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Abstract 

 

 

This dissertation is slightly an introductory review to understand quantum computing and 

methods of quantum error correction, in this dissertation we focused on interpreting the 

theoretical part of quantum noise and errors such as decoherence. We found that decoherce is a 

type of quantum error among many other types, resulting from the qubits interaction with the 

environment and thus leads to errors in the qubits that carry the quantum information, for 

example bit-flip and phase-shift errors. In particular we attempted to correct the bit-flip quantum 

error theoretically by using quantum error correction code, through applying a tool known as 

shor’s bit-flip code into the decohered state, and see if it is possible to correct this error and 

recover the lost quantum information encoded in the qubits. And we found that this method for 

quantum error correction is successful and can be developed to be more efficiently.    
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 ملخص البحث

 

 

 Quantumو تصحيح الاخطاء الكمية   Quantum Computingعبارة عن مقدمة في الحوسبة الكمية لبحثا

Error Correction تخذينها, هنالك  حتي عند او او معالجتها التي تتعرض لها المعلومات الكمية عند نقلها

نتيجة Qubits التي تحدث للمعلومات الكمية الممثلة في صورة   quantum errorsالعديد من الاخطاء الكمية 

عوامل اخري (, مما يؤادي الي تشوه  و ل خارجية مثل ) المجالات الكهربائية و المغناطيسيةمالتاثرها بعو 

Decoherence الكمية هذه الاخطاء  احد. عدم القدرة علي استرجاعها قدها وهذا المعلومات و بالتالي ف

حيث يعمل علي تغير حالتها الكمية علي  qubit او qubitsويحدث للـ    Bit-flip quantum errorـبـ يعرف

وبالتالي تشوه  qubitsالممثل بوسطة  ا يعني تغير حالة النظام المعينو هذ 0الي  1ل من سبيل المثا

 Qubitsل الكامل و الكلي لعز ها امنمن الحدوث  الاخطاء ههذ . هنالك طرق عديدة لمنعالمعلومة الكمية

Isolation و كما ان هنالك طرق لمعالجة وتصحيح مثل هذه عند ة, لمنع التفاعل مع المؤثرات الخارجي

كمثال  Bit-flip quantum errorفي هذه الرسالة تم اخذ  .حدوثها مثل طريقة شور لتصحيح الاخطاء الكمية

 يةشور لتصحيح الاخطاء الكم طريقة ستخدامبإع المعلومات المفقودة استرجا و أومحاولة تصحيح هذا الخط

لتصحيح انواع اخري من  هاوير وجد انها جيدة ومجدية اذا تم تطبيقها بصورة مثالية وبالتالي يمكن تط و

 .  بكفأة عالية  الاخطاء الكمية

 

 

 

 



vi 
 

 

TABLE OF CONTENTS 

 

 

DEDICATION………………………………………………………...……………………….ii 

ACKNOWLEDGEMENTS ……………………………………………………………….....iii 

ABSTRACT ………………………………………………………………………………… ..iv 

ABSTRACT (عربي)……………………………………………………………………………..v 

TABLE OF CONTENTS………………………………………………………………….… vi 

LIST OF FIGURES ………………………………………………………………………....viii 

LIST OF TABLES………………………………………………………………………...…..ix 

 

 

CHAPTER 

I. INTRODUCTION…………….……………………………………………………...1  

 

1.1 Quantum Computer………………………………………………………...…1  

1.2 Quantum Computation……………………………………………………......3 

1.2.1 What is Quantum Computation …………………………………...3 

1.2.2 Present Models of Quantum Computing……………………….….4 

1.2.3 Advantages of Quantum Computer Over Present Computing 

System……………………………………………………………..5 

1.2.4 Limits of Quantum Computation……….……………………...….6 

1.3 Quantum Noise and Errors…………………………………………..………..7 

1.4 Problem of The Research in Question……………………………..…………9 

1.5 Outline of The Dissertation…………………………………………...……....9  

 

II. QUANTUM GATES………………………………..……………………………....11 

 

2.1 Elementary Quantum Gates Operations …...………………………………..12 

2.1.1 Not-gate…………………………………………………………. 12  

2.1.2 Hadamard gate…………………………………………………... 13  



vii 
 

2.1.3 Phase-shift gate…………………………………………………...14  

2.2 Multi-Qubits Quantum Gates………………………………………………..18 

2.3 Universal Gates Set……………………………………………………….....21 

2.4 Reverse of Quantum Gate…………………………………………………...22  

 

 

III. SIMPLE COMPUTATIONS………………………..………………………….….24 

 

 

IV. QUANTUM ALGORITHMS…………………………………………….………..33  

 

4.1    Importance of algorithms in quantum computer .…………………….…….34 

4.2    Quantum Searching algorithm………………………………………………34 

4.2.1 Grover's Search Algorithm……………………………………….35 

4.2.2 Grover's Search Operator………………………………………...36 

4.3    Quantum Fourier Transform………………………………………………...45 

4.4    Shor’s Factoring Algorithm………………………………………………....47 

4.5    Error correction…………………………………………………………...…52 

 

V. DISCUSSIONS AND CONCLUSTIONS……………………………………...….56 

 

5.1 Discussions……………………………………………………………..…. .56 

5.2 Recommendations ……………………………………………………..…....57 

 

 

REFERENCES ………………………………………………………………………………59 

 

 

 

 



viii 
 

 

LIST OF FIGURES 

 

 

 FIGURES 

 

2.1        Bloch sphere ………………………………………………………………...….…15 

2.2        A universal collection of quantum gates……………………………………....…..22 

2.3        Reverse of quantum gate ……………………………………………………….....23 

3.1        Equivalence between             gate and           gate……………………...26 

3.2        Defining the quantum      gate in terms of three            gates…………....30 

3.3           gate…………………………………………………………………………......31 

3.4        A circuit for implementing Bell state ……………………………………………..32 

4.1        Schematically shows the Grover’s searching algorithm operates as follows……...37 

4.2        Circuit diagram to implement Shor’s algorithm…………………………………...48 

4.3        In coding circuit……………………………………………………………………52 

4.4        Circuit implement shore’s bit flip code…………………………………………....53 

 

 

 

 

 

 

 

 

 

 



ix 
 

 

LIST OF TABLES 

 

 

TABLES  

 

4.1         Logic Table A ………………………………………………………………..…….53 

4.2         Logic Table B………………………………………………………………………54 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

CHAPTER   I 

 

 

INTRODUCTION 

 

 

In this chapter we will give a brief introduction about quantum computer, current models of 

quantum computing, quantum noise and errors, then we shall formulate the research with 

problem and finally we give an outline of the dissertation. 

 

 

1.1    Quantum Computer 

 

 

Quantum computer (QC) is a device that makes use of quantum mechanical principles, to carry 

out a computation operations on data, some of the fundamental concepts that are used in 

quantum computing are super-positioning, and entanglement. Classical computers are based on 

transistors, it has a memory that is made up in the form of series of bits, where each bit takes a 

value either {0 or1} where as in a quantum computer, the information is represented in the form 

of quantum bits {Qubits} (T. Venkat, Shirish, 2010), a qubit is a unit vector in a 2- dimensional 

complex vector space with fixed orthonormal basis      and     which are relative to     and   , 

and represent the classical bit values zero and one respectively. Qubits can be in a superposition 

of     and     such as      +    . Thus      is the probability of measured value to be in the 

state     and       is the probability to be in state     respectively (Javier, 2009). A qubit is a 

form of quantum object, such as, an atom (an ion) which can occupy different quantum states. 

Two of these states are used to store digital information, for instance; atom in the ground state 



2 
 

corresponds to the value     of the qubit, the same atom in the excited state, corresponds to the 

value     of this qubit (Gennady, et al., 1999).  

