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 يةلآا
)يا بنُيَّ إنَّهَا إنِْ تكَُ مِثقْاَلَ حَبَّةٍ مِنْ خَرْدلٍَ فتَكَُنْ فيِ صَخْرَةٍ أوَْ 

لطَِيْفٌ خَبِيْر(.فِي السَّمَاوَاتِ أوَْ فيِ الأرَْضِ يأَتِ بِهَا اللهُ إنَِّ اللهَ   

      [ 16لقمان: ] 
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Abstract 

The standard model of particle physics is a remarkable work and has been examined to high level 

of accuracy. However, the SM predicts vanishing neutrino mass, but the recent evidence from 

neutrino oscillation suggested that the neutrino has finite mass. We discuss here a possible theory 

of neutrino mass in the minimal change of the standard model and the implementation of the 

three types of see saw mechanism in a way that leads to neutrino Majorana mass and to explain 

the smallness of neutrino mass.  
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 ملخص البحث

تاكد منها عمليا. لكن هذه النظرية ال جدا وتم   من النظريات الناجحة تعتبر النظرية العيارية للجسيمات الاولية

و والتي تذبذب جسيم النيوترين تتعارض مع المشاهادات المرصودة فيتي النيوترينو وال لديها قصور في كتلة

تي تؤدي الي لوا متأرجحةاللية للآانواع  درُس ثلاثة جدا. في هذا البحث كدت ان للنيوترينو كتلة صغيرةأ

. النيوترينو تفسير صغر هذه كتلةل كتلة من نوع نيوترينو مايورانا. وكذلك  
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Chapter One 

Introduction 

(1-1) Introduction 

The standard model (SM) of particle physics has been an extremely remarkable theory 

describing the interactions between elementary particles. Its predictions have been 

experimentally tested to a high level of accuracy. However, the minimal SM predicts vanishing 

neutrino mass, but the recent observations of neutrino oscillations strongly suggested that 

neutrinos have finite masses providing a likely window to new physics. 

A major cornerstone for the theory research in this field has been the see-saw mechanism 

introduced in the late of seventies to understand why neutrino masses are so much smaller 

than the masses of other fermions of the standard model. 

(1-2)The importance of the study 

The problem of neutrino mass has attracted both theorists and experimentalists for a long time. 

Today we know for sure that neutrinos have finite mass, but these masses are tiny, order of few 

eV. The smallness of neutrino mass provides a window to new physics beyond standard model, 

since in the minimal standard model neutrino mass vanish. 
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(1-3)The main objectives of the study 

In this project, we will discuss possible theories of neutrino mass, from the minimal changes of 

the standard model (by inserting right hand neutrino into the theory). We shall discuss at length 

the see-saw mechanism which leads to neutrino Majorana mass. 

(1-5)The outline of the study 

This reserach project is structured as follow: In chapter one we give brief introduction and 

chapter two we  discuss the standard model of particle physics in details, in chapter three we 

discussed the three types of see saw mechanism, then we present in chapter four discussions  and 

conclusions. 
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Chapter Two 

Introduction to The standard model 

(2-1) Introduction 

In this chapter we will study the structure of the standard model of elementry particles and its 

mathematical foundation, then we shall discuss the higgs mechanism to see how particles obtian 

their masses. 

 (2-2) What is the standard model (SM) 

The standard model describe the weak, strong and electromagnetic interactions in terms of 

"gauge theories". It was dated back to the latter half of the 20th century, as a collaborative effort 

of scientists around the world. The current formulation was finalized in the mid-1970s upon 

experimental confirmation of the existence of quarks. Since then, discoveries of the top quark 

(1995), the tau neutrino (2000), and more recently the Higgs boson (2013), have given further 

credence to the Standard Model. Because of its success in explaining many experimental results, 

the Standard Model is sometimes regarded as a "theory of almost everything". Mathematically, 

the standard model is a quantized Yang–Mills theory. In 1950's Yang and Mills considered (as 

purely mathematical exercise) extending gauge invariance to include non-abelian (i.e. non-

commuting) transformations such as SU(2). In this case one needs a set of massless vector fields 

(three in the case of SU(2)), which were formally called "Yang-Mills" fields, but are now known 

as "gauge fields" (L.F.Li, 1991)  
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An important feature of the standard model is that "it works", it is consistent with, or varified by, 

all available data. Secondly, it is a unified picture, in terms of guage theories of all interactions of 

known particles except gravity (A.J.G.hey, 1993). 

