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ABSTRACT: This paper deals with the recent work and developments of Cayely transforms 
which had been rapidly developed. 

  :ا������� 

  .ايليمالتطورات السريعة لتحويلات كتتعلق هذه الورقة العلمية بتقديم العمل الحديث و

INTRODUCTION 

In this study we shall give the basic 
important transforms and historical 
background of the subject, then introduce 
the accretive operator of Cayley transform 
and a maximal accretive and dissipative 
operator, and relate this with Cayley 
Transform which yield the homography in 
function calculus. After this we will study 
the fractional power and maximal 
accretive operators; indeed all this had 
been developed by Sz.Nagy and              
C. Foias (1). The method of extending and 
accretive (or dissipative) operator to           
a maximal one via Cayley transforms 
modeled on Von Neumann’s theory on 
symmetric operators, is due to Philips (1) 
fractional powers of operators A in Hilbert 
space , or even in Banachh space, such as 
– A is infinitesimal generator of a conts 
one parameter sem–group of contractions, 
have been studied or constructed by 
different authors using different methods , 
we shall appear Sz. Nagy’s method here. 
Many had been worked in the uniqueness 
theorem (in its form on dissipative 
operators) , MaCaev and Palant [in case of 
bounded operators] and Langer in the 
general case. The proof of Belasz – Nagy  

 

is slightly simplified variant of that of 
Langer (1, 2). 

 Cayley Transforms V = ( A – iI)(A+iI) -1 

First we introduce the transformation B =    
( I + T*T) -1 and  

C = T ( I + T*T)-1 in order to study the 
Cayely transforms.  

If the linear transform T is bounded , it is 
clear that the transformation B appearing 
above is also bounded , symmetric , and 
such that 0 ≤ B ≤ I ; (3). 

C = TB is then bounded too. If T is a 
linear transformation with dense domain, 
we know that T*, and consequently also 
T*T, exist, but we know nothing of their 
domains of definition (4). The proof of 
following theorem gives a rather 
surprising fact: 

Theorem 1: If the linear transformation T 
is closed and if its domain is dense in H, 
the transformations B = ( I  + T*T )-1 , C 
= T ( I + T*T ) -1 are defined every where 

and bounded, 1≤B ;1≤C
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  Moreover, B is symmetric and positive. 

Proof:  In order to prove this theorem, we 
use the graph of T (4) which in this case is 
a closed linear set.  

Let h be arbitrary element of H. since Gr 

and *TGV are complementary orthogonal 

subspaces of N (4), we can decompose the 
element {h , 0 } of N into the sum of an 

element of GT and element of  *TGV , and 

there is only one way.  

{ h , 0} = { f , Tf } + {T *g , - g }      (1)                             

This means, passing to the component, 
that the system of equations :  

h = f + T*g , 0 = Tf  - g  

has a unique solution f in DT and g in DT*. 

writing f = Bh, g = Ch  

we define two transformation of H into it 
self which are obviously linear.  

The system of equations can then be 
written in the form :  

I = B + T*C , O = TB – C  

From which : 

C = TB, I = B + T*TB = (I + T*T) B   (2)               

Now since the two terms in the second 
member of (1) are orthogonal, we have is 
obtained. 

22*222*22
},{T},{},{ ggTTffggTffohh +++=−+==

 

From which we have 

 ,
22222

hgfChBh ≤+=+  

Therefore: 

             .1,1 ≤≤ CB  

For any element u in the domain of T*T, 
we have ((I +T*T) u, u)=(u , u)+(Tu, Tu)≥ 
(u, u)  

Hence ( I + T*T) u = 0 implies u = 0  

This assures that the inverse 
transformation (I + T*T)-1 exists. 
According to equation (2), it is defined 
every where and equal to B ;  

B = ( I + T*T)-1 

The transformation B is symmetric and 
positive in fact  

( Bu , v ) = ( Bu , ( I + T*T) BV) = (Bu , 
Bv ) + ( Bu, T*TBv) =  

= (Bu , Bv) + (T*TBu,Bv) = (( I + T*T ) 
Bu , Bv ) = ( u , Bv ) and ( Bu , Bv ) =       
( Bu , ( I + T*T) Bu ) =   ( Bu , Bu ) +  
(TBu , TBu) ≥ 0.  

This completes the proof of the theorem. 
The transformations B and C, which play 
an essential role in the above discussion, 
are obviously the symmetric components 
of the normal transformations. 