 

A qubit in general may have two spins, up and down, a single qubit can take the value of a 1 or 

0, and may both of them simultaneously, similarly two qubits, three qubits can be in any 

quantum superposition of four states, eight states respectively, therefore, in general an   qubits 

in quantum computer can have up to    different states, compare to a classical computer that can 

only be in one of these    states at any one time. A quantum computer operating by manipulates 

the qubits using a fixed sequence of series quantum logic gates, these gates can be applied by 

using quantum algorithm. In a quantum computer, computations are finished by using quantum 

properties to symbolize data and perform operations on these data. A theoretical model of a 

quantum computer is the quantum Turing machine, (the universal quantum computer) (T. 

Venkat, Shirish, 2010). The power of quantum computer is not connected with the density of 

qubits, but on its abilities which allows one to operate quantum states in superposition, one atom 

can be used to generate an infinite number of super positional states using just two basic 

quantum states, which correspond to     and    , for instance; if two states have the energies,    

and   , one can prepare a superposition of states, 0 and 1, which corresponds to any average 

value of energy between the values    and   . However, when measuring the energy of a single 

atom, we get only one of two results,     and   . Utilization of super-positional states allows one 

to work with quantum states which simultaneously represent many different numbers; this is 

known as “Quantum parallelism”. 

 

Any quantum computer must satisfy certain requirements, which known as the DiVincenzo 

criteria, these requirements as following: 

 

 A scalable physical system with well characterized qubits: A quantum computer must be 

made up of many quantum bits, which both exhibit quantum properties (superposition, 

entanglement). 
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 The ability to initialize the state of the qubits to a simple fiducially state such as the 

ground state: We must be able to initialize the computer in some state              for 

two reasons: First, any algorithm would require the computational register to be in some 

known state to begin a computation, second it is necessary to perform error correction on 

any quantum computer, which requires a steady stream of qubits in some pure state to 

extract entropy. 

 Long relevant decoherence times much longer than the gate operation time: to 

successfully run an algorithm, a quantum computer must accurately store the information, 

any corruption of information  can be understood as  coupling to the environment, noise 

in control signals, and so on. 

 A qubit-specific measurement capability: some sort of measurement mechanism is 

required, a measurement of some group property of qubits, like their projection onto a 

specific basis state, is insufficient, thus individual qubit measurement is crucial for 

extracting error syndromes to perform quantum error correction . 

 A universal set of quantum gates: To run a quantum algorithm which is a set of unitary 

instructions that involve some number of qubits, one applies a Hamiltonian    for some 

time on that algorithm followed by   , and so on. Experimentally it is very challenging 

to implement a series of arbitrary Hamiltonians, thus break them down into some set of 

constituent parts; as a result many quantum operations can be comprised from the others. 

For example, a controlled-phase gate can be turned into a             gate with the 

addition of          gates on the target qubit before and after. Thus, there are many 

possible sets of “universal” gates (Ronald, 2016). 
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1.2    Quantum Computation  

 

 

1.2.1    What is Quantum Computation 

 

 

Quantum computation is a field that investigates the computational powers of quantum 

computers and their properties by using principles of quantum mechanics. It aims on finding a 

quantum algorithms that are significantly faster than any classical algorithm which can give a 

perfect solution to the same problem (Ronald, 2016). Quantum computing makes use of the 

effect constructive interference in the “desired” direction of computation and destructive 

interference in all others, an example for this process is reflection of a light beam from a mirror 

surface (reflected light is a photons in a superposition moving in many different directions), only 

one direction is selected by nature which is corresponds to the law of reflection. The 

measurement outcome is represented in a discreet digital value, for instance if there is a voltage 

(represented by - 1), and there is no voltage (represented by-0) (Gennady, et al., 1999). Quantum 

computing relies on several phenomena and laws of the quantum world that are fundamentally 

different from those one encounters in classical computing, it offers radically a new possibilities 

and lead to different constraints than classical computations, which is based on the laws of 

classical physics, moreover, quantum computing seems to have the potential to deep our 

understanding of nature as well as to provide more reliable methods for information processing 

and communication tools (Jozef, 2011).  
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1.2.2     Present Models of Quantum Computing 

 

 

Topological Quantum Computer: It is a theoretical model of quantum computer that utilizes 

two dimensional quasi-particles called ( anyons ), anyons world lines cross over one another to 

form braids in a 3-dimensional space-time (i.e., one temporal plus two spatial dimensions), these 

braids form the logic gates in the quantum computer, quantum computer based on quantum 

braids much more stable than that using trapped quantum particles, the smallest disturbance can 

cause a quantum particle to decohere and bring in errors in the computation, such small 

perturbations do not change the topological properties of the braids. 

 

Adiabatic Quantum Computation (AQC): build on the adiabatic theorem to do calculations, 

a system with a simple Hamiltonian is prepared and initialized to the ground state, this 

Hamiltonian is then developed to the complex Hamiltonian in the ground state by using adiabatic 

quantum computation, system ground state describes the key to the problem of interest. By the 

adiabatic theorem, since the energy of the outside world is kept lower than the energy gap 

between the ground and the next higher energy state of the system, the system will has a lower 

probability of going to a higher energy state when interference with the outside world, similarly 

it cannot move to a lower state thus it will remain in the ground state, so at the end the state of 

the system can stay coherent as long as needed, that means AQC is a possible method to get 

around the problem of quantum decoherence. But experimentally it is a bit difficult to perform 

this, as the Hamiltonian is gradually change, a multiple qubits are close to a tipping point during 

computation, it is exactly at this point, the ground state gets arbitrarily close to a first energy 

state, by adding a slight amount of energy (external or slowly changing the Hamiltonian) the 

system will be taken out of the ground state, and this instantly damage the calculation. If we try 

to perform the calculation more quickly the external energy will increase a result; scaling the 

number of qubits makes the energy gap at the tipping points smaller. 
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Loss-DiVincenzo Quantum Computer: Also known as spin-qubit quantum computer is a 

scalable semiconductor-based quantum computer; the proposed computer was to use as qubits 

the intrinsic spin-1/2 degree of freedom of individual electrons restricted to quantum dots.  This 

was done in a way that fulfilled DiVincenzo Criteria for a scalable quantum computer, namely: 

 

 Identification of well-defined qubits. 

 Consistent state preparation. 

 Low decoherence. 

 Precise quantum gate operations. 

 Strong quantum measurements (T. Venkat, Shirish, 2010). 

 

 

1.2.3    Advantages of Quantum Computing Over Present Computing Systems 

 

 

There are several reasons to develop a practical quantum computer: 

 

1. High Speed and Huge Security: atoms change energy states very quickly than fastest 

computer processors. Each qubit can take the place of an entire processor; a 1,000-

processor computer could be replaced by 1,000 ions of say, carbon the main idea is 

finding the sort of problem a quantum computer is capable to solve. It is also extremely 

useful for decoding and encoding secret. 

2. Large Data Storage and information Access: a quantum computer capable to store a large 

amount of data within a very minute scale. And also it could be used to search large 

databases in a fraction of the time that it would take a conventional computer.  

3. High Efficiency and Competence: By adding up all the above qualities, it directly 

increases the efficiency and accuracy of a quantum computer to the next level. 
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4. Quantum Communication System: it allows a sender and receiver to agree on a code 

without ever meeting in person. If an eavesdropper tries to monitor the signal in transit 

the uncertainty principle ensure that it will be disturbed in such a way that the sender and 

receiver are alerted. 

5. Quantum Cryptography Challenge: quantum computers expected to improve the world of 

cryptography.  

6. Artificial Intelligence: according to theories of quantum computation, it is suggested that 

quantum computers will be capable of simulating conscious rational thought, will be the 

key to achieving true artificial intelligence (T. Venkat, Shirish, 2010). 

 

 

1.2.4    Limits of quantum computation 

 

 

It has been proven that quantum computing allows certain problems to be solved perfectly and 

doesn’t provide an efficiently solutions to all problems, some problems which may take a very 

long time on classical computers a quantum one could solve it in a couple of days, it has proven 

that for some problems quantum computation cannot improve it on classical methods (Eleanor, 

2008).  Qubits in quantum computer, arranged symmetrically, during this process the spins of the 

qubits may change due to external noise (E-fields, heat), to protect the qubits from such external 

disturbance we may require a very advanced mechanism that would avoid or illuminate such 

noises to interfere our structure.  