(2-3)The standard model Lagrangian 

Quantum field theory provides the mathematical framework for the standard model in which a 

lagrangian controls the dynamics and kinematics of the theory. Each kind of particle is discribed 

in terms of dynamical field that pervades space-time. The construction of the standard model 

based on the modren method of construction of field theories by first postulating a set of 

symmetries of the system and then by writing down the most general renormlizabel lagrangian 

from it's particle (L.F.Li, 1991).  

The standard model is a gauge theory representing the fundamental interactions as changes in a 

Lagrangian function of quantum fields. It contain spinless, spin-(1/2) and spin -1 fields 

interacting with one another in a way governed by the Lagrangian which is invariant by Lorentz 

transformations (Weinberg, 1996).  

The Lagrangian of the standard model contains kinetic terms, coupling and interaction terms 

related to the gauge symmetries of the force carriers , mass terms and the Higgs mechanism term. 

(3-1)The fermion sector 

The fermionic sector consist of quarks and leptons come in three families with identical 

properties except for mass. The particle content in each family is: 
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1st family: lepton; l =  (
νe

𝑒
)
L 

, 𝑒𝑅 
−                                                                                                          (2.1) 

Quark; 𝑞 =  (
𝑢
𝑑
)
𝐿
, 𝑢𝑅 , 𝑑𝑅                                                                                                                        (2.2) 

2𝑛𝑑family: lepton; l = (
𝜈𝜇

𝜇−)
𝐿
, 𝜇𝑅

−                                                                                                      (2.3)    

Quark;𝑞 = (
𝑠
𝑐
)
𝐿
 , 𝑐𝑅 , 𝑠𝑅                                                                                                                         (2.4) 

3rd family: lepton; l = (
𝜈𝜏

𝜏−
)
𝐿
 , 𝜏𝑅

−                                                                                                       (2.5) 

Quark; 𝑞 = (
𝑡
𝑏
)
𝐿
 , 𝑡𝑅 , 𝑏𝑅                                                                                                                         (2.6) 

 

(2-3-2) Gauge boson sector 

The gauge boson and the scalar lagrangians give rise to the free lagrangian for the photon, W, Z. 

and the higgs boson .The standard model gauge boson lagrangian (gauge fields) is given by 

 

ℒ𝐺 = −
1

4
B𝜇𝜈𝐵

𝜇𝜈 −
1

4
𝑡𝑟(𝑊𝜇𝜈𝑊

𝜇𝜈) −
1

4
𝑡𝑟(𝐺𝜇𝜈𝐺

𝜇𝜈)                                                                     (2.7) 

𝐆𝛍𝛎 is the gauge field strength of the strong SU(3) gauge field. 

𝐖𝛍𝛎is the gauge field strength of  the weak isospin SU(2) gauge field. 

𝐁𝝁𝝂is the gauge field strength of the weak hypercharge U(1) gauge field. 
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These fields are defined as   

𝐺𝜇𝜐
𝑎 = 𝜕𝜇𝐺𝜐

𝑎 − 𝜕𝜐𝐺𝜇
𝑎 + 𝑔𝑠𝑓𝑎𝑏𝑐𝐺𝜇

𝑏𝐺𝜐
𝑐                                                                                                     (2.8) 

𝑊𝜇𝜐
𝑖 = 𝜕𝜇𝑊𝜐

𝑖 − 𝜕𝜐𝑊𝜇
𝑖 + 𝑔𝜖𝑖𝑗𝑘𝑊𝜇

𝑖𝑊𝜈
𝑖                                                                                                  (2.9) 

𝐵𝜇𝜐 = 𝜕𝜇𝐵𝜐 − 𝜕𝜐𝐵𝜇                                                                                                                                (2.10) 

(2-4) Higgs mechanism 

The masses of elementary particle can not be included in the lagrangian because they will break 

the gauge symmetry. Therefor we need a mechanism some how to give masses to these particle.  