C + iB = ( A + iI ) (I + A2)-1 = (A – iA)-1  

This transformation and its adjoint, C – iB 
= (A –iI ) )-1 are more generally the 
transformations Rz=(A-zI)-1, where z is          
a real or complex parameter , also play an 
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essential role in other proofs of the 
theorem.  

Now the existence of  

R±i = ( A  ±  iI )-1 

can be proved directly from the relation   

222
),(),(),(),()( fAffffAfiAffiAfAffiIA +=+±±=±

 (3) 

In fact, it show that neither of equations 

(A-iI) f = 0 , ( A + iI) f = 0 

is possible unless f = 0 , which suffices for 
the existence of the inverse . Furthermore, 

we see that ,)( ffiIA ≥m  

which implies that  

                                         (4) 

for all elements g in the domain of Ri,      
R-i , respectively. 

Now these domains coincide with the 
entire space, this will follow from the fact 
that these domains are:  

a) closed, and b) everywhere dense in H.  

Proposition a) follows from the fact that 
the transformations Ri and R-i are 
continuous (consequence of (4) and closed 
(since A and A  ±  iI are closed). 
Proposition b) is proved , for example for 
Ri ; in the following manner. If the 
domain of Ri, which is a linear set, not 
every where dense in H , there would be 
an element h≠0, orthogonal to the domain 
Ri , that is to all elements of the form     

(A-iI) f. But it then follows from the 
equation (( A-iI)f,h) = 0 that is the domain 
of       (A-iI)* = A + iI and that ( A + iI) h 
= 0 .  

Hence h = 0, which contractdicts the 
hypothesis that h ≠ 0. 

The transformations R±i are therefore 
defined every where and bounded. The 
same is true for Rz = Rx+iy when y  ≠ 0 , 
since  ( A – (x + iy ) I )-1 =  

1)(
1 −−−

iI
y

xIA

y
. Of course Rz can exist 

and be bounded even for certain real 
values of the parameter Z. 

Now returning to relation (3). It showed 

that ,))( fiIAfiIA +=−  

That is, .))( 1 ggiIAiIA =+− −
  The 

transformation  

 V = (A-iI) (A+iI) -1, ……………….(4a). 

called the Cayley transformation of A and 
it is therefore isometric(4). It is defined for 
element of the form:  

g = ( A + iI ) f                      (5)  

by Vg = (A – iI) f                 (6)  

where f runs through DA. Then g and Vg 
each run through the entire space H. 
Hence V is also unitary. 

We give another equivalent definition.  

Definition 1.  

Let A ε Mn (¢) s.t , I + A is invertible.  

.igRg ±≥



Journal of Science and Technology   Vol. 13                                                                                                            

ISSN -1605 – 427X                                                                                                                                                                     

Natural and Medical Sciences (NMS No. 1)                                                                                                                                                               

www.sustech.edu 

June /2012 

 

20 

 

The Cayley transform of A , denoted by      
C (A) is defined to be (3): 

C(A) = ( I  + A )-1  ( I – A )               (7)  

The Cayley transform , not surprisingly , 
was defined in 1846 by Cayley(3). He 
proved that if A is skew Hermitain, then 
C(A) is unitary and the conversely, 
provided of course that C(A) is exist. This 
feature is useful e.g, in solving matrix 
equations subject to the solution being 
unitary by transforming them into 
equation for skew –Hermitian matrices, 
later we shall discuss this point deeply. 
Now it is easy to recover A starting with 
V. It follows from (5) and (6), by addition 
and subtraction that  

( I + V ) g = 2Af, (I-V)g = 2if,  

From that we see that (I – V) g = 0 implies 
that f = 0 and consequently , by (5), g = 0 
also hence ( I – V)-1 exist and 2Af=(I+V) 
(I-V) -12if, that is,   

A = i  ( I + V )                ( I – V )1 (8) 

Example 1 :  

Let V = 

   ),( 20

2

0
IFoFdFei == ∏

∏

∫ φ
φ

   

be the spectral decomposition(4) of the 
unitary transformation V, using relation 
(8), we can deduce the spectral 
decomposition of A from that of V in the 
following manner: 

We begin by observing that FΦ is a 
continuous function of Φ not only at the 
point Φ = 0, but also at the point Φ=2π. 

If not, V would have the characteristic 
value I; hence (I-V)-1 would not exist, 
contradicting (8).  

