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ABSTRACT

In this paper a proper CR-submanifolds of the 6-dimensional sphere was considered, S°. some
characterization theorems of their submanifolds were provided. In particular, 4- dimensional CR-
submanifolds were introduced and their theorems were illustrated with examples.
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INTRODUCTION

The six-dimensional sphere S° is the most typical
example of nearly Kaehlerian manifolds. The
existence of such a nearly Kaehlerian structure for
the 6-sphere was proved by Fukami and Ishihara'"’
by making use of the properties of the Cayley
division  algebra. The almost complex
submanifolds of the 6-dimensional sphere were
studied by Gray and Sekigawa. A. Gray proved
that with respect to the Canonical nearly

. 6 . .
Kaehlerian structure ®. S~ has no 4-dimensional

almost complex submanifolds. On the other hand
Sekigawa studied the 2-dimensional almost
complex submanifolds of S® . He proved that,
among other things, a 2- dimensional almost
complex sub manifold of S° with Gaussian
curvature K <1 is either diffeomorphic to a 2-

14

dimensional torus or a 2-dimensional sphere.
ga%hir M. A also have many results in this article
The six—dimensional space is any space that has
six dimensions, that is six degrees of freedom, and
that needs six pieces of data, or coordinates.
Formally six—dimensional Euclidean space S6, is
generated by considering all real 6-tuples as 6—
vectors in this space. As such it has the properties
of all Euclidean spaces, so it is linear, has a metric
and a full set of vector operations. In particular,
the dot product between two 6-vectors is readily
defined, and can be used to calculate the metric.
6x6 metrics can be used to describe
transformations such as rotations that keep the
origin fixed.
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More generally, any space that can be described
with six coordinates not necessarily Euclidean
ones, is six dimensional. One example is surface
of 6-sphere S°. This is the set of all points in seven

dimensional Euclidean space R"  that is
equidistant from origin. This constraint reduces
the number of coordinates need to describe a point
on 6-sphere by one, so it has six dimensions they
have for more applications.

The 6-sphere, or hypersphere is in seven
dimensions, is the six dimensional surface
equidistant from a point, e.g. the origin. It has
symbol S°, with formal definition for 6-sphere
with radius r is:

S°={xe R :|x|=r}

Let C be the set of all purely imaginary Cayley
numbers. C can be viewed as a 7-dimensional

linear subspace R’ of R’ Consider the unit
hypersurface which is centered at the origin

S ={xe C:<x,x>=1)}

T.S° 6 .

The tangent space “*~ of S at a point X may be

identified with the affine subspace of C which is
orthogonal to X.A(l,]) tensor field J onS6 is
definedby: 7 -V = X *xU

where the above product is defined for X< s° and
6
UelsS . The tensor field J determines an almost
complex structure (i.e. J?=~id ) on SCIf V is the
Riemannian connection on 9 6, then (V./)X =0
6
for any XeX(S ), i.e. S®is nearly Kaehler. J is
orthogonal with respect to indusced metric g and
they are related by the form
VX,YeTM,g(X.,Y)=g(JX.Y)

A 2p + q —dimensional submanifold M on S° is
called a CR-Submanifold if there exists a pair of
orthogonal complementary distributions D and

15

D* such that JD =D and /D" €V where V is
the normal bundle of M. The distributions D and

D™ are called the holomorphic distribution and
the totally real distribution respectively with

dim D =2p and dim D" p. The normal bundle ¥

_ 1
splits as V'™~ JD"®u where # is invariant sub-
bundle of v under J. The CR-submanifold is said

— 1_
to be proper if neither D={0} nor P ={0} LA

proper CR-submanifold M of s° is said to be a
CR-product submanifold if it is locally the
Riemannian product of a holomorphic

submanifold and a totally real submanifold of s° .
It is known that there does not exist any CR-

product submanifolds in S®),

In the area ofnumber theory, the Euler

numbers are a sequence E, of integers defined by
the following Taylor series expansion:

| 2 _ i E o
cosht e +e' 0 n!
The Euler numbers appear as a special value of
the Euler polynomials.
Given a real vector bundle E over M, its k-th

Pontryagin class p(E) is defined as
pB)=pEg)=¢ Ve EAD H* M,¢)
Here ©2k (EAL) denotes the 2k-th Chern

class of the complexification
n R . 4k

EAL=EAIE ;E gH" "M .¢)

the VA homology group of

M with integer coefficients.

The rational Pontryagin class py (E.R) is

defined to be the image of P (E) in
4k

H™ (M A ), the 4k-cohomology group

of M with rational coefficients.
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The Pontryagin classes of a smooth manifold are
defined to be the Pontryagin classes of its tangent
bundle.

