜕𝑦

0
𝜕𝑢

𝜕𝑦

𝜕𝑢

𝜕𝑥

0
𝜕𝑣

𝜕𝑦

𝜕𝑣

𝜕𝑥]
 
 
 
 
 
 
 
 

{

𝜎𝑥
𝜎𝑦
𝛾𝑥𝑦
} =

[
 
 
 
 
 
 
 
 
𝜕𝑢

𝜕𝑥
𝜎𝑥 +

𝜕𝑢

𝜕𝑦
𝛾𝑥𝑦

𝜕𝑣

𝜕𝑥
𝜎𝑥 +

𝜕𝑣

𝜕𝑦
𝛾𝑥𝑦

𝜕𝑢

𝜕𝑦
𝜎𝑦 +

𝜕𝑢

𝜕𝑥
𝛾𝑥𝑦

𝜕𝑣

𝜕𝑦
𝜎𝑦 +

𝜕𝑣

𝜕𝑥
𝛾𝑥𝑦]

 
 
 
 
 
 
 
 

=

[
 
 
 
 
𝜎𝑥 0 𝛾𝑥𝑦 0

0 𝜎𝑥 0 𝛾𝑥𝑦
𝛾𝑥𝑦 0 𝜎𝑦 0

0 𝛾𝑥𝑦 0 𝜎𝑦 ]
 
 
 
 

{
 
 
 
 

 
 
 
 
𝜕𝑢

𝜕𝑥
𝜕𝑢

𝜕𝑦
𝜕𝑣

𝜕𝑥
𝜕𝑣

𝜕𝑦}
 
 
 
 

 
 
 
 

 

Or  [𝐴]𝑇{𝜎} = [𝑀]{𝜃} = [𝑀][𝐺]{𝑎}                                                             (3.39) 

Where [𝑀] is initial stress matrix and is given by: 

[𝑀] = [
𝜎𝑥[𝐼] 𝜏𝑥𝑦[𝐼]

𝜏𝑥𝑦[𝐼] 𝜎𝑦[𝐼]
] , [𝐼] = [

1 0
0 1

]                                                        (3.40)                                                  

Taking the variation of Eq. (3.39) gives 

𝛿[𝐴]𝑇{𝜎} = [𝑀][𝐺]𝛿{𝑎}                                                                               (3.41) 

Substitute equation (3.40) in (3.38) to get: 

∫ [𝐺]𝑇𝛿[𝐴]𝑇{𝜎}𝑑𝑣
𝑣

= (∫ [𝐺]𝑇[𝑀]{𝐺}𝑑𝑣
𝑣

) 𝛿{𝑎} = [𝐾𝜎]𝛿{𝑎}                    (3.42) 

Therefore, [𝐾𝜎] = ∫ [𝐺]𝑇[𝑀][𝐺]𝑑𝑣
𝑣

                                                           (3.43) 

Where [G] is the Non-linear strain-displacement transformation matrix written 

as: 
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[G] =

[
 
 
 
 
 
 
𝜕𝑁1

𝜕𝑥
0

𝜕𝑁2

𝜕𝑥
0

𝜕𝑁3

𝜕𝑥
0

𝜕𝑁4

𝜕𝑥
0

𝜕𝑁1

𝜕𝑦
0

𝜕𝑁2

𝜕𝑦
0

𝜕𝑁3

𝜕𝑦
0

𝜕𝑁4

𝜕𝑦
0

0
0

𝜕𝑁1

𝜕𝑥
𝜕𝑁1

𝜕𝑦

0
0

𝜕𝑁2

𝜕𝑥
𝜕𝑁2

𝜕𝑦

0
0

𝜕𝑁3

𝜕𝑥
𝜕𝑁3

𝜕𝑦

0
0

𝜕𝑁4

𝜕𝑥
𝜕𝑁4

𝜕𝑦 ]
 
 
 
 
 
 

                                           (3.44)                                                               

From equations (3.35), (3.38) & (3.34) 

         𝛿{𝜑} = ([𝐾0] + [𝐾𝐿] + [𝐾𝜎])𝛿{𝑎} = [𝐾𝑇]𝛿{𝑎}  

Where: 

[𝐾𝑇] = [𝐾0] + [𝐾𝐿] + [𝐾𝜎]                                                                   (3.45) 

Is the total tangent stiffness matrix 

3.4 Incremental Equilibrium Equations 

From equation (3.45) the tangent stiffness matrix takes the form: 

[𝐾𝑇] = [𝐾0] + [𝐾𝐿(𝑎0)] + [𝐾𝜎] 

Where: 

[𝐾0] + [𝐾𝐿(𝑎0)] = ∫ [𝐵]𝑇[𝐷][𝐵]𝑑𝑣
𝑣

                                                            (3.46) 

[𝐾𝜎] = ∫ [𝐺]𝑇[𝑀][𝐺]𝑑𝑣
𝑣

                                                                              (3.47) 

The displacement increments {∆𝑎0
𝑖 } are evaluated by using [𝐾𝑇]and residuals as: 

{∆𝑎0
𝑖 } = −[𝐾𝑇]

−1{𝜑}𝑖                                                                                   (3.48) 

The strain increments are defined by: 

{∆𝜀}𝑖 = [[𝐵0] + [𝐵𝐿(𝑎0
𝑖 )] +

1

2
[𝐵𝐿(∆𝑎0

𝑖 )]] {∆𝑎0
𝑖 }                                         (3.49) 

The stresses increments are given by: 
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{∆𝑆0
𝑖} = [𝐷]{∆𝜀0

𝑖 }                                                                                          (3.50) 

The total stresses are: 

{𝑆0
𝑖+1} = {𝑆0

𝑖} + {∆𝑆0
𝑖}                                                                                   (3.51) 

The nodal residual forces for the next iteration are evaluated as flows: 

{−𝜑𝑖+1} = {𝑅} − ∫ [𝐵]𝑇{𝑆𝑖+1}𝑑𝑣
𝑣

                                                              (3.52) 

And  

[𝐵] = [𝐵0] + [𝐵𝐿(𝑎0
𝑖+1)]                                                                              (3.53)  
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Chapter four 

Implementation and Application of Program and 

Verification of Results 

4.1 Descreption of Computer Program 

4.1.1 Introduction 

            A computer program for linear and nonlinear analysis of plane stresses 

and plane strains by finite element method is presented in this chapter. The 

program was developed and written by MATLAB program language. The 

programs have nine subroutines or functions. The basic functions are, LINA2D 

and NONLA2D. The function LINA2D was developed for linear formulation, 

and the NONLA2D was developed for nonlinear formulation based on Green 

strain presented in chapter three. 

         The formulation stated in chapter three, was implemented in the standard 

MATLAB (2010b), and the major goals were to achieve good results, and 

compare them with known results. In the program the 4-noded 2-dimensional 

isoparametric element was used. 

       The main program procedures and the all functions are explained in the 

following sections, the listing of the main program and the subroutines are 

presented in Appendices A and B.  

4.1.2 Main program procedures: 

The basic stages of implementation of MATLAB programming are as follows: 

1- read input data which include: 

- Mesh generation function  

- Element external nodal force EXTFORCE 
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- Material properties (Passion ratio, Elastic modulus) 

- Program parameters (ITER, TOL, INC) 

- Load increments (Start increment, End increment ...) 

