Dedication

This research work is dedicated to:

My parents, brothers and sisters

My teachers

My friends

Acknowledgments

First and foremost I would like to send my great gratitude and thanks to my supervisors Dr. Khaled Mohamed Haroun, and Prof. Dr. Mubarak Dirar Abdalla iu5`t the Physics Department, Faculty of Science, University of Science and Technology (Sustech) who were generous with time and provided much needed advices, encouragements, and direction. I would like to acknowledge the contribution of Assoc. Prof. Dr. Numan Salah of King Abdul-Aziz University who kindly sent and given us the permission to use the original image samples I have been produced using low pressure chemical vapour deposition LPCVD and scanning electron microscope SEM techniques at Centre of Nanotechnology, KAU. Also I would like to acknowledge all the friends at Faculty of Science, University of Sudan.

Finally, all of this would not be possible without my beloved parents my mother Halima Mustafa Osman Altahir, and my father Idriss Abaker Idriss who instilled in their children to love and value from a young age. Also, many thanks to my brothers and sisters as well as numerous other people who have contributed to successes of mine.

مستخلص البحث

في هذا البحث تم إستخدام جهاز الترسيب بواسطة الأبخرة الكيميانية ذو الضغط المنخفض لتكوين أنابيب الكربون النانية. أستخدمت ستة عشر عينة من الحديد والكوبالت النانوية وتم تغييرتدفق معدل غاز الأستالين (10' 20' 30' و40 سنتميتر مكعب لكل دقيقة) ومعدل درجات الحرارة (450' 500' 500' و500 درجة مئوية). وقد حللت النتائج بواسطة جهاز المجهر الإلكتروني. وقد تبين أن أفضل صنع لأنابيب الكربون النانوية تمت عندما كان معدل الأستالين (20' 10' 20' 100' 500' 500' و500 درجة مئوية). وقد حللت النتائج بواسطة جهاز المجهر الإلكتروني. وقد تبين أن أفضل صنع لأنابيب الكربون النانوية تمت عندما كان معدل الأستالين 20 سنتميتر مكعب لكل دقيقة وعند درجات الحرارة (500' 500 درجة مئوية للحديد و500 درجة مئوية الأستالين 20 سنتميتر مكعب لكل دقيقة وعند درجات الحرارة 500' درجة مئوية للحديد و500 درجة مئوية الأستالين 20 سنتميتر مكعب لكل دقيقة وعند درجات الحرارة 500 درجة مئوية للحديد و500 درجة مئوية الأستالين 20 سنتميتر مكعب لكل دقيقة وعند درجات الحرارة 500 درجة مئوية للحديد و500 درجة مئوية للكوبات. وكذالك تم إيجاد قطر أنابيب الكربون النانوية بواسطة جهاز المجهر الإلكتروني بين 2نانومتر الي 30 للكوبات. وكذالك تم إيجاد قطر أنابيب الكربون النانوية بواسطة جهاز المجهر الإلكتروني بين 2نانومتر الي 30 الكوبات. وكذالك تم إيحاد قطر أنابيب الكربون النانوية بواسطة جهاز المجهر الإلكتروني بين 2نانومتر الي 30 الكوبات. وكذالك تم إيجاد قطر أنابيب الكربون النانوية بواسطة جهاز المجهر الإلكتروني بين 200 درجة مئوية الكوبات. أورز الفراكتان معانومتر الي 30 التومتر بالنسبة للكوبات. ثم قورنت النتائج بإستخدام طريقة التوميتر بالنسبة الكوبات. ثم قورنت النتائية بإستخدام طريقة التجزئة(الفراكتان).حيث بينت هذه الطريقة أن القطر يتراوح بين 1.62 ناتومتر و30 الحديد و30 الحديد و30 الحديد و30 التوية. والموبير الحدين و30 الحدين و30 الحديد و30 الحديد و30 الحديد و30 التورتي وقيم التجزئة تؤكد صحة النتائج.

