الآية

قال تعالى: سمالله الرحمن الرحيم اللَّه وُ الْحَرْ تَ حَفْرِ لَ لَذَنْبِكَ وَ لَ لِمْ وَ مَ نِينَ اللَّه وُ يَ الْحُ لَهُمْ مُ مَ اَتَ قَضَلَتْ كُمْ وَ مَ تُوْ اكْمْ ﴾

صدق الله العظيم سورة محمد، آية (19)

DEDICATION

To our beloved parents, brothers, sister and to all our friends thank you for your support, help and encouragement in pursuing our dreams.

ACK NOWLEDGEMENTS

First of all our thanks would go to Allawity Allah for giving us strength and help to complete this work

We would like to thank **Dr. El Fatih Ahmed Hassan** for his supervision and advices during the performance of this work.

Our appreciation extends to all teaching staff in Chemistry Department in Sudan University of Science and Technology for their continuous help.

Abstract

This work aimed to estimate Mark–Houwink–Sakurada equation parameters for Kakamout Gum. The gum was fractionalized into three fraction uses acetone, via fractional precipitation.

The fraction obtained were used in determination of number average molecular weights and intrinsic viscosity for each.

The data thus obtained were used in estimation of Mark– Houwink–Sakurada equation parameters α and K using Mark–Houwink– Sakurada equation. The estimation were found to be $\alpha \simeq 0.3$ and K = 1.2324

Table of content

Subject	Page No	
الآية	Ι	
Dedication	II	
Acknowledgment	III	
Abstract English	IV	
Table of content	V	
List of table	VII	
List of figures	VIII	
Chapter One		
Introduction		
1.1 Introduction	1	
1.1 plant Gum	1	
1.2 Definition	1	
1.3 Usage	2	
1.4 Polyacantha tree	2	
1.5 General distribution	3	
1.5.1 Description	3	
1.5.2 Uses	4	
1.6 D. Solution Viscosity and Molecular Size	4	
1.6.1 Experimental methods	4	
1.7 Viscosity	5	
1.8 Intrinsic viscosity	6	
1.9 Osmosis	7	

1.10 Mark–Houwink equation	10	
1.10.1 Applications	11	
1.11 Objective	12	
Chapter Two		
Materials and Method		
2.1 Materials	13	
2.1.1 Sample collection and treatment	13	
2.1.2 Chemical	13	
2.2 Methods	13	
2.2.1 Fractionation of Polyacantha gum	13	
2.2.2 Estimation average molecular weights	13	
2.2.3 Determination of intrinsic viscosity:	13	
Chapter Three		
Result and Discussion		
3.1 Result	14	
3.2 Discussion	21	
References	22	

List of table

Table	Page No
(1-1): Nomenclature of solution viscosity	5
(3-1): variation of somatic pressure with	14
concentration for fraction (1):	
(3-2): variation of somatic pressure with	15
concentration for fraction (2):	
(3-3): variation of somatic pressure with	16
concentration for fraction (3):	
(3-4): variation of reduced viscosity with	17
concentration for Fraction (1):	
(3-5): variation of reduced viscosity with	18
concentration for Fraction (2):	
(3-6) variation of reduced viscosity with	19
concentration for Fraction (3):	
(3-7): variation of logarithm different molecular weight with	20
logarithm different intrinsic viscosity	

List of figures

Figures	Page No
(1-1) Dependence of π/c_2 on concentration for polymer	10
solution in various solvent	
(3-1): variation of π/c with c for fraction (1)	14
(3-2): variation of π/c with c for fraction (2)	15
(3-3): variation of π/c with c for fraction (3)	16
(3-4): variation of η_{red} with C for fraction (1)	17
(3-5): variation of $\hat{\eta}_{red}$ with C for fraction (2)	18
(3-6): variation of $\hat{\eta}_{red}$ with C for fraction (3)	19
(3-7): Variation \overline{M}_n with logarithm $[\eta]$	20