 

Even if we design a machine that could cut the noise, the temperature comes in as another 

problem (“For the qubits to act normally, we require to maintain a temperature of -200 degrees 

Fahrenheit”), this can be done by using chemicals in order to bring the temperature, but there is 

another problem, as we are working at the quantum level it is somewhat difficult to determine 

the two parameters of the qubit (Momentum, Position) because of the uncertainty principle, 

Thus, the tools with which we may be working on the qubits may become a problem for the 
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qubits itself (T. Venkat, Shirish, 2010). Quantum computers are affected by noise and 

imprecision, noise is the coupling between the computer and all other systems, normally referred 

to as the (environment), and by imprecision we refer to an inaccuracy in the process of applying 

quantum gates which are applied to the computer in order to make it compute. The latter case can 

be regarded as noise acting all the qubits involved in the gate, followed by a perfect 

implementation of the gate (A. M. Steane, 1998). 

 

 

1.3    Quantum Noise and Error 

 

 

In quantum computation, a quantum states is manipulated in such a way that coherence is 

preserved, coherence means essentially if a computer can be in states      and    , then during 

the process of a computation it might adopt the state:     
 

 
                to preserve 

coherence of the states, it requires      and      stay unchanged by noise and imprecision, also 

the value of the phase in the superposition is well denned. However, the phase becomes 

undefined either if an imprecise operation produces rotation of the state through an unknown 

angle of order π, or if the coupling to the environment lead to an entangled state such as:  

                          . Where      are states of the environment and the         = 0.  For 

instance if there are K qubits in the computer, and these qubits are taken to be physically 

separated systems such as atoms, quantum computation is only more efficiently than classical 

computation if states of the form    feature predominantly, such that      of the qubits are 

involved in the interference (e.g.               ,               ), therefore at any stage 

of the computation the computer fails if any one of the   qubits decohered, that is, becomes 

entangled with the environment or randomly processes. If the probability for a decohering 

process is   for any qubit, during the time it takes to perform one computational step, and there 

are   steps in the whole computation, then the probability that the quantum algorithm succeeds is 

of order                 . For a successful computation, we therefore require    
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        (A. M. Steane, 1998).  Quantum information is highly sensitive to errors and noise 

more than classical information (Seth Lloyd, 2009), quantum noises are caused by imperfect 

quantum operations, and coupling between the quantum system and with its environment 

(Ronald, 2016). An error on a quantum bit could take the form of a rotation by an unknown 

(angle  , axis), a qubit can either be flipped about the x-axis (  ), y-axis (   ) and z-axis (  ), or 

a combination of these effects simultaneously (Seth Lloyd,2009), such process is analyzed to a 

sum of “error operators”, known as tensor products of Pauli spin operators, these are the 

analogues of classical error vectors (Ronald, 2016). Decoherence is another form of quantum 

error which caused by environmental monitoring, decoherence destructs the quantum coherence 

between preferred states associated with the observables monitored by the environment 

(Wojciech, 2003). (Qubit initialization, measurement errors, qubit loss and leakage) are 

considerable sources of error which can effect the computation of quantum information 

processing (Simon, et al., 2013).    
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1.4    Problem of The Research in Question  

 

It turns out that quantum information susceptible to decoherence due to quantum noise, which 

causes errors in quantum state of the qubits. In particular we will consider only one type of 

quantum errors; the bit-flip error (flips the state |0     1|). Here we will attempt to find a 

complete or partial solution to this problem, and certainly we will go to use the approach of 

quantum error correction to protect qubits of the quantum system in question from coupling with 

environment, and applying a correcting code on the decohered qubits to correct the error on qubit 

state and restore the lost information. 

 

1.5    Outline of The Dissertation  

 

 chapter I is an introduction to quantum computers, and quantum computing, we are going 

to show why quantum computer has the upper hand over classical one by illustrating 

some advantages of quantum computing, we also going to know about the limits and 

problems of quantum computation, and the methods for solving some of this problems 

will be suggested briefly at the end of the last chapter. 

 In chapter II we will describe in a bit of details quantum gates (which are act on qubits), 

and its properties, in additional to reversible computation.  

 In chapter III we are going to use these quantum gates to perform some simple 

computations on qubits, in addition we show the combination of these gates together to 

generate new quantum gates and form quantum circuits. 

  Chapter IV is all about an importance quantum algorithms as (Grover’s searching 

algorithm, Shor’s factoring algorithm), we will explain these algorithms and show how it 

works and use them to correct some quantum errors, and also we will know about some 

common techniques used in quantum algorithms such as quantum Fourier transform. 

 Finally in chapter V we will discuss the current challenge and obstacles that face the field 

of quantum computing and we suggest some techniques and ideas which can help to 

boost the practical side of quantum computing and error correction. 
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CHAPTER   II 

 

 

QUANTUM GATES  

 

 

Processing of classical information is accomplished by various logic gates which act on the bits 

being processed (Phillip, et al., 2007). In quantum computation, quantum gates are required to 

perform operations on quantum information (qubits), these gates are essentially evolutions of 

quantum states (Abdullah, 2011). Quantum gates (as opposed to classical gates) are unitary 

transformations of a quantum state chosen from a continuous set, the unitary transform   is 

composed of elementary gates acting on a fixed number of qubits (Julia, 2005).  The effect of a 

unitary transformation  on a state   is described by the corresponding rotation of the vector |   

in Hilbert space. For this reason,   stand both for the quantum mechanical transformation as 

well as for the unitary rotation:   

 

                 | (s)   =  |s  =    (∑    |  )   =    ∑      |   = ∑     ∑     |                    (2.1) 

 

Where     denotes the matrix element of   positioned at the  -th row and the  -th column. It 

follows from the associativity of matrix multiplication that the effect of two consecutive 

transformation   and   is the same as the single transformation (     ). Just as matrix 

multiplication does not commute, so does the order of a sequence of unitary transformations 

matter: in general          . 

 

We can restate this in a more intuitive way by saying that it makes a difference if we first do   

and then  , or the other way around. A typical example of this phenomenon is given by the 

matrices  

 

                                    = (
  
   

)             and                = (
  
  

)                        (2.2) 

With clearly           (Willem, 2004). 
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2.1   Elementary Quantum gates Operations  

 

 

Pauli operators represent unitary evolution ( -transformation) which may take place on a single 

qubit; four standard operators acting on a single qubit are the Pauli sigma operators, defined by: 

 

                                  [
  
  

]                               [
  
  

] 

 

                             [
   
  

]                           [
  
   

]                               (2.3) 

 

(Where these matrices are written in the basis        ), the standard notation for the Pauli 

operators is    ,           , the Pauli operators form a basis set for the vector space to 

operators on a single qubit. The   Pauli operator is known as the quantum not gate, as it flips the 

basis states,          and           much as the classical not gate interchanges   and  . The 

  Pauli operator is a phase flip gate, as it flips the relative phase of the basis state,           

and              . At present there is no widely accepted term for the  operator.   is the 

identity gate (Michael, 1998). Quantum gates are unitary operation, the most important 

elementary quantum gate operations are as follows: 

 

 

2.1.1     Not-Gate  

 

 

Is the simple quantum operation on one qubit, it acts linearly on a general quantum state as 

 

                                                                                                  (2.4) 
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In fact quantum Not-gate operator is the Pauli operator   as in eq. (2.3) (Xinlan, 2002). 