Abstract

In this research, low pressure chemical vapor deposition system(LPCVD) was used to produced carbon nanotubes. It has been used for sixteen samples of iron Fe and cobalt Co according to actylene C_2H_2 rates change of (10, 20, 30, and 40sccm) and with temperature rates varied of (450°C, 650°C, 850°C, and 950°C) respectively. The morphology was studied by using scanning electron microscope (SEM).

It has been found carbon nanotubes CNTs was produced when acetylene rates was 20sccm at 950°C for iron and 650°C for cobalt. Also; it was found that the diameter of the tubes were 2~3 nm by using scanning electron microscope for both Fe and Co. The result obtained was compared with fractal analysis where the diameter ranges from 1.62 nm to 1.8 nm for both Fe and Co. This conformity between the ranges confirms the reality of the results.

Table of Contents

Dedication			Ι
Acknowledgement			II
Abstract			IV
Table of Contents			V-VIII
List of Figures			VIII-IX
List of Tables			IX
List of Notation and Abbreviation X			X
Chapter 1	hapter 1 Introduction		
	1.1	History of carbon nanotubes	02
	1.2	Research problem	02
	1.3	Research Methodology	02
	1.4	Research Objectives	03
	1.5	Literature Review	04
	1.6	ThesisOutline	05
Chapter 2	Theo	oretical Background	
	2.1	Introduction	06
	2.2	Catalyst Used For CNT Growth	08

2.3 Carbon Nanotubes	08
2.3.1 Type of Carbon Nanotubes	09
2.3.1.1Single Wall CarbonNanotube(S	SWNT)
2.3.2.2 Multi-WallCarbonNanotube (N	MWNT)
2.4 Morphology of Carbon Nanotubes	10
2.4.1 Arc discharge method2.4.2 Laser ablation method	11 12
2.4.3 Chemical Vapor Deposition Me	ethod
	15
2.5 Carbon nanotubes Application	17
2.6 Fractal Analysis Method	19
2.6.1 Box counting method or Grid method	covering 20

Chapter 3 Experimental

3.1	Experimental tools			
3.2	Experimental Aims			
3.3	Experimental Parameters 22			
3.4	Experimental Process at LPCVD	22		
3.5	Characterization Methods	23		
3.5.1 Scanning Electron MicroscopeГheory25				

Chapter 4 Results and Discussion

4.1 Introduction	26
4.2 SEM measurements of Fe carbon nanot CNTs growth.	ubes 26
4.2.1 Fe CNTs SEM Scanned Images Results	30
4.3 The fractal dimensions for each sample of	Fe
CNTs scanned images- Figure 4.2.2.	34
4.5 Surface roughness of treated Fe CNTs microstructure Samples Figure 4.2.2	35
4.6 SEM measurements of Co carbon nanotub CNTs discussion	oes 36
4.6.1 Co CNTs SEM Scanned Images	40
4.7 The fractal dimensions for each sample of	f Co
scanned images of Figure 4.6.2.	42
4.8 Surface roughness of treated cobalt CNTs microstructure samples figure 4.6.2	43
4.9 Discussion	46
4.10 Conclusion	47
4.11 Recommendation	48
4.12 Appendix	51
4.13 References	56
4.14 Publications	56

