المستخلص :

Approximation of Symmetric Diffusion Contraction Semigroups and Kernels Shawgy Hussein¹ and Ria Hassan²

1 Department of Mathematics, Sudan University of Science and Technology.

2 Department of Mathematics, AL- Neelain University.

ABSTRACT: We give an L^P – operator norm estimate of diffusion contraction Semigroups $(P_t)_{t\geq 0}$ on \mathbb{R}^d ($d \geq 2$)with corresponding diffusion kernels $P_t(x, y)$ associated with uniformly elliptic operators with measurable coefficients and limitting Markov transition semigroup Q_t^h on the state space \mathbb{R}_h^d .

طبقا لنواة الانتشار المقابلة $L^P - L^P$ على $(P_t)_{t \geq 0}$ لشبه زمر انكماش الانتشار $L^P - L^P$ تم إعطاء تقدير لنظيم مؤثر 2 المشاركة لا $P_1(x,y)$ الناقصية المنتظمة مع المعاملات المقيسة ونهائية شبه زمر انتقال ماركوف على فضاء الحالة.

KEYWORDS: Elliptic operator, Markov transition semigroup, diffusion kerned, Gaussian kernel, density kernel

INTRODUCTION

This paper follows the work of Zhen-Qing Chen, *et al* ⁽¹⁾ in which they proved the minimal fundamental solution to the heat equation $\left(\frac{\partial}{\partial t} - \Delta\right)\mathbf{u} = \mathbf{0}$ on \mathbb{R}^d

with the Gaussian kernel

$$H(t, x, y) = (4\pi t)^{-\frac{d}{t}} e^{-\frac{|x-y|^2}{4t}}$$

which describes the heat propagation in the space \mathbb{R}^d $(d \ge 2)$.

We state the needed statement of results for the matter of convenience. Let $L = \nabla . (A\nabla)$ and $\tilde{L} = \nabla . (\tilde{A}\nabla)$ be two uniformly elliptic operators of divergence form on $\mathbb{R}^{\mathbf{d}}$ with measurable coefficients. Let $\lambda \ge 1$ be a constant such that

$$\lambda^{-1}I_{d\times d} \leq A(.) = (a_{ij}(.)) \leq \lambda I_{d\times d}$$
$$\lambda^{-1}I_{d\times d} \leq \tilde{A}(.) = (\tilde{a}_{ij}(.)) \leq \lambda I_{d\times d}$$
Let $P_{t} = e^{tL}$ and $\tilde{P}_{t} = e^{t\tilde{L}}$ be the diffusion

semi groups of *L* and \tilde{L} , respectively. It is well known that P_t and $\tilde{P_t}$, have density kernels $P_t(x,y)$ and $\tilde{P_t}(x,y)$ with respect to the Lebesgue measure, called diffusion kernels⁽²⁻⁵⁾ Furthermore, by Aronson's inequality and Nash's Hölder estimate for diffusion kernels, there are constants

 $c_1 = c_1(d,\lambda) > 1$ and $\upsilon = \upsilon(d,\lambda) \in (0,1)$ such that

$$P_{t}(x, y) \leq c_{1} t^{-\frac{d}{2}} \exp^{-\frac{|x-y|^{2}}{c_{1}t}}$$
$$|P_{t}(x, y) - P_{t}(x_{1}, y_{1})| \leq q t^{-\frac{d}{2}} (|x-x_{1}| \sqrt{y} - y_{1}|)^{\nu}$$
(1)

for

$$t > 0$$
 and $(x, y), (x_1, y_1) \in \mathbb{R}^d \times \mathbb{R}^d$

The Authors in their paper ⁽¹⁾ established a quantitative upper bound estimate for:

$$\left|P_{t}(x, y) - \widetilde{P}_{t}(x, y)\right|$$
 as well as $\left\|P_{t} - \widetilde{P}_{t}\right\|_{F}$

For $1 \le P \le \infty$,

in terms of the local L^2 – distance between A and \tilde{A} defined below. Let Z^d be the integer lattice in \mathbb{R}^d , and for each $k \in Z^d$ let $D_k = \left\{ x \in \mathbb{R}^d : |x - k| < 2\sqrt{d} \right\}$

For $q \ge 1$ define the local L^2 - norm distance between two matrices A and \tilde{A} by

$$\left\|A - \widetilde{A}\right\|_{L^{q}_{Loc}} = \sup_{k \in \mathbb{Z}^{d}} \sum_{i_{1}j=1}^{a} \left\|a_{ij} - \widetilde{a}_{ij}\right\|_{L^{q}} (D_{k})$$

Note that *A* and \tilde{A} are bounded, and therefore the topologies induced by $\left\|A - \tilde{A}\right\|_{L^{\frac{q}{L_{Loc}}}}$ and $\left\|A - \tilde{A}\right\|_{L^{\frac{2}{L_{Loc}}}}$ are equivalent for any $1 \le q < \infty$.