 

 

2.1.2     Hadamard Gate  

 

 

The          gate   is defined as that gate mapping the basis states as follows: 

 

                                   
 

  
          ,               

 

  
                              (2.5) 

 

 

 

The          gate has the following matrix representation: 

 

                                              [
  
   

]       [

 

   

 

   
 

   
 

 

   

]                                      (2.6) 

 

One useful property of the          gate is that it is self-inverse, meaning        

 

    
 

  
                

 

                                           
 

  
                 (Phillip, et al., 2007).                       (2.7) 
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2.1.3      Phase-Shift Gate  

 

 

Is a one qubit gate where       is referred to as     gate, or   which acts on the basis states 

as follows:   

 

                                                    ,               
 

                                            (2.8) 

 

 
 

The name    -phase gate is from the fact that transformation can be represented with     

  as following matrix representation:  

 

  [
  
      ]              [ 

      
      

]                                    (2.9) 

 

which is why we call it a    -gate (Emma, 2011), any unitary operator acting on a 2-

dimensional quantum system (a qubit) is called a ‘1-qubit quantum gate’ (Michael, 1998). Every 

1-qubit pure state is represented as a point on the surface of the Bloch sphere, or equivalently as 

a unit vector whose origin is fixed at the centre of the Bloch sphere. A 1-qubit quantum gate   

transforms a quantum state     into another quantum, state     . In terms of the Bloch sphere, 

the action of   on      can be thought of as a rotation of the Bloch vector for     to the Bloch 

vector for     . For example, the not gate takes the state     to the state     (and takes     to 

   ). In terms of the Bloch sphere, this action can be visualized as a rotation through an angle π 

about the   axis, as illustrated in Figure (2.1): 
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Figure (2.1): Bloch sphere 

 

If we take the exponential of Pauli gates, we get unitary operators corresponding to very 

important classes of 1-qubit gates. These are the rotation gates, which correspond to rotations 

about the          –      of the Bloch sphere. They are defined in terms of the Pauli gates as 

shown in eq. (2.3).The rotation gates are defined as follows: 

 

                     
 

 
    

                   
 

 
    

                   
 

 
                         (2.10) 

 

Consider an arbitrary 1-qubit state, written in terms of its Bloch vector angles   and:   

 

                                                       (
 

 
)               

 

 
  1                                          (2.11) 

 

In the basis, this can be written as the column vector 

 

                                                            (
   (

 

 
)

       
 

 
 
)                                                       (2.12)    
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The effect of applying       on this state can be seen by performing a matrix multiplication: 

 

(   
 

  

   
 

 

)    (
   (

 

 
)

       
 

 
 
) = (

    
 

    (
 

 
)

  
 

         
 

 
 
) =    

 

   (
    (

 

 
)

           
 

 
 
) 

 

                            =    
 

   (   (
 

 
)                    

 

 
    )                                 (2.13) 

 

We see that effect of       has been changing the angle   to    , which is a rotation of   

about the  –      of the Bloch sphere. To see that       and       implement rotations about 

the        –      of the Bloch sphere is trickier, because such rotations involve changes to both 

angles   and so using the result in eq.(2.13) we can write the rotation gates as: 

 

      ≡    
    

  =      (
 

 
)              

 

 
    

      ≡    
    

  =     (
 

 
)             

 

 
  ) 

                                          ≡    
    

  =      (
 

 
)             

 

 
   )                          (2.14) 

 

Knowing the matrices for       and   in the basis, we can now write the rotation gates as 

matrices in the basis: 

 

     [
   (

 

 
)      (

 

 
)

     (
 

 
)    (

 

 
)

]                      [
   (

 

 
)      

 

 
 

     
 

 
    (

 

 
)
] 

 

                                               [ 
  

 

  

   
 

 

]      (Phillip, et al., 2007)                        (2.15) 
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Small rotations 

 

 

What if we want to apply only a small rotation about one of these axes? Let us consider the time-

dependent Schrödinger equation, given by 

 

                                                           
 

  
       ̂                                                         (2.16) 

 

Where  ̂ is the Hamiltonian which governing the time evolution. For time independent  ̂, we 

can solve this equation with                  . If  ̂   
 

 
   ⃗    , where   ⃗  is an arbitrary 

vector which defines our rotation axis, the corresponding unitary is given by   ̂       ̂      

   
  

 
  ⃗   ⃗⃗ 

 . Taylor-expanding the exponential  ̂  ∑
 

  

 
     

    

 
  ⃗      , and utilizing the Pauli 

operator identities, we are left with  ∑
 

  

 
         

    

 
      ∑

 

  

 
       

    

 
      ̂   ̂  . We can 

identify the two sums as sines and cosines, giving us  ̂       (
  

 
)        (

  

 
)   ̂   ̂  

  ̂
  . Thus, we can control the amount of rotation driven by our Hamiltonian by simply changing 

the period of time for which we apply it. Equivalently, we could change the parameter Ω, which 

represents the coupling or drive strength of our rotation. For example, if we take   ̂   ̂, then  ̂ 

is diagonal in the basis as  

 

                                    ̂    ( 
    

 
  

  
    

 
 
)    

    

 
 (

  

  
   

 
 
)                         (2.17) 

 

We can control the difference between    and     by applying the    operator. Geometrically, 

this corresponds to rotations about the  –axis as a function of time, our state processes about  . 

For arbitrary   ⃗ , if we choose our qubit basis as states pointing parallel and anti-parallel to  ⃗ , the 

unitary operation is exactly as written above, where in the second equation we have factored out 

the irrelevant global phase, so we can arbitrarily control the phase (Matthew, 2013).  
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2.2   Multi-Qubits Quantum Gates 

 

 

Quantum gates of 2-qubits and higher are classified into: Firstly, analog of classical gates where 

the inputs determines the out puts (the out puts depends on the inputs). Secondly, what so called 

"controlled " gates, they have the property that one of the ( input-output) pair known as the target 

qubit has an action done on it if and only if the other ( input-output) pairs called the control qubit 

have a certain value, the control qubits are unaffected by the gate in either case (Abdullah, 2011). 

Gates operate on a manifold of multiple qubits must also be realized, since the state vector has 

  elements, these operators must be    by    matrices. Consider a set of           Pauli 

operators that each act on only the  th qubit   
 , where the superscript denotes which qubit it 

addresses. For example, if we have two qubits, an  –operation on the first qubit would be given 

by the tensor product of   
 , and   

 . A single qubit gate is one where all but one of the operators 

in the tensor product are  ; having two or more non-identity operations constitutes a multi-qubit 

gate. For example, an  -operation on two qubits simultaneously would be given by  
    

 , and 

is commonly abbreviated as     or simply   . Some particularly common gates include the 

“     gate,” which maps          , and does nothing to      or     , and is given by the 

matrix 

 

     (

    
    
    
    

) 

 

There are also        –     gates, where a target qubit is flipped if and only if a control is 

excited, and is given by the matrix 

 

       –          (

    
    
    
    

) 
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The        –     gate is naturally extendible to being “controlled” by more than one qubit; for 

example, the three-qubit         gate flips some qubit if and only if two controls are excited, and 

is therefore also known as a        –        –     gate as in Figure. (2.2), another common 

two-qubit gate is the        –       gate, which flips the phase of only the      basis state: 

 

       –             (

    
    
    
     

) 

 

The        –      gate is also has a multi-qubit generalization which is known as 

(      –        –      ) gate which flips the phase of the basis state      . Many of these 

multi-qubit gates can be related to one another with single-qubit rotations. Experimentally, 

single-qubit gates are implemented essentially the same regardless of the number of qubits 

(Matthew, 2013). 

 

 

Note : 

 

Quantum Control Not (          ) gate can be denoted by this operator,           

                                    . The          gate is a 2-qubit operator where the 

first qubit is the control and the second qubit is the target. If the control qubit is in the ground 

state   , the value of the target qubit does not change after the action of the          gate. In the 

opposite case, the target qubit changes its value. This situation is described by the first two terms 

and the second two terms respectively. The          operator, like the   operator, is unitary 

and Hermitian, 

 

                     .                                                       

where the matrix form of the          gate in decimal notation is, 
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         (

    
    
    
    

) . 

 

The matrix element               corresponds to the term       where we count   and   from 

zero in         .  

