ألاية

بسو الله الرحمن الرحيم

٢ ٥ ٱللَّهُ نُورُ ٱلسَّمَاوَاتِ وَٱلْأَرْضِ مَثَلُ نُوره ي كَمِشْكَوْةٍ فِيهَا مِصْبَاحٌ ٱلْمِصْبَاحُ فِي زُجَاجَةٍ ٱلزُّجَاجَةُ كَأَنَّهَا كَوْكَبٌ دُرّيٌّ يُوقَدُ مِن شَجَرَةٍ مُّبَارَكَةٍ زَيْتُونَةٍ لّا شَرْقِيَّةٍ وَلَا غَرَبِيَّةٍ يَكَادُ زَيْتُهَا يُضِيٓءُ وَلَوۡ لَمۡ تَمۡسَسُهُ نَـارُ نُّورٌ عَلَى نُور يَهْدِى ٱللَّهُ لِنُورِهِ مَن يَشَآهُ وَيَضُرِبُ ٱللَّهُ ٱلْأَمْثَالَ لِلنَّاسِ وَٱللَّهُ بِكُلَّ شَيْءٍ عَلِيمٌ ٢

سورة النور

DEDICATION

To my family

ACKNOWLEDGMENT

In the name of Allah, Most Gracious, and Most Merciful

My deep appreciation and heartfelt gratitude goes to my supervisor, **Dr. Eisa Bashier Mohammed** for their constant guidance and the appreciable time he devoted to promote this work. It would have never been possible for us to work on this thesis without continuous encouragement.

I would like to extend my deepest gratitude to **Dr. Gudani Othman** for providing me with valuable advice and encouragement. I would also like to thank all members of Department of Electrical Engineering, who have helped during this thesis. I wish to express my thanks to **University of Nyala** for financial supports during my work. Finally, my sincere thanks to my family for their prayers and encouragement which helped me take the right step in life.

ABSTRAC

Power systems are subjected to low frequency disturbances that might cause loss of synchronism and an eventual breakdown of entire system. The oscillations, which are typically in the frequency range of 0.2 to 1.0 Hz, might be excited by the disturbances in the system or, in some cases, might even build up spontaneously. These oscillations limit the power transmission capability of a network. For this purpose, Conventional Power System Stabilizers (CPSS) are used to generate supplementary control signals for the excitation system in order to damp these low frequency power system oscillations. The use of power system stabilizers has become very common in operation of large electric power systems. The conventional PSS which uses lead-lag compensation, where gain settings designed for specific operating conditions, is giving poor performance under different loading conditions. The constantly changing nature of power system makes the design of CPSS a difficult task. Therefore, it is very difficult to design a stabilizer that could present good performance in all operating points of electric power systems. This thesis aims to propose a design of power system stabilizer based on model reference adaptive control to overcome drawback of conventional Power System Stabilizer. In this design, the existing controllers, designed using gradient descent algorithm and lyapunov method. The Adaptive Power System Stabilizer and Conventional Power System Stabilizer are evaluated on a single machine infinite bus system and three machines nine bus system by eigenvalue technique and time domain simulation using Matlab/Simulink. The simulation studies have been done to evaluate the effectiveness of the proposed control design. The results show that, the proposed adaptive power system stabilizer control scheme is able to stabilize power system oscillations under the changeable operation conditions than the Conventional Power System Stabilizer.

iv

مستخلص

تتعرض أنظمة القدرة الكهربائية لاضطرابات التردد المنخفض والذي قد يؤدي الي فقدان التزامن ،وانهيار كامل للنظام والتنبنبات والتي تكون عادة في مدي ٢. • الي ١ هيرتز قد تثيرها اضطرابات في النظام وفي الاحيان تبني تلقائيا .هذه التذبذبات تحد من امكانية الشبكة في نقل القدرة الكهربائية. لذا تستخدم منظمات التقليدية لنظام القدرة بغرض توليد أشارة تحكم ملحقة بنظام الاثارة لإخماد تذبذبات الترددات المنخفضة لنظام القدرة. استخدام المنظمات التقليدية لنظام القدرة اصبح معتاد لتشغيل أنظمة القدرة الكهربية الكبيرة .هذه المنظمات التقليدية عندما تستخدم تعويض التقدم – التأخر بضبط الكسب للعمل في ظروف المنظمات التقليدية عندما تستخدم تعويض التقدم – التأخر بضبط الكسب للعمل في ظروف تشغيل محددة ينتج عنه أداء سيء في ظروف تحميل مختلفة. طبيعة نظام القدرة المتغيرة بشكل ثابت تجعل تصميم منظمات التقليدية غاية في الصعوبة . لذا من الصعوبة بمكان