An extra field called the Higgs field has to be added by hand to give the particles mass. The 

Higgs field has a spin-0 particle called Higgs boson. The higgs boson is electrically neutral. The 

extra field if it exists, is believed to fill all of empty space throughout the entire universe. 

Elementary particles acquire their mass through their interaction with the Higgs field. 

Mathematically we introduce mass into a theory by adding interaction terms into the Lagrangian 

that couple the field of the particle to the Higgs field. Basically, the lowest energy state of a field 

would have an expectation value of zero. By symmetry breaking we introduce a nonzero lowest 

energy state of the field. This procedure leads to the acquisition of mass by the particles in the 

theory (Quigg, 2007). 

We can imagine the movement of elementary particles being resisted by the Higgs field, with 

each particle interact with the Higgs field at a different stregth. If the coupling between the Higgs 

field and the particle is strong then the mass of the particle is large. If it's weak then the particle 

has a smaller mass. A particle like the photon with zero rest mass doesn't interact with the Higgs 

field at all only through a loop. If the Higgs field didn't exist at all the all particles would be 
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massless. This scalar particle has been discovered by the ATLAS (al, 2012) and CMS (al, 2012) 

experiments, which is compatible with the SM. Higgs expectations with a mass 126 GeV. 

The addition of this new particle will add new terms into the lagrangian:  

ℒ𝐻𝑖𝑔𝑔𝑠 =
1

2
(𝐷𝜇𝜙)(𝐷𝜇𝜙) − 𝑉(𝜙)                                                                                                       (2.11) 

𝑉(𝜙) =
𝜇2

2
𝜙∗𝜙 −

𝜆

4
𝜙4                                                                                                                          (2.12)        

Therefore equation (2.11) becomes: 

ℒ𝐻𝑖𝑔𝑔𝑠=
1

2
(𝐷𝜇𝜙)(𝐷𝜇𝜙) −

𝜇2

2
𝜙∗𝜙 −

𝜆

4
𝜙4                                                                                          (2.13)    

Where 𝜆≡ Higgs self coupling. 

𝜙 =
1

√2
(
𝜙1 + 𝑖𝜙2

𝜙3 + 𝑖𝜙4
)                                                                                                                                (2.14)       

By minimize V(𝜙): 

𝜕𝑉

𝜕𝜙
= 0                                                                                                                                                      (2.15) 

We get  

𝜕𝑉

𝜕𝜙
= −𝜇2𝜙 +  𝜆𝜙3                                                                                                                                (2.16)      

This equation has two solutions      

𝜙(−𝜇2 +  𝜆𝜙2) = 0                                                                                                                               (2.17)        

𝜙 = 0 (𝑡𝑟𝑖𝑣𝑖𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)   𝑜𝑟    (−𝜇2 +  𝜆𝜙2) = 0                                                                       (2.18) 

Therefore  



8 
 

〈𝜙2〉 =
𝜇2

𝜆
                                                                                                                                                 (2.19)        

〈𝜙〉 = √
𝜇2

𝜆
= 𝜈                                                                                                                                        (2.20)       

Where 𝜈 is known as the vacuum expectation value (VEV), 𝜈 = 246 𝐺𝑒𝑉. 

(𝜙1
2 + 𝜙2

2 + 𝜙3
2 + 𝜙4

2) = 𝜈2                                                                                                         (2.21)     

Equation (2.12) represents the Higgs potential, which involves two new real parameters 𝜇 and  λ. 

We require that λ > 0 for the potential to be bounded; otherwise the potential is unbounded from 

below and there will be no stable vacuum state. 𝜇 takes the following two values: 

1- 𝜇2 > 0 in this case the vacuum corresponds to 𝜙 = 0, the potential has a minimum at 

the origin (see Figure 2.1). 