RESULTS:

all

Theorem 1: Let A(.) be β -Hölder continuous in \sum_{loc}^{p} . Then there are positive finite constants $\alpha = \alpha(P, \lambda, \beta, d)$, $c = c(d, \lambda, P, \beta)$ and Markov transition semi group Q_{l}^{h} on the state space \mathbb{R}_{h}^{d} such that for any β -Hölder continuous f in L^{∞}

$$\left\| Q_{t}^{h} f - P_{t} f \right\|_{h,\infty} \leq ct^{\frac{1}{8}} \left(\frac{1}{L \circ \overline{g} h} \right)^{\alpha} (1 | \vee \| f \|_{\infty}), 0 < t \leq 1$$
(2)

for x > 0, define $L \circ \overline{g} x = \max \{-L \circ g x, 0\}.$

Theorem 2: Suppose that *D* is a bounded C'-smooth domain in \mathbb{R}^d , then there is a constant $q_0 = q_0(D, \lambda) > 1$ such that for $q > q_0$ and $\alpha \ge 2$ there is a constant $c(\alpha) = c(D, \lambda, q, \alpha) > 1$ so that

$$\left\| p_{i}^{D} - \tilde{p}_{i}^{D} \right\|_{\alpha}^{\alpha} \leq c(\alpha) t^{-\left(d + \frac{\bigcup}{2}\right) + \frac{d}{\alpha}} \sum_{i,j=1}^{d} \left\| a_{ij} - \bar{a}_{ij} \right\|_{L^{2q}(D)}$$

when $1 < \alpha < 2$, by duality we have $\left\| P_{\alpha}^{D} - \tilde{P}_{\alpha}^{D} \right\|_{\alpha} = \left\| P_{\alpha} - \tilde{P}_{\alpha} \right\|_{\alpha'}$, where $\alpha' > 2$

is the conjugate number for α .

Theorem 3 : There are constants $c_3 = c_3(d, \lambda) > 1$ and $q_0 = q_0(d, \lambda) > 1$ such that for any $q > q_0$ and $\alpha \ge 2$, there is a constant $c_4 = c_4(d, \lambda, q) > 0$ such that

$$\left\|P_{t}-\tilde{P}_{t}\right\|_{\alpha}^{\alpha} \leq c_{3}e^{-\left\{\frac{1}{c_{3}t}\right\}+c_{4}t-\left(\frac{d+1}{2}\right)+\frac{d}{\alpha}}\left\|A-\tilde{A}\right\|_{L^{2q}_{Loc}}$$
(3)

when $1 < \alpha < 2$, by duality we have

 $\|P_t - \tilde{P}_t\|_{\alpha} = \|P_t - \tilde{P}_t\|_{\alpha'}$, where $\alpha' > 2$ is the conjugate number for α .

The right hand side of (3) is not a good estimate for Large t raised by Zhen-Quing⁽¹⁾, Fuku Shima⁽⁶⁾ and Hassan⁽⁷⁾ however we have:

Theorem 4: If P_t and $\tilde{P_t}$ are contractions in $L^{\infty}(\mathbb{R}^d)$ then for each $\alpha \ge 1$ and $n \ge 1$ we have $\left\| P_{(n+1)t} - \tilde{P}_{(n+1)t} \right\|_{\alpha} \le (n+1) \left\| p_t - \tilde{p}_t \right\|.$

Proof: inductively we have $\begin{aligned} & \left\| P_{(n+1)t} - \tilde{P}_{(n+1)t} \right\|_{\alpha} = \left\| P_{n+t} - \tilde{P}_{n+t} \right\|_{\alpha} = \left\| P_n \left(P_t - \tilde{P}_t \right) + \left(P_n - \tilde{P}_n \right) \tilde{P}_t \right\|_{\alpha} \\ & = \left\| P_{nt} P_t - \tilde{P}_{nt} \tilde{P}_t \right\|_{\alpha} = \left\| P_t^{(n+1)} - \tilde{P}_t^{(n+1)} \right\|_{\alpha}. \end{aligned}$ $\leq (n+1) \left\| P_t - \tilde{P_t} \right\|_{\alpha}.$

Which can be used to get upper bounds for large t We can set $||P_t - \tilde{P_t}|| \le 2^{\alpha}$ which leads to that.