تهدف هذه الرسالة الي تصميم منظم نظام قدرة تكيفي مستند علي سيطرة الإشارة المرجعية للتغلب علي قصور منظم القدرة التقليدي . الحواكم الحالية تم تصميمها باستخدام خوارزميه الانحدار التدريجي وطريقة ليبونوف. المنظم التكيفي والتقليدي تم تقييم اداء هما لماكينة احادية موصلة في قضيب لانهائي ومن ثم في نموذج ثلاث ماكينات تسعه قضبان وذلك باستخدام تقنية قيم - ايقن وتحليل الاشارة في المجال الزمني باستخدام برنامج الماتلاب/ سيمولنك. ثم عمل الدراسات البرمجية لتقييم فعالية تصميم التحكم المقترح . نتائج مخطط سيطرة المنظم التكيفي اوضحت انها قادرة علي تنظيم تذبيات نظام القدرة تحت ظروف تشغيل متغيرة بعكس منظم نظام القدرة التقليدي .

TABLE OF CONTENTS

TITLE		PAGE
الآية		
DEDI	ICATION	ii
ACK	NOWLEDGMENT	
		iii
ABS	TRACT	iv
ىتخلص		vi
TABI	LE OF CONTENT	vii
LIST	OF TABLE	xiii
LIST	OF FIGURES	xiv
LIST OF SYMBOLS xv		xvi
LIST	OF OBBERIVATION CHAPTER ONE	
LIST		
LIST 1.1	CHAPTER ONE	
	CHAPTER ONE INTRODUCTION AND SCOP	PE OF THESIS
1.1 1.2	CHAPTER ONE INTRODUCTION AND SCOP	PE OF THESIS
1.1 1.2 1.3	CHAPTER ONE INTRODUCTION AND SCOP	PE OF THESIS 1 2
1.1 1.2 1.3	CHAPTER ONE INTRODUCTION AND SCOP Introduction Motivation Øbjectives Objectives	PE OF THESIS
1.1 1.2 1.3 1.4 1.5	CHAPTER ONE INTRODUCTION AND SCOP Introduction Motivation Øbjectives Objectives Contributions Objectives	PE OF THESIS
1.1 1.2 1.3 1.4	CHAPTER ONE INTRODUCTION AND SCOP Introduction Motivation Objectives Contributions Organization CHAPTER TWO	PE OF THESIS

Steady-state stability
Transient stability
Dynamic stability
Nature of oscillation

5 5

5

2.4	Modes of oscillations	6
2.4.1	Local mode oscillations	6
2.4.2	Inter-area mode oscillations	6
2.4.3	Inter-unit mode	6
2.5	Control exciter modes	7
2.5.1	Local machine modes	7
2.5.2	Inter-area modes	7
2.5.3	Global modes	7
2.6	Power system stabilizer	8
2.7	PSS in put signals	8
2.7.1	Speed input signal	8
2.7.2	Power as inputs	8
2.7.3	Frequency as input	9
2.8	Excitation System	9
2.9	Power System Stabilizer	10
2.9.1	Power system stabilizer structure	10
2.9.2	Washout	10
2.9.3	Input Signals	11
2.10	Conventional Power System Stabilizer design method	11
2.11	Phase compensation design technique	12
2.12	Adaptive Control	14
2.13	Literature review	15
	CHAPTER THREE	
	DESIGN OF POWER SYSTEM STABILIZER IN	
	SIGLE MACHINE CONECTED INFINIT BUS	
3.1	Introduction	24
3.2	Dynamic Model of Synchronous Machine	26

