

ACKNOWLEDGMENT

Thank and gratitude to everyone who encouraged me to complete

This thesis .My gratitude is extended to Dr.Salah Musa Gaafar

Manager of radiology department in MadinahZaid hospital UAE

Who support and me too much. My gratitude is extended to my

Colleagues in our radiology department.

Finally I would like to thank my supervisorA.prof. Mohamed

Omar

For his helping and supporting me to complete this thesis.

GOD BLESSES THEM ALL.

DEDICATION

To my family and to my colleagues and Everybody help me.

ABSTRACT

Objective: is to apply a technical protocol to reduce CT radiation

Dose in trauma cases by decreasing the mA (tube current).

The target reduction is 50%.

Method:

Performing scanning on an adult phantom for trauma protocol Brain. Reference scan (default exposure) 300mA to be registered In exposure log shoot and calculate the dose received in msv. Scan2 reducing mA to 200 and registered the dose, evaluate the Image quality.scan 3 reducing mA to 100 and registered the dose Received, evaluate the image .phase (2)implemented if phantom Image quality is of acceptable quality .Performing CT trauma with The default exposure parameters and register the dose received. Reference scan can be obtained from previous CT trauma cases. Performing CT trauma with reduction of mA factor to 200mA and Registering the dose received image to be evaluated by the tech--nologist and radiologist. Performing CT trauma with reduction of mA factor to 100mA and register the dose received .Image also to be evaluated by the technologist and radiologist. Applying the rec--commendations CT technologists and radiologists on the range of Accepted quality and delineate the reduction rate.

CT trauma cases with reduced mA can be viewed and the review

The radiologist reports.

Reduction of mA factor in CT parameters will induce reduction in CT dose to the patient and this can be applied to all cases.

Performed scan for 54 cases 28 cases with tube current 200 mA

And 26 cases with tube current 100 mA .The result was found

Clearly the absorbed dose and the effective dose fall down to the Half when used 200mA and more less when we used 100mA as tube current .

ملخص البحث

ا هداف البحث: اهداف البحث ايجاد طريقه تعتمد على تخفيض جرعه الاشعه لمرضى الطوارئ بتقليل

تيار انبوب الاشعه المقطعيه.

هدفنا ان يصل انخفاض جرعه الاشعه 50%.

جرى هذا البحث. الامارات العربيه المتحده في مستشفى مدينه زايد.قسم الاشعه في الفتره من يوليو 2015 الى يناير 2016.

اولا: اجريت الاشعه المقطعيه على (الدميه) الفانتوم بتيار 200 مل امبير وسجلت جرعه الاشعه وثم تقييم الصوره بواسطه الفني واختصاصي الاشعه.

ثم اجريت صوره ثانيه للفانتوم بتيار 100 مل امبير وسجلت جرعه الاشعه وثم تقييم الصوره وبعد ذلك اجرى هذا الفحص للمرضى بنفس الطريقه اي بعوامل 200 مل امبير /100 مل امبير

وثم تسجيل جرعات الاشعه وتقييم الصور بواسطه الفني واختصاصي الاشعه .

لوحظ ان الحالات التي اجريت لها اشعه مقطعيه بتيار منخفض يمكن رؤيتها وتشخيصها.

تخفيض تيار انبوب الاشعه يتبعه انخفاض في جرعه الاشعه للمريض.

يمكننا انجاز كل حالات الاشعه المقطعيه بتيار منخفض اي بأقل جرعه من الاشعه.

NO	Subject	Page
	الاية	I.
	Acknowledgement	II.
	Dedication	III.
	Abstract (English)	IV.
	Abstract (Arabic)	V.
	Table of contents	VI.
	List of Tables	VII.
	List of Figures	VIII.
	List of Abbreviations	IX.
1	CHAPER ONE	
1.1	Introduction	1
1.2	The problem	2
1.3	Study objectives	3
2	CHAPTER TWO(LITERATURE REVIEWS)	
2.1	Embryology of neural development	5
2.2	Human early neural development	5
2.3	Early development sequence	6
2.4	Skull anatomy	8
2.5	Bones of cranium	8
2.6	Brain anatomy	8
2.7	cerebrum	8
2.8	Brain stem	9
2.9	cerebellum	13

2.10	Hind brain	13
2.11	Head injury	13
2.12	skull fractures	14
2.13	Linear skull fracture	14
2.14	Depressed skull fracture	18
2.15	Diastasis skull fracture	18
2.16	Basilar fracture	18
2.17	Intracranial hematoma	19
2.18	different type of ICH	19
2.19	Subdural hematoma SDH	19
2.20	contusion	19
2.21	Extradural hematoma	20
2.22	Subdural hemorrhage	20
2.23	Cerebral circulation	22
2.24	Blood supply	22
2.25	Anterior cerebral circulation	22
2.26	Posterior cerebral circulation	23
2.27	Venous drainage	23
2.28	Brain physiology	27
2.29	Brain disease	32
2.30	Head injury diagnosis	37
2.31	Diagnostic test	37
2.32	Importance of CT in hematoma	37

2.33	Toshiba Aquillion 16 slice	37
2.34	summary	40
2.35	Scanner specification	41
2.36	Brain protocol by 16 slice Toshiba.	44
2.37	Reducing dose in body CT	46
2.38	Body size adopted CT protocool	47
2.39	Optimal tube voltage	48
2.40	Noise reducing image reconstruction algorithms	49
3	CHAPTER THREE	
3.1	Materials	51
3.2	Methods	52
	CHAPTER FOUR	
4.	Results	53
5	CHAPTER FIVE(Discussion Conclusion and Recommendations)	
5.1	Discussion	60
5.2	Conclusion	61
5.3	Recommendations	61
	References	62
	Appendices	63

List of Tables

Table no	Table contents	Page no
4.1	DLP	54
4.2	Effective dose	55
4.3	DLP significant different at the 0.05 level	56
4.4	Effective different at the 0.05 level	56
4.5	One –sample T .test DPL (100mA)	57
4.6	One-sample T.test effective dose (100mA)	57
4.7	One-sample T.test DLP (200mA)	58
4.8	One-sample T.test effective dose (200 mA)	58

List of Figures

No of figure	Figure repression	Page of figure
FIG.1	Sagittal plane of Brain Lobes	10
FIG.2	Skull bones	11
Fig.3	Human brain	12
Fig.4	Skull fracture and bone fragment	15
Fig.5	Skull fracture and intracranial bleeding	16
Fig.6	Epidural hematoma	17
Fig.7	Acute subdural hematoma	21
Fig.8	Cortical vascular territories	24
Fig.9	Brain sinuses	25
Fig .10	Circle of Willis	26
Fig .11	CT brain with and without contrast.	36
FG.12	CT Aquillion 16 slice Toshiba.	39
FG.13	Brain slices (images)	45

List of abbreviation

- 1. Ct .computed tomography .
- 2. MDCT: Multi detector computed tomography.
- 3. MA: mill ampere (current).
- 4. ALARA: as low as reasonably achievable.
- 5. IR: iterative reconstruction.
- 6. ASIR: adaptive statistical iterative reconstruction.
- 7. CNR: Contrast noise ratio.
- 8. BSS: basics safety standards.
- 9. CTDI: ct dose index (MGY).
- 10. DLP: Dose length product (MGYcm).
- 11. K: Constant (for effective dose).
- 12. DRL: Dose reference level.