$$\left\| A - \tilde{A} \right\|_{L^{\frac{2q}{Loc}}} \leq \left(c_5 - c_6 e^{-\frac{1}{c_3 t}} \right) t^{\frac{d+1}{2} + \frac{d}{k}}$$

where

$$c_5 = c_5(d, \lambda, q, \alpha) > 0$$
 and $c_6 = c_6(d, \lambda, q) > 0$.
Theorem 5: There is a constant
 $c = c(d, \lambda) > 0$ such that

$$\sup_{\substack{x,y \in \mathbb{R}^d \\ \text{for all } t > 0.}} |p_t(x,y) - \tilde{p}_t(x,y)| \le ct^{\frac{d}{2}} ||p_t - \tilde{p}_t|| \le ct^{\frac{d}{2}} 2^{\frac{v}{u+v}}$$

Proof: Note that

$$\frac{1}{\nu(r)^{2}} \left\| \left(P_{t} I_{B_{x}(r)} , I_{B_{y}(r)} \right) - \left(\tilde{P}_{t} I_{B_{x}(r)}, I_{B_{y}(r)} \right) \right\| \\
\frac{1}{\nu(r)^{2}} \left\| \left(\left(p_{t} - \tilde{p}_{t} \right) I_{B_{x}(r)}, I_{B_{x}(r)} \right) \right\| \\
\leq \frac{1}{\nu(r)^{2}} \left\| P_{t} - \tilde{P}_{t} \right\|_{2} \leq \frac{2}{\nu(r)} \\
= \frac{2}{\omega d^{r}}.$$

However, by(1),

$$\begin{aligned} & \left| p_{t}(x, y) - \frac{1}{\sqrt{(r)^{2}}} \left(p_{t} I_{s_{1}(r)}, I_{s_{1}(r)} \right) \right| \\ & \leq \frac{1}{\sqrt{(r)^{2}}} \int_{s_{1}(r) \times s_{1}(r)} \left| P_{t}(x, y) - P_{t}(z, v) \right| dz dv \left| \right| \\ & \leq c_{t} t^{-\frac{(d+v)}{2}} r^{v}. \end{aligned}$$

This proves theorem 5 after choosing r so that :

$$t^{-\left(\frac{d+\nu}{2}\right)} r^{\nu} = \frac{1}{r^{d}} \left\| P_{t} - \tilde{P}_{t} \right\|_{2} \le \frac{2}{r^{d}}, \text{ that is },$$
$$r \le t^{\frac{1}{2}} 2^{\frac{1}{(d+\nu)}} \bullet$$

Now we prove the following estimate (7):

Theorem 6: There is a constant $c = c(d, \lambda) > 0$, P_t and $\tilde{P_t}$ are contractions in $L^{\infty}(\mathbb{R}^d)$ for each $\alpha \ge 1$ such that:

 $\sup_{\substack{x,y \in \mathbb{R}^d \\ x,y \in \mathbb{R}^d}} |p_t(x,y) \quad \tilde{p}_t(x,y)| < c_{\alpha} t^{-\frac{d}{\alpha}}$ **Proof:** Since P_i and similarly \tilde{P}_i are contractions, set $\alpha = \frac{v}{d+v} \ge 1$, we have $\sup_{xy \in \mathbb{R}^d} |p_t(x,y) - \tilde{p}_t(x,y)| < c_{\alpha} t^{-\frac{d}{\alpha}} \text{ for } t > 0 \text{ and } \alpha \ge 1$

Combining theorem 5, with $|p_t(x,y) - \tilde{p}_t(x,y)| < \min\left\{c_1 t^{-\frac{d}{2}} e^{-\frac{|x-y|^2}{c_2 t}}, c_\alpha t^{-\frac{d}{2}}\right\}$ for $t \ge D$, $\alpha \ge 1$. Using the fact that $\min\left\{a \land b\right\} \le \sqrt{ab}$ for any $a, b \ge 0$ we get that there is a constant:

$$c = c(d, \lambda) > 0$$

such that :

$$\left|P_{t}(x,y)-\tilde{P}_{t}(x,y)\right| \leq f_{\alpha}(t)e^{\phi(t)}, \text{ where } f_{\alpha}(t)=\left(c_{d}t^{-d}\right)^{\frac{1}{2}}$$

Afractional polynomial, where

$$\varphi(t) = -\frac{|x-y|^2}{c_1 t}$$
 for $t > 0$ and $\propto \ge 1$.

To prove the required result we now let Q_{L}^{h} be the semi group associate with L^{h} .

