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ABSTRACT:

The weak-type (1, 1) boundedness of the higher order Riesz—Laguerre transforms associated with
the Laguerre polynomials and the boundedness for the Riesz-Laguerre transforms of order 2 are
considered. We show the sharp polynomial weight w that makes the Riesz—Laguerre transforms of
order greater than or equal to 2 continuous from L! (Wdua) into Ll"”(dua) ,under specific value o

,where p_is the Laguerre measure.
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INTRODUCTION

The aim of this paper is to study ,by considering the two components of the Claim raised by Liliana
Forzani, Emanuela Sasso and Roberto Scotto™ ,following the same notations appear there, the
weak type(1,1) boundedness of RP*!, the(m + 1)th Riesz-Laguerre transform withm € Z$,
associated with the multidimensional Laguerre operator £,,where <= (o, ...,Xq) is a multi-
indexwith ;> 0,i = 1,..,d.

The Laguerre operator L., is a self-adjoint “Laplacian” on L2(dp,),where pgis
the Laguerre measure of type o= (,..,%q) with o;>—1,i =1,..,d; defined on Rd =
{X S Rd:Xi > 0,foreachi =1, ...,d}, by

dpe(0) = T rs
It is well known that the spectral resolution of £, is

-x;

= X.
=T (o+1)

Ly =Yn-onPs
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where P, is the orthogonal projection on the space spanned by Laguerre polynomials of total
degree n and type o« in d variables ®¥.The operator L is the infinitesimal generator of a “heat”
semigroup,

called the Laguerre semigroup, {e ~¢*<:t > 0} ,defined in the spectral sense as

(00

—tLye — —nt px
e “—Ee Pr.

n=0

For any multi-index m = (ay, ..., ay) € Z%, the Riesz-Laguerre transforms RZ**! of order
|Im| = a; + --- + a4 are defined by

R&n+1 — Van+1(La)—|m+1|/2?3<l’
where Vy is associated to L defined  as Vo= (Vx10,,, eer [ X0 d),
and P+ denotes the orthogonal projection onto the orthogonal complement of the eigenspace
corresponding to the eigenvalue 0 of L.

Some preliminaries

In order to use the well-known relationship with the Ornstein-Uhlenbeck context, but not too
much exploited in the weak-type inequalities, we are going to perform a change of coordinates in
REIf x = (xq, ..., xq) is a vector R, then x? will denote the vector (x%, ...,x3). Let¥: R¢ —
R¢ be define as W(x) = x? and let dfi. = duco W~ be the pull-back measure from du,.

Then the modified Laguerre measure dji, is the probability measure

A 20+1 _,2
x; v e X

dﬁo((X) = Zd nmdﬁ(

20+1

— od HF( el ~1x? gy, (1)
on R%.

The map f —» Uyf = foWis an isometry from L(duy)onto LI(df,) and from
LT (dpg) onto L2 (dji,), for —every ¢ in [I, ®]. So we may
reduce the problem of studying the weak-type boundedness of R+ to the study of the
same boundedness for the modified Riesz-Laguerre transforms
R = UyRTHIUG' with respect to the measure dfi.

i=1

Observe  that R+ coincides, up to a  multiplicative constant,
) < \-ImH1] ~ L ~ .

with V(L) I l?g‘l, being Lo = UL U, PSt = UpPUG'  and V the gradient of

R4 associated to the Laplacian operator @

For the sequel it is convenient to express the kernel of R+ with respect to the Polynom1al
measure (m + 1), defined on R

d(m + 1e(x) = e d i (x). (2)

According t0®® for ;> —1/2,i=1,..,d;, the kernel of the modified Riesz—Laguerre
transforms of order |m + 1| with respect to the polynomial measure (m + 1), is defined, off
the diagonal, as
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K™ (x,s) = f K™ (x, s) na(s)ds

[-1,1]¢
with

Im+1]-2 4 _q—(rx?x%s)

