

بِرْ فَعِ اللهُ الَّاذِينَ آمَدُوا مِنكُمْ وَالَّاذِينَ أُوثُوا الْعِلْم دَرَجَات،

([المجادلة: 11)

Dedication

I dedicate this research to my
Loving mother & father for
their warm love ,care and support.
Husbandfor
his continuce encouragement and providing agood enviroment through
our life.
Children
Belovled brothers & sisters
Friends and colleagues
With love and hon

Acknowledgment

Praise be to God firstly who gave me health and strength to conduct this study as I hope and planned.

I would like to thank my supervisor Dr. Elsafi Ahmed Abdullah.

MY thanks extend with pleasure to my co-supervisor Dr. Mohamed Elfadil Mohamed who is greatly indebted to his guidance and nice support.

Special gratefulness to MR. Abdelrhman Abdalla who help me a lot, Best regard and thanks to Dr. Babikir Abdalwahab and Dr. Asma Ibrahim for their support and help.

There is no suitable word that I can express my feeling to my big family and small family for their continuous support.

Thanks for everyone who assisted me to perform this work

Table of Contents

Topic	Page number	
Holey Quran	I	
Dedication	II	
Acknowledgement	III	
Table of contents	V	
English Abstract	VI	
Arabic Abstract	VII	
List of abbreviations	VIII	
List of figures	X	
List of tables	XI	
Chapter One		
Introduction		
1.1. Problem of study	3	
1.2. Objectives	4	
1.3.Significant of the Study	4	
1.4. Overview of study	5	
Chapter Two		
Literature Review		
Theoretical background		
2.1. Anatomy and physiology of the breast	6	
2.2.Benign Breast Disease	14	
2.3.Breast Ultrasound Technique	28	
2.4.Texture Analysis	38	
2.5.Previous study	41	
Chapter Three	1	
Material & Methodology		
	<i>81</i>	

3.1 Material 53		
3.2 Methodology	55	
Chapter Four		
Results		
Results and Analysis 57		
Chapter Five		
Discussion, Conclusions and Recommendations		
5.1 Discussion	70	
5.2Conclusion 76		
5.3 Recommendations 77		
5.4References	78	
5.5Appendices 92		

Abstract

Breast Fibroadenoma is a hormone-dependent neoplasm of early reproductive life that lactates during pregnancy and involutes along with the rest of the breast in per menopause. The peak incidence is between the ages of 15 and 35 years. Image texture is a function of the spatial variation of pixel intensities in an image .Image texture analysis can provide quantitative information in the form of texture features that is not visible to human vision. The general objective of this study was to characterize breast Fibroadenoma in U/S image by using texture analysis in order differentiate between the different tissue morphology of breast lesions. This study was done to determine the ultrasonography characteristics in breast (Fibroadenoma ,cyst) versus normal fibroglandular breast tissue. It is carried out in Saad Specialist hospital K.S.A, in patient with breast lesions that referred to radiology department in the period from January 2014 to May 2016. A total of 130 patients were included in this study. US result showed, 41% with regular outline indicate the benignancy of disease, 30.7% with normal result and more than 95% with breast feeding, 46.5% form all women having hypoechoic lesion, with homogenous echotexture in 54.4% of the patient, no calcification seen, 65% avascular and prevascularity was noted in 0.9% of lesion mostly near the vascularity of breast. UOQ commonly affected in both breast, Linear discriminant analysis was used for the tissue classification. The study found that the Fibroadenoma texture reveal a different underlying pattern compared to the cyst and normal breast tissues with classification sensitivity and specificity 100% and 92.5% respectively for Fibroadenoma, and the combination of the texture features throughout the different U/S image phases provide the highest predictive overall accuracy of 95% using linear discriminant analysis technique.