2- 𝜇2 < 0 in this case the potential develops a non-zero Vacuum Expectation Value (VEV) 

and the minimum is along a circle of radius (see Figure 2.2). 
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Figure 2.1. The Higgs potential with: the case 𝜇2 > 0; as function of |Φ|.
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Figure 2.2. The Higgs potential with: the case 𝜇2 < 0; as function of |Φ|. 

 

𝜙 =
1

√2
(
0
ν
)                                                                                                                                             (2.22) 

Next we will see how to use this technique to give bosons and fermions a mass. 

(2-4-1) Gauge bosons mass 

To obtain the masses for the gauge bosons we will only need to study the scalar part of the 

lagrangian 

ℒ =
1

2
(𝐷𝜇𝜙)

†
(𝐷𝜇𝜙) − 𝑉(𝜙)                                                                                                              (2.23) 
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Where 𝐷𝜇is the covariant derivative. 

𝐷𝜇 = (𝜕𝜇 + 𝑖𝑔𝜏𝑎𝑊𝜇
𝑎 + 𝑖𝑔́

𝑌𝜙

2
𝐵𝜇)                                                                                                      (2.24) 

𝐷𝜇 = [𝜕𝜇 + 𝑖𝑔 (
𝑊3 𝑊−

𝑊+ −𝑊3
) + 𝑖𝑔́

𝑌𝜙

2
𝐵𝜇]                                                                                        (2.25) 

Then  

𝐷𝜇𝜙 = [𝜕𝜇𝜙 + 𝑖𝑔 (
𝑊3 𝑊−

𝑊+ −𝑊3
)𝜙 + 𝑖𝑔́

𝑌𝜙

2
𝐵𝜇𝜙]                                                                           (2.26) 

We have  

ϕ =
1

√2
(
0
ν
)                                                                                                                                              (2.27) 

Therefore, after a little algebra we get 

𝐷𝜇𝜙 =
𝑖𝑔

√2
(
𝑊3 𝑊−

𝑊+ −𝑊3
) (

0
ν
) +

𝑖𝑔́𝑌𝜙𝐵𝜇

√2
(
0
ν
)                                                                                   (2.28) 

=
1

√2
(
𝑖𝑔𝑊3 𝑖𝑔𝑊−

𝑖𝑔𝑊+ −𝑖𝑔𝑊3
) (

0
ν
) +

𝑖𝑔́

√2
(

0
𝐵𝜇ν

)                                                                                        (2.29) 

=
1

√2
(

igν𝑤−

−igνw3
) +

1

√2
(

0
𝑖𝑔́𝑩𝜇ν

) =
1

√2
(

igν𝑤−

−igνw3 + 𝑖𝑔𝜈́𝐵𝜇
)                                                         (2.30) 

⇒ 𝐷𝜇𝜙 =
1

√2
(

igν𝑤−

−igνw3 + 𝑖𝑔𝜈́𝐵𝜇
)                                                                                             (2.31) 

Since (𝐷𝜇𝜙)
†
is the complex conjugate of 𝐷𝜇𝜙 then 
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(𝐷𝜇𝜙)
†

=
1

√2
(igν𝑤− igνw3 − 𝑖𝑔𝜈́B𝜇)                                                                                         (2.32) 

(𝐷𝜇𝜙)
†
(𝐷𝜇𝜙) =

1

√2
(igν𝑤− igνw3 − 𝑖𝑔𝜈́𝑩𝜇)

1

√2
(

igν𝑤−

−igνw3 + 𝑖𝑔𝜈́𝐵𝜇
)       

=
1

2
[𝑔2𝜈2𝑤+𝑤− + 𝜈2(𝑔𝑤3 − 𝑔́𝐵𝜇)

2]                                                                                              (2.33) 

So  

1

2
(𝐷𝜇𝜙)

