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ABSTRACT: In this work we showed that the inner functions on Hardy space can be written in 
the canonical factorization form as exponential of least harmonic majorants.   
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Definition of pH  

For 1 p≤ < ∞  the Hardy space pH  is 
defined as the space of all analytic 
functions ϕ  in the unit disk
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is finite. The space H ∞  ( Banach space) 
consist of all bounded analytic functions ϕ  
on the disk, and the norm is now  
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For function ϕ  in pH , for 1 p≤ < ∞  , the 
radial limit  
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exists almost everywhere in t  (Fatou’s 
Theorem), and needed , ( )pL Tϕ ∈% , where 

T  denotes the unit circle which we equip 
with normalized Lebesque measure; 
moreover: 

. 

We normally identify ϕ  with  , and can 

thus regard pH  as a closed subspace of  

( )pL T . It is also possible to start by 

defining pH  directly as the subspace of 
those ( )pL T  functions for which the 

negative Fourier coefficients vanish, that is:  

                                 

      
  (4)                                      

 

for all 0n < . 
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It is classical that pHϕ ∈  has the 
factorizations  

      B S Oϕ =                          (5)                                                                        

where B  is a Blaschke product, S  is            
a singular function, and O is an outer 
function. Specifically, these factors are:(1)  

                                 

( ) . ,
1

km k
k k

k k

zz z
B z z

zz z
µ µ−= =

−∏ (6)                 

where m is the order of the zeros of ϕ  at 

the origin and 1 2, ,...z z are the zeros of 

ϕ in { }\ 0D ; 
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where ν is a non-negative measure singular 
with respect to Lebesgue measure, and  
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where λ  is a unimodular constant and k is 
real-valued integrable function. Also ϕ  has 
the factorization (canonical factorization)  

            I Oϕ =                                   (9)                              

where I  is an inner function (has a unit 
modulus a.e on D ), and O as in Eq.(5).(1, 2)  

It is a well-known that if ϕ is an inner 

function, then    

  

is a Blaschke 

product for all w D∈ with the exception at 
most of a set of capacity zero(3).  

Theorem A(3) :  

Let *N  denote the set of all analytic 

functions f  on the unit disk such that the 
functions log rf+  have uniformly 

absolutely continuous integrals, and let 

*Nϕ ∈ , then the set of points w for which 

( )z wϕ − has non-trivial singular inner 

factor has logarithmic capacity zero. 
Conversely, given any compact set E  of 
logarithmic capacity zero, there is a 
bounded analytic function ϕ such that 

( )z wϕ − has a non-trivial singular inner 

factor if and only if w E∈ . 

The converse statement is well- known. Let 
E  be a compact set of capacity zero in D , 
the covering map F  of the domain \D E   
is an inner function since E  has capacity 

zero. For each  
( )

( ),
1

F z w
w E

wF z

−
∈

−
 is a 

non-vanishing inner function and so is 
singular. Thus since ( )1 wF z− is an outer 

function, ( )F z w− is a function with non-

trivial singular inner factor for all w in E. 

Note that for mutually prime inner 
functions u and v  which have no zero in 
common and that there is singular inner 
function S  with 1u Su= and 1v Sv=  for 

inner functions 1u  and 1v , and 0ρ > , the 

function ( ) ( ).itu z e v zρ+  has a trivial 

singular inner factor for almost all (w.r.to 
Lebesque measure) real t.  
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The generalization of the above concept is 
given in the following Theorem.  

Theorem B:  Let , pf g H∈ ,0 p< <∞ , 
have mutually prime singular inner factors. 
Then the set of points w for which 

( ) ( )f z wg z−  has a non-trivial singular 

inner factor has logarithmic capacity 
zero(3). 

In Theorem B above, we see that if g  is an 
outer function, then the lack of a singular 
factor in ( ) ( )f z wg z−  is equivalent to 

the lack of a singular factor in the 
decomposition of the function 

( )
( )

f z
w

g z
− in *N , and is thus covered in 

Theorem A. 