1
m+ _ m+1|— lOgT 2 Xl(\/F _Si) e 1-r
X 1(x,s)—0f(\/7)l 1] 2(_ 1_r) 1_[ Hai< = >(1_r)|a|+d+1dr 3)

i=1

where H,, is the Hermite polynomial of degree a; and

d
q+(x,s) = Z 2x;(1+s),
i=1

_ - M(a; +1) _ <2N\a—1/2
IIJQ_ITan+UvEO sH@1,

i=1 2
d .5
cos@ = cosH(x,s) = 2=
|x|?
4 x5\ V2

The symbol a < bmeans a < Cb where C is a constant that may be different on each
occurrence. And we write a ~b whenevera S band b < a.
We state the global region G and an upper bound for |KX™*1(x,s)| on G,
with respect to the proposed Claim 3 ©.
G = R¢ X [-1,1]%\Ry = R{ UR, UR; UR,.

With
Ry = {(x,s) € R% x [—1,1]%: (2|x|2(1 — cosf))1/2 < < },

T 1+|x|
R, = {(x,s) & R,y: cosO < 0},
R, =R; =R, = {(x,s) & Ry:cosf = 0, for any|x|},

And
e P, (x,s) € Ry (4
|x|2(|o<|+ci)é,;-C(le‘*(l-COSG))l/2 , (x,s) ER, (5)
Clx|%sin26

K*(x,s) =< " sindlx|2 \
|x |20+ | AN —— . (x,5) € R3 (6)

(sinfx|?)” ,
C(1 + [x)esinolxl? (x,5) € Ry 7)
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RESULTS:

The following result was proved recently @ only for half-integer that includes o;= —1 . The
corresponding proof is based on the technique of transference to the Hermite setting. This
technique firstly appears for the Riesz—Laguerre transform of order one in® . The method seems
to be inapplicable for any other value of o @ .

Theoreml:

The second order Riesz-Laguerre transforms map L' (du,)continuously into LV® (dpu,).

Proof: The result follows by splitting the modified Riesz—Laguerre transforms of second order
into a local operator and a global one. Let us observe that for a simple covering Lemma, we may
pass from estimates with respect to the measure (m + 1), on the local part R, to estimates with
respect to the modified Laguerre measure fi,.. Therefore the local operator is equivalent to T +1
for
lm + 1| = 2 .The global operators bounded weak type (1,1) and therefore so are the second
order modified Riesz-Laguerre transforms.
From Pand ® it is known that an upper bound for |X™*1(x,s)| on G is
K™+ (x,s) = (8)
( [m+1|-2 )

(12x|>) 2z e ,c080 <0

la|—d

2 1
) (1+ (4|x|*sin? §)2e %, cos0 > 0

|m+1]|-2

l %(4|x|4sin2 9)f<

With

1+ cos@
1 — cos@

| (@0, 5)q-G2, )1

2
We improve the following properties shown by" .

Ug

Proposition 2: For |m + 1| = 2,
| K™+ (x, )| < K*(x,5)
Proof: In this Proposition, |m + 1] = 2 .If cos 0 < 0, it is immediate that|F™*1(x,s)| <
K*(x,s) .
Let us then assume that cos6 = 0.
(1) First let us consider |x| < |x].
Since cosf = 0, qi/z > |x| and since |x| = |x|, then

q}r/z < 2|x|. Therefore qi/2~|x|. On the other hand, since g1/? > %le then|x| = c. Thus
1 p |a|+d
+ cos 2
1 © ot a2 gn1/4| -

|7€m+ (X,S)l S <m) (1+ 28 SIn 9)/ e U
( ) )|0c|2+d+1
2|x|?(1 + cosB)

< |x||“|+d(1+ |x|)|a|+d+ ard —Uy

(2 |x|2(1 — COSQ))T_l

< |x|2(|a|+d)e—u0 < |x|2(|a|+d)e—|x|25in6

= K*(x,s).
(ii) Now let us assume for any|x| and rewrite v, in the following way:
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@ 090G 5)

U 5
_ (g4+q)"?
2
— 25in26|x|22 |x|? (9)
(q+q-)2
Hence
q+q- = 4|x|*sin? 6
and taking into account that sinf is non-negative, we obtain that
2|x|?sin @ ~ |x|?sin@ > |x|?sin 6. (10)
Thus, from (9) together with (10) we get
uy = Clx|?sin 6. (11)

We proposed the following(see™).
Claim 3: We choose |x|? = |y|?and |x|? sin§ > 1.