Novikov proved in (1966) that if manifolds
are homeomorphic then their rational Pontryagin

7 4 k
classes: P« (M .3 )1 H "" (M %) are the

same.
If the dimensions are at least five, there are at
most finitely many different smooth manifolds
with given homotopy type and Pontryagin classes.
G, manifold is a seven-dimensional Riemannian
manifold with holonomy group Go.
The group G, is one of the five exceptional simple
Lie groups.

A Gy-structure is an important type of M-
structure that can be defined on asmooth
manifold. If M is a smooth manifold of dimension
seven, then a Gp-structure is a reduction of
structure group of the frame bundle of M to
the compact, exceptional Lie group G,.

We denote by D the Levi-Civita connection of s°
. Then we have

(DJ)YY =—XXY+<XXY,x>x )

6 6
for X-Y € T.57.x€ 5" Thus we see that the
almost Hermitian structure J on S° is a nearly

(DJ)X =0)

Kaehler structure which is not

Kaehler one.
Now, we prepare fundamental formula for

Riemannian submanifolds of S°. Let (M, 9) be a
submanifolds of S® with the isometric immersion

. 6 —
¢:M—S . We set X=1og and consider
X as the corresponding position vector to the

image of ¢ in ImC’ where ! denote the
inclusion map from S° to ImC we denote by \

1L . . .
and YV~ the Riemannian connections on M and

the normal bundle 7'M induced by the

6
Riemannian connection D on S , respectively.

16

Then, the Gauss and Weingarten formulas are
given respectively by

where O and “¢ are the second fundamental
form and the shape operator (with respect to the

normal vector field ), respectively, and
X.YeX(M) where X (M) denotes the Lie

algebra of all smooth tangent vector fields on M .
The second fundamental form O and the shape

operator S are related by
<0o(X,Y),&>=< A:X,Y >
The Gauss, Codazzi and Ricci equations are given
respectively by
<RXYV)ZW>=X,W>Y,Z>—<X,Z><YW>

“)
+<O_(X’W)30-(Ya@ >_<O-(X’Z)30-(Y3W) >
(VioXY.,Z)=(Vio)XX,Z)

&)

il _
<R (X,Y)§,n>=<[A;,A1X.Y > ©)
where
(Vo XY.Z)=V 0 (Y.Z) -
oc(V,Y,Z)-oc(Y,V ,Z)
and
RNX.NE=|VE ViE -V ¢ o

XY, ZWex(M) .4 .1
normal to M.

are vector fields

CR-submanifolds
sphere:

There are many theorems of CR-submanifolds of
S® have been studied by several mathematician.

of the six dimensional
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For instance Sekigawa ® proved that S° does not gV, )Y, Z)= O’

contain any CR-product submanifold. Gray  has which means G (X.Y) is orthogonal to

shown that S ‘ does not admit a 4-dimensional M By

complex manifold®”. Ejiri N. proved the G(X,JY)=-JG(X.,Y) 9

following™: ‘ )
we obtain

Theorem [1]:

submanifold of S ° is orientable and minimal.

A 3-dimensional totally real

Proof: Let (M,g) be a 3-dimensional totally real

6
submanifold of (S,J,g ) First of all, we shall
prove the following.

Lemma 4.3.1. G(X,Y) is normal to M for X,Y
tangent to M.

Proof: From the second fundamental form of the
immersion given by

(X,Y)=V,Y-V. Y (7)

For vector fields X,Y on M For a normal vector

~A.X L
fields f, we denote by ¢~ and VX 5 the

tangential and normal components of VXé:
respectively so that

VEY =—A.X +V &

We have .
8(V,))Y.2)=g(JoX.2).Y)-g(JOX.Y).Z)
8(V.D)X.Y)=g(Jo(ZY).X) - g(Jo(Z, X),Y)
(VN2 X)=g(JoY,X),2) - g(JoY,2), X)

for X,Y,Z tangent to M. Since 8 is Hermitian
J,V.J

x* 1s skew-symmetric with

®)

with respect to

respect to g.