Theorem 7: Let A be β -Hölder continuous in L^{p}_{Loc} then there are positive finite constants μ_{α} , c and a Markov transition semigroups Q_{t}^{h} and Q_{t} on the state space \mathbb{R}_{h}^{d} such that for any function f:

$$\left\| Q_{i}^{h} f - Q_{l} f \right\| \leq \int_{0}^{l} \left\| \ell^{h} Q_{s} f - L Q_{s}^{\delta} f \right\|_{h,\infty} ds$$

Theorem 8: Suppose that A and B satisfy (1) let Q and Q_t be constructed as above. Assume that the function *f* has bounded derivative up to third order. Then there are constants $0 < c < \infty$ and $0 < \mu < \infty$, independent of h, α and f such that:

 $\sup_{\substack{\emptyset \leq t \leq 1, x \in \mathbb{R}_{h}^{d} \\ \text{box} \text{ box } k \in \mathbb{R}_{h}^{d}}} \left| \mathbb{Q}_{t}^{h} f(x) - \mathbb{Q}_{t} f(x) \right| < ch e^{\mu_{\alpha}} \|f\|_{c_{k}}$ Now we prove our main result and find a sharp estimate for the bound.

Theorem 9: let $A \ be \ \beta$ - Hölder continuous in \sum_{Loc}^{p} then there are positive finite constants μ_{α}, c and a Markov transition semi groups Q_{μ}^{\dagger} and Q_{t} on the state space \mathbb{R}_{h}^{d} such that for any function f with bounded derivative

$$\left\|P_{t}f - Q_{t}f\right\|_{h,\infty} \leq ch \left\|f\right\|_{\infty}$$

For

 $0 \ll c \ll \infty, 0 \ll \mu_{\alpha} \ll \infty$ and $h = h_{z}$ **Proof:** let Q_{t}^{h} be a semi group associated with L^{h} . For the convergence rate of $Q_{t}^{h}f$ toward Q_{t} we have (see eqn (1))

$$\left\| Q \left[f - Q \right]_{f} f \right\| \leq \int_{0}^{t} \left\| \ell^{h} Q \right\|_{s} f - L Q \left[f \right]_{h,\infty}^{t} ds.$$

Applying theorems 7 and 8 we have

$$\sup_{\substack{0 \le t \le 1, x \in \mathbb{R}_h^d}} \left| \mathbb{Q}_t^h f(x) - \mathbb{Q}_t f(x) \right| < ch e^{\mu_\alpha} \| f \|_{c_s}$$
(4)
Hence

$$||p_{i}f - Q_{i}f||_{h,\infty} = ||P_{i}f - Q_{i}f| + Q_{i}f - Q_{i}f||_{h,\infty}$$

$$\leq \|p_t f - \mathcal{Q}^h f\|_{h,\infty} + \|\mathcal{Q}^h f - \mathcal{Q} f\|_{h,\infty} \tag{5}$$

Theorem 1 shows that
$$\left(\begin{pmatrix} 1 \\ -1 \end{pmatrix} \right)^{\alpha}$$

$$\left\| \mathcal{Q}_{f}^{*} f - P_{f} f \right\|_{h,\infty} \leq \left(t^{-\frac{1}{8}} \left(\frac{1}{\log h} \right) \right)^{-1} \| f \|_{\infty}$$
(6)

Similarly for $\alpha > 1$ (see the end of the proof of Theorem 2),

$$\|P_{t}f\|_{\infty} \leq \left(c t^{-\frac{d}{2}}\right)^{\frac{1}{\alpha}} \|f\|_{\alpha}$$

Substituting equations (4) and (6) in (5) where $h = h_t = t^{-\frac{1}{8}}$, $c_{\alpha} = e^{\mu_{\alpha}}$ gives

$$\left\|P_{t}f - Q_{t}f\right\|_{h,\infty} \leq ch \left\|f\right\|_{\infty}.$$

REFERENCES

1. Zhen-Qing C., Zhongmin Qian and Yaozhong H. and Weian Z. (1998). Stability and approximations of symmetric diffusion semi groups and kernels. *Journal of Functional Analysis* **152**: 255-280.

2. Davies E. B. (1989). *Heat Kernels and Spectral Theory*. Cambridge Univ. Press, Cambridge. UK.

3. Davies E. B. (1980). "One-Parameter Semi Groups". Academic Press. London.

4. Kato .T. (1966). *Perturbation Theory for. Linear Operators.* Springer-Verlag New York.

5. Stroock, D. W. and Zheng, W. A. (1997). Markov chain approximation to Symmetric diffusion. Ann. Inst. H. Poincare(B) *Probability Statistics* **33**, 619-649.

6. Fuku Shima, M., Oshima ,Y. and Takeda, M.(1994). *Dirichlet Forms and Symmetric Markov Processes*. Deruyter. Berlin.

7. Ria Hassan (2008). Generalization on L^p – contractivity of Semi groups Commutators and C₀- Semi groups of Resolvent Estimates Ph.D. Thesis in Mathematics AL-Neelain University.