Let us decompose the interval (0 , 2Π) by 
means of an infinite number of points 
having the two end points for limit points , 
say by menas of the points mφ  for which -

cot mφ   = m   ( m = 0 , ± 1 , ± 2 , )  

                               

The projections Pm =       

Are then pair wise orthogonal(4) and  

 
 

The projection Pm, being permutable              
(= commutant) with V, is also 
commutable with A ; the subspace Lm 

corresponding to pm therefore reduces the 
transformations V and A. Since the 
function (1- eiØ)-1 is bounded in the 
interval Øm-1 ≤ Ø ≤ Øm we have, for f in 
Lm: 

Af = APm f = i (I + V) (I – V)-1 Pmf 

 =  

 

or Af =  

where we have set Eλ = F-2arccotλ; 

{Eλ} obviously is a spectral family over      
(-∞ , ∞) for spectral family, see SZ – 
Nagy(1). 

Let us denote the spectral family of A, 
considered as a transformation in Ln , by 
{E  λ,n} ; it is a spectral family over some 

1−− mm FF φφ

.0limlim
02

IIFFPm =−=−=
→

∞

∞− ∏→∑ φφφφ

.)
2

()1)(1(
1

1

1

fdFCotfdFeei
m

m

iim

m
φ

φφ

φ φ
φφ φ−=−+ ∫∫ −

−

−

∫ −

m

m
fdE

1 λλ



Journal of Science and Technology   Vol. 13                                                                                                            

ISSN -1605 – 427X                                                                                                                                                                     

Natural and Medical Sciences (NMS No. 1)                                                                                                                                                               

www.sustech.edu 

June /2012 

 

21 

 

finite segment of the λ- axis determined 
by the bounds of A in Ln. 

According to lemma (4), there exists a self 
– adjoint transformation E λ of H which 
reduces in each Ln to E λ,n. It is easy to see 
that E λ is also a projection, and that 
moreover it possesses the following 
properties. 

a) E λ≤ Eµ for λ< µ, 
b) E λ+o = E λ 
c) E λ →  0 for λ  →  -∞ and E λ → I 
for λ  → ∞        
It is therefore a spectral family over the 
entire line ( - ∞ , ∞) , 

Now we establish the formula  

 

But since neither the domain of 
integration nor the function under the 
integral sign is bounded, it is first 
necessary to make precise the meaning of 
an integral of this type.  

Now denoting the integral in right hand 
side of eq (9) by J. Then this definition 
will be valid for an arbitrary spectral 
family (this means that in the definition 
we shall only make use of properties        
a) and c ) of the family of projections Eλ..  

 

Setting fm = (Em- Em-1)f , the domain of 
definition of J therefore consists of the 
element f for which the series (4). 

 

 

 

 

Converges; for equivalently , since Eλfm = 
Eλf –Em-1f 

In the interval m-1 ≤ λ ≤ m, those for 
which the integral  

 

Converges for these f ,   
 

 

 

 

∑∑∑
∞

∞−

∞

∞−

∞

∞−
==== ,)( JfEfJEfEJfEJfJE mmmmmm µµµµµ

 

 

Let us consider the projections  

Em – Em-1                   ( m = 0 , ± 1 , ± 2 ,)  

and the corresponding subspace Km into 
itself. Making use of lemma (4), we define 
the integral J as the uniquely determined 
self – adjoint transformation in H which 
reduces to the transformation Jm in each 
subspace Km. 
 

 

 

 

 

 

 

)9.(,∫
∞

∞−
= λλdEA

It is clear that if f belongs to the domain 
of f, the same is true of Eµ f and we have  

.
11

fdEfdEfJJf
m

mm

m

mmm ∑∑ ∫∑ −

∞

∞− −

∞

∞−
==== λλ λλ















∫

∞

∞−
)10(

2
2 fEd λλ

hence EµJ = JEµ (10a)  

Now instead of starting with the sequence 
of integers:  

m = 0 , ± 1 , ± 2 , …………. we start with  

another sequence of real number which 
goes to infinity in both directions, we 
arrive at the same definition of integral J. 
This being the case , inorder to establish 
formula (9) – that is , the given self – 
adjoint transformation A is equal to the  

 

∑ ∑∫∑
∞

∞−

∞

∞− −

∞

∞−
== 2

1

222
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m
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Integral J formed strarting with the 
spectral family of A. It suffices by virture 
of lemma(4) , to everify that the two self – 
adjoint transformations A and J coincide 
in each of the orthogonal subspaces Ln ( n 
= 1,2 , …) but for an element f of Ln we 
have , by definition ,  

Eλf = Eλ,nf 

Since { Eλ,n} is spectral family over the 
finite interval [ a , b ] , Eλ f is constant for 
λ < a and λ ≥ b  , and consequently the 
integral (10) converges ; hence f belongs 
to the domain of J and we have 

AffdEfdEJf n

b

oa

m

m
===∑ ∫∫

∞

∞− −−
,

1 λλ λλ
 

by the definition of { Eλ,n} a spectral 
family corresponding to A in the 
subspaces Ln

(4). This completes the proof 
of the fundamental formula (9).  