 

The three qubit   -gate can be described by the operator,                           

                                                                  .  The left 

qubit in   is the control qubit. If the control qubit is in the ground state     the two target qubits 

do not change their states. This situation is described by first four terms in  . The second four 

terms in   describe the opposite case, with the control qubit in the excited state      and the 

target qubits exchanging their states. For example,                            , and the 

state of the qubits does not change.  At the same time,                               , 

and the target qubits exchange their states. In decimal notation, the F gate can be written as, in 

matrix representation, has the form 

 

(

 
 
 
 
 

        
        
        
        
        
        
        
        )

 
 
 
 
 

   (Gennady, et al., 1999) 
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2.3    Universal gates set 

 

 

In classical computing we implement complicated operations as a sequence of much simpler 

operations. In practice we want to be able to select these simple operations from some set of 

elementary gates. In case of quantum computing, we do the same thing using what is known 

universal gates sets (Phillip, et al., 2007). Universality is the ability to compute any mathematical 

function with a computational system and translates in quantum computation to the ability of 

implementing arbitrary single-qubit rotations on all qubits and entangling gates between the 

qubits (Andrea, 2009). There are finite sets of quantum gates that are universal in the following 

sense. Consider the networks that can be constructed from a countable set of gates each network 

will implement a unitary transformation, and we want to consider if any finite unitary 

transformation can be implemented in such a way, of course we cannot construct an exactly copy 

of every such element (Willem, 2004). Thus it suffices to have an implementation that 

approximates the desired unitary to some specified level of accuracy. Suppose we approximate a 

desired unitary transformation   by some other unitary transformation  . The error in the 

approximation is defined to be  

 

                                                                                             (2.18) 

 

 When we say that an operator   can be ‘approximated to arbitrary accuracy’, we mean that if we 

are given any error tolerance     , we can implement some unitary   such that          

(Phillip, et al., 2007). It has  been proven that there are indeed universal sets of quantum gates 

with which this can be achieved, with the (                –                 ) gates any 

other unitary transformation can be approximated constructed with in an arbitrary small error  

(with respect to some distance measure on the set of operators) (Willem, 2004). Restrictions 

must be placed on the gates from which quantum circuits may be made, this is done by using a 

suitable finite set from the following list (representing a standard choice for a gate set): 

 

         gates: A non-unitary gates, it takes a 1-qubit as input and has no output.  
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          gates: A non-unitary gates, it takes no input and produce a 1-qubit in the ground 

state     as output. 

         gate: is a three-qubit unitary gate.  

          gate: is a single-qubit unitary.  

             gate: is a single-qubit unitary.  

 

 

The symbols used to denote these gates in quantum circuit, shown in Figure (2.2) 

 

 

 

Figure (2.2) 

 

Figure (2.2): A universal collection of quantum gates:                       –     , 

ancillary, and Erasure gates (John, 2011). 

 

 

2.4     Reverse of Quantum Gate  

 

 

Each quantum gate has a property that numbers of inputs - outputs are equivalent, this feature 

comes from the fact that quantum mechanics is a theory that obeys time symmetry (A quantum 

mechanical system that is evolved from a given state to using a definite series of operations can 

be evolved backwards using the inverse of the series of operations on it), which means quantum 
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computer must be a reversible machine. A gate operating on an inputs to produce an outputs is be 

able to do the reverse if the number of inputs -outputs are similar (Abdullah, 2011). 

 

 

  

Figure (2.3) Reverse of quantum gate 

 

A quantum circuit acting on   qubits is described by a     unitary operator  , since   is 

unitary,          . This implies that in a quantum circuit (each quantum gate has an 

inverse gate which is the mirror image of the original gate). The circuits for   and    are the 

same size and have mirror image gates which carries out the inverse operator   (Umesh, 2012). 
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CHAPTER   III 

 

 

SIMPLE QUANTUM COMPUTATIONS 

 

 

In the previous chapter we knew about quantum gates and its properties, some of these gates act 

on a single qubit such as Hadamard gate (see subsection 2.1.1), while the others operate on more 

than one qubit system as illustrated in (section 2.2). In this chapter we will manipulate these 

gates by applying it both on qubits system to carry simple computations, and on itself to generate 

new and more complicated operators such as swap gate and    gate, as you will see in example 4 

and 6 respectively. More important and in particular you see how one can apply the Hadramard 

gate to more than one qubit system (see example 4). Furthermore we shall combine gates 

together to implement circuit which can be use in to build quantum algorithms. 

 

 

Example1 

 

Let us implement the following gates which are the special cases of the single-qubit rotation 

operations and implemented by the rotation pulses. 

 

1.          gate: If     
 

 
  is the rotation operator around the  -axis , and        around 

 -axis: 

  (
 

 
)  

[
 
 
 
 
    

 
 
 
       

 
 
 
 

     

 
 
 
     

 
 
 
 ]

 
 
 
 

 [
    

 

 
       

 

 
 

     
 

 
     

 

 
 

] 

 

 

       =   [ 
  

 

  

   
 

 

] 
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Then  

     (
 

 
)       [    

    
]  [

    
 

 
       

 

 
 

     
 

 
     

 

 
 

]  [ 
  

 
  

   
 
 

] 

 

     [
  

   
] [ 

  
 
  

   
 
 

]     
 

  
 [

     
   

] 

So 

  
 

  
 [
  
   

] 

 

2. Pauli-x gate  

 

If        [
    

 

 
       

 

 
 

      
 

 
     

 

 
 

]                   [    
    

] 

 

             =      [    
    

]    [
    

 

 
       

 

 
 

      
 

 
     

 

 
 

] 

 

  [
  
  

]    (Marek, 2011). 

 

Implementing the  -Pauli gate using  ,   gates  

 

      [
  
   

]                     [
  
   

] 
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[
  
   

]  [
  
   

] 
 

  
[
  
   

] 

 

    

[
 
 
 
 

  
 

 

  
 

  

 

  ]
 
 
 

  

[
 
 
 
 

  

 

  
 

  
 

 

  ]
 
 
 

   [
  
  

] 

 

Pauli-   gate also known as quantum Not-gate, one of it is application is to transform the state of 

the qubit from         the unitary of quantum    -gate is 

 

     [
  
  

]                           [
 
 
]                         [

 
 
] 

 

        [
  
  

]  [
 
 
]  [

 
 
]      

 

        [
  
  

]  [
 
 
]  [

 
 
]      

 

 

Example 2 

 

Implementing        –    gate as in Figure (3.1) by combining           –    gates together, 

the controlled not gate can be implemented (as it is equivalent) to two   gates and a        –   

gate, as shown in Figure below: 

 

 

Figure (3.1): Equivalence between        –     gate and        –   gate 
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       –                   –         

 

  [
  
  

]                [
  
   

]               –   [

    
    
    
     

] 

Therefore  

          –    ([
  
  

]      
 

  
[
  
   

]) [

    
    
    
     

] ([
  
  

]      
 

  
[
  
   

])         

 

(
 

  
[

    
     
    
      

]  ) [

    
    
    
     

](
 

  
[

    
     
    
      

]  )  [

    
    
    
     

] 

 

       –    gate is equivalent to classical gate    , it acts on a two qubits in superposition as 

following:  In dirac notation 

 

                         

so 

         =                            

 

                                                  

 

                     

 

In matrix representation 

 

     [

 
 
 
 

]              [

 
 
 
 

]                  [

 
 
 
 

]                 [

 
 
 
 

] 
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The unitary matrix of        –    gate is:        [

    
    
    
    

] 

 

           [

    
    
    
    

] [

    
    
    
    

]  [

    
    
    
    

] [

    
    
    
    

]  [

    
    
    
    

]   

(Moayad, et al., 2010). 

 

 

Example 3 

 

In the Bloch sphere picture, every operation (or gate) on a single qubit can be interpreted as a 

rotation around an axis of the sphere. Consider the operation on the following qubits where the 

initial state     is rotated by an angle     around the  -axis and ends up along the  -axis in the 

state |  . Mathematically the state                is then written as [
 
 ], since operations on 

single qubits can be described as unitary     matrices, the above example is then 

 

      
 

  
[
   
   

] [
 
 
]  

 

  
 [
  
 

]  
 

  
  [

 
 
] 

 

where the last equivalence is due to the irrelevant global phase factor (Lars, 2013). 