- Boundary conditions 

     2- Call FORD to calculate elastic modulus matrix [D] 

3- Read SHAPLE to compute shape functions, their derivatives and 

determinant of Jacobian of 4-noded element 

4- Before incrementing and Newton-Raphson iteration start, the main 

function/ program calls CHECK to check the area and connectivity of the 

elements and the program stops if the determinant is negative or if there is 

any error in the element connectivity. 

5- Begin load increments INC=1, and iteration ITER=1 for nonlinear 

analysis.  

6- If Analtype =1, call LINA2D to calculate element stiffness matrix and 

assemble it in global matrix for linear analysis. 

7- Else if Analtype is not equal to one use NONLINA2D to compute global 

tangent stiffness matrix KT, and residual force (FORCE) for nonlinear 

analysis. 

8- After calculation of KT and FORCE: 

calculat: 

- displacement increments ∆{𝑈} = [𝐾]/{𝑅} 

-  total displacement vector {𝑈} = {𝑈} + ∆{𝑈} 

- strain increments 

- stresses increments 

- the total stresses 

- the total residual force 
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a- If solution has not converged or this is not the last iteration then go to 

next iteration (go to 5). 

b- Else continue if solution has converged. 

9- call OUTPUT  print convergent results 

10-call PROUT to print out convergence displacement and stresses 

     11-calculate direct stresses and shear stresses at integration points of 

elements 

12 – If this is not the last increment go to (5); otherwise: 

      13-   End program 

4.1.3 Program layout 

      The computer program system is divided into main nine functions/ 

subroutines; each function consists of specific task in the program. The main 

program flow chart is shown in the Figure (4.1) and the subroutines are 

explained  in the next section. 
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 CALL NONLA2D 

 

CALL FORD 

CALL XYZON 

INC=1 

ITER=1 
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If Analtype=1 
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Fig (4.1) Main program flow chart 
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Calculate Increment Strain 

{∆𝜀}𝑖 = [[𝐵0] + [𝐵𝐿(𝑎0
𝑖 )] +

1

2
[𝐵𝐿(∆𝑎0

𝑖 )]] {∆𝑎0
𝑖 } 

 

CALL FORD 

Loop for Gauss points 

Call SHAPLE to Calculate: 

Shape functions, Jacobian, 

Determinate of Jacobian,  … 

Calculate (Bo, G, BL, A, ….) 

B=Bo + BL 

Calculate Increment stress 

{∆𝑆0
𝑖} = [𝐷]{∆𝜀0

𝑖 } 

𝑠𝑡𝑎𝑟𝑡 

Loop over elements 

1 

2 

Calculate Total stress 

{𝑆0
𝑖+1} = {𝑆0

𝑖} + {∆𝑆0
𝑖} 

Set up Matrix M 

Calculate Linear and Nonlinear Stiffness Matrix 

[𝐾0] + [𝐾𝐿(𝑎0)] = ∫[𝐵]𝑇[𝐷][𝐵]𝑑𝑣

𝑣

 

3 
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Fig (4.1a) flow chart for function NONLA2D 

 

Yes 

No 

Any More Gauss Point? 

Calculate Tangent Stiffness Matrix 

[𝐾𝜎] = ∫[𝐺]
𝑇[𝑀][𝐺]𝑑𝑣

𝑣

 

 

 Calculate Total Tangent Stiffness Matrix 

[𝐾𝑇] = [𝐾0] + [𝐾𝐿] + [𝐾𝜎] 

 

-Calculate Global Tangent Stiffness Matrix 

-Calculate Global Force Vector 

-Calculate Global Residual Force 

 

 

Any More Gauss Point? 

1 

2 

3 

Solve the System of Nonlinear: 

∆{𝑈} = [𝐾]/{𝑅} 

{𝑈} = {𝑈} + ∆{𝑈} 

𝑅𝑒𝑡𝑢𝑟𝑛 

Yes 

No 
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Fig (4.1b) flow chart of function LINA2D 

Calculate Strain 

{𝜀}𝑖 = [[𝐵0]] {𝑎0
𝑖 } 

 

CALL FORD 

Loop for Gauss points 

Call SHAPLE to Calculate: 

Shape functions, Jacobian, Determinate of Jacobian,  

… 

Calculate   Bo 

Calculate Stress 

{𝑆0
𝑖} = [𝐷]{𝜀0

𝑖 } 

𝑠𝑡𝑎𝑟𝑡 

Loop over elements 

Calculate Linear Tangent Stiffness Matrix 

[𝐾𝑇] = ∫[𝐵0]
𝑇[𝐷][𝐵0]𝑑𝑣

𝑣

 

Any Number of Gauss Points? 

Any Number of Elements? 

-Calculate Global Tangent Stiffness Matrix 

-Calculate Global Force Vector 

 

 
Solve the System of Linear: 

∆{𝑈} = [𝐾]/{𝑅} 
𝑅𝑒𝑡𝑢𝑟𝑛 

No 

No 
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4.1.4 Functions Explanation 

1- Input data function 

        This subroutine consists of the basic data that is required in defining the 

geometry of 4-noded isoparametric element, connectivity, properties of element, 

and boundary conditions, external nodal force. It also reads the control 

parameters. 

2- Function MESH 

       According to dimensions of the structure and specified sub-divisions in the 

two directions, this subroutine generates a mesh of linear quadrilateral elements. 

3- Function FORD  

      This subroutine calculates the modulus matrix for linear elastic material [D]  

4-Function SHAPLE 

      According to the 4-node isoparametric element, the function computes the 

shape functions, their derivatives, and determinant of the Jacobian of bilinear 

element. 

5- CHECK function  

       This subroutine checks the determinant of element Jacobian matrix, and the 

program stops if the determinant is negative, which indicates that either element 

has negative area or the element connectivity is not correct. 

6- LINA2D function 

       This is the main function for linear analysis as shown in Fig (4.1b), which is 

starts when Analtype =1. According to the integration point and weights, 

function reads the element nodal coordinate and calls the subroutine SHAPLE , 

FORD, to assemble the strain stiffness matrix and then assemble global stiffness 

matrix and Global force of linear elastic analysis. The function also calculate the 
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strain and stresses at integration points, and solve the system of linear analysis to 

compute the displacements at nodes. 

7- NONLIA2D function 

           The function NONLA2D as shown in Fig (4.1a) is used to compute or 

assemble the global tangent stiffness matrix and residual force for nonlinear 

analysis, and solve the nonlinear equation to calculate the increment 

displacements, displacements, strain increments, stress increments and total 

stresses. The function starts when Analtype equals any number other than one. 

8- OUTPUT function 

        This function is prints out iteration of results to MATLAB screen. 

9- PROUT function  

        This function prints out analysis results. 

4.2 Verification of Formulation 

4.2.1 Introduction 

        For the linear and nonlinear analyses three numerical examples of large 

deformation problems were analysed to demonstrate the degree of accuracy that 

can be obtained by using the linear and the geometrically nonlinear formulation 

based on Green strain and 4-node plane stress/strain element.  