Proof: sinf > #, then the inequality is immediate.

Hence |x|? = |x|? + 1 .This inequality is immediate when |x| < 1 by adjusting conveniently the
constant C in the definition of the global zone and it is also immediate for d =1 and [x| > 1. Now
let us assume that d > 2 and [x| > 1.

(€/2)? C?

< < 2|x|?(1 - 6
w2 = e = 2P = cost)

<2lx*’|1- |1 —-— |
< 2l B

’ 1 (C/2)?
-2 1-— - >0
| x| |xl‘,l%l E 2

Hence

for all |x|, then

29 .
1 c/2)? -1
x| > IxIJl— |x|4+d( /lx)|

which implies that

1 (C/2)?-2
PP 2 Ixl? +2J(C/22 —1 [1 - o+ = — 2 a4 1

Therefore by applying this Claim to inequality (10) we obtain that g, g_ = c in this context. If |x|
<2[x|, we get
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clx|?sin? 0

Uy = =c|x|*sinf . (12)

sin @

Then

|la|+d

2
) (4]x]* sin? )Y/ *e %o

1+ cos@
:](“m.+1 , < <
| (x,s)l < 1 — cos@

_ lal+d
< (2|x|2(1 - COSQ)) (2 )(4|x|4sin2 0)1/4e %o
|x|2(|0<|+d)
= 2(«+d)-1 €
[2]x|?sin 6] 2
|x|20+d)
~ 2(Jx|+d)—1
(]x]? sin @) o(2

—Ug

—C|x|?sin @

To get the last inequality we have used (10) and (12). On the other hand, since 4|x|*sin? 6 >
c it is immediate the following inequality

|17Cm+1(x,s)| < |x|2(|o<|+d)_
Thus

|F™ 1 (x, s)| S K*(x,s) .
Now (4|x|*sin? )/* < (2]x|?)¥? < |x| , and thus

4 02 py1/4
<1 + ikl 512n 0" > < (1 + [x)).

Besides q_ > C;|x|? and q, < C,|x|? therefore 7+ < C. We get

sin?0|x|* sin%0
Uo = |x|2sin8 = 2

|x|? > |x]|2.

Therefore
|F™ 1 (x, s)| S K*(x,s) .

Now we can easily show that

q+ = 2|x|*>(1 + cosH)

Proposition 4:The operator K * defined as

LR N P ZORESCBL RO NC)

is of weak type (1,1) with respect to the measure fi.

Proof: The method of proof we use here M is an adaptation to our context of the techniques
developed in®'"'" which allows us to get rid of the classical one called “forbidden regions
technique.

The kernels(4) and (5)define strong type(1,1) operators. Indeed,
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elxlzf f X, (6, 8)e ™ T ()| f 0 dfice () < ClIf Iy,
R¢ J[-1,1]¢

Moreover, for semi-integer values of the parameter a, b ©
g p y
|x|2(|o<|+d)e—C|x|2(2(1—c056))1/2 (13)

is in L*(du, )uniformly in x and s and so the operator is of strong type with respect to fi, on R,
. Finally the result for the other values of « is obtained via the multidimensional Stein’s
complex interpolation Theorem. So to get the weak-type(1,1) inequality for the operator K™ it
suffices to prove that the operators

Sif(x) = et f d f[ K (0 (e ) TSI 1 = 01

map L(d i) continuously into LY (d i) .
Without loss of generality, we may assume thatf > 0. FixA > 0 and let
E; ={x € RE:S;f(x) > 1},

for i = 0,1. We must prove that fi ( E;) < C@. Let 1, and r; be the positive roots of the

A

equations
2(Joc|+d 2 — 1 =
TO (lec] )erO ||f||1 = Aand 7161'1 ”f”l A

We may observe that indeed, if E; N {x € R%: |x| < r;} = @: indeed, if
|x| < 7, we have
Sof () < |x |2 Del | £|, < 2,
S1f () < Ixle™ |Ifll; < A,
Now we deduce the possible roots of the equations mentioned above specifically in the following
Remark