(VX J)X = O, holds for all vector fields X and
S® implies that the left-hand sides of the above
three equations are equal to each other. Therefore
we have

This, together with the fact

17

VO NGIID -GN J)~CGIN ) _

—V.G(Y,Z)-G(V: )Y, JZ)—GJV.Y, JZ)
~GWY,(V.J)Z)-GWY,IV.Z)
~V.G(Y,Z)+ JG(G(X,Y),Z)

+G((V.Y,Z)+ JG(Y,G(X,Z)) + G(Y,V.Z)

=—(V.O\Y,2)+JG(G(X.Y),.Z)+ JGY,G(X.Z)
for X Y Z tangent to M.
This, combined with the fact

(V:OY,2)=g(Y,JDX +8(X,2)JY —g(X.Y)JZ
10

holds for all vector fields X, Y, Z on SG, im;gliez

AY,AZX)+CZAX.Y)=gX,.)Z—g(X,2)Y

and hence

G(X,G(Y,Z)=g(X,Z)Y - g(X,Y)Z

or equivalently

JG(X,JG(Y,Z)=g(X,Z)Y — g(X,Y)Z
(11)

for X, Y, Z tangent to M. Since JG(X.Y) is
tangent to M by Lemma [1] we see from (11)
that

SIEXN VX=X, XV =IRICX N JEX V)=

Thus JOX.Y) i orthogonal to X and Y if X and

Y are linearly independent. This property,
together with (11), implies that M is orientable,
because the orientation can be defined by
regarding JG(X, Y) as the vector product of X and
Y at each point of M. Next, we shall prove that M
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is minimal. It follows immediately from eqns. (7),
(8) and Lemma [1] that

Vi JY =G(X,Y)+JV.Y)

and

A, =—Jo(X,Y)

(12)

(13)

hold for X, Y tangent to M. By (7), (8), (12), (13)
and (9), we obtain

V.G\Y,Z) =va<Y,a—G<V}Y,Z)—G<Y@Z)
= Ay X +ViG,2)-G(V.Y,2)-G(Y,V.Z)

=Jo(JQY,2),X)+IGX,(Y,2))—-J(VJGQY,Z)
-G(o(X,Y),Z)-G(Y,0(X,Z))

for X, Y, Z tangent to M. This, combined with

(10), implies

VIOY )= XN X +GX QYD) +dXJGY.D)

+JG(0(X,Y),Z)+JG(Y,0(Z, X))

Taking the normal component, we have

X, JQY,2)+JGXXY),2)+JGY,&Z X)) =0
(14)
for X, Y, Z tangent to M. Let e,, e,, ez be a local
field of orthonormal frames on M . Then we may
assume without loss of generality that JG(ey, ;) =
es, JG(e,, e3) = e; and Hence we have from eqn.

(14) that the trace of ¢ = 0, which implies that M
1s minimal.

Theorem [2]: Let M be a 3—dimensional totally
real submanifold of constant curvature C in S°,
then either C = 1 (i.e. M is totally geodesic) or
c=1/16

Proof: Let M be a 3-dimensional totally real
submanifold of constant curvature ¢ in S°. Then
the equation of Gauss reduces to

(I-o){g(X,2)g(Y . W)—g(X,W)g(Y,Z)}

+E(0(X.2),0(Y.W) ~Z(0(X. W), 0(Y.2) =0
(15)

18

If C =1, then M is totally geodesic. Therefore it is
sufficient to consider the case C< 1.
Consider a cubic

f(x)=g(o(X, X),JX)

{Xe I; X” - 1}. If f attains its maximum at X
, then 8(o(X, X),JX)=0

to X and hence ¢ (X

function

defined on

for ¥ orthogonal
- X ) is proportional to JX.

Therefore, if f is constant, O-(X’ X)=0 for all
X, since M is minimal. Thus f is not constant,
since we are considering the case where M is not
totally geodesic.

Choose €I to be the maximum point of f at each

point X € M By the similar argument to the
above, we see that f restricted to

(XeTM:|X|=1} . e(X.q)=0

} is not

constant. Choose 2 to be the maximum point of

{(XeTM;|X|=1
an

d
e,e,,6,

f restricted to

8(X.,e)=0 } and choose & so that
form an orthonormal frame field. Then we easily
see that

§(O‘(ez,e2), J€3) =0 (16)

Put a; = g(o-(ei?ei)’ Jel) =0

a+a,+,a,=0

. Then we have

, since M is minimal. We see
that a> O, because % is the maximum value for
the cubic function f and M is not totally geodesic.