المستخلص

الورم الليفي بالثدي من الاورام الحميدة التي ترتبط بالهرمون في بداية عمر الإنجاب واثناء فترة الحمل وسن الياس في العمر بين سنة 15-35 التحليل النسيجي للصورة يعطى المعلومات الكمية والخصائص التي لا ترى بالعين المجردة الهدف الاساسى من هذه الدراسة هو توصيف الورم الليفي للثدي وقياس مدي الاختلاف بين العناصر الدقيقة في الصورة باستخدام الموجات فوق الصوتية و تقنية التحليل النسيجي للتفريق بين انسجة الثدي الطبيعي وانسجة الورم الليفي والتكيسات وقد اجرى فحص الموجات فوق الصوتية باستخدام مسبار خطى مع تردد 10ميقاهيرتز. أجريت هذه الدراسة لتحديد خصائص الموجات فوق الصوتية في اورام الثدي الحميدة (التكيسات والاورام الليفية) مقابل وضع انسجة الثدي الطبيعي. طبقت هذه الدراسة في مستشفى سعد التخصصي بالمملكة العربية السعودية ، في المرضى المحولين الى قسم الاشعة والموجات فوق الصوتية في الفترة من اغسطس 2013 إلى يوليو 2016. في هذه الدراسة تم دراسة مجموع 130 مريضة وكانت النتائج كالاتي نسبة 41% من الاورام كانت منتظمة الحدود التي هي مؤشر للورم الحميد ,30.7% نتيجة طبيعية واكثر من 95% رضاعة طبيعية, 46.5% من النساء ذات ورم ليفي, 54.4% منتظمة صدي النسيج, لا توجد تكلسات ,65% خالية من الاوعية دموية بينما 0.09% فقط توجد بها اوعية دموية خارجية , توجد هذه الاورام الليفية في الجزء العلوي الخارجي للثدي بشقيه الايمن والايسر . لتصنيف الانسجة ووجد ان انسجة الورم الليفي تختلف عن انسجة التكيسات تختلف عن انسجة الثدي العادية بحساسية ونوعية 100% و22.5% على التوالي ,66 تكامل خصائص الانسجة عن طريق صور الموجات فوق الصوتية المختلفة عالية الدقة 95% عن طريق استخدام تقنية التحليل التفريقي الخطي .

List of abbreviation

Abbreviation	Phrase
U/S	Ultra-Sound
DCIS	Ductal carcinoma in situ
LCIS	Lobular carcinoma in situ
NPV	
	Negative predictive value
ILC	Invasive lobular carcinoma
RUOQ	Right upper outer Quadrant
RUIQ	Right upper inner Quadrant
RLOQ	Right lower outer Quadrant
RLIQ	Right lower inner Quadrant
LUOQ	Left upper outer Quadrant
LUIQ	Left upper inner Quadrant
LLOQ	Left lower outer Quadrant
LLIQ	Left lower inner Quadrant
RS	Radial scar
SD	Standard deviation
FNA	Fine-needle aspiration
LN	Lymph node
MRI	Magnet resonance imaging
PEM	Positron emission mammography
PPV	Positive predicted value
CR	Computed radiography
SPEM	Single Photon Emission Mammography
PND	Pathologic Nipple Discharge
THI	Tissue Harmonic Imaging
FOV	Field of view
MRM	Magnetic resonance mammography
CAD	Computer-aided diagnosis/detection
GLCM	Gray level co-occurrence matrix
IDL	Interactive Data Language
DICOM	Digital imaging and Communication
TDLU	Terminal Lactiferous Ducts drain the milk from
FCCs	Fibrocystic changes
IBUS	International Breast Ultrasonic Examination Guidelines.
ROI	Region of interest
FOS	First order Statistical Textures Texture Analysis
SW-LDA	Step wise linear discriminate analysis
ANDIs	Aberrations of normal development and involution
FCCs	Fibrocystic changes
GLDS	Grey Level Difference Statistics Features
SGLD	Spatial Grey Level Dependence

PCBP	Phased Congruency-based Binary Pattern
PC	phase congruency
LBP	local binary pattern
BI-RADS	Breast Imaging Reporting and Data System

List of Figures

Figures		Page
Figure 2.1	Three zones of the breast	7
Figure 2.2	Mammary fasciae and Cooper's ligaments	8
Figure 2.3	Dense breast tissue: radiographic-sonographic correlation	9
Figure 2.4	Echogenic breast parenchyma surrounded by hypoechoic fat	10
Figure 2.5 (A& B)	Chronic duct ectasia.	11
Figure 2.6: A,B&C	Fibrocystic change	12
Figure 2.7	Pectoralis minor muscle and levels of axillary lymph nodes	13
Figure 2.8A&B	Fibroadenoma. (A): The cut surface of Fibroadenoma . (B):Histologically lesion consists of densely fibrotic stroma	21
Figure 2.9	Anatomy of the breast	29
Figure 2.10	Breast quadrants	30
Figure 2.11	Image demonstrate good patient position	31
Figure 2.12	Image show Sonographer comfortable during examination	32
Figure 2.13	Radial/Antiradial scan planes	33
Figure 2.14	Normal breast fibroglandular parenchyma	34
-Figure 2.15-A	An inflamed cyst	35
Figure 2.15-B	Thick edematous wall cyst	
Figure 2.15-C	Galactocele cyst reveals diffuse low-level echoes in the cyst.	35
Figure 2.15-D	Chronic abscess	
Figure 2.16 A,B &C	Fibrocystic change	36
Figure 2.17 A & B	Chronic duct ectasia	37
Figure 2.18	Fibroadenoma, Transvers image	38
Figure 3.1	An acoustic coupling agent, "gel	54
Figure 3.2	Linear array probe 10 MHz	54
Figure 3.3	Siemens Ultrasound unit	55
Figure 4.1	Original ultrasound images for breast fibroadenoma	59
Figure 4.2	Orignal image of breast cyst in U/S	60
Figure 4.3	Classification based on entropy feature for breast US Classification based on entropy feature for breast US.	60
Figure 4.4	Classification based on entropy feature for breast US	61
Figure 4.5	Classification based on entropy feature for breast US	62
Figure 4.6	Classification based on mean feature for breast US.	62
Figure 4.7	Bar graph of a cross tabulation showed the distribution of mass size	63
Figure 4.8	Bar graph of a cross tabulation showed the relation between the maternal status and lesion site	64
Figure 4.9	Bar graph showed cross tabulation showed the relation between maternal status and lesion echotexture	65
Figure 4.10	Cross tabulation showed the relation between the maternal status and the Echogensity	66