Now since we have defined that the 
integral : 

∫
∞

∞− λλdE  

is self – adjoint transformation , and 
which reduces in each of the subspaces Lm 
=  

HEEHFF mmmm )()( 11 −−
−=− φφ

 

to the bounded self – adjoint 
transformation   

,.....)2,1,0(
1

±±=∫ −
mdE

m

m λλ
 

we have thus arrived to a new formula 

∫
∞

∞−
= λλdEA  

It is in this manner that J. Von Neu Mann 
in (1929), first proved the spectral 
composition of unbounded self – adjoint 
transformation (4). 

Definition 2:  

A symmetric transformation S is said to 
be lower semi bounded if there exist a real 
quantity.  

( Sf, f) ≥ c ( f,f )  

For all f in DS  it is said to be upper semi – 
bounded if the opposite in equality is 
valid. If , in particular , ( Sf,f) ≥ 0.  

We shall say, following the definition set 
down for bounded transformation, that S 
is positive (4). 

Since every semi – bounded symmetric 
transformation obtained from a positive 
transformation T by one or other of the 
formula :  S = T + cI, S = -T + cI ,  

it suffices to consider positive 
transformations in the sequel, namely the 
positive classes of matrices in special case 
an n – by – n matrices A      ( AεMn (¢) is 
called a positive matrix if every principal 
minor of A is positive). Among the 
positive matrices we consider : an 
(invertible ) M – matrix is a real non – 
positive an inverse M – matrix and hence 
a positive matrix it self ; a ( Hermitian ) 
positive definite matrix is simply a 
Hermitian P – matrix(3). Our interest here 
and later lies in considering the Cayley 
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transform of matrices in positivity classes 
above.  

But also our interest is in general positive 
transofroms which relate to Cayley 
transform, therefore for              a positive 
self – adjoint transformation A, the 
spectral decomposition can be deduced 
very simply from that for abounded self – 
adjoint transformation. This is done with 
the aid of a linear transformation of semi–
axis λ ≥ 0 into    a finite segement of  µ–
axis. 

For example, the transformation  

             µ =           (10b) 

which carries the semi – axis λ ≥ 0 into 
the segement -1 ≤ µ ≤ 1. This is the 
analogue of the linear transformation  

 

µ =  , 

which maps the circumference of the unit 
circle in the plane of complex number 
onto the entire λ–axis–the transformation 
which led to the idea of the “Cayley 
transformation(3,4). 

 

 

One other important analogue or feature 
of the Cayley transform is that it can be 
viewed as an extension to matrices of the 
conformal mapping(3). 

 

T (Z)  =    

from the complex plane into itself. In this 
regard Stein and Tans sky (3) both 
considered the Cayley transform , for the 
most part indirectly, when they provided 
connections between matrices stable 
matrices ( i,e matrices for which Re (A) < 
0 for all eigenvalues λ ) and convergent 
matrices ( i.e. those matrices A for which   

 

In both of these papers the Key connection 
came via Lyapunov’s equation AC+GA* 
=-I, and the Cayley transforms(3). The use 
of the Cayley  transform for stable 
matrices was recently made explicit in the 
paper of Haynes (3). He proved that a 
matrix B is convergent if and only if there 
exists a astable matrix A such that: 

 B = C (-A).  

Since we now in the coming deal only 
with the semi – axis λ ≥ 0, it is not 
necessary to use imaginary numbers in 
order to transform it into a bounded curve.  

Hence we form the transformation  

B = ( A – I ) ( A + I )-1,  

instead of the Cayley transform (4a)          
or which is (7).  