       The result of displacements, stresses at the integration points and the 

differences between incremental displacements and incremental stresses are 

obtained and compared with known results. 
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4.2.2 Linear analysis  

4.2.2.1 Cantilever plate under concentrated load at the end       

    The linear formulation was tested by analyzing the cantilever plate beam 

subjected to load at free end. The cantilever is of dimension L=3000mm, 

D=300mm and thickness h=60mm as shown in Fig (4.2). The numerical values 

of material property parameter are: Young's modulus E=210x103𝑁/𝑚𝑚2 , 

Poisson's ratio  = 0.3  . The structure is modeled with different numbers of 

isoparametric elements. The result obtained for displacements and stresses are 

compared with known results. Graphical comparison of results of displacement 

at free end and mid-span, stresses at integration point are presented in figures 

Fig (4.2) to (4.8). Tables (4.1) to (4.5) show the displacements at free end for 

different load increment and different numbers of elements. Table (4.6) and Fig 

(4.5) present the deflected (deformed) shape along center line. Figures (4.6) to 

(4.8) and Tables (4.7) to (4.9) show the stresses at integration point one as 

shown in Fig (3.4) and El (1) in Fig (4.2). 

 

 

 

 

 

 

 

 

 

Fig (4-2) Cantilever plate beam with vertical load at free end 
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D=300mm X 
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P/2 Y 
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EL (200) 

A 



44 
 

Table (4-1) Vertical displacement (10-1mm) at free end and effect of mesh  

Load(N) Max load 3000N 

Elements 20EL 40EL 60EL 80EL 100EL 120EL 140EL 160EL 180EL 200EL 

Mesh 2*10 2*20 2*30 2*40 2*50 2*60 2*70 2*80 2*90 2*100 

Aspect 2 1 0.667 0.5 0.40 0.334 0.285 0.25 0.222 0.2 

V(mm) 6.77 8.526 8.957 9.120 9.197 9.239 9.265 9.282 9.294 9.36 

Mesh 4*5 4*10 4*15 4*20 4*25 4*30 4*35 4*40 4*45 4*50 

Aspect 8 4 2.667 2 1.6 1.333 1.143 1 0.888 0.8 

V(mm) 3.191 6.859 8.112 8.669 8.95 9.118 9.219 9.287 9.334 9.367 

 

 

Fig (4-3) Effect of mesh and aspect ratio on accuracy of result 

Table (4-2) Vertical displacement at free end in point A 

Load(N) Vertical displacement(mm) 

60E 80E 100E 120E 140E 160E 180E 200E Exact 

Sol 

0 0 0 0 0 0 0 0 0 0 

3000 0.8957 .9120 .9197 .9239 .9265 .9282 .9294 0.936 1 

6000 1.791 1.824 1.839 1.848 1.853 1.856 1.859 1.860 2 

9000 2.687 2.736 2.759 2.772 2.780 2.785 2.788 2.791 3 

12000 3.583 3.648 3.679 3.696 3.706 3.713 3.718 3.721 4 

15000 4.479 4.560 4.598 4.620 4.633 4.641 4.647 4.651 5 

18000 5.374 5.472 5.518 5.544 5.559 5.569 5.576 5.581 6 

21000 6.270 6.384 6.438 6.468 6.486 6.498 6.506 6.511 7 

24000 7.166 7.296 7.357 7.392 7.412 7.426 7.435 7.442 8 
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Fig (4-4) Vertical displacement at free end in point A 

Table (4-3) Displacement at free end point A (200El, 5INC) 

Increment  Load 24000N 

V(mm) 

0 0 

1 1.488 

2 2.977 

3 4.465 

4 5.953 

5 7.442 

  

Table (4-4) Displacement at free end point A (200El, 10INC) 
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Increment  Load 24000N 

V(mm) 

0 0 

1 0.7442 

2 1.488 

3 2.233 

4 2.977 

5 3.721 

6 4.465 

7 5.209 

8 5.953 

9 6.698 

10 7.442 
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Table (4-5) Displacement at free end point A  (200 El, 15INC) 

Increment  Load 24000N Increment  Load 24000N 

V(mm) V(mm) 

0 0 11 5.457 

1 0.4961 12 5.953 

2 0.9922 13 6.449 

3 1.488 14 6.946 

4 1.984 15 7.442 

5 2.480 

6 2.976 

7 3.474 

8 3.969 

9 4.465 

10 4.961 

 

Table (4-6) Deflected shape along center line (100El) 

Node Load 

18000N 

Load 

21000N 

Load 

24000 N 

Node Load 

18000N 

Load 

21000N 

Load 

24000 N 

2 0 0 0 80 1.854 2.163 2.472 

5 0.0009645 0.001125 0.001286 83 1.983 2.313 2.644 

8 0.0117 0.01303 0.01489 86 2.115 2.467 2.820 

11 0.0277 0.03242 0.03705 89 2.25 2.624 2.999 

14 0.0506 0.05904 0.06748 92 2.387 2.785 3.183 

17 0.07949 0.09274 0.106 95 2.528 2.949 3.37 

20 0.1143 0.1334 0.1524 98 2.67 3.115 3.56 

23 0.1549 0.1808 0.2066 101 2.815 3.285 3.754 

26 0.2012 0.2348 0.2683 104 2.963 3.457 3.951 

29 0.2531 0.2952 0.3374 107 3.112 3.631 4.15 

32 0.3103 0.362 0.4137 110 3.264 3.808 4.352 

35 0.3928 0.4349 0.4971 113 3.417 3.987 4.556 

38 0.4405 0.5139 0.5873 116 3.572 4.168 4.763 

41 0.5131 0.5986 0.6841 119 3.729 4.351 4.972 

44 0.5907 0.6891 0.7875 122 3.887 4.535 5.183 

47 0.6729 0.7851 0.8973 125 4.047 4.721 5.395 

50 0.7598 0.8865 1.013 128 4.207 4.908 5.610 

53 0.8512 0.9931 1.135 131 4.369 5.097 5.825 

56 0.947 1.105 1.263 134 4.531 5.287 6.042 

59 1.047 1.221 1.396 137 4.695 5.477 6.260 

62 1.151 1.343 1.535 140 4.859 5.669 6.478 

65 1.259 1.469 1.679 143 5.023 5.861 6.698 

68 1.371 1.599 1.828 146 5.185 6.053 6.918 

71 1.486 1.734 1.982 149 5.354 6.243 7.138 

74 1.605 1.873 2.14 152 5.518 6.438 7.357 

77 1.728 2.016 2.304 
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Fig (4-5) Deformed shape along center line 

Table (4-7) Stress in x-direction at integration point (INT1, El (1)) 

Load(N) Stresses (10^3N/mm2) 

160EL 180EL 200EL 

0 0 0 0 

3000 1.027 1.153 1.287 

6000 2.142 2.413 2.684 

9000 3.344 3.767 4.191 

12000 4.633 5.22 5.807 

15000 6.004 6.772 7.533 

18000 7.477 8.422 9.369 

21000 9.024 10.17 11.31 

24000 10.66 12.02 13.37 

 

 

Fig (4-6) Stress in x-direction at integration point (INT 1, El 1) 
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Table (4-8) Stress in y-direction at integration point (INT 1, El (1)) 

Load(N) Stresses (10^3N/mm2) 

160EL 180EL 200EL 

0 0 0 0 

3000 0.339 0.3819 0.4248 

6000 0.7646 0.8617 0.9586 

9000 1.277 1.439 1.601 

12000 1.876 2.115 2.353 

15000 2.561 2.88 3.214 

18000 3.333 3.759 4.183 

21000 4.192 4.728 5.262 

24000 5.138 5.794 6.45 

 