 

 

Example 4 

 

 

We want to apply          gate to two qubits at the same time, for this we have two qubit 

inputs, and so require a 4 by 4 matrix operator. To get this we find the tensor product of the 

         gate and itself. 
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 [
  
   

]  
 

  
[
  
   

]  
 

 
 [

             
         
         
         

] 

 

Doing the same for three qubits would require          
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]  
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]     [
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 (     )      [
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]     [
     
   

]  [
    
   

]  [
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]     [
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]  [
     
      

] 
] 

 

  
 

 
    

[
 
 
 
 
 
 
 
                             
                       
                       
                     
                             
                       
                       
                     ]

 
 
 
 
 
 
 

 

 

And for any   qubit inputs we have    . We can generalise this notion to any gate   by 

considering it as an application of a   gate to each qubit. Given   qubit inputs, we can perform 

the operator on all inputs by finding the operator     (Joey, 2010) (Magnus, 2009). 
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Example 5 

 

Let us create a useful operator by combining three gates together, the      gate, illustrated in 

Figure (3.2)  

 

 

Figure (3.2): Defining the quantum      gate in terms of three        –     gates 

 

We use the        –    gate described above, and we will flip the gate such that our bottom 

qubit is the control, and our  –gate will be performed on the top qubit (       –    gate):  

 

       –    [

    
    
    
    

]               –         [

    
    
    
    

] 

 

From Figure (3.2), we require the result of the matrix multiplication of        –     gate, 

   –         gate: 

 

(       –     (   –        )(       –   )   

 

[

    
    
    
    

]  [

    
    
    
    

]  [

    
    
    
    

]  [

    
    
    
    

] 

 

     [

    
    
    
    

] 
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Although we may represent the      gate as a single gate in a circuit, we see it can be 

decomposed into             gates (Joey, 2010). 

 

 

Example 6 

 

Implementing the    gate, we define the     gate as           –       , with          

which has the matrix form 

         [
  
   

] [
  
  

]      [

        
        
       
        

] 

so 

   [

    
    
    
    

]    
 

  
 [

        
        
       
        

]    
 

  
[

        
        
       
        

] 

 

   
 

  
[

        
        
       
       

] 

 

 

 

Figure (3.3)    gate 

 

Note that the    gate is the first example for the Bell transform which is a unitary transformation 

from the product basis to the Bell basis. With the quantum circuits of the  gate and the 

       –    gate, the associated quantum circuit of the     gate is in Figure (3.3) (Yong, Kun, 

2016). 
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Example 7 

 

Let us implement the Bell state      
 

  
     

 

  
      using the following simple quantum 

circuit in Figure (3.4), it consist of           and         –     gate 

 

 

Figure (3.4): A circuit for implementing Bell state 

 

The first qubit passed through           gate from left to right, after          both qubits 

are entangled by a        –    gate. If the input to the system is       , then the          

gate changes the state to 

 

     (
       

  
     

       

  
    )     (

       

  
 ) 

 

 (
       

  
 )      

 

  
     

 

  
     

 

and after the       –     gate the state becomes  
 

  
           , the Bell state      . The 

action of the        –     gate is entangling the states, but not copying as our classical intuition 

would suggest. The state      
 

  
            is one of four Bell basis states: 

 

     
 

  
           ,                      

 

  
            

 

     
 

  
           ,                     

 

  
               

(Umesh, 2012). 
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CHAPTER   IV 

 

 

QUANTUM ALGORITHMS 

 

 

Quantum algorithms are defined as any quantum effects use to perform useful computational 

tasks on quantum systems. It is implemented by an appropriate sequence of unitary operations, 

applied on qubits as a form of unitary transformations known as (Quantum gates) (Sarah, 2008). 

A quantum algorithm is a step-by step procedure to solve a problem, with each step executed by 

a quantum computer (Yazhen, 2012). A computational problem is defined to be easy if there 

exist an efficient algorithm to solve it, and if no such algorithm exists then the problem is hard, 

thus a large class of interesting problems, such as (database searching) turn out to be easy, but 

there still some appear to be intrinsically hard (Tim, 2005). Quantum algorithms capable of 

solving certain problems faster than is possible classically, however and because of the difficulty 

of getting around the issue of measurement, only a few useful quantum algorithms have so far 

been discovered, the most well-known examples include Grover’s search algorithm, which can 

search an unstructured database quadratically faster than is possible with a classical computer, 

the other is Shor’s factoring algorithm (Matthew, 2013), which is exponentially faster than the 

classical algorithms (Jill, 2006), also the Deutsch-Jozsa algorithm for determining whether a 

function is balanced or constant, which also grants an exponential increase .The first two 

algorithms will only return a correct answer with a high probability and may require several 

repetitions, this is in contrast to Deutsch-Jozsa, which is deterministic and will always return the 

correct value if the algorithm was run successfully (Matthew, 2013). 

 

 

 

 

 

 

 



34 
 

4.1    Importance of algorithms in quantum computer 

 

 

Intrinsic irreversibility of the basic operations in usual classical computer is a source of energy 

consumption, a gate like     maps two input bits to one output bit, it means the input cannot be 

reconstructed from the output, because one bit of information is erased during the operation of 

the     gate, hence an amount of energy is dissipated to the environment, to avoid this, we 

restrict to reversible processes, it should be possible to reconstruct the input data from the output 

data. This is called reversible computations, and it is performed in terms of reversible gates 

included in quantum algorithms, which is in particular importance for quantum computing and 

quantum computer (Michael, 2002). Quantum algorithms able to solve problems in polynomial-

time using quantum effects such as superposition, this gives quantum computer an exponential 

speedup in information processing and allow performing many classical computation in parallel 

(S.A. Duplij, 2007) (Samuel, 2011), this what makes quantum algorithms exciting because it is 

fast compared to classical algorithms, for solving some tough problems (Yazhen, 2012).  For 

instance Shor’s factoring algorithm which is based on quantum Fourier transform (a powerful 

principle that leads to quantum computers) can factor an integer in a time that grows 

polynomially faster than any current known classical computer (Kathy-Anne, 2007) (Sarah, 

2008). 

 

 

4.2     Quantum Searching algorithm 

 

 

Unstructured searching data basis  

 

Unstructured searching problems usually in the form of find some   in a set of possible solution 

such that statement     , where nothing is known about the structure of the solution space and 

the statement  . For instance, determining     , provides no information about the possible 

value of                   (Javier, 2009). A database is nothing but a collection of items; 

suppose we have a database consists of   words, we want to search for the word say 
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“Computing”, we go through every word and check whether this is  “Computing” or not. 

Solution of this problem on classical computer would take     queries on average, and in the 

worst case it would need   1 query. If the word “Computing” occurs   times, then it is easy to 

show that we require  (    ) trial to succeed with classical algorithm because any randomly 

chosen word will be computation with the probability    . For   1, we require      trial to 

succeed (Debasis, 2012). On a quantum computer, this problem can be solved easily and 

efficiently by using Grover's Quantum Algorithm. The basic idea of this quantum algorithm is to 

rotate the initial state of the qubit system representing the database in the direction of the 

searching state with the help of a unitary quantum version of the oracle (Sarah, 2008). 

 

 

4.2.1    Grover's Search Algorithm 

 

 

Grover's Algorithm searches an   object unsorted database for an object in        order of 

operations, offering quadratic speedup (Magnus, 2009).  The heart of Grover’s algorithm is a 

sequence of gates known as the Grover iterate,              . Where    is the     matrix 

with     in every entry, and    is the oracle   for the input  . The unitary matrix           is 

called the diffusion transform, implemented as          ,  where     ⃗      ⃗   , and does 

nothing to all other states.  Grover’s algorithm is embedded as follows: 

 

1. The initial state starts in the  -qubit state  ⃗  . 

2. Applying          transform   to all qubit in   ⃗  , resulting a uniform state of 

superposition 

 

  
 ∑     

 

 

3. Applying the Grover iterate       times. 

4. Measuring the superposition, collapse it into a single state (Jill, 2006). 

 

 



36 
 

4.2.2     Grover's Search Operator 

 

 

Consider a quantum system with an  -dimensional Hilbert space, whose basis states            

       encode the   items. The target state     corresponds to the target item, while all other 

basis states are non-target states. If we begin our initial state with the uniform superposition of 

all states 

    
 

    
∑    

    

   

 

So, one can write the uniform superposition to be 

 

    
 

  
∑    

   

   

  √
 

 
      √  

 

 
     

 

We will now define a unitary operator         such that 

 

               

                                                                     (Debasis, 2012).  

