إستهلال

قال تعالى :(وَقُلِ اعْمَلُوا فَسَيرَى اللَّهُ عَمَلَكُمْ وَرَسُولُهُ وَالْمُؤْمِنُونَ ۖ وَسَتُرَدُّونَ إِلَى عَالِمِ الْغَيْبِ وَالشَّهَادَةِ فَيُنَبِّئُكُم بِمَا كُنتُمْ تَعْمَلُونَ)

صدق الله العظيم

سورة التوبة – الآية 105

Dedication

To

My father

Mother

Brother

Sister

Acknowledgment

Firstly I would like to thank Allah, Almighty, who assisted me to complete this research.

I would like to extend my sincere thanks to Dr. Mohammed Suleiman, who provided me with the valuable information that enabled me to accomplish this work.

Thanks to technicians staff in department of the chemistry in Sudan University of Science and Technology.

Abstract

In this research the effect of current density, temperature, pH, concentration of nickel chloride solution and electroplating time on nickel electroplating of copper from glycine and acetate baths were investigated.

It was observed that a bath concentration 0.5 mole/L of nickel chloride solution gave the best nickel deposit at 0.5 A/cm² for 10 min at concentration of both sodium sulphate and ammonium chloride were 0.2 mole/L and the suitable pH was found to be 5.

The effects of glycine and sodium acetate concentration of baths were studied and the weight of copper plate increased according to increasing their concentration in the bath which obey Faraday law.

The corrosion test was applied to compare between the copper sheet before and after the plating process. The result obtained showed that the plating process greatly enhanced the corrosion resistance of the plated copper over unplated sheet.

المستخلص

في هذا البحث تمت دراسة أثر كثافة التيار و درجة الحرارة و الرقم الهيدروجيني و تركيز كلوريد النيكل و زمن الطلاء بالنيكل على النحاس من حمامات الجلايسين و الخلات تم التحقق منها.

لاحظنا أن تركيز الحمام 0.5 مول/لتر من كلوريد النيكل أعطى أفضل ترسيب عند 0.5 أمبير/سم لمدة 0.5 دقائق في وجود تركيز 0.2 مول/لتر لكل من كبريتات الصوديوم و كلوريد الأمونيوم عند الأس الهيدروجيني 5.5

تمت دراسة أثر تركيز حمامات الجلايسين و الخلات و وجدنا أن وزن شريحة النيكل يزيد بزيادة تركيز هما في الحمامات تحقيقا لقانون فاراداي.

قمنا بتطبيق إختبار التآكل للمقارنة بين شريحة النحاس قبل وبعد عملية الطلاء . النتائج المتحصل عليها أظهرت أن عملية الطلاء زادت من مقاومة التآكل للشريحة المطلية أكثر من الشريحة الغير مطلية.

content	page
استهلال	I
Dedication	II
Acknowledgment	III
Abstract	IV
المستخلص	V
List of Contents	VI
List of Tables	VIII
List of Figures	IX
Chapter one	
1 Inroduction and Literature Review	1
1.1 Nickel chemistry	1
1.1.1 History of nickel	1
1.1.2 Occurrence of nickel	2
1.1.3 Exrtaction of nickel	2
1.1.4 Properties of nickel	3
1.1.5 Nickel compounds	4
1.1.6 Nickel complexes	5
1.1.7 Uses of nickel and its compounds	7
1.1.8 Other applications of nicke	7
1.1.9 Nickel applications and uses	8
1.1.10 Nicke advantage	8
1.2 Electrocemical deposition	9
1.2.1 What is electrodeposition?	9
1.2.2 Electroplating application	10
1.2.3 Faraday's Law	10
1.2.4 Influencing factors in electro deposition	11
1.2.5 Electrodeposiion of nickel	12
1.2.6 Retrospective on nickel electroplating solutions	13
1.2.7 Basics of nickel elecroplaing	15
1.2.8 Decorative electroplating	15
1.2.9 Bright nickel solutions	16
1.3 Quality control	16
1.3.1 Process control	17
1.3.2 Controlling pH, temperature, current density, and water	17
1.4 Functions of electroplating and deposit properties	19
1.4.1 Deposit properties	20
1.4.2 Glycin bath	23
1.4.3 Citrate bath	24

1.5 Objective of the research	25
Chapter two	
2 Materials and Methods	26
2.1 Materials	26
2.1.1 Chemicals	26
2.1.2 Equipments	26
2.2 Methods	27
2.2.1 Electroplaing method	27
2.2.2 Corrosion method	27
Chapter Three	
3 Results and Discussion	31
3.1 Electroplating results	31
3.2 Corrosion result	38
3.3 Coclusions	39
3.4 References	40

Table	Page
1.1 Properties of nickel halide compound	5
1.2 Maximum limits for inorganic, metallic impurities in nickel plating	18
bath	
1.3 Nickel plating solutions and some properties of deposits	21
2.1 Plating bath composition and operating conditions of nickel	30
electrodeposition	
3.1 Effect of glycine concentration	32
3.2 Effect of sodium acetate concentration	33
3.3 Effect of current density	34
3.4 Effect of nickel chloride concentration	35
3.5 Effect of pH	36
3.6 Effect of time	36
3.7 Effect of temperature	37
3.8 Result of corrosion test	38

Figure	Page
2.1 Electrical circuit of nickel electrodeposition	29
3.1 Effect of glycine concentation	32
3.2 Effect of sodium acetate concentration	33
3.3 Effect of current density	34
3.4 Effect of nickel chloride concentration	35
3.5 Effect of pH	36
3.6 Effect of time	36
3.7 Effect of temperature	37