Fig (4-7) stress in y-direction at integration point (INT 1, El (1)) 

Table (4-9) Shear stress at integration point (INT 1, El (1)) 

Load(N) Shear stresses (10^2N/mm2) 

160EL 180EL 200EL 

0 0 0 0 

3000 -1.918 -2.052 -2.186 

6000 -3.836 -4.104 -4.372 

9000 -5.754 -6.157 -6.558 

12000 -7.673 -8.209 -8.744 

15000 -9.591 -10.26 -10.93 

18000 -11.51 -12.31 -13.12 

21000 -13.43 -14.37 -15.3 

24000 -15.35 -16.42 -17.49 
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Fig (4-8) Shear stress at integration point (INT 1, El (1)) 

4.2.2.2 Cantilever plate beam under pure bending 

           A cantilever plate subjected to pure bending moment is considered, the 

cantilever is of dimensions L=3000mm, D=300mm and thickness h=60mm as 

shown in figure (4.9).The numerical values of material property parameter are: 

Young's modulus E=210x103𝑁/𝑚𝑚2, Poisson's ratio  𝑣 = 0.3 . The structure is 

modeled with different number of isoparametric elements. The mesh is of equal 

size of 150mmx150mm, to check the accuracy of results of displacements and 

stresses they are compared for different numbers of elements, and with exact 

solutions. The results are presented in Figures (4.10) to (4.15) and tables (4.10) 

to (4.18). The vertical displacements with different numbers of elements are 

shown in tables (4.10) to (4.14) and figures (4.10) to (4.11). Tables (4.15) and 

Fig (4.12) show the deflected (deformed) shape along center line. The stresses at 

integration point are presented in tables (4.16) to (4-18) and Figures (4.13) to 

(4.15) 
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Fig (4.9) Cantilever plate under pure bending 

Table (4-10) Vertical displacement (x10^-2) at free end with aspect ratio 

Load(N) Max load 3000N 

Elements 20EL 40EL 60EL 80EL 100EL 120EL 140EL 160EL 180EL 200E 

Mesh 2*10 2*20 2*30 2*40 2*50 2*60 2*70 2*80 2*90 2*100 

Aspect 2 1 0.667 0.5 0.40 0.334 0.285 0.25 0.222 0.2 

V(mm) 5.051 6.357 6.678 6.798 6.855 6.887 6.906 6.918 6.927 6.93 

Mesh 4*5 4*10 4*15 4*20 4*25 4*30 4*35 4*40 4*45 4*50 

Aspect 8 4 2.667 2 1.6 1.333 1.143 1 0.888 0.8 

V(mm) - 5.292 6.052 6.464 6.675 6.796 6.871 6.920 6.955 6.979 

 

 

Fig (4-10) Effect of mesh and aspect ratio on accuracy of result 
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Table (4-11) Vertical displacement at free end point A 

Load(N) Vertical displacement(mm) 

60E 80E 100E 120E 140E 160E 180E 200E Exact  

0 0 0 0 0 0 0 0 0 0 

3000 .06678 .06798 .06855 .06887 .0691 .06918 .0693 .0693 0.071428 

6000 0.1336 0.1360 0.1371 0.1377 0.138 0.1384 0.138 0.1387 0.142857 

9000 0.203 0.2039 0.2057 0.2066 0.207 0.2076 0.207 0.208 0.214285 

12000 0.2671 0.2719 0.2742 0.2755 0.276 0.2767 0.277 0.2773 0.285714 

15000 0.3339 0.3399 0.3428 0.3443 0.345 0.3459 0.346 0.3467 0.357142 

18000 0.4007 0.4079 0.4113 0.4132 0.414 0.4151 0.415 0.416 0.428571 

21000 0.4674 0.4759 0.4799 0.4821 0.483 0.4843 0.484 0.4853 0.500000 

24000 0.534 0.5438 0.5488 0.5514 0.552 0.5535 0.554 0.5547 0.571428 
 

 

Fig (4-11) Vertical displacement at free end point A 

Table (4-12) Displacement at free end point A (200 El, 4inc) 

Increment  Load 24000N 

V(mm) 

0 0 

1 1.04 

2 2.08 

3 3.12 

4 4.16 
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Table (4-13) Displacement at free end point A (200 El, 8inc) 

 

 

Table (4-14) Displacement at free end point A (200 El, 12inc) 

Increment  Load 18000N 

V(mm) 

0 0 

1 0.347 

2 0.695 

3 1.041 

4 1.387 

5 1.733 

6 2.08 

7 2.427 

8 2.77 

9 3.12 

10 3.467 

11 3.813 

12 4.16 

Table (4-15) Deflected shape along center line (60El) 

Node Load 

12000N 

Load 

15000N 

Load 

18000 N 

Node Load 

12000N 

Load 

15000N 

Load 

18000 N 

2 0 0 0 80 20.0 25.07 30.0 

5 0.01772 0.02215 0.02658 83 21.63 27.04 32.44 

8 0.1066 0.1333 0.1599 86 23.26 29.08 34.9 

11 0.2536 0.317 0.3804 89 24.96 31.20 37.4 

14 0.4602 0.5753 0.609 92 26.71 33.30 40.0 

17 0.7264 0.908 1.09 

20 1.052 1.315 1.578 

23 1.437 1.796 2.156 

26 1.882 2.352 2.822 

29 2.386 2.982 3.578 

32 2.949 3.686 4.424 

35 3.572 4.465 5.358 

Increment  Load 18000N 

V(mm) 

0 0 

1 0.52 

2 1.04 

3 1.56 

4 2.08 

5 2.6 

6 3.12 

7 3.64 

8 4.16 
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38 4.255 5.318 6.382 

41 4.997 6.246 7.495 

44 5.798 7.247 8.697 

47 6.659 8.324 9.988 

50 7.579 9.471 11.37 

53 8.559 10.7 12.84 

56 9.599 12.0 14.4 

59 10.7 13.37 16.05 

62 11.86 14.82 17.78 

65 13.07 16.34 19.61 

68 14.35 17.94 21.53 

71 15.69 19.61 23.53 

74 17.08 21.35 25.63 

77 18.54 23.17 27.81 

 

 

Fig (4-12) Deformed shape along center line 

Table (4-16) Stress in x-direction at integration point (El 1, INT 1) 

Load(N) Stresses (10^-1N/mm2) 

160EL 180EL 200EL 

0 0 0 0 

3000 1.041 1.043 1.044 

6000 2.081 2.085 2.088 

9000 3.122 3.128 3.132 

12000 4.163 4.17 4.176 

15000 5.204 5.213 5.22 

18000 6.245 6.256 6.264 

21000 7.286 7.299 7.309 

24000 8.327 8.341 8.353 
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Fig (4-13) stress in x-direction at integration point (El 1, INT 1) 

Table (4-17) Stress in y-direction at integration point (El 1, INT 1) 

Load(N) Stresses (10^-1N/mm2) 

160EL 180EL 200EL 

0 0 0 0 

3000 0.1909 0.1987 0.2057 

6000 0.3819 0.3975 0.4114 

9000 0.5728 0.5962 0.6171 

12000 0.763 0.795 0.8228 

15000 0.9548 0.9938 1.029 

18000 1.146 1.193 1.234 

21000 1.337 1.391 1.44 

24000 1.528 1.59 1.646 

 

 

Fig (4-14) stress in y-direction at integration point (El 1, INT 1) 
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Table (4-18) Shear Stress at integration point (El 1, INT 1) 

Load(N) Shear stresses (10^-1N/mm2) 

160EL 180EL 200EL 

0 0 0 0 

3000 -0.1257 -1.549 -0.1792 

6000 -0.2514 -0.3097 -0.3584 

9000 -0.3771 -0.4646 -0.5376 

12000 -0.5029 -0.6195 -0.7168 

15000 -0.6286 -0.7743 -0.896 

18000 -0.7543 -0.9292 -1.075 

21000 -0.88 -1.084 -1.254 

24000 -1.06 -1.23 -1.434 

 

 

Fig (4-15) Shear stress at integration point (El 1, INT 1) 

4.2.2.3- Simply Supported Plate Beam under Distributed Uniform Load 

         A beam with two-simple supported end is considered. The beam is of 

length L=200mm, height D=10mm, and thickness 1mm, as shown in Fig (4.16). 