 

Figure (4.1) schematically shows the Grover’s searching algorithm operates as follows: 

Beginning with the initial state          . After          gates the state evolve to 

 

  
 
 ∑    

    

   

        

  
 

After quantum oracle  

  
 
 ∑            
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Figure (4.1): Circuit of Grover’s searching algorithm 
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After Grover’s phase operator we find  
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Note that the probability of measuring      is roughly nine times larger than the probability of 

measuring any other state: 

        {
                         

                            
 

 Generally for more initial state 

    
 
 ( ∑    

    

 

       )
        

  
 

After oracle  
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After Grover’s phase operator  
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 (               ∑    

    

   

           )
        

  
 

 

Thus after each iteration the probability of measurement of      increases and the probability of 

measurement of random states decreases as 

 

                    
    

             

 

 Worked example 

 

Consider a system with         states; we are searching for the state,    represented by the 

bit string    : To describe this system,      qubits are required, represented as: 

 

                                                                     

 

Where    is the amplitude of the state   , Grover's algorithm begins with a system initialized to 

 : 

         

 

and then apply the          transformation to obtain equal amplitudes associated with each 

state of                    and thus also equal probability of being in any of the   

possible states: 

 

           
 

   
       

 

   
         

 

   
       

 

   
∑     

                 (4.1) 

 

Throughout the execution of Grover's algorithm, the amplitudes of the states remain real, so we 

may  visualized as lines perpendicular to an axis whose lengths are proportional to the amplitude 
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they represent. The equal superposition of states resulting from the first          transform 

appears as follows: 

 

It is optimal to now perform 2 Grover iterations in order to obtain the solution: 

 

 

 
   

  

 
   

 

 
         

these rounds to 2 iterations. 

 

In each iteration, the first step is to call the quantum oracle , then perform inversion about the 

average, or the diffusion transform. The oracle query will negate the amplitude of the state     , 

in this case      , giving the configuration: 

 

    
 

   
       

 

   
      

 

   
      

 

   
         

 

   
      

 

And the geometric representation is 

 

 

 

Now, perform the diffusion transform             which will increase the amplitudes by their 

difference from the average, and decreasing if the difference is negative: 
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                [    
 

   
     ] 

 

                 
 

  
             

 

   
      

 

Note that         
 

   
 [

 

   
]   . 

 

Additionally, since       is one of the basis vectors, we can use the identity          

           
 

   
 : 

           
 

  
(

 

   
)       

 

  
      

 

     
 

 
     

 

  
      

 

 
 

 
     

 

  
      

Substituting from Equation (4.1) gives 
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 ∑    

 

   
]  

 

  
      

 

 
 

   
∑    

 

   
   

  
 

   
      

 

  
      

 

 
 

   
∑    

 

   
   

  
 

   
      

 



43 
 

 

In the notation used earlier: 

 

    
 

   
       

 

   
       

 

   
       

 

   
          

 

   
       

 

This appears geometrically as 

 

 

 

This completes the first iteration. We apply the same two transformations in the second iteration, 

yield: 

    
 

   
       

 

   
       

 

   
       

 

   
          

 

   
       

 

 
 

   
 ∑    

 

   
   

 
 

   
       

 

 
 

   
 ∑    
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After the oracle query, and after applying the diffusion transform we get 

 

                [
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)              
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 ∑    

 

   
   

 
  

   
      

Or in the expanded notation: 

 

    
 

   
       

 

   
       

 

   
       

  

   
          

 

   
       

 

Geometrically, the success of the algorithm is clear: 
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Now when the system is measured, the probability that the state representative of the correct 

solution       will be measured is 
  

   
   

   

   
        . The probability of finding an 

incorrect state is  
   

   
   

 

   
        (Emma, 2011). 

 

 

4.3      Quantum Fourier Transform 

 

 

Consider there is quantum circuit acting on   -qubits, by applying a Hadamard gate (unitary 

transformation) to each qubit, the unitary transformation    , or   tensored up with itself   

times.  The unitary transformation    can be define as the       matrix in which the       

entry is             , which is also known as (Fourier transform over   
 ) . Applying this 

unitary transformation to the state of all zeros gives an equal superposition over all    states: 

 

         
 

   
 ∑    

        

 

 

In general, applying the          transform to the basis state     yields: 
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∑            

        

      

(Umesh, 2012). 

The quantum Fourier transform (QFT) is defined to be a linear transformation on   -qubits that 

maps the basis states                    to superposition states as follows: 

      
 

   
 ∑          

     

     

    

               

Where     is a number of the orthonormal basis, the inverse of quantum Fourier transforms is 

given by: 

      
 

   
 ∑           

     

     

    

                    

(Yazhen, 2012). 

Quantum Fourier transform (QFT) is unitary, it preserves the inner product by the definition, 

                

  
 

  

 

  
∑   

     
 

 

   

  ∑  
     

 

 

   

       

 

 
 

 
 ∑             

 

   

 

 

This is just a geometric series, whose sum is given by: 

 

              

                
        

 

 (Aaron,  2012). 
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4.4     Shor’s Factoring Algorithm 

 

 

Shor's algorithm is a quantum algorithm for factoring a number   in            time and 

        space, Shor's algorithm is probabilistic, it gives the correct answer with high 

probability, and the probability of failure can be decreased by repeating the algorithm (S.A. 

Duplij, 2007). This algorithm uses quantum Fourier transform to find the factors of a large 

number. The basic steps of the algorithm are shown: 

 

1. Initialize a first register of         bits to              and a second register 

of         bits to               

2. Apply a Hadamard gate to the first   qubits, so that the first register reaches  

∑
   

   

    

   
 

3. Multiply the second register by         mod    to get. 

 

∑
              

   

    

   
 

Since the first register is in a superposition of    terms   , the modular exponentiation is 

computed for    values of   in parallel. 

4. Perform the inverse QFT on the first register, giving 

 

     ∑ ∑          

    

   

              
    

   
 

5. Measure the qubits in the first register. 

 



48 
 

 

 

Figure (4.2): Circuit diagram to implement Shor’s algorithm.    Initialize register one to the   , 

and register two to the    state.     Apply a Hadamard gate on the first register of qubits to gives 

∑
   

   
    
   .    Multiply the second register by         mod   to get ∑

              

   
    
   .     

Perform the inverse QFT.     Measurement (Kathy-Anne, 2007). 

 

 

 

Worked examples   

 

Let see how knowing the period of a number       can be used to factor  . Suppose we want 

to factor      . We simply pick a random   which is co-prime to  . We then use Shor to 

compute the order of this a         . If this   is odd, we pick a new . If it's even then we can 

calculate, 

               

Then we have, 

               

This gives us, 

                       

We know         
 

      , since,   is the smallest power of   for which      

          , we check               is equal to zero or not       . If it is, we have been 

unlucky and we start over with a new   . If it is not, then we can continue. Since           

and            but              , then it must mean that           and         . 
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Then it only remains to compute              and         ), which will yield   and   

(Abdullah, 2011). 

 

 

Period finding through Shor's algorithm 

 

 

We need two registers of qubits to work with. They will be called the input and output registers 

respectively. The output register will be made of         qubits. The input register will 

contain twice this number,      . We start with all our registers in the state   :  

 

                
 

 

We apply the Quantum Fourier Transform (QFT) to the first register. QFT transforms a given 

vector from one representation to another. Essentially, it transforms a given vector from one 

representation to another. The QFT is applied in the following way 

 

 ̂            ∑     
 
   

    

   

     
 

There is also an inverse transform       that gives  

 

 ̂  
 

 
 
 

 ∑     
 
   

    

   

        

In our case all the    . So the exponential factor is always 1. 