Since (( A + I ) f , f ) ≥ ( f,f) , the 
transformation  

C = ( A + I )-1 exists and (g , ( Cg ) ≥ ( C 
g, C g ) for all g in DC. It follows that:  
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(C g , g )  ≥ 0 and gCg ≤  

Since C is inverse of a self - adjoint 
transformation, it is also self – adjoint (4), 
and since it is bounded in its domain DC, 
this domain necessarily coincides with the 
entire space H, thus the transformation 

I – 2C = ( A + I ) C – 2 C = ( A – I ) C = B  

is also self – adjoint and bounded , and 
since  

O≤ C ≤ I , we have   B       ≤ 1. 

Let B =  ∫ −−

1

1 o
dF µµ    

be spectral composition of B. Since the 
transformation  I – B = 2C possesses an 
inverse ( namely , ½ (A+I), the value 1 is 
not a characteristic value or eigen value of 
B , hence Fµ is a continuous function of µ 
at the point µ = 1 , that is , F1-0 = F1 = I. 

consequently we have ,  

∫ ∫−−

∞

−
=

−
+1

1
)11,.....(

1

1
o o

dEdF λλ
µ
µ

µ
 

A = (I +B) (I-B)-1 =   

where Eλ = Fµ f or µ =     (11a)                    

{ Eλ} is obviously a spectral family over 
semi-axis  ≥ 0. For a rigorous proof of 
(11), we can use a decomposition of the 
segement – 1 ≤   µ < 1 by means of an 
infinite number of points which tend to 1.  

Since Eλ = F µ is the limit of polynomials 
in B, it is obviously commutant with         
A and with all the bounded 
transformations which permute (= 
commute) with A.  

Now due to equations (4a) and (7), we 
give two important lemmas, theorems and 
some examples on positivity matrices. 

Lemma l : Let A Є Mn (¢) s.t – 1 ∉ σ (A) 
and B = C (A) , then ,  

A = C (F) = ( I + F )-1( I – F )  

Proof [2] : As F = C ( A ) , we have           
( I + A ) F = I – A or A ( I + F) = I – F . 

Now notice that if Fx  = -x, then x = 0, 
that is -1 ∉C ( F ).  

Thus by (12) and since ( I + F )-1 and          
( I + F ) commute it follows that A = C 
(F).  

Lemma 2: Let A Є Mn (¢) s.t -1 ∉ σ (A) 
and let F = C (A) , then ,  

I + F = 2 (I + A)-1                          (13)  

If, in addition, A is invertible, then  

I – F = 2 (I + A)-1                            (14)  

Proof [3]: As F = C ( A ) , we have  

I + F = I + ( I + A ) -1 ( I – A ) = ( I + A)-1  
( I + A + I – A ) = 2 I (A + I)-1 

Similarly, I – F = 2 ( I + A )-1 A . So if A 
is invertible,  

 I – F = 2 ( A-1 ( I + A ))-1 = 2 ( I  + A-1)-1  

as claimed . 

Finally notice that if F  = C ( A ) , then  

λ Є     (A)               
µ
µ

+
−

1

1
 ; for some       µ Є (F) ,  

which is (10b ) and  (11a).  

σ =⇔ λ σ
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Now for a matrix A in each of the              
a foremention positivity classes, we 
examine properties of its Cayley 
transform F = C( A ) , specially since A 
can be factored into A=(I + F)-1(I-F), we 
investigate whether the factors ( I + F )-1  
and ( I – F ) belong to same positivity 
classes A and , conversely under what 
conditions does A belong to one of these 
positivity classes. Indeed Fallat and 
Tsatsomeros interested in factorization of 
the form A = X-1Y , where  X and Y have 
certain properties such as diagonal 
dominance and stability(3). They obtained 
result of this type by using the fact that the 
Cayley transform is an involution and by 
employing the factorization of A interms 
of its Cayley transform then the following 
theorem gives us the relation of P – 
matrices and Cayley transforms.  

Theorem 2 : Let A Є  Mn (C) be a P – 
matrix. Then F = C ( A ) is well – defined 
and both I – F and I + F are P – matrices. 
In particular , A = G + F-1        (I – F) is      
a factionization of a P -  matrix into              
( commuting ) P – matrix. 

Proof [4]:  first , since A is a P – matrix, 
A is totally non negative matrix and has 
no negative real eigenvalues . Hence F = 
C (A) is well – defined by lemma 1 and 2 
and as addition of positive diangonal 
matrices and inversion are operation 
precerves positive matrices , it follows 
that I – F and I + F are commuting P – 
matrices.  

One consequence of the above result is 
that if A is a P – matrix , then the main 
diagonal entries of the matrix F = C ( A) 
all have absolute value less than one  (3).  