The numerical values for material property parameters are Young's modulus, 

E=210GPa, Poisson's ratio, v=0.3. The beam is modeled with a different 

numbers of mesh sizes. 

        The variation of the displacement and max deflection at the mid-span with 

different numbers of load increment are computed using Green formulation, and 
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calculated for the different loading increment. Tables (4.20) and Fig (4.17) show 

the vertical displacements at mid-span, Table (4.12) and Fig (4.18) show the  

Deformation shape along center line. The stresses at integration point presented 

in Tables (4.22) to (4.23), Fig (4.19) to (4.20). 

 

 

 

 

 

 

 

Fig (4-16) simple supported plate beam under distributed uniform load 

Table (4-19) Vertical displacement at the mid span 

Load(N) Max load 1000N 

Elements 80EL 100EL 120EL 140EL 180EL 220EL 260EL 300EL 

U(mm) 0 0 0 0 0 0 0 0 

V(mm) -1.713 -7.419 -7.744 -8.012 -8.316 -8.485 -8.591 -8.661 

 

Table (4-20) Vertical displacement at mid span 

Load(N) Vertical displacement(mm) 

220EL 260EL 300EL 

0 0 0 0 

1000 -4.243 -4.295 -4.331 

2000 -8.485 -8.591 -8.661 

3000 -12.73 -12.89 -12.99 

4000 -16.97 -17.18 -17.32 

5000 -21.21 -21.48 -21.65 

6000 -25.46 -25.77 -25.98 

7000 -29.7 -30.0 -30.31 

8000 -33.94 -34.36 -34.64 
 

L=200mm 

D=10mm 
x 

Q / m 

Y 
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Fig (4-17) Vertical displacement at mid span 

Table (4-21) Deflected shape along center line (220El) 

Node Load 

4000N 

Load 

5000 N 

Node Load 

4000N 

Load 

 5000 N 

3 0.05241 0.06551 143 -16.94 -21.18 

8 -0.5564 -0.6955 148 -16.82 -21.03 

13 -1.208 -1.51 153 -16.62 -20.78 

18 -1.907 -2.383 158 -16.35 -20.43 

23 -2.639 -3.299 163 -16.0 -20.0 

28 -3.402 -4.252 168 -15.58 -19.48 

33 -4.188 -5.236 173 -15.10 -18.88 

38 -4.994 -6.243 178 -14.57 -18.21 

43 -5.814 -7.268 183 -13.99 -17.48 

48 -6.642 -8.303 188 -13.36 -16.69 

53 -7.474 -9.342 193 -12.68 -15.86 

58 -8.303 -10.38 198 -11.98 -14.97 

63 -9.125 -11.41 203 -11.24 -14.05 

68 -9.935 -12.42 208 -10.47 -13.09 

73 -10.73 -13.41 213 -9.69 -12.11 

78 -11.49 -14.37 218 -8.89 -11.11 

83 -12.23 -15.29 223 -8.079 -10.10 

88 -12.94 -16.18 228 -7.263 -9.079 

93 -13.61 -17.01 233 -6.447 -8.05 

98 -14.23 -17.79 238 -5.636 -7.046 

103 -18.8 -18.50 243 -4.836 -6.044 

108 -15.32 -19.15 248 -4.05 -5.062 

113 -15.78 -19.72 253 -3.248 -4.105 

118 -16.17 -20.21 258 -2.544 -3.180 

1123 -16.49 -20.61 263 -1.834 -2.293 

128 -16.73 -20.92 268 -1.159 -1.449 

133 -16.9 -21.12 273 -0.5314 -0.6643 

138 -16.97 -21.21 278 -0.0533 -0.0674 
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Fig (4-18) Deformed shape along center line 

Table (4-22) Stress in x-direction at integration point at mid-span (INT 1) 

Load(N) Stresses(N/mm2) 

 220EL 300EL 

0 0 0 

1000 0.0367 0.04779 

2000 0.1818 0.2589 

3000 0.4352 0.6332 

4000 0.7968 1.17 

5000 1.267 1.872 

6000 1.845 2.736 

7000 2.532 3.76 

8000 3.327 4.954 

 

 

Fig (4-19) stress in x-direction at integration point at mid-span (INT 1) 
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Table (4-23) Stress in x-direction at integration point at mid-span (INT 1) 

Load(N) Stresses(N/mm2) 

 260EL 300EL 

0 0 0 

1000 -0.218 -0.1103 

2000 -0.6949 -0.5435 

3000 -1.43 -1.30 

4000 -2.425 -2.379 

5000 -3.678 -3.78 

6000 -5.189 -5.505 

7000 -6.90 -7.553 

8000 -8.989 -9.924 

 

Fig (4-20) Shear stress in x-direction at integration point at mid-span (INT 1) 
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4.2.3 Nonlinear analysis: 

4.2.3.1 Clamped plate beam under central Point load  

          A plate beam with two-fixed ends is considered. The plate beam is of 

length L=200mm, depth D=10mm and thickness 1mm as shown in Fig (4.15). 

The numerical values of material property parameter are: Young's modulus 

E=210x103𝑁/𝑚𝑚2 , Poisson's ratio  𝑣 = 0.3 . The structure is modeled with 

different number of elements. The mesh is of rectangular size of 20x5mm. The 

displacements, direct stresses and shear stresses obtained were compared for 

different numbers of elements and known results. The results are presented in 

Tables (4.24) and (4.25) and Fig (4.22) to (4.23). The vertical 

displacements at mid span are shown in Table (4.24) and Fig (4.22). 

Table (4.25) and Fig (4.23) show the deflected (deformed) shape 

along center line. 