†

(𝐷𝜇𝜙) =
1

4
𝑔2𝜈2𝑤+𝑤− +

1

4
𝜈2(𝑔𝑤3 − 𝑔́𝐵𝜇)

2
                                                               (2.34) 

From the above equation we obtain 

𝑚𝑤
2 =

1

4
𝑔2𝜈2 

𝑚𝑤 =
1

2
𝜈𝑔 

For Z boson, we use the orthogonal combination as 

𝑧𝜇 =
𝑔𝑤3 − 𝑔́𝐵𝜇

√𝑔2 + 𝑔́2
= (cos 𝜃𝑤 𝑤3 − sin 𝜃𝑤 𝐵𝜇)                                                                                  (2.35) 

And the photon: 

𝐴𝜇 =
 1

√𝑔2 + 𝑔́2
(𝑔́𝑤3 + 𝑔𝐵𝜇)                                                                                                             (2.36) 

By using a rotation transformation  

(
𝑧𝜇

𝐴𝜇
) = (

cos 𝜃𝑤 −sin 𝜃𝑤

sin 𝜃𝑤 cos 𝜃𝑤
) (

𝑤3

𝐵𝜇
)                                                                                                    (2.37) 



13 
 

cos 𝜃𝑤 =
𝑔

√𝑔2 + 𝑔́2
   𝑎𝑛𝑑  sin 𝜃𝑤 =  

𝑔́

√𝑔2 + 𝑔́2
                                                                          (2.38) 

Multiply the second part of equation by 
√𝑔2+𝑔́2

√𝑔2+𝑔́2
 we obtain 

1

4
𝜈2(𝑔𝑤3 − 𝑔́𝐵𝜇)

2
∙
√𝑔2 + 𝑔́2

√𝑔2 + 𝑔́2
=

1

4
𝜈2(√𝑔2 + 𝑔́2)2𝑧𝜇𝑧

𝜇                                                            (2.39) 

Thus  

𝑚𝑧=
2

1

4
𝜈2(𝑔2 + 𝑔́2 )2                      

𝑚𝑧 =
1

2
𝜈√𝑔2 + 𝑔́2                       

Although since 𝑔 and𝑔 ́ are free parameters. The SM makes no absolute predictions for 

𝑀𝑤and 𝑀𝑧, it has been possible to set a lower limit before the W-and Z-boson were discovered. 

Their measured values are 𝑀𝑤 = 80.4𝐺𝑒𝑉 and 𝑀𝑧 = 91.2𝐺𝑒𝑉 (Weinberg ،1967). 

(2-4-2) Fermions mass and Yukawa interaction 

In particle physics, Yukawa's interaction, named after Hideki Yukawa is an interaction between a 

scalar field and a Dirac field, the Yukawa interaction can be used to describe ;the nuclear force 

between nucleons (which are fermions), mediated by pions (which are pseudo scalar mesons). 

The Yukawa interaction is also used in the Standard Model to describe the coupling between the 

Higgs field and massless quark and lepton fields (i.e., the fundamental fermion particles). 

Through spontaneous symmetry breaking, as result these fermions acquire a mass proportional to 

the vacuum expectation value of the Higgs field (J.donoghue, 1994). 
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The Yukawa interaction is uniquely fixed by the dynamic of the system. Its given by 

ℒ𝑦𝑢𝑘𝑎𝑤𝑎 = 𝑌𝑑𝑞̅𝐿𝜙𝑑𝑅 + 𝑌𝑈𝑞̅𝐿𝜙
∗𝑈𝑅                                                                                                                    (2.40)     

Using equation (2.22) we get  

ℒ𝑦𝑢𝑘𝑎𝑤𝑎 = 𝑌𝑑(𝑈̅𝐿 𝑑̅𝐿)
1

√2
(
0
𝜈
)𝑑𝑅 + 𝑌𝑢(𝑈̅𝐿 𝑑̅𝐿)

1

√2
(
𝜈
0
)𝑈𝑅 + 𝑌𝑒(𝜈̅𝐿 𝑒̅𝑙)

