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ABSTRACT

In this paper we utilize the symmetry group of differential equations in reducing the number of
variables, thus reducing the order of differential equations. The reduction procedure is discussed
thorouly. We also illustrate the procedure with some examples.
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INTRODUCTION

The methods used to find group-invariant
solutions generalizing the well known
techniques for finding similarity solutions,
provide a systematic computational method
for determining large classes or special
solutions. These group-invariant solutions
are characterized by their invariance under
some symmetry group of the system can all
be found by solving a system of differential
equations involving r fewer independent
variables than the original system .
Consider a system of partial differential
equations A defined over an open subset
M c XXxU=RPXxRY of the space of
independent and dependent variables. Let G
be a local group of transformations acting on
M. A solution u = f (x) of the system is said
to be G -invariant if it remains unchanged by
all the group transformations in G, i.e. for
eachge G ©.

The functions f and g . f agree on their
common domains of definition. For
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example, the fundamental solution u = log
x* + y2) for the tow-dimensional Laplace
equation Uy, + uyy = 0 is invariant under the
one-parameter rotation group:

SO2) : (x,y,u) — (xcosO - ysinO, xsin© +
ycosO,u) acting on the independent
variables x,y. We can define a G -invariant
solution of a system of partial differential
equations as solution u = f (x) whose graph
S={(x,f(x))}cM is a locally G -
invariant subset of M.

If G is a symmetry group of a system of
partial differential equations A then, under
some additional regularity assumptions on
the action of G, we can find all the G —
invariant solutions to A by solving a reduced
system of differential equations, denoted by

A/ . Which will involve fewer independent

variables than the original system A @,
Method of reducing the variables in
partial differential equations
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1) Find all the infinitesimal generators v of
symmetry group of the system using the
basic prolongation methods.

ii) Decide on the “degree of symmetry” s of
the invariant solutions. Herel < s < p will
correspond to the dimension of the orbits of
some subgroup of the full symmetry group.
The reduced systems of differential
equations for the invariant solutions will
depend on p — s independent variables .
Thus to reduce the system of partial
differential equations to a system of ordinary
differential equation, we need to choose: s =
p-1.

iii) Find all s —dimensional subgroups G the
full symmetry group found in part (i). This
is equivalent to finding all s —dimenional
subalgebra of the full Lie algebra of
infinitesimal symmetries v. To each
subgroup or sub algebra there will
correspond a set of group-invariant solutions
reflecting the symmetries inherent in G
itself.

iv) Fixing the symmetry group G we
construct a complete set functionally
independent invariants, which we divide into
two classes

yl=ntleu), e, y?P5 =
nP=s (x, u)
vt = fl(x; u), e e e, U =

El(x,u) ....(D

corresponding to the new independent and
dependent variables, respectively. If G acts
projectably, the choice of independent and
dependent variables is prescribed by
requiring the nl’s to be independent of u; in
the more general ease, there is quite a bit of
freedom in this choice (6), and different
choices lead to seemingly different reduced
systems, all of which are related by some
form of “hodograph” transformation.

v) Provided G acts transversally, we can
solve eqn. (1) for p — s of the x* s, which we
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denote by X, and all of the u’s in term of y, v
and the remaining s- parametric variables X.
x=ykXy,v), u=48%,yv)....(2)
Furthermore, considering v as a function
of y, we can use (1), (2) and chain rule to
differentiate and thereby find expressions
for the x- derivatives of any G-invariant u
in term of y, v, y —derivatives of v and the

parametric variables X,

um = 6(")(3?, y,v(")) ...... (3)

vi) Substitute the expressions (2) and (3)
into the system A(x,u™) = 0, the resulting
system of equations will always be
equivalent to a system of differential
equations for v = h(y) independent of the
parametric variables X.

&/

G(y,v™) =0....(4)

vii) Solve the reduced system (4), for
v = h(y) of A/G there
corresponds a G - invariant solution u =
f(x) of the original system, which is
given implicitly by the relation:

E(x,u) = h[n(x,w)] ... ... (5)
Repeating (iv) through (vii) for each
symmetry group G determined in step
(ii1)) will yield a complete set of group —
invariant solutions for our systems.
Applications of the method of reducing
the variants in partial differential
equations:

Example (1)
Consider the one-parameter scaling group

(x,t,u) » (Ax, At,u),A € R,
acting onX X U = R3 . On the upper half

each solution

space M = {t > 0}, the action is regular,
with global independent invariants y = x/t
and v = u. If we treat v as a function of y, we
can compute formulae for the derivatives of
u with respect to x and t in terms of y, x and
the derivatives of v with respect to y, along
with a single parametric variable which we
designate to be t, so that x will be the
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corresponding principal variable ’, by using
the chain rule, thatif u =v = h(y) = h (f)

t

then:
ux=t'1 Vy, Uy = St XUy =- t! Yy
Further differentiations yield the second
order formula:
Ugx =t 2 Vyy, Uye = - € 2 (yoyy + vy)
Uy = - 7 (y%0yy + 2y0,)
One the relevant formulae relating
derivatives of u with respect to x to those of
v with respect to y, have been determined,
the reduced system of differential equations
for the G —invariant solutions to the system
A is found by substituting these expressions
into the system wherever they occur. In
general this leads to a system of equations of
the form:

A_U(f,y,u(")) =0v=1,......1,
still involving parametric variables . If G is
actually a symmetry group for A the
resulting system is equivalent to a system of
equations, denoted:

A
(E)(y,u(")) =0, v=1, ...

which are independent of the parametric
variables, and thus constitute a genuine
system of differential equations for A as a
function of y.