 

 

 

 

 

Fig (4-21) Clamped plate beam under concentrated load 

Table (4-24) Displacement at mid-span    

Load(N) GREEN   Ref(3) 

0 0 0 

25 0.062 0.062 

50 0.1067 0.126 

100 0.231 0.253 

175 0.50 0.449 

287.5 0.8 0.751 

456.25 1.26 1.122 

 

L=200mm 

D=10mm 
x 

P 

y 



61 
 

 

 

Fig (4-22) Vertical displacement at mid-span 

  Table (4-25) Deformed shape along center line (10^-1mm)  

Node  Load 287.5N Load 456.25N 

2 0 0 

5 -0.7487 -1.123 

8 -2.317 -3.885 

11 -4.208 -7.215 

14 -6.154 -10.29 

17 -8.0 -12.67 

20 -9.575 -14.12 

23 -10.42 -14.1 

26 -9.515 -14.14 

29 -5.054 -3.626 
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Fig (4-23) Deformed shape along center line 

4.2.3.2 Cantilever plate beam under pure bending 

         A cantilever plate subjected to pure bending moment is adopted. The 

cantilever is of dimensions L=3000mm, D=300mm and thickness h=60mm as 

shown in Fig (4.24).The numerical values of material property parameter are: 

Young's modulus E=210x103𝑁/𝑚𝑚2, Poisson's ratio  𝑣 = 0.3 . The structure is 

modeled with different numbers of isoparametric elements. The mesh is of equal 

size of 150mmx150mm, to check results the displacements and stresses 

compared for different numbers of elements, and the known result. The results 

are shown in Tables (4.26) and (4.27) and Fig (4.4.25) and (4.26). Table (4.26) 

and Fig (4.25) show the vertical displacement at free end. Table (4.27) and Fig 

(4.25) show the deflected (deformed) shape along center line. 

 

 

 

 

 

Fig (4-24) Cantilever plate under pure bending 
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Table (4-26) Vertical displacement at free end  

Load(N) GREEN  GREEN 

Ref(3) 

0 0 0 

3000 99.23 99.9727 

6000 230.3 199.242 

9000 344.2 297.087 

12000 418 392.848 

15000 493.5 485.959 

 

Fig (4-25) Vertical displacement at free end 

Table (4-27) Deflected shape along center line  

Node GREEN3000N 

35 2.53 

38 6.563 

41 11.01 

44 15.79 

47 20.81 
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53 31.25 

56 36.49 

59 41.62 

62 46.55 

65 51.22 
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Fig (4-26) Deformed shape along center line 

4.3 Discussion of Results  

      With reference to the results obtained from the application of the program, it 

can be stared that: 

    1-  For the cantilever under tip load at free end the results are presented in 

table (4.1) to Table (4.9), and the Fig (4.1) to Fig (4.8), which demonstrate the 

efficiency of the linear analysis program. 

      Table (4.1) to Table (4.2) and Fig (4.3) show that the vertical displacements 

at free end for various applied loads and different numbers of elements are in 

agreement. The effect of aspect ratio and mesh refinement in the results are 

agreed with those presented by (Bhavikatti, 2005). 

       Fig (4.4) and Table (4.3) show that the displacement at point A at free end 

of structure, are in close agreement with that in exact solutions, Also, Fig (4.5) 

and Table (4.5) to Table (4.6) demonstrate that the deflected shape of the beam 

along center line and the displacement at free end. The stresses at the integration 

point show a good agreement for different numbers of elements and various 

applied loads.  
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      Fig (4.3), Table (4.4), and Table (4.5) show the vertical displacement at free 

end for 5, 10, and 15 load increments and clearly demonstrate the accuracy of 

linear analysis results which are the same for all increments. 

    2- In the second example for linear analysis, the plate beam subjected to pure 

bending as shown in Fig (4.9) is analyzed. Fig (4.10) to Fig (15) and Table 

(4.10) to Table (4.18) show that the different values of displacements at the free 

end and direct stresses and shear stresses at integration points. Also, all values of 

the displacement and stresses are in very good agreement with exact solution. 

Fig (4-10) shows clearly the effect of the aspect ratio on the convergence of the 

results to the exact solution. 

        The numerical example is the simply supported plate beam under uniform 

load as in Fig (4-16). Fig (4-17) and Table (4-24) show the vertical displacement 

at the mid –span which is computed for different elements and different applied 

loads. The deformed shape along center line of beam is plotted in Fig (4-25), 

and the stresses at integration point are listed in Tables (4-25) and (4-26). All 

results are in good agreement with the exact solution. 

       3- For the nonlinear analysis, two numerical examples tested, cantilever 

plate beam subjected to pure bending, and clamped plat beam under 

concentrated load as shown in Fig (4.13) and Fig (4.14) respectively. 

         For the clamped plate beam, variation of displacement at mid-span with 

different load increment, and different iterations computed from the Green 

formulation as shown in Fig (4-22) and Table (4-24). The values of vertical 

displacements compared with those presented by (Akasha and Mohamed, 2012), 

these show good agreement. Also Fig (4-23) and Table (4-25) demonstrate the 

deformed shape of the beam and the effect of nonlinearity on the results.  

      For the case of the plate beam under pure bending, the displacement 

computed from Green formulation was compared with the results presented by 

(Akasha and Mohamed, 2012), as shown in Fig (4-25) and Table (4-26). These 
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show good agreement. Fig (4-26) and Table (4-28) represent the deformed shape 

for parts of the beam. The values demonstrate behavior of the structures that 

subjected to large deformation with different applied loads. 
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Chapter Five 

Conclusions and recommendations 

5.1 Summary of work 

              In this research the overall work can be summarized as follows: 

1- The finite element computer program using standard MATLAB (2010b) 

language for analysis of static linear and nonlinear plane stresses/ strain 

structures have been developed. 

2- The geometrically nonlinear formulation has been developed based on 

Total Lagrangian approach and Green strain using 2D plane stress/ strain 

4-node isoparametric element. 

3-  The formulations for linear and geometrically nonlinear plane stress/ 

strain based on Green stress were implemented on computer using 

MATLAB as program, LINA2D for linear analysis and program 

NONLIA2D for nonlinear analysis. 

4- The computer programs were tested using numerical examples and the 

results obtained were compared with published results. 

5.2 Conclusions 

           Based on the results of numerical examples, it can be concluded that: 

1- For the linear analysis the values of displacement, for any number of 

elements and various applied loads were in excellent agreement when 

compared with known results and exact solution. For cantilever under tip 

load, the maximum difference between the exact solution and program 

solution is about 6%, foe mesh of 200 elements and with aspect ratio equal 

to 0.2. Also for the cantilever under pure bending and simple supported 

beam under udl, the maximum percentage differences between exact 

solution and linear program solution are 2.7% and 0.8% respectively.    
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2- For the nonlinear analysis the formulation based on Green strain give a good 

agreement when compared with known results, for various load increments 

and different iterations numbers. In case of clamped plate beam the 

difference between program results and those presented by (Akasha and 

Mohamed, 2012) is about 12%. 

5.3 Recommendations 

From the research results obtained, the following is recommended: 

(1) Recommendation from study:- 

1- Use of MATLAB programming language in developing finite element 

programs for its accuracy and ease of use. 

2- Use of the program LINA2D in linear analysis of plane strain/stresses 

problems because it gives highly accurate results. 

(2) Recommendation for future study:- 

1- Modification of the program to calculate the average nodal stresses 

from the elements Gauss point results. 

2- Developing the formulation  to cover the gravity load and surface load 

3- Developing the program to include   higher order elements. 

4- Extension of the nonlinear formulation to include engineering strain 

and logarithmic strain. 

5- Developing the nonlinear formulations by using Updated Lagrangian 

formulation approach. 