1

√2
(
0
𝜈
) 𝑒𝑅                       (2.41) 

ℒ𝑦𝑢𝑘𝑎𝑤𝑎 =
𝑌𝑑

√2
(𝑈̅𝐿 𝑑̅𝐿) (

0
𝜈
) 𝑑𝑅 +

𝑌𝑢

√2
(𝑈̅𝐿 𝑑̅𝐿) (

𝜈
0
)𝑈𝑅

+
𝑌𝑒

√2
(𝜈̅𝐿 𝑒̅𝑙) (

0
𝜈
) 𝑒𝑅                                                                                                 (2.42) 

Then  

ℒ𝑦𝑢𝑘𝑎𝑤𝑎 =
𝑌𝑑

√2
𝜈𝑑̅𝐿𝑑𝑅 +

𝑌𝑢

√2
𝜈𝑈̅𝐿𝑈𝑅 +

𝑌𝑒

√2
𝜈𝑒̅𝑙𝑒𝑅                                                                                              (2.43) 

From the last equation and analog to previous section we find that 

𝑚𝑑 =
𝑌𝑑

√2
 𝜈                       

𝑚𝑢 =
𝑌𝑢

√2
 𝜈                     

 𝑚𝑒 =
𝑌𝑒

√2
𝜈                           

Where Y is Yukawa coupling. 
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(2-5)Full SM lagrangian: 

To summarize the full standard model we gather together all the ingredients of the lagrangian. 

Thus the complete (full) lagrangian is: 

ℒ = −
1

4
𝑊𝜇𝜈𝑊

𝜇𝜈 −
1

4
𝐵𝜇𝜈𝐵

𝜇𝜈 −
1

4
𝐺𝜇𝜈𝐺

𝜇𝜈 + 𝐿̅𝛾𝜇 (𝑖𝜕𝜇 − 𝑔
1

4
𝜏𝑊𝜇 − 𝑔́

𝑌

2
𝐵𝜇) 𝐿 + 𝑅̅𝛾𝜇(𝑖𝜕𝜇 −

𝑔́
𝑌

2
𝐵𝜇)𝑅 + |(𝑖𝜕𝜇 − 𝑔

1

4
𝜏𝑊𝜇 − 𝑔́

𝑌

2
𝐵𝜇)𝜙|

2

− 𝑉(𝜙)+(𝑌
𝑑
𝑞̅

𝐿
𝜙𝑑𝑅 +

𝑌𝑈𝑞̅
𝐿
𝜙∗𝑈𝑅+𝑌𝑒𝑙𝐿̅𝜙𝑒𝑅+h.c.)                                                                                                                                  (2.44) 

L denotes a left-handed fermion (lepton or quark) doublet, and R a right-handed fermion singlet 

(J.donoghue, 1994). 
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Chapter Three 

See Saw Mechanisms 

 (3-1) Introduction  

In this chapter we will the study the types of the see-saw mechanism which leads to Majoran 

neutrino at length.  

 

(3-2) The see-saw mechanism  

The see-saw mechanism is a generic model used to understand the relative sizes of observed 

neutrino masses, of the order of few eV, compared to those of quarks and charged leptons, which 

are millions times heavier (Pal, 1998). 

The see-saw mechanism is the most likely way to explain how neutrinos got their mass, and why 

they are so small (W. Marciano, 1982).  

(3-3) Types of the see-saw mechanism 

There are several types of the see-saw mechanism each extending the standard model. 

 

(3-3-1) Type I see-saw 

Right-handed neutrino: 

Introduction of right-handed neutrino𝜈𝑅, allows to insert additional term into Yukawa interaction 

. 
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ℒ𝑌
𝜈 = 𝑌𝐷ℓ̅𝐿𝜎2Φ

∗𝜈𝑅 +
𝑀𝑅

2
𝜈𝑅

𝑇𝐶𝜈𝑅 + ℎ. 𝑐.                                                                                               (3.1) 

 

Figure 3.1. Diagrammatic representation of the Type I see-saw 

The Yukawa interaction defines the quantum numbers of the right-handed neutrino , it carries the 

lepton number. 