Remark 5:(i). (a) if r;, = rythen we have
p2lal+2d-1 _ 4
. =

and
2lal+2d -1 =0,

which implies that

lal =1 - 2d),

(b) if ry, # r;we have the quadratic equation

Qlal+2d)Inry=Inr +1r2 —1¢

we assume ,for simplicity, that ry = e™ and r; = e?"we can find
(2lal + 2d) Ine™ = Ine?™ + e — 2"
(e2")2 —e* +2n(1—lal—d) =0

so that

_1+1-8n(1—|a|—d)
= > :

2n

e

where n > 1,we can easily find .
(i1) Sy and S, are monotone.
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x|2(l+d)

(iii)Since < 1,then |x|2(=+D < |x| < C.
On the other hand, we may take A > K||f|| in" ,and by choosing K large enough we may
assume that both ry and r; are larger that one. Hence
d
; 1l
fofx € RE: x| < 21} < 1_[951.20(]+1e,2-|9€|2 dx S rizlale“”iz <C Il .
[x|< 2r; 1

j=1

Thus we only need to estimate fi.{x € R¢:r; < |x| < 2r;}.

We let E/ denote the set of x” € S%~1 for which there exists a

p € [r;, 2r;] with px' € E For each x' € E{ we let p(x')be the smallest such p.
Observe that sinf8(x,s) = sinf(x’,s) = siné.

Then S;f (p(x")x" ) = A, by continuity. This implies for i = 0 and x’ € Ej,
A=Sof (po(xx") =

c|x|? sin% 6
e_ sin 0]x|?

_ %12 . 2(la|+d)
= Xps€" X 1A ' 2(laj+d)-1
RY [-11] (sin@ |x]|?)” 2

x| | @ds fdz, 0, s erderzteted ] (s)ds £y, (),

___crysin?0
|x|2= 1@ +sin 671
x| 1A . 2(a+d)-1 (14)
R{ [-1,1]4lxI2r0} (|x|? = rf +sinOrf)” 2

and fori = 1andx’ € Ej,

A= S81f(pi(x)x")

=[] e eoer s pems ot [ T )ds rdg, ()

R [-11]@

< ePe(’y, fRﬁ f[_1,1]d{|x|>r1}x(x)e_cSinz 0% Ty (s)ds fGo)dg, (x) . (15)

Clearly, since rg and r; are greater than one, we have
folx € Epry < x| S 2n} < [, do (x) 20 &P p2(e+ =14
i ix"
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< f e_pi(x,)zriz(loq+d_1)do'(x’)

!
E;

combining this estimate for i = 0 with (14), we get

Folx € Bty < x| < 2r) < 3y i 10 do () (o + 11y (16)
with
cry sin? 0
e |x|2—T0+51n6r0
o= 2(|o<|+d) 1f(x)dua(x)1_[ (s)ds,

(=114 {sin 6r2=c} (1X]? — 7§ + sin O71)

and

= [ rode]] o

[—1,1]d{|x|2r15in6rg56}
Similarly for i = 1 with (15), we obtain
C -
foix €Epiry < x| <21} < 7 f r12(|°<|+d) o) (I, + 1), (17)
E{

with

I, = f f e~ SO £(x)dy (x) ﬂa(s)ds,

[-1,1]¢ {lxlzrlsin Grfzc}
and
1L, = f f £ dy, (0 1_[ (s)ds .
[-1,1]¢ {sin 6r125c}
It is immediate to verify that

r02(2(|°(|+d)_1) f f o(x) 1_[ (s)ds<C

[-1,1]¢ {x sin GrOZSC}

pplxird)-1 f f do(;é)l_[a(s)dsgc

[-1,1]¢ {#: sinOr¢=c}

and
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Which give, after changing the order of integration in (16) and(17), the desired estimate
for the terms involving /Ty and 7, , respectively as in Now let us prove that for |x| > 7,