Figure 4.11	Cross tabulation showed the relation between the maternal status and lesion morphology	67
Figure 4.12	Cross tabulation showed the relation between the maternal status and the lymphadenopathy	68
Figure 4.13	Cross tabulation showed the relation between the menstrual cycle and the echotexture	69
Figure 4.14	Cross tabulation showed the relation between the menstrual cycle and the echogencity	70
Figure 4.15	Cross tabulation showed the relation between the breast feeding and lesion echogenicity	71
Figure 4.16	Cross tabulation showed the relation between the breast feeding and morphology	72
Figure 4.17	Showed the relation between the breast feeding and Family history	73
Figure 4.18	Cross tabulation Showed vasclarity percentage of breast lesions	74
Figure 5.1	Show mid transverse scan of a normal breast, fibroglandular	92
Figure 5.2	parenchyma is echogenic and is surrounded by hypoechoic fat, female Show RLOQ breast cysts in 28 years old female measure 4x3mm	92
		92
Figure 5.3	Figure (5A-3) show RLOQ breast cysts in 54 years old female	93
Image 5.4	Image (A- 4) show Rt. breast large retareola cyst 3x2.5cm in female 49	93
	years old	
Figure 5.5	Show RUOQ breast small cysts in 42years old female	94
Figure 5.6	A 68years old female with Rt. Breast RLOQ cyst measure 3x2cm	94
Figure 5.7	40 years old female with Rt. Breast RLOQ cyst measure 6x6mm	95
Figure 5.8	Show LUOQ breast small cysts in 32years old female	95
Image 5.9	Show Rt. Breast small cyst at UOQ in 47 years old female measure	96
	5x5mm	
Figure 5.10	Show well defined hypoechoic LUOQ breast Fibroadenoma measuring	96
	8x4 in 48 years old female	
Figure 5.11	Show well defined oval macro lobulated hypoechoic in LUOQ breast	97
	Fibroadenoma measuring 3x1 cm, 16years old female	
Figure 5.12	Show well defined oval hypoechoic in LUOQ breast Fibroadenoma	97
	measuring 8x5 mm, 29 years old female	
Figure 5.13	Show stable well defined hypoechoic LUOQ breast Fibroadenoma	98
	measuring 13x7, in 68 years old female	

	Fibroadenoma measuring 44 x 26 cm, 32 years old female	
Figure 5.15	Show well defined hypoechoic LUOQ breast Fibroadenoma measuring	99
	10x5, 56 years old female	
Figure 5.16	Show well defined hypoechoic RUOQ breast Fibroadenoma measuring	99
	7x4, in 40 years old female	
Figure 5.17	Show well defined hypoechoic LUOQ breast Fibroadenoma measuring	100
	12x16, in 30 years old female	
Figure 5.18	Show oval well defined hypoechoic LUOQ breast Fibroadenoma	100
	measuring 12x26, in 36 years old	
Figure 5 .19	Show well defined hypoechoic LUOQ breast Fibroadenoma,48 years old	101
	female measure 7x4 mm	
Figure 5.20	Show oval well defined hypoechoic LUOQ breast Fibroadenoma	101
	measuring 9x24, in 29 years old female	

List of Tables

Tables		Page
Table 4.1	Showed the classification accuracy of Fibroadenoma using linear discriminant analysis	61
Table 4.2	Showed the statistics of patient related variables mass size	63
Table 4.3	Showed the relation between the maternal status and lesion site	64
Table 4.4	Showed the relation between the maternal status and lesion echo texture	65
Table 4.5	Cross tabulation showed the relation between the maternal status and lesion Echogencity	66
Table 4.6	Cross tabulation showed the relation between the maternal status and lesion morphology	67
Table 4.7	Cross tabulation showed the relation between the maternal status and lymphadenopathy	68
Table 4.8	Cross tabulation showed the relation between the menstrual cycle and lesion echo texture	69
Table 4.9	Cross tabulation showed the relation between the menstrual cycle and lesion echogenicity	70
Table 4.10	Showed the relation between the breast feeding and echogenicity	71
Table 4.11	Showed the relation between the breast feeding and lesion morphology	72
Table 4.12	Showed tabulation of breast finding and family history	73
Table 4.13	Showed the percentage of lesion vasclarity distribution	74