Majorana mass term is allowed for the right-handed neutrinos, consistent with the gauge 

symmetries of the theory (Majorana, 1937). 

The Yukawa interaction, which couples left-handed and right-handed neutrinos yields after 

spontaneous symmetry breaking the Dirac neutrino mass matrix  𝑚𝐷 = 𝑌𝐷𝜐, so that the complete 

mass terms are given by  

ℒ𝑀
𝜈 = 𝑚𝐷𝜈̅𝐿𝜈𝑅 +

1

2
𝑀𝑅𝜈𝑅

𝑇𝐶𝜈𝑅 + ℎ. 𝑐.                                                                                                    (3.2) 

We can rewrite equation (3.2) in terms of two components spinners. 
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𝜈 ≡ 𝜈𝐿 + 𝐶𝜈̅𝐿
𝑇                                                                                                                                             (3.3) 

𝑁 ≡ 𝜈𝑅 + 𝐶𝜈̅𝑅
𝑇                                                                                                                                           (3.4) 

Using the properties of charge-conjugation matrix  

𝐶𝑇𝛾𝜇𝐶 = −𝛾𝜇
𝑇 , 𝐶𝑇 = −𝐶                                                                                                               (3.5) 

We obtain the following relation 

𝜈̅𝑁 = 𝜈̅𝐿𝜈𝑅 + 𝜈̅𝑅𝜈𝐿 = 𝑁̅𝜈                                                                                                                        (3.6) 

𝑁̅𝑁 = 𝜈𝑅
𝑇𝐶𝜈𝑅 + ℎ. 𝑐.                                                                                                                                 (3.7) 

𝜈𝜈̅ =  𝜈𝐿
𝑇𝐶𝜈𝐿 + ℎ. 𝑐.                                                                                                                                 (3.8)  

So that the lagrangian can be written as 

ℒ =
1

2
 [𝚤̇𝑣̅𝛾𝜇𝜕𝜇𝜈 + 𝚤̇𝑁̅𝛾𝜇𝜕𝜇𝑁 − 𝑀𝐿𝜈̅𝜈 − 𝑀𝑅𝑁̅𝑁 − 𝑚𝐷𝜈̅𝑁 − 𝑚𝐷𝑁̅𝜈]                                          (3.9) 

We now summarize the above equation with the following form of mass matrix 

ℒ𝑚
(𝜈)

=
1

2
(𝜈̅, 𝑁̅) (

0 𝑚𝐷

𝑚𝐷
𝑇 𝑀𝑅

) (
𝜈
𝑁

) + ℎ. 𝑐.                                                                                            (3.10) 

The mass matrix for the fields 𝜈 and N 

(
0 𝑚𝐷

𝑚𝐷
𝑇 𝑀𝑅

)                                                                                                                                                (3.11) 

Where 𝑚𝐷 = 𝑌𝐷𝜈. One can diagonalize this matrix by a similarity transformation using the 

orthogonal matrix 

(
1 𝜖

−𝜖𝑇 1
)                                                                                                                                                (3.12) 
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Where  𝜖 =
𝑚𝐷

𝑀𝑅
. This diagonalization is correct up to terms smaller than of order 𝜖2 , one obtains 

the mass matrix for the light neutrino to be 

𝑚𝜈
𝑙𝑖𝑔ℎ𝑡

= −𝑚𝐷

1

𝑀𝑅
𝑚𝐷

𝑇                                                                                                                            (3.13) 

This is the original see-saw formula called type 1. 

If  𝑀𝑅 << 𝑚𝐷, neutrino would be predominantly Dirac particles. For 𝑀𝑅 ≈ 𝑀𝐷, we have  a 

messy combination of Majorana and Dirac, where as for 𝑚𝐷 << 𝑀𝑅 we would have a Majorana 

case. The diagrammatic representation of the see-saw in Figure 3.1.of the type I  

show that the heavy neutrino propagator gives the see-saw result. 