3.3	Stator equation	26
3.4	Network equation	27
3.5	Linearization process and state-space model	28
3.6	Derivation of K constants	32
3.7	The power system stabilizer in state matrix	36
3.8	Analysis of Power oscillations in Single Machine Infinite Bus (SMIB)	38
3.8.1	Normal Load	39
3.8.2	Heavy Load	40
3.8.3	Light load	40
3.8.4	Leading power factor	41
3.9	Effect of excitation gain	42
DYNA	CHAPTER FOUR MIC STABILITY OF MULTIMACHINE POWER SYSTEM	
4.1	Dynamic stability model of multi machine power system	43
4.2	Two-axis model of multi machine system	43
4.3	Matrix Representation of a Passive Network	44
4.4	Converting to a common reference frame	46
4.5	Converting Machine Coordinates to System Reference	46
4.6	linearized Model for the Network	47
4.7	Exciter representation	53
4.8	Conventional power system stabilizer representation	54

4.9	Dynamic stability evaluation	54
4.9.1	Techniques of Stability Evaluation	54
4.9.2	Stability Evaluation Using Eigenvalues Technique	55
4.10	Power system representation for dynamic study	56
4.11	Preliminary calculations	57
4.12	Simulation and analysis	58
4.12.1	Normal case	59
4.12.2	Increasing load at buses 8,6,5	59
4.12.3	Three short circuit in bus5 but without power	(0)
	system stabilizer	60
4.12.4	Short circuit at bus5 but with PS	61
DES	CHAPTER FIVE SIGN POWER SYSTEM STABILIZER BASED ON ADAPTIVE CONTROL	
5.1	Introduction	62
5.2	Adaptive Control	63
5.3	Development of Adaptive Control	63
5.4	Model reference adaptive control	65
5.5	MRAC design using gradient method / MIT Rule	66
5.6	Design of model reference adaptive control based	
	on MIT	67
5.7	MRAC Design Using Lyapunov Method	69
5.7.1	Lyapunov Method	70

	CHAPTER SIX	
	RESULTS AND DISCUSSION	
6.1	Simulation results	76
6.2	Adaptive power system stabilizer	76
6.3	Effect of conventional PSS on different operation points	77
6.4	Effect of adaptive PSS on different operation points	78
6.5	Model reference adaptive control design based on	
	gradient method	79
6.6	Comparative of convergence of Theta based on MIT and lyapunov	80
6.7	Model reference based on lyapunov method	83
6.8	Effect of adaptation gain on model tracking In case	
	of gradient and lyapunov method	84
	CHAPET SEVEN CONCLUSION AND FUTURE WORK	
7.1	Conclusion	86
7.2	Future work	86
	References	87
APPE	ENDICS	110
A. RE	A. RESULTS	
B. M	ACHINE DATA	113
C. PA	PERS	115

LIST OF TABLES

TABLE NO	TITLE	PAGE
		NO
A.1	Eigenvalues of System In case of Normal load	93
A.2	Eigenvalues of System In case of heavy load	94
A.3	Eigenvalues of System case of light load	95
A.4	Eigenvalues of System in case of leading power factor load.	96
A.5	Power flow and voltages in case of in normal load	97
A.6	Eigen value and frequency oscillation in case of normal load	97
A.7	Participation factor of all state in case of normal load	98
A.8	power flow and voltages in case of increasing load	100
A.9	Eigenvalue of state matrix and the frequency of oscillation	100
A.10	Participation factor of all states	101
A.11	Power flow and voltages in case of short circuit	105
A.12	Eigenvalue of state matrix and the frequency oscillations	105
A.13	Participation factor of all states	106
A.14	Power flow and voltages in case of short circuit	109
A.15	Eigenvalues in case of short circuit with PSS	109
A.16	Participation factor of all states	110