 

     (  ̂      )      
 

 

       ∑      
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Now we define                 and implement a quantum gate that implements this. More 

specifically, if we have a state like         then the quantum gate,  ̂ acts on this state to give 

 ̂                    .  

 

This applied to our registers yield 

 

        ̂         

 

       ∑      

    

   

         
 

 

At this point we make a measurement of the output register. We get out some        where  

          here   is the smallest value of   for which             . This is useful because 

of the measurement postulate the input register too is affected. Its state too changes and our 

overall state becomes 

     
 

  
∑           

   

   

         
 

Here   is the smallest integer such that            . At this point we don't really care about 

the output state, so from this point on we will only write down the input state. 

 

     
 

  
∑           

   

   

 

We now apply QFT again to our input register. 

 

       ̂      

 

  ∑
 

  

 

 
 
 

∑                     

    

   

   

   

 

We can make a few rearrangements and break up the exponential, 
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  ∑ (           

    
∑           

   

   

)

    

   

      

Notice here is a case of an overall phase factor. Every       has the same factor associated with 

it, and that factor has its modulus squared equal to 1 i.e.             
    . Consequently, we 

can drop it from our state 

 

       ∑ (
 

    
∑           

   

   

)

    

   

      

We make a measurement of the input register. This yields one of the values of   with probability 

give by the squared modulus of its coefficient. 

 

     
 

   
|∑           

   

   

|

 

 

The exponential has its maximum when its argument is of the form     where   is integer. 

Classically our exponential will have maximums when   is close to an integer multiple of     . 

It can be shown that for integer   if   
   

 
  

 

 
  Then the probability of obtaining such a   is 

at least    . We can repeat the quantum part efficiently and with near certainty obtain such a  . 

Notice the above expression can be rewritten as 

 

 
 

  
 

 

 
  

 

    
 

Since   is large, and we know   and can compute  , then      is a good estimate of     . This 

is not as good as finding out   itself, but it's very close. There is a low chance that any two 

random numbers would have a common factor. If   and   don't have a common factor then   is 

simply the numerator. If not we can either use a classical computer to compute multiples of the 

numerator and find out which one of them is  . Or we can run the quantum part all over again 

and get a new    . To check if we have the right   we can simply compute           . If it's 

equal to 1, we have our period (Abdullah, 2011). 
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4.5    Error correction 

 

 

The basic types model of errors appears on quantum information are Pauli operator        

(Daniel, 1997), the bit–flip errors corresponds to the Pauli matrix   , exchanging the states     

and    , phase–flip errors changing the relative phase of     and      by  , and their combination. 

The phase–flip error to   , and their combination to   . It is sufficient to consider only bit-flip 

error to know about how error is corrected using quantum algorithm (Markus, et al., 1999). A 

single q-bit becomes entangled with environment and thus (decohere), the main idea is to fight 

decoherence (or entanglement with environment) with more entanglement. To protect a given q-

bit 

               

one encodes it as a maximally entangled triplet of bits 

 

              

which can be done with the following circuit in Figure (4.3) 

 

 

 

Figure (4.3):  In coding circuit.  

 

 Shore’s bit-flip code 

 

Consider the following circuit as in Figure (4.3). To demonstrate how it works let us write the 

state of TMR (triple module redundancy) in classical error correcting codes. Bits written as (first, 

second and third): 

              ̅  ̅  ̅  
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then the states of the auxiliary bit (fourth and fifth) is given by 

 

              

 

 

 

Figure (4.3) circuit implement shore’s bit flip code 

 

which can be written as logical table A as shown below in Table (4.1). 

 

Table (4.1) 

                

     
     
     
     
     
     
     
     
     

 

 

By analyzing the logic table A, (but without actually measuring the TMR bits) one can deduce 

the following as in logic table B shown in Table (4.2). 

 

Table (4.2) 
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For example let say the third TMR bit was randomly rotated with matrix, 

       (
   

 

 
      

 

 

      
 

 
   

 

 

) 

Then  

                                   

                                   

                                   
 

  

                      
 

 
              

 

 
              

 

 
             

 

 
       

                    
 

 
              

 

 
              

 

 
             

 

 
       

                    
 

 
              

 

 
              

 

 
             

 

 
       

                    
 

 
              

 

 
              

 

 
             

 

 
       

                    
 

 
              

 

 
              

 

 
             

 

 
       

 

 

We can now measure the auxiliary q-bits. The forth bit would always have value 0, but for the 

fifth one will have two possible outcomes with relative probabilities 

 

            
 

 
        

 

 
      

 

 
 

 

            
 

 
        

 

 
      

 

 
 

 

but the final state of the TMR bits is either 
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√     
 

                         

(Which is a desired final state) or  

 

       
 
 

           
 
 

     

√     
 

                            

which can be corrected with a             gate acting on the third bit (with fifth bit being the 

controlled bit) (Vitaly, 2015).
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CHAPTER   V 

 

 

DISCUSSIONS AND CONCLUSIONS  

 

 

5.1       Discussions 

 

 

A bit-flip error might occurs in any stage of the computational process, as it appears it can be 

correct easily and effectively through applying a correcting code as in the previous chapter. But 

the problems of decohernce still exist due to other source of errors and noises, such as loss and 

leakage, in additional to problem of measurements.  

 

Current problems in quantum computation seems to be daunting, the biggest challenge is to 

isolate the quantum state to prevent particles representing qubits to interact with the external 

environment, which disturbs the quantum state and causes it to decohere, and even if we could 

isolate the system from interact to the environment, quantum gates cannot be implemented with 

perfect accuracy and the effects of small imperfections in the gates will accumulate, leading to an 

eventual failure of the computation. In additional quantum algorithms require many gates to be 

applied on many quantum bits, in order to keep the probability of error low enough; and there is 

a correcting code for each type of error, adding error correction codes to quantum algorithms 

increase the number of qubits required to provide the necessary redundancy to recover from 

errors, and the number of quantum gates needed to process the redundantly encoded data, and to 

diagnose and reverse the errors, this increases the likelihood of error, and mitigates the effect of 

decoherence, which makes correcting codes entail an enormous overhead in a quantum 

computation.  

 

In other hand one might also try to implement the repetition code quantum mechanically by 

duplicating the quantum state three or more times, this is forbidden by the no cloning theorem, 

even if cloning were possible, it would not be possible to measure and compare the three 
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quantum states output from the channel. Error correction substantially more difficult in the 

quantum world, due to many reasons, for instance and in generally measurement that test 

whether a state is correct or not, can collapses and destroys the quantum state under observation, 

this in turn makes recovery of quantum information impossible. Furthermore we must not ignore 

that the correction and recovery procedure itself can introduce new errors, thus new ideas and 

techniques need to be introduced to make quantum error correcting codes possible. 

 

 

5.2 Recommendations  

 

 

Some suggestions for future boost of practical quantum computation  

 

 Dealing with decoherence comes from the algorithmic rather than the physical side, a fast 

and robust algorithm can be found and develop by exploiting properties of the problem 

structure itself, this is important for the development of practical quantum computers. Be 

able to construct an arbitrary unitary gate on a potentially arbitrary number of quantum 

bits using a universal set of elementary gates is required for a successful quantum device. 

Various gates need to be applied fast and precisely enough, to allow quantum error 

correction to succeed. Also we need to know how to efficiently perform encoding and 

decoding, beside any reasonable correction scheme must thus protect against small 

unitary errors in the quantum gates as well as against decoherence. Quantum error 

correction is similar to classical error correcting codes, with considerable differences 

between the classical and quantum states. However, classical techniques can be modified 

to work for quantum systems.   

 

 Fault-tolerant methods are significant to improve the reliability of a quantum computer; 

the idea is to keep errors under control in such a way that regular phases of error-

correction don’t get overwhelmed by the errors. When designing schemes for fault-

tolerant computing, it is very important to ensure that errors don’t spread quickly. 

Another potentially and more robust model is the model of adiabatic quantum 
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optimization, where computation is achieved by adiabatically tuning a set of 

Hamiltonians, to keep the system always in the instantaneous ground state, by creating a 

gap between the ground state and the first exited state at all times, which might make the 

state more robust to noise.  
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