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ABSTRACT: We give an PL −  operator norm estimate of diffusion contraction 

Semigroups ( )
0t t

P
≥  on with corresponding diffusion kernels 

  ( ),tP x y     
associated with uniformly elliptic operators with measurable coefficients and limitting 

Markov transition semigroup 
h

tQ on the state space . 

: المستخلص   
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INTRODUCTION  

This paper follows the work of Zhen- Qing 
Chen, et al (1) in which they proved  the 
minimal fundamental solution to the heat 

equation    
,
 

 with the Gaussian kernel 

           ( ) ( )
2

4, , 4
x yd

ttH t x y t eπ
−

−−=  

which describes the heat propagation in 
the space . 

 

 We state the needed statement of results 
for the matter of convenience. Let 

( ).L A= ∇ ∇  and ( ).L A= ∇ ∇%%  be two 

uniformly elliptic operators of divergence 

form on with measurable coefficients. 

Let 1λ ≥  be a constant such that 

( ) ( )( )
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Let tL
t t

tLP e and P e= = %% be the diffusion 

P1 (x,y) 
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semi groups of L and  L%  , respectively. It 

is well  known  that  t tP and P% , have  

density kernels ( ) ( ), ,t tP x y P x yand % with 

respect  to the Lebesgue measure, called 
diffusion kernels(2-5)

 
Furthermore, by 

Aronson's inequality and Nash's Hölder 
estimate for diffusion kernels, there are 
constants 

( ) ( ) ( )1 1 , 1 , 0,1c c d and dλ υ υ λ= > = ∈  

such that 

                  ( )
2

12
1, exp

x yd
c t

tP x y c t
−−−

≤                                    

( ) ( ) ( )2
1 1 1 1 1, ,

d

t tP x y P x y ct x x y y
υ

υ− +
− ≤ − ∨ −  (1)                                                            

for all 
 

The Authors in their paper (1)  established 
a quantitative upper bound estimate for: 

 
 Ptttt PPaswellasyxPyxP

~
),(

~
),( −−

 

For 1≤ P≤∞,   

in terms of the local  2L −  distance 

between A and A%  defined below. Let 
dZ  be the integer lattice in   and for 

each  dk Z∈  let   

 

 For 1q ≥    define the local 2L   - norm 

distance between two matrices   

A and A% by 

            

( )
1 1

sup qq
d

Loc

d

ij ij kL
k z i j

A A a a D
L ∈ =

− = −∑% %

 

Note that A and A% are bounded, and 

therefore the topologies induced by  

2q

Loc Loc

A A and A A
L L

− −% % are equivalent 

for any 1 .q≤ < ∞  

RESULTS: 

Theorem 1:     Let  ( ).A    be    β − Hölder 

continuous in .p

LocL Then there are 

positive finite constants 

( ) ( ), , , , , , ,P d c c d Pα α λ β λ β= =  

and Markov transition semi group 
h

t
Q  on 

the state space    such that for anyβ −  

Hölder continuous f in L∞   

     

( )
1

8

,

1
1 ,0 1

o

h

tt h

f P f ct f t
L gh

Q
α

−

∞
∞

 
− ≤ ∨ < ≤ 

 
                                                 (2) 

   for 0,x > define     

{ }og max og ,0.L x L x= −  

Theorem 2: Suppose that D is a bounded 

C ′ − smooth domain in , then there is a 

constant ( )0 0 , 1q q D λ= >  such that for 

0 2q q and α> ≥  there is a constant   

( ) ( ), , , 1c c D q so thatα λ α= >  

( )
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t t
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 when 1 2α< < , by duality we have   

, 2
DD

t tt t
whereP PP Pα α

α
′

− − ′= >% %  

is the conjugate number for .α  

 Theorem 3 :     There      are      constants   

( ) ( )3 3 0 0, 1 , 1c c d and q q dλ λ= > = >
   such that for any 0 2q q and α> ≥  , 

there is a constant ( )4 4 , , 0c c d qλ= > such 

that 

               

3

2

4
1 1

2
3t q

Loc

d dc t
c t

tP P c e A A
L

α α

α

    
    
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    (3) 

when 1 2,α< <  by duality we have 

  ,t t t tP P P P
α α ′

− = −% %   where  2α′ >  is 

the  conjugate number for .α  

The right hand side of ( )3  is not a good 

estimate for Large t  raised by Zhen- 
Quing(1), Fuku Shima(6) and Hassan(7)

  
however we have:  

Theorem 4: If t tP and P% are contractions 

in  then for each 1α ≥   and 

1n ≥  we have                       

( ) ( ) ( )1 1 1 .t tn t n tP P n p p
α+ +− + −≤% %   

 Proof:  inductively we have
 

( ) ( ) ( ) ( )1 1 tt nt t nt t nt t t nt ntn n tP P P P P P P P P P
αα α+ ++ +− = − = − + −% % % % %

 ( ) ( )1 1
t t

n n
nt nt t tP P P P P P

α α

+ += − = −% % % . 