Now let 2Hϕ ∈ , then there exist a 
harmonic function h  in D , such that  

                                                   

( ) ( )2
z h zϕ ≤                           (10) 

and h  is called the harmonic majorant of 
ϕ (4-6). It is well known that if ϕ has 
harmonic majorant in D, then there exist   a 
least harmonic majorant , hence there exist 
a harmonic function hϕ in D, such that: 

                                                      

( ) ( )2
z h zϕϕ ≤

                      (11)
 

 

 

and such that h hϕ ≤ . Also if  2Hϕ ∈ , 

then for a fixed 0z D∈ there is a norm on 

2H  defined by: ϕ =  inf ( )
1

2 :h z h




 is   

a harmonic majorant of  }2ϕ  

Now, one can make the following 
definitions: 

Definition 1:  for 2Hϕ ∈ , we say that h  
is the harmonic majorant of ϕ  in D if h  is 
harmonic function in D , such that  hϕ ≤ .  

Definition 2:  let 2Hϕ ∈ , and h  is the 
harmonic majorant of ϕ  in D , we say that 

hϕ  is least harmonic majorant of ϕ  in D if 

hϕ  is harmonic function in D , such that  

hϕϕ ≤  ,and such that h hϕ ≤ . 

Now let ϕ  and ϕ ′  be two functions in 2H . 

We say that ϕ  divides ϕ ′ (or ϕ ϕ′ ), if ϕ ′  

can be written as uϕ ϕ′ = , for some 
2u H∈ . 

Now we need the following lemma. 

Lemma C(3):  

If 1ϕ  and 2ϕ  are inner functions without a 

common factor, then:
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where dσ  is the normalized Lebesgue 
measure on the unit circle T . 

proof:  The limit on the left side is the 
value at the origin of the least harmonic 
majorant in D of the subharmonic function 

{ }1 2max log , logϕ ϕ (2,8). So it remains 

to show that this least harmonic majorant is 
the constant function 0. Let h denote this 
least harmonic majorant. Then 

1log 0hϕ ≤ ≤ . This implies that h  has 

radial limits 0 almost everywhere on T . 
So, if h is not identically zero, then h  is 
the Poisson integral of a negative singular 

measure on T. Hence h iheϕ += %

 is a 

singular inner function (here h%  denotes the 
harmonic conjugate of h in D (9). 

Since 1
h iheϕ +≤ %

, the inner function ϕ  

divides 1ϕ . But 2
h iheϕ +≤ %

 implies that 

ϕ  also divides 2ϕ , contradicting our 

assumption about 1ϕ  and 2ϕ . Thus 0h ≡ . 

This completes the proof of the lemma. 

RESULTS 

Now we arrive to the following theorem 
which gives the principle result of this 
paper. 

Theorem 1: If 1ϕ  and 2ϕ  are inner 

functions with a common factor, sayϕ , 

then h iheϕ += %

, where h%  denotes the 
harmonic conjugate of h in D , and h is the 
least harmonic majorant of the subharmonic 
function { }1 2max log ,logϕ ϕ

.
 

 Proof:  

By lemma C above, if h denotes the least 
harmonic majorant of the subharmonic 

function { }1 2max log , logϕ ϕ , then 

1log 0hϕ ≤ ≤ . This implies that h  has 

radial limits 0 almost everywhere on T . 
So, if h is not identically zero, then h  is 
the Poisson integral of a negative singular 

measure on T. Hence h iheϕ += %

 is a 
singular inner function. 

Since 1
h iheϕ +≤ %

, the inner function ϕ  

divides 1ϕ . But 2
h iheϕ +≤ %

 implies that 

ϕ  also divides 2ϕ  , moreover this 

representation of inner function ϕ  is 
similar to that one in Eq. (9), i.e. 

.h ih h ihe e eϕ += =% %

 , where  ihe
%

 determine 

the inner factor, and he  determine the outer 
factor, and the theorem is proved. 
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