Moreover, from (15) we have

l-c+aa,—a; =0 and

l-c+aa,—a =0
g(o(X.Y),JZ)
Therefore we get

(a,,,0) =2 (1=0) | 3,~(1=0)/ 3,—|(1—0) 1 3),

, since (13) implies that

X.Y.Z

is symmetric in
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which implies that

o(e,e)=2(1-c)/3Je

(17)

and

g(0(X,X),Je)=—(1-c)/3

for a unit vector X orthogonal to el. In particular,
putting X=(e,+ey)/ \/5 , We obtain

§(O'(ez,e3),]e1)=0' (19)

In consideration of eqns. (16), (17), (18), (19) and
minimality of M, we may put

o(e,,e,)=—A+/(1—c)/3Je, + AJe,,
o(ey,e,) =—+/(1—c)/3Je, — Ae,,
o(e,,e;) =—Ale,, X=W=e,
Y=2=e¢ in (15, we

A= v 2(1-0)/3 . Therefore we have
Ole,e)=—\(1—c)/ 3Je,+21—c)/ 3Je,,

e, e)=—\(1—0)/ 3Je, —| A1 —c)/ 3le,,

ole,, )=+ A1—c)/3Je,,

which, together with (17), (18) and (19), implies
o(e,e,)=—+/(1—c)/3Je,

o(e,e;)=—+/(1—-c)/3Je, 21
Applying the Codazzi equation to (17), (20) and

(18)

. Putting

obtain

(20)

1
. Ve=0 V.e=V.a=e,
(21), we obtain %' , +

1 1
Vel G :_V@el :_162’ VKZ% :_V@;% :_ZI.el

19

R(e ,e,)e, =1/16e

Therefore we have 2 and

hence ¢ =1/16

Bashir M. A. proved the following:

Theorem [3]: S°® does not admit any compact
proper CR-submanifold with non-negative
sectional curvature and integrable holomorphic
distribution®.

Proof: Since D is integrable, then the integral
submanifold of the distribution Dis a Kahler
manifold. Since M is proper then 4im D =4 jg

ruled out by a result of Gray(z), namely S does

not contain a  4-dimensional = complex

submanifold. Therefore dim D = 2. Since
L

v=JD® u

and M is a proper CR-submanifold
1

of S6 we havedimD =1, je, M is 3-
dimensional. Now let @ be a 2-form on the
integral submanifold of D and let h be its dual.
Since the integral submanifold of D is Kaehler, @
is harmonic. Using Poincare duality theorem, its

dual h is also harmonic, i.e., di] = 577 = 0.
Now from the hypothesis of the theorem, we get

Ric(2,2) 20

Using the formula

[ (Ricx, ) +[vx[ —%Hdﬂ”z —(divX)*)dv =0
M

integral

1
and Z€ D we have

1
[ (Ric(z,2) —5\\0”7”2 +[VZ|| - (m)*}dv=0

M

from which we get VxZ =0 for all Xe %(M)
L L
and ZE€ D | ie., the distribution D is parallel.

Also 8(¥,2)=0 forall Y€ D gives VxY =0
for all X € X(M ) and Y € D This means that
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1
D is also parallel. D and D being parallel implies

that M is a CR—product(“), which is a
contradiction to the fact that S® does not have any
CR-product submanifold. Therefore our theorem
is proven.

Theorem [4]: Let M be a complex totally real 2-

dimensional submanifold of S 6. Then M is flat
and minimal (see ref. (7)).
Chen B.Y. proved the following theorem for the

case dimension M 53, and Bashir M.A. proved it
here for general.

Theorem [S5]: Let M be a simply connected
compact mixed foliate CR-submanifold of a

hyperbolic complex space form M (_4). Then M
is either a complex submanifold or a totally real

submanifold of M @,
4-Dimensional CR-Submanifold'?.
Concerning 4-dimensional CR-submanifolds of

S 6, it is only known that there does not exist a 4-
dimensional CR-product submanifold of g6 (o1h
First, we recall the following characterization for
a 4-dimensional oriented submanifold of S° to be
a CR-submanifolds 1>,

gl 6
Proposition [1]: Let p:M" —S be an orientable

4
4-dimensional submanifold of S6. Then (M”,9)

is CR-submanifold of § ‘ if and only if it satisfies
one of the following conditions

(1) Q)(TLMA‘) = O’

() " ATMH =0,

where @ denote the Kaehler form of S°.

Remark: Let he SO(7)/G,be a 4-dimensional CR-

submanifold. f §€C2 then & OT s also.
However, if 7€ S0 (71)/G, then "°¢ is not a
CR-submanifold, in general (where Gy is the

compact Lie group of all automorphisms of the

20

octonions (known also as the Cayley division
algebra).
Let M " = S° pe a 4-dimensional submanifold

6
of S and discuss some fundamental properties

concerning 0y ’@. Especially we discuss a (local)
orthonormal CR-adapted frame field along

4
(M ’¢). Let 61’52 be a local orthonormal frame
fields % of H*. Then
spany (J&,JE)=T"M* o0

we have

the exterior

product 51 X&) depends only on the given
orientation of H™ and is independent on the

choice of the orthonormal frame fields. Also we
have

§x&,,J(5, X8, € H

Therefore, the vector field G1X&, is well defined

whole on M 4. Hence H has an absolute
parallelizability. We see that

{&,x&,,J (& %xE,), 6 xE, ) is a local orthonormal

frame field of M *. We obtain

Cagd 6
Proposition [2]: Let g:M" S be an orientable

compact 4-dimensional CR-submanifold of S 6,

then the Euler number of M * vanishes.

