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ABSTRACT: In this work we showed that the inner functionsHardy space can be written in
the canonical factorization form as exponentideakt harmonic majorants.
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Definition of H P

For 1< p <o the Hardy spaceH’ is

defined as the space of all analytic
functions ¢ in  the unit disk
D={zet:|z] =1}
(Ifor which the norm
1

_ 1 (on [P [P

I#1, =sug =[" [o(re") |
(1)

is finite. The spaceH ® ( Banach space)
consist of all bounded analytic functiogs

on the disk, and the norm is now

l¢]=sup|e¢(z)]
\z\<1 (2)

For functiong in H” for 1< p < , the
radial limit

@ (') =lim,; p(e™)
3)

exists almost everywhere in (Fatou’s
Theorem), and neededg, O L" (T ), where

T denotes the unit circle which we equip
with  normalized Lebesque measure;
moreover:

loH =@||I*.

We normally identifyg with ¢ , and can

thus regardH ? as a closed subspace of
LP(T). It is also possible to start by

defining H" directly as the subspace of
those LP(T) functions for which the
negative Fourier coefficients vanish, that is:

L [T (eit)emint gt = 0
o J0 P

(4)

for all n<O.
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It is classical that ¢ 1H" has the
factorizations
¢ =BSO (5)

where B is a Blaschke productS is
a singular function, andOis an outer
function. Specifically, these factors dte:

_Izkl

z)=z”‘|_|,uk.% : (6)

where mis the order of the zeros of at
the origin andz,,z,,...are the zeros of

pin D\{G} ;

whereVis a non-negative measure singular
with respect to Lebesgue measure, and

Aep{zﬂzn ¢ +Z (e )dt}
e -z 8)

where A is a unimodular constant aridis
real-valued integrable function. Alsp has

the factorization (canonical factorization)

where | is an inner function (has a unit
modulus a.e o ), andO as in Eq.(5}*?

It is a well-known that ifgis an inner
w—g (2)

s is a Blaschke
1- (=)

function, then

product for allw O D with the exception at
most of a set of capacity z&o

Theorem A® :

Let N. denote the set of all analytic
functionsf on the unit disk such that the
functions log"|f,| have uniformly
absolutely continuous integrals, and let
@ N, , then the set of points for which
#(z)-w has non-trivial singular inner

factor has logarithmic capacity zero.
Conversely, given any compact sgt of

logarithmic capacity zero, there is a
bounded analytic functiong such that

#(z)-w has a non-trivial singular inner
factor if and only ifw O E .

The converse statement is well- known. Let
E be a compact set of capacity zeroOn,
the covering mapg- of the domainD \E

is an inner function sinc& has capacity
F(z)-w
1-WF (z)
non-vanishing inner function and so is
singular. Thus sincd-wF (z)is an outer

zero. For eachw O E is a

function, F (z)-w is a function with non-
trivial singular inner factor for allv in E.

Note that for mutually prime inner
functionsuand v which have no zero in
common and that there is singular inner
function S with u =Su,andv =Sv, for

inner functionsu, andv,, and p>0, the
function u(z) + pe"v(z) has a trivial
singular inner factor for almost all (w.r.to
Lebesque measure) real t.
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The generalization of the above concept is
given in the following Theorem.

Theorem B: Letf ,gOHP,0<p<o,
have mutually prime singular inner factors.
Then the set of pointsw for which

f (z) -wg(z) has a non-trivial singular
inner factor has logarithmic capacity
zerd®

In Theorem B above, we see thagifis an
outer function, then the lack of a singular
factor in f (z) ~wg(z) is equivalent to
the lack of a singular factor in the
decomposition of the function

f(z)
g(z)

Theorem A.

-w in N,, and is thus covered in

Now let ¢ OH?, then there exist a
harmonic functionh in D , such that

[#(2)[ <h(2)

and h is called the harmonic majorant of
9“9 1t is well known that if ¢ has
harmonic majorant i, then there exist a
least harmonic majorant , hence there exist
a harmonic functiorh,in D, such that:

(10)

‘¢(Z)‘2Sh¢(z) (11)

and such thath, <h. Also if #OH?,
then for a fixedz, O D there is a norm on

H? defined by:| ¢ | = inf {h(z); th is
a harmonic majorant of ¢ |2}

Now, one can make the

definitions:

following

Definition 1: for ¢ OH 2, we say thath
is the harmonic majorant @f in D if h jg
harmonic function inD , such thatg < h.

Definition 2: let 0H?, and h is the
harmonic majorant o in D , we say that
h, is least harmonic majorant ¢f in D if

h¢ is harmonic function inD , such that
¢ < h, ,and such thah, < h.

Now let ¢ and ¢’ be two functions i 2.

We say thatp divides ¢' (or ¢|¢'), if ¢'

can be written as¢' =g¢gu, for some
uldH?2.

Now we need the following lemma.
Lemma C®:

If ¢, and ¢, are inner functions without a
common factor, then:

lim | Iog(max{‘gbl(re‘g)‘ ,‘¢2(re“9)‘} )da(@) =C
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where do is the normalized Lebesgue Theorem 1. If ¢ and ¢, are inner
measure on the unit circle. functions with a common factor, say
proof: The limit on the left side is the  theng =e""™, where h denotes the

value at the origin of the least harmonic
majorant inD of the subharmonic function

max{ log ¢, | ,lod¢,|} ®®. So it remains
to show that this least harmonic majorant is

the constant function 0. Leh denote this
least harmonic majorant. Then

log| ¢, | < h < 0. This implies thath has

radial limits 0 almost everywhere onh.
So, if his not identically zero, them is
the Poisson integral of a negative singular

measure onT. Hence ¢ =e"™" is a

singular inner function (her denotes the
harmonic  conjugate of hin D ©,

Sincq ¢, | < ‘e“”ﬁ ‘ the inner functiong
divides ¢,. But |4, | < ‘e““ﬁ‘ implies that
¢ also divides ¢,, contradicting our

assumption about, and ¢,. Thush =0.
This completes the proof of the lemma.

RESULTS

Now we arrive to the following theorem
which gives the principle result of this
paper.
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