List of Figures

	2.3.1 SWNTs and MWNTS schematic diagram	09
	2.4.1 Cross sectional view of a arc generator	10
	2.4.2 Schematic illustration of a laser ablation apparatus (Source : Daener	1,
	et al. 2003)	12
	2.4.3 The schematic illustration of CVD system	14
n	2.5 Carbon nanotubes application in Electronic & Semiconductor Devnaterial (Source: H. Idriss, 2009)	vice 16
	2.6.1 Box counting method or Grid covering method (Source: Daenen, et 2003)	al. 19
	2.6.2 Box dimension (Source: Daenen, et al. 2003)	20
	3.5.1 Scanning Electron microscopic System (SEM)	24
	3.5.2 Schematic Diagram for SEM Open System	24
	4.2.1 Subdivided Samples of Fe CNTs surface sub-particle Sizes/A° Annealed at 450°C, 650°C, 850°C, and 950°C, and gases rates, $10 C_2H_2$, sccm H ₂ , and 100 sccm Ar respectively.	50 28
	4.2.2 Subdivided Samples of Fe CNTs surface Sub-particle Sizes/A°Annealed at 450°C, 650°C, 850°C, and 950°C, and gases rates, 20 C_2H_2 , 50 sccm H_2 , and 100 sccm Ar respectively.) 28
	4.2.3 Subdivided Samples of Fe CNTs surface Sub-particle Sizes/A°Annealed at 450°C, 650°C, 850°C, and 950°C, and gases rates, 30 C_2H_2 , 50 sccm H_2 , and 100 sccm Ar respectively.) 29
	4.2.4 Subdivided Samples of Fe CNTs surface Sub-particle Sizes/A°Annealed at 450°C, 650°C, 850°C, and 950°C, and gases rates, 40 C_2H_2 , 50 sccm H_2 , and 100 sccm Ar respectively.) 30
	4.3 Fractal dimension of each subdivided and treated microstructure Imag of Fe CNT surface samples of figure 4.3.2.	;es 32

4.4 Fe CNTs Analysis fractal Dimension (Dd) Results of treated graphic samples shown above as a Box counting Self similar numbers In(S) functioned on nanoparticle dimension axises numbers In(n).	34
4.5 Surface Roughness of Fe CNTs treated microstructure Sub-particle sizes/Å	35
4.6.1 Subdivided Samples of Co CNTs surface sub-particle Sizes/A° Annealed at 450°C, 650°C, 850°C, and 950°C, and gases rates, $10 C_2H_2$, sccm H ₂ , and 100 sccm Ar respectively.	50 37
4.6.2 Subdivided Samples of Co CNTs surface sub-particle Sizes/A° Annealed at 450°C, 650°C, 850°C, and 950°C, and gases rates, $20 C_2H_2$, sccm H ₂ , and 100 sccm Ar respectively.	50 38
4.6.3 Subdivided Samples of Co CNTs surface sub-particle Sizes/A° Annealed at 450°C, 650°C, 850°C, and 950°C, and gases rates, $30 C_2H_2$, sccm H ₂ , and 100 sccm Ar respectively.	50 39
4.6.4 Subdivided Samples of Co CNTs surface sub-particle Sizes/A° Annealed at 450°C, 650°C, 850°C, and 950°C, and gases rates, $40 C_2H_2$, sccm H ₂ , and 100 sccm Ar respectively.	50 40
4.7 Fractal dimensions of each subdivided samples of microstructure Images of cobalt CNTs surface, figure 4.7.2 sub-particle sizes/A°	42
4.8 Surface Roughness of cobalt CNTs treated microstructure of figure 4 Sub-particle sizes/Å	·.7.2. 43

List of Tables

4.4 Summarized measurements of Fractal dimensions of treated Fe CNTs microstructure surface, subdivided into five samples (sample A.1 to D.1) (Fe CNTs Sub-particle sizes/A° 33

4.4.1 Fe CNTs Analysis Fractal Dimension (Dd) Results of graphic Samples above of box counting Self similar value numbers In(S) and the nanoparticle Dimension Axises values In(n) 33

List of Notation and Abbreviation

LPCVD	Low Pressure Chemical Vapor Deposition System	
SEM	Scanning Electron Microscope	
SCCM	Standard Cubic Centimeter per Minutes	
CNTs	Carbon Nano-tubes	
SWCNTs	Single Wall Carbon nanotubes	
MWCNTs	Multi Wall Carbon nanotubes	
SAXS	Small Angle X-ray Scattering	
CRT	Cathode Ray Tube.	
Fe	Iron	
Со	Cobalt	
MF	Magnification Factor	
NSP	Number of Self-Similar	
D	Dimension	
Ν (ε)	Number of Box.	
Е	Number of Length	
BWs	Band Widths	
Units		
Å	Angstrom = 10^{-10} m	
Nm	Nanometer = 10^{-9} m	
μm	Micrometer = 10^{-6} m	