(3-3-2) Type II see-saw 

Instead of right-handed neutrino 𝜈𝑅 we can choose Y=2, triplet scalar Δ𝐿 this will lead to new 

term in Yukawa interaction  

ℒΔ = 𝑌Δ
−1ℓ𝑇𝐶𝜎2Δ𝐿ℓ + ℎ. 𝑐                                                                                                                   (3.14) 
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Figure 3.2. Diagrammatic representation of the Type II see-saw 

Neutrino gets mass when Δ𝐿 gets a vev  

𝑀𝜈 = 𝑌Δ〈Δ〉                                                                                                                                              (3.15) 

The vev 〈Δ〉 results from the cubic scalar interaction  

Δ𝑉 = 𝜇Φ𝑡𝜎2Δ𝐿
∗𝛷 + 𝑀Δ

2𝑇𝑟Δ𝐿
∗Δ𝐿 + ⋯                                                                                                (3.16) 

With  

〈Δ〉 ≡
𝜇𝜐2

𝑀Δ
2                                                                                                                                                  (3.17) 

𝑚𝜈 = 𝑌Δ

𝜇𝜐2

𝑀Δ
2                                                                                                                                             (3.18) 

Where one expect  𝜇 of order  𝑀Δ. If  𝑀Δ >> 𝜐, neutrinos are naturally light. 

(3-3-3) Type III see-saw 

In this type we introduce triplet fermions 𝑇⃗ 𝐹 in Majorana notation, (where for simplicity the 

generation index is suppressed and also an index counting the number of triplet). 

Δℒ(𝑇𝐹) = 𝑌𝑇ℓ
𝑇𝐶𝜎2𝜎 . 𝑇⃗ 𝐹𝛷 + 𝑀𝑇𝑇⃗ 𝐹

𝑇𝐶𝑇⃗ 𝐹                                                                                            (3.19) 

Exactly the same manner as before in type I, one gets a type III see-saw for 𝑀𝑇 >> 𝜐 

𝑀𝜈 = −𝑌𝑇
𝑇

1

𝑀𝑇
𝑌𝑇  𝜈

2                                                                                                                                         (3.20) 
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Chapter Four 

Discussions And Conclusions 

(4-5) Discussions 

When considering the SM family plus an additional SM gauge singlet, the right-handed neutrino, 

such theories allow type I and type II seesaw mechanisms for generating light neutrino masses. 

In summary, the main message of this project should be that the Majorana neutrino mass is rather 

suggestive from the theoretical point of view. As such, it provides a window to new physics at 

scale M. The crucial prediction of this picture is the L = 2 lepton number violation in processes 

such as neutrino less double beta decay 𝛽𝛽0𝜈. However, 𝛽𝛽0𝜈 depends in general on the new 

physics at scale M, and it is desirable to have a direct probe of lepton number violation. 

What happens if the neutrino has a pure Dirac mass In this case, and the smallness of Dirac mass 

simply requires the smallness of Yukawa. The smallness of Dirac mass remains a puzzle 

controlled by small Yukawa, as much as the smallness of electron mass is controlled by a small 

electron Yukawa coupling.  

(6-4)  Conclusions 

In conclusion, we have studied the theory of standard model in some details and its extension to 

accommodate the neutrino mass by implementing the three types of see saw mechanisms. By 

now we have evidence that neutrino are massive. 
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From the standard model point of view masses could vanish if no right-handed neutrinos existed 

(no Dirac mass) and lepton number was conserved (no Majorana mass) 

The see-saw mechanism explains the smallness of neutrino masses in term of the large scale 

where B-L violated. Thus neutrino masses are important to a probe into the physics at GUT 

scale. 

Recommendation: In the left-right symmetric and SO(10) family unified both these assumptions 

are violated. The right-handed neutrinos are required in all unifying groups larger than SU (5). In 

SO (10) the 16 fermion fields in each family, including the right handed neutrino, exactly fit into 

16-dimensional representation of this group. 
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