cry sin? @

Tx[2= r2+sin 612
20+ e [xIP-ro+sin6rg

0 ) ) ) 2(J|+d)-1
[-11]4 {#:sin'or2sc} (Ix|% — 75" + sin 075 2

1_[ (s)ds<cC

do(x)

and for |x| > r;

r12(|o<|+d)—1 f f g~ csin® erfda(,%) 1_[ (s)ds<cC.
a

[-1,1]¢ {x sin Grlzzc}

Firstly, one considers the case where <= (”2—1,—1...,112—"’— 1)with n; € Nand n; > 1 for each

i = 1,...,d.In this case the inner integrals can be interpreted as integrals over S Inl=1 with respect
to the Lebesgue measure, expressed in poly radial coordinates in'” .The same estimates are

obtained also for x€ NTd—1+iRd. Finally the result for the other values of o are obtained via the

multidimensional Stein’s complex interpolation Theorem. Indeed, let F:C% — C the function
defined by

crg’ sin? 6
T2 — 42 4 ai 2
|x|2=r§+sin 01

s L 1e(5)ds.
2

_2(28+2d-1) e
F(f) =7 f{sinGrOZSC} 2)

(Ix[2= & +sin 072

We have seen that |F (% - 1)| <Candi ** iyto prove that
|F (g -1+ i()| < |F (g - 1)|, whenever n is a integer vector and { € R<.

Proposition 6: For all m, the operator

T f(x) = p. U'La f[_ll]dXRo(x: S) K™ (x, $)o(s)dsf (x)d(m + 1) (%),

which is the modified Riesz—Laguerre transform restricted to the local region Ry ,
is of weak type (1,1) with respect to the measure i,
Proof: The proof of this result follows the same steps like the proof of the weak-type
boundedness on the local zone of the first order Riesz—Laguerre transforms done in®* For
the former we have the Calderon—Zygmund-type estimates for the kernel K™*1,
Lemma 7: There exists a constant C such that
K™ (x, 5)|@(x,s) < CQ2|x|>(1 — cos@))~(xI+d),
|V(x_x) (™ (x, )p(x,9))| < C2lx|2(1 — cosh))~(xI+a+1/2)
being ¢ (x, s) a cut-off function defined in® and (x,s) € R, .

34



Journal of Science and Technology vol. 14
ISSN 1858-6805
ESSN 1858-6813
Natural and Medical Sciences (NMs No.2)

mena@sustech.edu
Proof. Since|xi(\/77— 5i)| < qY?(rx?,x2,s),

ﬁ <(«/— sl>

Then

_q-(rx?x%s)
e T

|m+1]

AN

qX?(rx?,x2,s) k2 _q_(rx?%x2s) _q-(rx?x%s) 9= (rx?x2,s)
# e I—r <e 2(1-r) < e 1=

k=0

where last inequality follows from this one:
q-(rx?,x2,s) = (2|x|?(1 — cos6))V/? — 2C(1 - rl/z)
when (x,s) € R, in®. Thus on R,

Im+1j-2  _ a- (rx?x2,s)

1
i Im+1]-1 _logr) z e -r
el < | (N (-75) T G

q-(rx%x?s)
1 p=c 1-r

1, (1 — P+ dr

m +1| -2
Sf (\/_)l i 2 logr) dr+f
0 1

S 1+ (2]x]1%2(1 — cos@)) U+,

In computing the gradient of the kernel with respect to x we are going to have integrals such
as K™+ (x, 5) 0y, (x, 5,

q-(rx?x2s)

|m+1]|-2
! Im+1|-1 IOgT' 2 Xi (\/— 51)) <xt(\/— 51)) e 1-r
_L (\/F) <_ 1- r) nHal < 1-r x Haia Vi—r ) (1 —r)lxl+d+3/z dr,

i#j

The gradient with respect to x is treated similarly.
For the latter we have the following Theorem regarding the LPdfi, -boundedness for 1 <p <
oo of the modified Riesz—Laguerre transform of any order on G.