Example (2):

The one-dimensional wave equation uy — Uy
= 0 is invariant under the scaling group. To
construct the corresponding scale-invariant
solutions, we need only substitute the
derivative formula (6) into the wave
equation, and solve the resulting ordinary
differential equation, we find:

£ (y 0y + 2y0y - yy) = 0

This equation is equivalent to an equation
(y* = 1) vyy +2y0, =0

in which the parametric variable t no longer
appears. This latter ordinary differential
equation is the reduced equation for the
scale-invariant solutions to the wave
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equation. It is easily integrated, with general
solution:

-1
y+1
where c, ¢ are arbitrary constants. Replacing
the variables y and v in the solution by their
expressions in terms of x, t, u we deduce the
general scale-invariant solution to the wave

equation to be:
(x=1) ,

(x+1)| te

Example (3): (The heat equation)

The symmetry group of the heat equation
consists of a six-parameter group of
symmetries particular to the equation itself
plus an infinite-dimensional subgroup
stemming from the linearity of the equation.
For each one-parameter subgroup-invariant
solutions, which will be determined from a
reduced ordinary differential equation,
whose from will in general depend on the
particular subgroup under investigation .

a) Travelling Wave Solutions: in general,
travelling wave solutions to a partial
differential equation arise as special group-
invariant solutions in which the group under
consideration is a translation group on the
space of independent variables. Consider the
translation group:

(x, t,u) » (x +ce,t+¢&,u),eE€ER
generated by d; + €0, in which c is a fixed
constant, which will determine the speed of
the waves. Global invariants of this group
are:

v =clog + ¢,

u=cl0g|

y = X-ct, v=u
so that a group-invariant solution v = h(y)
takes the familiar form u = h (x-ct)
determining a wave of unchanging profile
moving at the constant velocity c. Solving
for the derivatives of u with respect to x and
in terms of those of v with respect to y we
find:

Ui =-Cly, Ux =Dy, Uxx=Dyy
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Substituting these expressions into the heat
equation, we find the reduced ordinary
differential equation for the travelling wave
solutions to be:

Vyy+Ccuy =0
The general solution of this linear, constant
coefficient equation is

v(y) =ke +1,
for k,I arbitrary constants. Substituting back
according to (7), we find the most general
travelling wave solution to the heat equation
to be an exponential of the form:

u(x,t) =ke V4,

b) Scale-invariant solutions: There are two
one-parameter groups of scaling symmetries
of the heat equation, and we consider a
linear combination ©:

XOx+2t0+2aud,, a €R,
of their infinitesimal generators,
corresponds to the group:

which

(x,t,u) » (Ax + A2t + 12%u),A € R
On the half space {(x,t,u) : t > 0}, global
invariants of this one-parameter group are
provided by the functions:

X -a
y = 7 vV =t u
Solving for the derivatives of u in terms of
v, we find:

u =tluv, u, =ty
Uy = %71,
1 _ —
ue = —5xtt 32y, + atvly =

ta_l(—%yvy + av).
Substituting these expressions into the heat
equation, we find:

_ _ 1
t* 1y, = t° 1(—Eyvy + av),
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This equation is equivalent to one in which
the parametric variable t does not occur,
namely:

1
Eyvy + av= 0,
which forms the reduced equation for the

If we set w =

Uyy +

scale-invariant solutions.

[vexp. Gy

from of Webers differential equation,

then w satisfies a scaled

1
Wy, = (a+—)+16 ]W
The general solution of this equation is

w(y) = KU (Za + - + KV(2a

1 «)
1
+E,E)

Thus the general scale-invariant solution to
the heat equation takes the form:

1
) = taex’/8t KU(Z = —>
u(x, t) e { a+2\/_
_ 1
+KV<2 +——)
RN

If a = 0, we obtain the probability solution:

X —
u(x, t) = k*erf(—) + k*
() V2t

where erf is the error function.

¢) Galilean-Invariant Solutions: The one-
parameter group of Galilean boosts,
generated by vg = 2td, — xud, has global
invariants y = t, v = u exp (x*/4t) on the
upper half space {t >0} @ we find

2

X 2
=Wy +-— v)e"x /at

42

Therefore, for the heat equatlon the reduced
equation for Galilean- invariant solutions is
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a first order ordinary differential equation
2yvy +v = 0. The solution is v(y) = \/Ly :

Hence the most general Galilean- invariant
solutions is scalar multiple of the source
solution,

k _xz/
u(x,t) = (ﬁ) e” /a4t

which we earlier found as a scale- invariant
solution.

CONCLUSIONS

There is a one-to-one correspondence
between G -invariant functions u = f(x) on
M and arbitrary functions v = h(y) involving
the new variables. To explain this
correspondence, we begin by invoking the
implicit function theorem to solve the
system y = 1 (x) for p — s of the independent
variables, say X = (x%,.......x'»"1), in
terms of the new variables, y1, ... ... ... yP~s
and the remaining s old independent
variables, denoted as ¥ = (x/1, ........x"s).
Thus we have the solution X = y(X,y), for
some well —defined function y. Then we

solve the reduced system &/ c (™) =o.

For each solution v = h(y) of A/G’ there
corresponds a G -invariant solution u = f(x)
of the original system, which is given
implicitly by the relation:

§Cou) =h{n(x,w}
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