6- Extension of formulations to include nonlinear material, elastoplastic 

and hyperelastic materials. 
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Appendix A 

The main function of program 

clc 

clear  

clear all 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 

% ------the main program to solve the nonlinear program-----% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

% 

global a0 %SIGMA 

global NUMNP NE  GXY LE NXE NYE dhx dhy X_0 Y_0 

% inputs data 

L=input('L='); 

W=input('W='); 

NXE=input('NXE='); 

NYE=input('NYE='); 

thick=input('thick='); 

dhx=L/NXE; 

dhy=W/NYE; 

X_0=0; 

Y_0=W/2; 

% nodal coordinats and Element connectivity 

[NUMNP, NDOF] = size(GXY);                  

NE = size(LE,1); 

NEQ = NDOF*NUMNP; 

% Material properties 

PROP=[210000 0.3]; 

% Prescribed displacements [Node, DOF, Value] 

pn1=((NXE+1)*(NYE+1)-2); 

pn2=((NXE+1)*(NYE+1)-1); 

pn3=(NXE+1)*(NYE+1); 

SDISPT=[1 1 0;1 2 0;2 1 0;2 2 0;3 1 0;3 2 0]; 

% program parameters 

TOL=1E-3; 

% External forces [Node, DOF, Value] 

 EXF=input('EXF='); 

xyD=input('xyD='); 

%Fn1=((NXE+1)*(NYE+1)-2); 

%Fn2=(NXE+1)*(NYE+1); 

EXTFORCE=[Fn1 xyD EXF;Fn2 xyD -EXF]; 

  

% Check element connectivity 

XYZON(GXY, LE, NOUT); 

% Elastic modulus material properties 

MID=1; 
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D=FORD(PROP,MID); 

% initialize local and global matrixes and vectores 

FG=zeros(NEQ,1); 

GKT = zeros(NEQ,NEQ); 

FORCE=zeros(NEQ,1); 

EINF=zeros(8,1); 

GINF=zeros(NEQ,1); 

STRESS=zeros(3,1); 

STRESS1=zeros(3,1); 

DltS=zeros(3,1); 

BL=zeros(3,8); 

EK0=zeros(8,8); 

EKL=zeros(8,8); 

EKTsigma=zeros(8,8); 

KET=zeros(8,8); 

INC=input('INC='); 

FACTOR=1/INC; 

ITRA=input('ITER='); 

AnaType=input('AnaType='); 

a0=zeros(NEQ,1); 

Dlta0=zeros(NEQ,1); 

  

for Li=1:INC         % load     

FG=zeros(NEQ,1);     

% Assemble the global increment and external force vector 

if size(EXTFORCE,1)>0 

LOC = NDOF*(EXTFORCE(:,1)-1)+EXTFORCE(:,2); 

Linc=FACTOR*EXTFORCE(:,3); 

FG(LOC) = FG(LOC) + Linc; 

end 

Dlta0=zeros(NEQ,1); 

for ITER=1:ITRA      % Start convergence iteration(Newton-

Raphson) 

if AnaType==1 

   FORCE=FG; 

else 

    FORCE=FG-GINF; 

end 

% 

% Integration points and weights 

XG=[-0.577350269189630 -0.577350269189630;0.577350269189630 -

0.577350269189630;0.577350269189630 0.577350269189630;-

0.577350269189630 0.577350269189630]; 

WGT=[1 1 1 1]; 

% 

GKT = zeros(NEQ,NEQ); 

%LOOP OVER ELEMENTS, MAIN LOOP TO COMPUTE GKT  

for IE=1:NE 

% Element Nodal coordinates 

ELXY=GXY(LE(IE,:),:);   

% from Local to global 

EKT=zeros(8,8); 

%IDOF=zeros(1,8); 
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for I=1:4 

II=(I-1)*NDOF+1; 

IDOF(II:II+1)=(LE(IE,I)-1)*NDOF+1:(LE(IE,I)-1)*NDOF+2; 

end 

DSP=a0(IDOF);               % displacement vector 

DSPD=Dlta0(IDOF);           % displacement increment vector 

%LOOP OVER INTEGRATION POINTS 

for LX=1:4   

E1=XG(LX,:);    

% Determinant and shape function derivatives 

[DSF,SHPD,DET] = SHAPEL(E1, ELXY); 

FAC=thick*DET*WGT(LX); 

% 

Bo=[SHPD(1,1) 0          SHPD(1,2) 0         SHPD(1,3) 0         

SHPD(1,4)  0        ;          

    0         SHPD(2,1)  0         SHPD(2,2) 0         

SHPD(2,3) 0          SHPD(2,4); 

    SHPD(2,1) SHPD(1,1)  SHPD(2,2) SHPD(1,2) SHPD(2,3) 

SHPD(1,3) SHPD(2,4)  SHPD(1,4)]; 

% 

G=[SHPD(1,1) 0         SHPD(1,2) 0         SHPD(1,3) 0         

SHPD(1,4) 0        ; 

    0         SHPD(1,1) 0         SHPD(1,2) 0         

SHPD(1,3) 0         SHPD(1,4);  

    SHPD(2,1) 0         SHPD(2,2) 0         SHPD(2,3) 0         

SHPD(2,4) 0      ; 

    0         SHPD(2,1) 0         SHPD(2,2) 0         

SHPD(2,3) 0         SHPD(2,4)]; 

  

% to forming thata 

thata=G*DSP;    % forming thata 

dthata =G*DSPD;   % forming Dlta thata  

% to formin A thata 

A=[thata(1) thata(2) 0 0;0 0 thata(3) thata(4);thata(3) 

thata(4) thata(1) thata(2)]; 

dA=[dthata(1) dthata(2) 0 0;0 0 dthata(3) dthata(4);dthata(3) 

dthata(4) dthata(1) dthata(2)]; 

% the strain displacement matrix B 

BL=A*G; 

BLd=dA*G; 

B=Bo+BL; 

% 

% the strain increment 

DltE=(Bo+BL+0.5*BLd)*DSPD; 

% Stress incremental 

DltS=D*DltE; 

% Total Stresses 

STRESS=STRESS+DltS; 

% stress stiffness matrix 

M=[STRESS(1) 0 STRESS(3) 0;0 STRESS(1) 0 STRESS(3);STRESS(3) 0 

STRESS(2) 0;0 STRESS(3) 0 STRESS(2)]; 

% Tangent stiffness Matrix 

EK0=FAC*Bo'*D*Bo; 



74 
 

EKL=FAC*Bo'*D*BL+BL'*D*Bo+BL'*D*BL; 

EKTsigma=FAC*G'*M*G;                         % Element tangent 

stiffness matrix 

if AnaType==1 

EKT=EKT+EK0; 

else 

EKT=EKT+EK0+EKL+EKTsigma; 

end 

end 

GKT(IDOF,IDOF)=GKT(IDOF,IDOF)+EKT;           % Global tangent 

stiffness matrix  

end 

% 

% Prescribed displacement BC 

NDISP=size(SDISPT,1); 

if NDISP~=0 

FIXEDDOF=NDOF*(SDISPT(:,1)-1)+SDISPT(:,2); 

GKT(FIXEDDOF,:)=zeros(NDISP,NEQ); 

GKT(:,FIXEDDOF)=zeros(NEQ,NDISP); 

GKT(FIXEDDOF,FIXEDDOF)=eye(NDISP); 

FORCE(FIXEDDOF)=0; 

end 

% Check convergence 

if (ITER>=0) 

Conve=norm(FORCE,inf); 