 ( )1 .t tn P P
α

≤ + − %           

 Which can be used to get upper bounds 

for large t .We can set 2t tP P α− ≤% which 

leads to that. 
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%  

where 

( ) ( )5 5 6 6, , , 0 , , 0.c c d q and c c d qλ α λ= > = >
Theorem 5: There is a constant 

( ), 0c c d λ= >  such that 

 

 for all  0.t >  

 

Proof:     Note that 

                               

( ) ( ) ( )( ) ( ) ( )( )

( )
( ) ( ) ( )( )

( ) ( )

2

2

2 2

1
, ,

1
,

1 2

2 .

x x

rB B r B r B rx y x y

B r B r

t t

t t

t t

r

r

P I I P I I
r

p p I I

P P
rr

dω

−
∨

−
∨

≤ − ≤
∨∨

=

%

%

%

 

However, by( )1 ,    
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This proves theorem 5 after choosing r so 
that :         
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t r P P that is
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Now we prove the following estimate(7) : 

Theorem 6:   There         is       a constant 

( ), 0, t tc c d P and Pλ= > %  are     contractions 

in   for each  1α ≥  such that:                         

       

Proof: Since tP  and similarly tP%  are 

contractions, set 1 ,we have
d

υα
υ

= ≥
+

               

 

Combining theorem 5, with   

for , 1.t D α≥ ≥ Using the fact that         

{ }min , 0a b ab for any a b∧ ≤ ≥   we 

get  that  there is a constant: 

 ( ), 0c c d λ= >   

such that : 

( ) ( ) ( ) ( ) ( ) ( )
1
2, , , d

t t
tP x y x y f t e where f t c tP α

ϕ
α α

−− ≤ =%

 Afractional polynomial, where    

( )
2

1

x y
t

c t
ϕ

−
= −    for . 

To prove the required result we now let 
h

t
Q  be the semi group associate withhL . 

Theorem 7: Let A be β -Hölder 

continuous in p
LocL then there are positive 

finite constants , cαµ  and a Markov 

transition semigroups 
h

t tQandQ  on the 

state space  such that for any 

function f :  

0 ,

h

t s

t
h

t
h

f Q f f L f ds
s

QQ Q
δ

∞

− ≤ −∫ l  

Theorem 8:     Suppose that A and B 
satisfy (1) let Q and Qt be constructed as 
above. Assume that the function f has 
bounded derivative up to third order. Then 
there are constants0 0c and µ< < ∞ < < ∞  , 

independent of ,h and fα such that: 

Now we prove our main result and find a 
sharp estimate for the bound.    

Theorem 9: let A be β − Hölder 

continuous in 
p

LocL  then there are positive 

finite constants ,cαµ  and a Markov 

transition semi groups 
h

t
tand QQ on the 

state space  such that for any 
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functionf with bounded derivative 

,t t h
P f Q f c h f ∞∞− ≤    

For 

Proof:  let 
h

t
Q  be a semi group associated 

with .hL For the convergence rate 

of
h

t
fQ toward  tQ  we have (see eqn (1))   

0 ,

.
h

t s

t
h

t S

h

f Q f Q f L f d sQ Q
δ

∞

− ≤ −∫ l

 

Applying theorems 7 and 8  we have    

                

   

Hence                    

, ,

h

t

h

tt t t th
h

p f Q f P f f f Q fQ Q∞ ∞
− = − + −

                     

 (5)                                                                                                                           
Theorem 1 shows that                

1

8

,

1

log

h

t
t

h
f P f t f

h
Q

α
−

∞∞

  
− ≤   

  

 (6)                                                                                                   

Similarly for  1α >  (see the end of the 
proof of Theorem 2), 

2

1
d

tP f c t f
α

α

−

∞

 
≤  
 

 

Substituting equations (4) and (6) in (5) 

where 
1

8 ,th h t c e α
α

µ−
= = =   gives       

, .t t hP f Q f fch∞ ∞− ≤  
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