The converse of theorem 2 is not true. Let 
us examine this and the above by some 
examples as follows: 

Example 2:                 

 

Then  

 

And  

 

is not P – matrix.  

To obtain a characterization of a P – 
matrix interms of Cayley transform , we 
need the following lemma.          

Lemma 3: Let B Є Mn (¢) so that σ ( B [ 
α  ] )=σ( B [ α ]) for all α Є { 1,2,…,n}.  

Then B is a P – matrix if and only if every 
real eigenvalue of every principal 
submatrix of B is positive(3). 

Remark 1 : Based on lemma3 , theorem 2 
can be written as follows : If A is a P – 
matrix , then ( I + F )-1 is a P – matrix and 
its every real eigenvalue of every principal 
submatrix of ( I + F )-1 is positive.  

Theorem 3:  

Let A Є Mn (¢) s.t σ ( A [ α  ] ) = σ(A [ α]) 
for all α Є { 1,2,..n} and -1 ∉ σ (A). Let F 
= C(A) then A is a P – matrix if and only 
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if every real eigenvalue of principal 
submatrix of ( I + F)-1 is greater than ½ . 

Proof [5] : In view of lemma 1 and by 
reversing the roles of C ( A) and F in 
lemma 2 , we obtain A = 2(I+F) –I. 

Also from the results of lemma 3 and 
Remark 1 we obtain 2(I+F)-1 – I.  

Notice that in example 2 all 1-by-1 and 2-
by -2 prime positive matrices of                    
(I + F)-1 fail to satisfy the condition in 
theorem 3 (3). 

Theorem 4 : Let B , G Є  Mn (R). The set 
matrices { BT + G (I-T) : T = diag              
( t1 , t2,….., tn) , ti Є  [0,1] ( 1 ≤ i ≤ n ) }  

contains only non singular matrices if and 
only if G-1B are non singular (3). 

Now we shall give an example shows that 
the natural question arising here , wether 
the factorization =  (I – A)-1   (I + A) of a 
totally nonnegative matrix (3). , F has 
factors (I - A )-1 and (I+A) are totally 
nonnegative or not ?  

Example 3(3) 

consider the totally nonnegative matrix  

 

  and consider A = - C (F̂ ).    

Then F̂  = C ( -A ) = ( I – A )-1 ( I + A ) 
neither  

 

nor  I + A is totally non negative. 

We have seen in above how the Cayley 
transform developed with P matrix in 
recent work of Fallat and Tsatsomers. 
Now we shall study the extension of 
symmetric transformations.  

Cayley transforms and Deficiency 
Indices  

Since , we have just seen , it is the self 
adjoint transformations which have 
spectral decomposition , it is important to 
know wether or not a given symmetric 
transformation possesses       a self – 
adjoint extension. More generally, the 
problem arises of characterizing all the 
symmetric extension of a given symmetric 
transformations.  

Cayley transformations have been used in 
the study of this problem since their 
introduction in (1929)(4). The Cayley 
transform of a symmetric transformations 
is defined just as for a self – adjoint 
transformation previously , namely by :  

V = ( S – i I ) ( S + iI )-1  , 

just as these , we show that V isometric 
and that we can recover S from V by 
means of the formula :  

S = i  ( I + V ) ( I – V )-1. 

By using relations (3) , (5) , (6) , written 
for S instead of A , it is easy to see that if 
S is closed then V is also closed , and 
conversely, since every symmetric 
transformation S has the closed extension 
S** ( its cloure ) , we shall consider only 
closed symmetric transformations.  
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We know that if S is self – adjoint , its 
Cayley transform V is unitary ; we shall 
show that the converse is also true. 
Suppose that V is unitary ; let g be an 
element of Ds* and set g*=S*g . then          
( Sf , g) = ( f , g*), for all elements f of Ds 
, and since these elements f are of the 
form f = ( I – V ) h , where h runs through 
DV=H, we have : 

( i ( I + V ) h , g ) = (( I – V ) h , g* ), or  

i (h,g) + i ( Vh , g ) = (h,g*) –( Vh,g*), for 
all elements h of H. Since V is unitary       
( hence defined every where and isometric 
, we can replace ( h, g ) by (Vh , Vg) and 
(h,g) by (Vh,Vg*) and obtain : 

(Vh, - i Vg – Vg* + g* ) = 0 ,  

The values Vh of the unitary 
transformations V exhaust the space H; 
this implies that : 

g =  (1-V) 
2

*igg −
 g* = i(1+V) 

2

*igg −
 

Consequently g also belongs to the 
domain of S and Sg = g* . This prove that 
S* = S ; S is therefore a self e- adjoint 
transformation (4). 