LIST OF FIGURES

FIGURE		PAGE
NO	TITLE	no
2.1	Categorized of power system stability	4
2.2	Block diagram of a typical Excitation System	9
2.3	Block diagram of a typical PSS	10
3.1	Configuration of single machine connected in finite bus	28
3.2	Block diagram of the synchronous Machine model	36
3.3	Simulink block diagram of single machine	39
3.4	Speed deviation response in case of normal load	39
3.5	Speed deviation response in case of heavy load	40
3.6	speed deviation response in case of light load	41
3.7	speed deviation response in case of leading power factor	42
3.8	Effect of excitation system gain on speed deviation	42
4.1	Configuration of multi-machine power system	45
4.2	Simulink diagram of three machine nine bus system	58
4.3	Time response of speed in three machine	59
4.4	Speed in three machine in case of increasing load at buses	60
4.5	Rotor speed in three machine in case of short circuit at bus 5	60
4.6	Rotor speed in three machine in case of short circuit at bus 5 with PSS	61
5.1	Configuration of direct model reference adaptive control	64
5.2	Configuration of indirect model reference adaptive control	65
6.1	Simulink model of APSS in SMIB	76

6.2	Rotor Speed deviation with APSS	77
6.3	Speed deviation response in different operation points	78
6.4	Speed deviation response in different operation in case of adaptive PSS	79
6.5	model reference tracking based on MIT rules	79
6.6	Simulink diagram based on MIT rules	80
6.7	shows time response of theta 1 based on MIT rules	81
6.8	Time response of theta 2 based on MIT rule	81
6.9	Time response of theta1 based on lyapunov method	82
6.10	Time response of theta2 based on lyapunov rule	82
6.11	Shows Simulink diagram of system designed based on lyapunov method	83
6.12	Model reference based on lyapunov method	83
6.13	Effect of adaptation gain on model tracking In case of gradien	
6.14	Effect of adaptation gain on model tracking In case of lyapunov	

LIST OF SYMBOLS

∆Efd	exciter output
K ₁ –K ₆	Linearization model constant
ΔV_t	terminal voltage
e	space vector of EMF, V
e	instantaneous EMF, V
T _m	mechanical torque
f	frequency, Hz
Í	phasor of current, A
Ι	constant value of current (e.g., rms or peak), A
i	space vector of current, A
i	instantaneous current, A
J	mass moment of inertia, kgm ²
L	inductance, H
Р	real power, W
E _d '	direct axis component of voltage behind
	transient reactance
E _q '	quadrature axis component of voltage behind
	transient reactance
R	resistance, Ω
S	apparent power, VA
δ	Rotor angle in radians
ω	Angular velocity of rotor
t	time, s
$ au_{ m qo}$ '	quadrature axis open circuit time constant
$\tau_{\rm do}$ '	direct axis open circuit time constant
V	constant value of voltage (e.g., rms or peak), V
V	instantaneous voltage, V
X	reactance, Ω
D	damping coefficient of synchronous machine
Iq	quadrature axis armature current
Id	direct axis armature current
H	inertia constant of synchronous machine in sec

Те	electrical torque of synchronous machine
Т	transformation
ζ	damping ratio
τ	time constant, s
Р	participation matrix
θ	Adjustable parameter
ym(t)	Reference model output
y(t)	Plant output
e(t)	error
u(t)	Control signal
r(t)	Reference input signal
J(θ)	Cost function

LIST OF ABBREVIATIONS

AVR	Automatic voltage regulator
HVDC	High voltage direct current
LFO	Low frequency oscillations
PSS	power system stabilizer
CPSS	Conventional power system stabilizer
APSS	Adaptive power system stabilizer
SMIB	Single machine infinite bus
MIT	Massachusetts Institute of Technology
RLS	Recursive least squire
MRAS	Model Reference Adaptive System
PSO	Power system operation
LQR	Linear quadratic regulator
LMI	linear matrix inequalities
SPSS	Supervisory power system stabilizer
DAI	distributed artificial intelligence
STC	self-tuning adaptive controllers
MRAC	Model Reference Adaptive control
LTI	Linear time invariant
WSSC	Western System Coordinated Council