By Proposition (2), we may immediately see that
4-dimensional sphere, product of two 2-
dimensional spheres and complex 2-dimensional
projective space cannot be realized as a CR-

submanifold of S 6. On the other hand, since

: 1L _ . . "
dimH ™~ = 2, and H" is orientable, we can define

1.y on

two kinds of almost complex structures
M* such that

J, =0, ®J.J,=J,®J)
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J

where “ # is the restriction of the almost complex

6 e
structure of S to the holomorphic distribution H.
hence we have the following decomposition
7S ° =H ®H* *"®T"'M"*

(M)

2
Fweset V=H @T"M* then Visa C —

vector bundle over M' Concerning the
characteristic classes of these vector bundles, we
have the following

CAgd 6
Theorem [6]: Let (D'M =S be a 4-
dimensional CR-submanifold of S 6. The first
Pontryagin class of the tangent bundle vanishes
e, PIMH=0

G,

By taking account of the " structure equation

6
on S , we can also show that 2-dimensional

totally real distribution H " is not integrable.
Examples

The above arguments assert that there exist many
obstructions for the existence of 4-dimensional

CR-submanifolds of S 6. However, contrary to
this circumstances, we may construct several
examples of such submanifolds. We herewith
introduce two typical examples of 4-dimensional
CR-submanifolds of S°.

. 2
Example [1]: Let y:1—=S8 cImH be any
curve in the 2-dimensional sphere
S?cImH =R’ 400 (@€)S" CH o3
dimensional sphere of the quaternion H. Then the

—S°

. 3
product immersion piIxS which 1is

defined by
y(t,q) =ay(t)+bge
Gives a 4-dimensional submanifold of S 6, for any

2 2
a,b>0 with @ +b” =1, Here, t denotes the arc
length parameter of 7.

21

3 6
In fact, let (AXS°y) be the submanifold of S
gives in the above example 1. Then, we may

choose the orthonormal frame field {vl ’VZ} of
the normal bundle in such a way that

v, =y(O)xy@),v, =byt)—aqe
Thus we have
J0,)=OU) —gO}apt) Hge) =W xqge=(qg ) P HE

therefore, <Vi»J (V2)>=0 " mpue (1) of
Proposition [1] we get the desired result. Further,
we may obtain the corresponding CR-frame along

(1xS°,w)

orthonormal frame field of F N is given by
Y& =T =y xp=—ay)+K {)xp)-ge
p.(5,)=J(v,)=yt)xqE

On the other hand, an orthonormal frame field of
H is given by

V() =J (1) xJ (1) =byO) +Hy0)x 1)) g€

w.(J(e))=(r1))-qe
Example [2]: The

P:5'x8°—8°

submanifold of S ;
P(0.q)=a(qiq) +b(z(0)q)- €

For a,b>0 with a’+b’ =1, where

7(0) =t{—sin@)+cosO)i} +s{ cosl) j +sin@)k}

t,s>0

in the following way. A local

following immersion

is a 4-dimensional CR-

3
is a great circle of S CH for with

t’+ s’ =1

.ol 3 6
Proposition [3]: Let ¢'S X§ =S be a 4-
dimensional CR-submanifold of S® in Example
2).

Then the map ¢ is not an imbedding. In fact, we
have

¢(0 + 7[,—Q) = ¢(0’ q) )



Journal of Science and Technology Vol. 13
ISSN -1605 -427X
Natural and Medical Sciences (NMS No. 2)

sust-journal@hotmail.com

December/2012

The immersion ¢ 1s full.
.ol 3 6
The immersion ¢ S XS =S is minimal if

=JGB+5T) /24,0 =1/N2 L

the other (a.1) in example (2), the length of the
mean curvature vector field is constant, but the
mean curvature vector field is not parallel with
respect to the normal connection. In particular, the
second fundamental is not parallel for any
immersion of this type.

and only if a

The normal curvature of the immersion ¢ is not
flat.
The Ricci eigenvalues of the induced metric of the

immersion 4 are constant, but the metric is not
Einstein.

If a=1/43 and t=1/\/§’ the holomorphic
distribution H is integrable.

For more details see references (11, 14, 15).
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