Now we are in a position to introduce the 
notion deficiency subspaces and their 
dimensions, and  relations to Cayley 
transforms , which had been studied by F 
Riez and Bela Sz Nagy in 1955 (4) . 

Then since in the case of an arbitrary 
closed asymmetric transformation S , the 
domain of definition DV and the set of 
values                 do not in general 
coincide with the entire space H; but since 

V is isometric and closed , Dv and VD′  are 

closed sets , that is , subspaces of H, one 
or the other of which may coincide with 
H. the orthogonal complements  

H–Dv and H– VD′  are called the deficiency 

subspaces, and their dimensions the 
deficiency indices of the symmetric 
transformation S (or also of the isometric 
transformation V).  

Let us recall that Dv is the set of values of 
S + i I and VD′  is the set of values of         

S – i I. 

It follows from what we have just proved 
that a closed symmetric transformation is 
self –adjoint if and only if its deficiencies 
are (0,0).  

We pass to the problem of extension. It is 

clear that if S′ is an extension of S (we 

suppose that both S and S′ are symmetric 

and closed), now the Cayley transform of  

V ′  of  S′  will be an extension of the 

Cayley transform V of S. Dv will be a 
subspace of  VD′   it follows that when we 

pass from S to S′ , the deficiency indices 

diminish by the same (finite or infinite ) 
number.  

We now show that conversely, every 
isometric extension of the Cayley 
transform V of S determines a symmetric 

extension S′ of S whose Cayley transform 

V ′ equals U.  

Firstly observe that ( I – U )-1 exist , that 
is, ( I – U ) h = 0 , implies h = 0 . In fact, 

vV VDD =′
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if (I – U ) h = 0 then for every element of 
the form f = ( I – U ) g :  

( h , f ) = ( h , g ) – ( h , Ug) = (Uh, Ug) – 
(h, Ug)  

= - (( I – U ) h , Ug ) = 0 ;  

hence is orthogonal to the set values of    I 
– U , and h is orthogonal to the set of 
values of I–U , and therefore the domain 
of definitions of S . Since this domain is 
dense in H , we necessarily have h = 0 

Now let us form the transformation 

    S′   = i ( I + U ) ( I – U )-1  

which obviously  is an extension of S,      
is symmetric ; in fact , if f and g are 

elements of DS′  they are of the form        

f =   ( I – U ) φ ,  

g = g (  ( I – U ) ψ, and we have  

S′ f =  ( i ( I + U )  φ, S′ g  = i  ( I + U )  ψ;  

Hence , in as much as (φ,  ψ)=(U φ, U ψ) 
= ( f , g) = (i ( I + U ) φ , ( I – U ) ψ)  

= i [ ( U φ , ψ)- (φ,U ψ ) ] = (( I – U ) φ , i 

( I + U) ψ) = (f, S′ g).  

Finally the relation f = ( I – U )  φ implies 
that  

S′ f = i ( I + U ) φ , (S′  + iI )f = 2 i φ ,       

( S′  – iI )f = 2iU φ, 

from which we see that the domain of the  

Cayley transform V ′consists of elements  
of the form 2i φ, where φ runs through 
DV, and that V ′(2i φ) = 2iU φ = U (2i φ).  

This proves that  V ′   = U which has to be 
shown.  

We note that if U is an arbitrary isometric 
transformation for which the set of values 
of I- U is dense in H, the same reasoning 
proves that : 

  S′  = i (I + U) (I – U)-1 is asymmetric 

transformation whose Cayley transforms 
equals U.  

Now, with this, the problem of finding all 
the (closed) symmetric  extensions of the 
closed symmetric transformations reduces 
to the problem of finding all the isometric 
extension of its Cayley transform V; this 
problem is obviously much simpler than 
the original problem. This had been done 
by F. Riez and B. Sz – Nagy (4).  

In fact, inorder to extend V; we have only 
to map the deficiency subspaces H–DV, or 
a subspace of the latter, isometrically into 
the deficiency subspace H–vD′ ; this is a 

complished, for example with the aid of 
two orthonormal systems taken in   H–Dv 
and in H- VD′ . It is thus possible to exhaust 

the deficiency subspaces with the smaller 
domain ; the corresponding symmetric 
transformation S′  will then be a maximal 

extension of S. If two deficiency subspace 
are of the same dimension, they can be 
exhausted simultaneously, and we obtain a 
unitary extension of V, and consequently 
a self -adjoint extension of S. 
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The two deficiency subspaces are of the 
same dimension, they can be exhausted 
simultaneously, and we obtain a unitary 
extension of V, and consequently a self-ad 
joint extension of S.   