Theorem 8: The operator
RGf () = Jpa iy 1ja X6 (6 SIH™(x, ) Mec () dsf () dppoc (x)
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Proof :

The proof of this result in "is an adaptation to our context of the same result for the
higher order Riesz—Gauss transforms done in® .Taking into account that onG,
q+(x%,s) q_(x3,s) = ¢ when cosf = 0,an upper bound for|KX™*1(x, s)| is

jZ‘erl(x, s)

|m+1|-2
Qlx|2) 2z e kI ifcos <0
|m+1]-1

2x12(1 + cosO)!®1+4(2]x|2sing) 2z e~ lxI*sind ifcos >0

fd
R+

_ p
3 fd <f fém“(x,S)H«(S)dslf(x)ldﬂoc(x)> dfle
R¢ GN{cosfB<0}

p-1
p'(Im+1]-2)  _ -
S fRd <fd(2|x|2) 2 d#oc) A (NN Ep e,
+ R+

Thus
p

KM (x, )u(s)dsf (x)dpx ()| dif

»[Gn{c059<0}

For the region G N {cos@ > 0} we are going to use the following estimates:

1
2x2 < q, <12x)%,9-=20,(q4q-)2 =0,

1 1
0< |5_5| |x|2sind < |x|*sind ,since p > 1,
D
J J K™ (x, s)My (s)dsf () due(x)| A
Rf Gn{cosH<0}

~ P
< Jd <J f(m+1(x,S)l'lm(s)ds|f(x)|du°<(x)> diin
Ry \/Gn{cos6<0}

m+1)—-1  2|x|?sinf

(
SJ <J [2x|2UxI+D (2] x|2sin@) 2 e 2 Iy(s)ds
Rﬁ GNn{cos6<0}

|x|?

D
X If(x)le_Tduoc(x)> d e (x)

_ 111 ,
n+n-1 —(——|———|)|x|25m0
2 Ip 2

1x|2 14
2(|ec|+d) 2 o I
szg<fGn{m@<o}|2x| ) 2Jx |2 sing) "F e Mu(s)ds x [F()le vd#«(x)) e

36



Journal of Science and Technology vol. 14
ISSN 1858-6805

ESSN 1858-6813

Natural and Medical Sciences (NMs No.2)
mena@sustech.edu

<

~

(m+1)
2

- '
ng (fGn{CO59<O}IZX|2(|°‘|+d) (2]x|? sin ) e~CcIxXI’sinf_(s)ds x

2 P
F@le? du) diele) 36
To finish the proof we just need to chuen wiar the kernel
H(x,s): = | 2x |2(xI+D g=cp2lxI*sind y G5 1 {050 > 0}

for ® = {(x, s): q_%(xz,s) > %zlxl} is inLl(d(m + 1)“(x))

and independently of the remaining va 34  Due to the symmetry of the kernel we are
going to check only the first Claim given in'"’.

Jea HGx9)d(m + 1Du(x)

| x [P0+ g meplal@lxta=cos0) g 4 1), ()

+ f0>1 2| x |2(|“|+d)9_€p(2|xl)d(m + D)o (x).

It is clear that the second integral is bounded independently of x and s, for the first one see
(13) for any x.

It is known that the first order Riesz-Laguerre transforms are weak-type (1,1).
Furthermore, we also know from that the Riesz—Laguerre transforms of order higher than
2 need not be weak-type (1,1) with respect to i, . However, we can prove the following
result that has to do with certain kind of weights we can add on the domain of these
transforms to make them satisfy a weak-type inequality.

In particular, in order to exploiting the well-known relationship with the Ornstein-
Uhlenbeck context, we introduce the “modified” Riesz-Laguerre transforms related to
the “modified” Laguerre measure'" .

Let us mention that in the Gaussian context something quite similar occur with the
higher order Riesz-Gauss transforms. Perez proved that for

|m + 1| > 2, the Riesz-Gauss transforms of order |m + 1| associated to the
Ornstein-Uhlenbeck semigroup, mapL'((1 + |x|™*11=2)dy) continuously into

LY (dy) ,with dy (x) = e **dx .