OUTPUT_1( ITER, Conve) 

if ITER<ITRA && Conve<TOL 

break; 

end 

end 

% Check max iteration 

if(ITER>ITRA), error('Iteration limit exceeds');  

end 

  

% Solve the system equation(the incremental displacement) 

Dlta0= GKT\FORCE; 

a0=a0+Dlta0; 

% 

Dlta01=Dlta0; 

a01=a0; 

GINF=zeros(NEQ,1); 

INT=0; 

% assemble Global atiffness matrix GINF 

for IE=1:NE   

% Element Nodal coordinates and incremental displacements 

ELXY=GXY(LE(IE,:),:); 

% Local to global  

EINF=zeros(8,1); 

IDOF=zeros(1,8); 

for I=1:4 

II=(I-1)*NDOF+1; 

IDOF(II:II+1)=(LE(IE,I)-1)*NDOF+1:(LE(IE,I)-1)*NDOF+2; 

end 
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DSP1=a01(IDOF);             % displacement vector 

DSPD1=Dlta01(IDOF);           % displacement increment vector 

%LOOP OVER INTEGRATION POINTS 

for LX=1:4 

E1=XG(LX,:);       % this values using to calculate cmponent 

of jacobian   

% Determinant and shape function derivatives 

[DSF,SHPD,DET] = SHAPEL(E1, ELXY); 

FAC=thick*DET*WGT(LX); 

INT=INT+1; 

Bo1=[SHPD(1,1) 0          SHPD(1,2) 0         SHPD(1,3) 0         

SHPD(1,4)  0        ;          

    0         SHPD(2,1)  0         SHPD(2,2) 0         

SHPD(2,3) 0          SHPD(2,4); 

    SHPD(2,1) SHPD(1,1)  SHPD(2,2) SHPD(1,2) SHPD(2,3) 

SHPD(1,3) SHPD(2,4)  SHPD(1,4)]; 

  

G01=[SHPD(1,1) 0         SHPD(1,2) 0         SHPD(1,3) 0         

SHPD(1,4) 0        ; 

    0         SHPD(1,1) 0         SHPD(1,2) 0         

SHPD(1,3) 0         SHPD(1,4);  

    SHPD(2,1) 0         SHPD(2,2) 0         SHPD(2,3) 0         

SHPD(2,4) 0      ; 

    0         SHPD(2,1) 0         SHPD(2,2) 0         

SHPD(2,3) 0         SHPD(2,4)]; 

  

% to forming thata 

thata1=G01*DSP1;    % forming thata 

dthata1 =G01*DSPD1;   % forming Dlta thata  

  

% to formin A thata 

A1=[thata1(1) thata1(2) 0 0;0 0 thata1(3) thata1(4);thata1(3) 

thata1(4) thata1(1) thata1(2)]; 

dA1=[dthata1(1) dthata1(2) 0 0;0 0 dthata1(3) 

dthata1(4);dthata1(3) dthata1(4) dthata1(1) dthata1(2)]; 

% 

% the strain displacement matrix B 

BL1=A1*G01; 

BLd1=dA1*G01; 

B1=Bo+BL1; 

% 

% the strain increment 

DltE1=(Bo+BL1+BLd1)*DSPD1; 

% 

% Stress incremental 

DltS1=D*DltE1; 

% Total Stresses 

STRESS1=STRESS1+DltS1; 

SIGMA(:,INT)=STRESS1; 

% Residual internal forces 

EINF=EINF+FAC*B1'*STRESS1; 

end 

end 
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GINF(IDOF) = GINF(IDOF) + EINF;     % Global internal forces 

end 

% print results 

PROUT_1(NOUT, NUMNP,NDOF,NE); 

end 

 

  



77 
 

Appendix B 

Example of input data and print out of results 

Input Data: 

L=3000 

W=300 

NXE=5 

NYE=2 

thick=60 

EXF=1500 

xyD=1 

INC=1 

ITER=1 

AnaType=1 

Output results: 

Iteration   Residual 

Nodal Displacements 

 Node   U          V 

        1  0.000e+000  0.000e+000 

     2  0.000e+000  0.000e+000 

     3  0.000e+000  0.000e+000 

     4  5.515e-004  1.116e-003 

     5  8.485e-018  1.090e-003 

     6 -5.515e-004  1.116e-003 

 

     7  1.110e-003  4.437e-003 

     8  1.498e-017  4.417e-003 

     9 -1.110e-003  4.437e-003 
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    10  1.667e-003  9.993e-003 

    11  2.639e-017  9.971e-003 

    12 -1.667e-003  9.993e-003 

    13  2.225e-003  1.778e-002 

    14  3.739e-017  1.776e-002 

    15 -2.225e-003  1.778e-002 

    16  2.782e-003  2.779e-002 

    17  2.850e-017  2.777e-002 

    18 -2.782e-003  2.779e-002 

Element Stress 

  S1          S2           S12 

 Element     1 

4.227e-002  4.912e-003  8.471e-002 

8.454e-002  9.828e-003  1.694e-001 

1.268e-001  1.474e-002  2.541e-001 

1.691e-001  1.966e-002  3.388e-001 

 Element     2 

 4.339e-003 -2.199e-002  4.256e-001 

-1.604e-001 -6.364e-002  5.123e-001 

-3.251e-001 -1.053e-001  5.991e-001 

-4.899e-001 -1.469e-001  6.858e-001 

Element     3 

 

-4.559e-001 -1.715e-001  7.729e-001 

-4.219e-001 -1.961e-001  8.601e-001 

-3.879e-001 -2.206e-001  9.472e-001 

-3.539e-001 -2.452e-001  1.034e+000 

Element     4 
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-5.120e-001 -2.578e-001  1.121e+000 

-6.700e-001 -2.704e-001  1.208e+000 

-8.280e-001 -2.831e-001  1.294e+000 

-9.861e-001 -2.957e-001  1.381e+000 

Element     5 

-9.499e-001 -3.127e-001  1.467e+000 

-9.138e-001 -3.296e-001  1.554e+000 

-8.777e-001 -3.466e-001  1.640e+000 

-8.415e-001 -3.636e-001  1.727e+000 

Element     6 

-1.001e+000 -3.836e-001  1.813e+000 

-1.161e+000 -4.036e-001  1.900e+000 

-1.321e+000 -4.237e-001  1.987e+000 

-1.480e+000 -4.437e-001  2.073e+000 

Element     7 

-1.445e+000 -4.626e-001  2.160e+000 

-1.409e+000 -4.814e-001  2.247e+000 

-1.373e+000 -5.003e-001  2.333e+000 

-1.338e+000 -5.191e-001  2.420e+000 

Element     8 

-1.497e+000 -5.372e-001  2.507e+000 

 

-1.656e+000 -5.553e-001  2.593e+000 

-1.815e+000 -5.733e-001  2.680e+000 

-1.975e+000 -5.914e-001  2.767e+000 

Element     9 

-1.939e+000 -6.097e-001  2.853e+000 

-1.903e+000 -6.280e-001  2.940e+000 
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-1.867e+000 -6.463e-001  3.026e+000 

-1.831e+000 -6.646e-001  3.113e+000 

Element    10 

-1.991e+000 -6.831e-001  3.200e+000 

-2.150e+000 -7.016e-001  3.286e+000 

-2.309e+000 -7.201e-001  3.373e+000 

-2.468e+000 -7.386e-001  3.460e+000 