F. Ries and Bela Sz–Nagy (4) summarized 
the essential points of the above in the 
following theorem.  

Theorems 5 : In order for the closed 
symmetric transformation S to be 
maximal it is necessary and sufficient that 
one or the other of its deficiency indices 
be equal to 0 ; inorder to admit   a self 
adjoint transformation as an extension , it 
is necessary and sufficient that its 
deficiency indices be equal ; finally , 
inorder that it its self be self-adjoint , it is 
necessary and sufficient that its two 
deficiency indices be equal to 0.  

Example 4: Let H be a Hilbert space 
whose dimension is denumerably infinite, 
of an isometric non – unitary 
transformation Vo ; let { gn} be                  
a complete orthonormal sequence in H 
and set  

  

Then the domain of Vo is the entire space, 
while the set of values Vo f has the 
orthogonal complement of dimension1 
consisting of elements of the form Cg1. It is 
easily shown that the set of values of I – Vo 
is dense in H. Hence Vo is the Cayley 
transform of symmetric transform :  

So = i ( I + Vo ) ( I – Vo )
-1, So is defined by  

∑
∞

1 KK
gS Co

= i C1g1 + i ( 2C1 + 

C2g2) + i( 2C1+2C2)g3 + ….. 

for all elements f = ∑ KC g
K

for 

which ( I – Vo )f has  a meaning , that is, 
for which for all elements:  

......
2

321

2

21

2

1 ++++++ CCCCCC
  

converges ( for these f we have , in 

particular , ∑
∞

=
1

).oC k  

Therefore the transformation So has (0, 1) 
for deficiency indices; it is called the 
elementary symmetric transformation. Now 
it can be shown that every symmetric 
transformations S0 of a Hilbert space H of 
arbitrary dimension with the deficiency 
indices (0,m) (where m is an arbitrary finite 
or infinte cardinal number) is composed of 
m elementary symmetric transformations 
plus possibly a self –adjoint transformation 
, in the following sense ; there are m 
mutually orthogonal subspaces Kα with 
denumerably infinite dimension in H, each 
of which reduces S to an elementary 
symmetric transformation, s.t, in the 
subspace K ′of elements orthogonal to all 
the Kα (a subspace which may consist of 
the single element 0), S reduces to a self – 
adjoint transformation (4).  

Now the problem of maximal symmetric 
transformation whose deficiency indices 
are (m,0) presents nothing new, since , in

  

∑∑
∞

+
∞ =

1 11 kkkko gCgCV
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the fact that the Cayley transform of – S is 
obviously equal to the invese of that of S.  

Remark 2: the real symmetric 
transformations of the space L2 always 
have equal deficiency indices , hence they 
are either self–adjoint or possess self–
adjoint extensions.  

The transformation S is said to be real if 
its domain contain with a function f(x) its 
conjugate  f(x) , and if in addition Sf (x) 

= )(xfS . 

Our proposition is verified as follows: the 

domains Dv and the range vD′  of the 

Cayley transform of S consist of the 
functions:   

u(x) = Sf(x) = if(x) and v(x) = S g(x) – 
ig(x), respectively , where f and g run 
through the domain of S. Setting            
g(x) = f (x) we have v(x) =u (x), 
henceD′ consists of the conjugates of two 
orthogonal function are also orthogonal, 
H–Dv consists of the conjugates of H – Dv,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For further details see Frigyes and Sz. 
Nagy (4) for positive symmetric 
transformation, and all its extensions to 
positive self–adjoint transformation. 

CONCLUSIONS  

Now we see how the Cayley transforms 
had been rapidly developed in the more 
recent work.  

The study showed the necessary historical 
advances and important two directions of 
recent work, that is to say the Cayley 
transform  of accretive and dissipative 

operators and purely maximal of these , 
the symmetric , bounded , self adjoint and 
unitary operatiors , the second direction is 
a P-matrix tranformaition. 

recent work, that is to say the Cayley 
transform  of accretive and dissipative 
operators and purely maximal of these , the 
symmetric , bounded , self adjoint and unitary 
operatiors , the second direction is a P-matrix 
tranformaition. 
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