Regarding the weights for the Riesz— Laguerre transforms of order higher than 2 ,then"
proved the following

Theorem 9: The Riesz—Lag}lerre transforms of order |m + 1| with

|m + 1| > 2, map L*(wdu,) continuously into L¥* (du,). where

w() = (1+y=0) "

Proof: As we mention in the preliminaries to prove this theorem is equivalent to prove
this Theorem is equivalent to prove that the modified Riesz—Laguerre transforms of
order higher than 2 map L*(W,dji.) continuously into L* (d i)
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,with w(x) = (1 + |x|)™*+1-2 For each xeR? Let us write

4
RY x [-1,1]¢ = URi.
i=0

Therefore, in order to get the result, it will be enough to prove that each of the
following operators

T () = fRd f[—1 1]dXRi(xl SHK™(x,s) Me(s)dsf () dpe (),

For
i =0,..,4 maps L' (W.dji,) continuously into L'* (dfi)
Observe that for all m + 1 the operatop T tis weak-type (1,1)with
respect to fi, .On the other hand, for the ‘global parts’: R, , R, , R, , and R, , we have the
following estimate for the kernel K ™*1

|K™ (x, 9)| <
(2|x|2) JC (x,5), if cos8 <0,
+1| 2
(2|x|251n9) K*(x,s), cosf =0

If (x,S) € Ry, |k™*1(x, 5)| is controlled by C(1 + {|x|})/™*11-2 e=I*I"and there for it is
immediate to prove that T/**1 maps L' (W,dji.) into L*(dfi,).
Now if (x,5) € R; , with i = 2,3,4, we Claim that
| (x, $)| S W(x)K*(x,s)
If (x,s) € R, since

+ < QD% = %,

then
chm+1(x s)| < (2|x|2 sin 9) —C(|x|4(1 cose))
< W(x)e—Cllxl*(1-cose))
Also
q.q- = 4|x|*sin?0.
Thus
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m+1|-2
|FH ™ (x,5)| < (2]x|? sin 9)%7(*(95, s) Sw(x) K*(x,s).
and this concludes the proof of the Theorem.
It should be noted that there is another proof of Theorem 9 for multi-indices of half-
integer type by taking f,, as the function f in®® .
Now we give a sharp estimate for w that is

Corollaryl10:The Riesz—Laguerre transforms of order |m + 1| with

|m + 1| > 2, map L*(wdu,) continuously into L¥* (du,). where

_8n(1-d)—1-(2e* —1)?

o .
n

and

|m+1|-2
w(x) < (1+4/1C0) = glm+1l-2

Proof: From Theorem 9 and Remark 5: We can directly see that

w) = (1+50) "
< (1 +\/m)|m+1|—2

< Km+11=2 where m > 2.

Theorem 11: The weight w is the optimal polynomial weight needed to get the weak
type (1,1) inequality for the Riesz— Laguerre transforms of order [m + 1|.

Proof: This proof follows essentially in® .With the notation of that Theorem'” one takes
n € R% with |n| sufficiently large, away from the axis and obtains the following lower
bound for X™*1(x,n)

)

:K‘m+1(x'n) —
C f[—l,l]deerl(x' 1, I (s)ds = C In||m+1|—2|o<|—d_1egz_|,1|z. (18)

Forxe]={€|7;—|+v:vj_n.|v| < 1,§|n| <€<§|n|}
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Now if we assume that the Riesz—Laguerre transforms of order
| m+ 1| > 2 map L*(W.dji) continuously into LV* (di,) with

W, = (14 |x])¢and 0 < e <|m+ 1| — 2 then by taking f = 0in L*(W.d i) close to
an approximation of a point mass at 7, with

If 1 (w,ap = 1 we have that R (x) s close to e K ™*+1(x,n)|n|~% and by

applying inequality (18) we get that
Inl

elnlk™(x,mIp|"¢ = [|nl'm+il=2c 39 o=G)® Therefore setting

_(M>
1= |n||m+1|—2|a|—d—1—ee 2

we obtain

_cnly2 _ B
e~ Rl < 1, ()
< fig{x € RE: R (x) > A}

_dnly2
<= C|n|2|a|+d—|m+1l+1+ee o

1
2

Hence |n|!™*+11=2-€ must be bounded which is a contradiction. Therefore the conclusion
of Theorem (11) holds.
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