Structures of Inner Functions on Hardy Spaces via the Least Harmonic Majorants

Emad Aldeen A. A. Rahim

Sudan University of Science and Technology - College of Science-Department of Mathematics

ABSTRACT: In this work we showed that the inner functions on Hardy space can be written in the canonical factorization form as exponential of least harmonic majorants.

المستخلص:

في هذا العمل أوضحنا أن الدوال الداخلية على فضاء هاردي يمكن أن تكتب بصيغة المعامل القانوني كدالة أسية لأقل مقياس توافقي

KEYWORDS: Hardy space, Inner functions, Harmonic and least Harmonic majorant.

Definition of *H*^{*p*}

For $1 \le p < \infty$ the Hardy space H^p is defined as the space of all analytic functions φ in the unit disk $D = \{z \in \mathbb{C} : |z| < 1\}$

 \Box for which the norm

$$\left\|\varphi\right\|_{p} = \sup_{r<1} \left[\frac{1}{2\pi} \int_{0}^{2\pi} \left|\varphi\left(re^{it}\right)\right|^{p}\right]^{\frac{1}{p}}$$
(1)

is finite. The space H^{∞} (Banach space) consist of all bounded analytic functions φ on the disk, and the norm is now

$$\|\varphi\| = \sup_{|z| < 1} |\varphi(z)|$$
(2)

For function φ in H^p , for $1 \le p < \infty$, the radial limit

$$\check{\varphi}(e^{it}) = \lim_{r \to 1} \varphi(e^{it})$$
(3)

exists almost everywhere in t (Fatou's Theorem), and needed, $\tilde{\varphi} \in L^p(T)$, where T denotes the unit circle which we equip with normalized Lebesque measure; moreover: $\|\varphi H = \tilde{\varphi}\| l^p$.

We normally identify φ with $\check{\varphi}$, and can thus regard H^p as a closed subspace of $L^p(T)$. It is also possible to start by defining H^p directly as the subspace of those $L^p(T)$ functions for which the negative Fourier coefficients vanish, that is:

$$\frac{1}{2\pi} \int_0^{2\pi} \tilde{\phi}\left(e^{it}\right) e^{-int} dt = 0 \tag{4}$$

for all n < 0.

(5)

$$\varphi = B S O$$

factorizations

where *B* is a Blaschke product, *S* is a singular function, and *O* is an outer function. Specifically, these factors are:⁽¹⁾

$$B(z) = z^{m} \prod \mu_{k} \cdot \frac{z_{k} - z}{1 - z\overline{z}_{k}} , \mu_{k} = \frac{|z_{k}|}{z_{k}}$$
(6)

where *m* is the order of the zeros of φ at the origin and z_1, z_2, \dots are the zeros of φ in $D \setminus \{0\}$;

$$S(z) = \exp\left\{-\int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} dv(t)\right\}$$
(7)

where ν is a non-negative measure singular with respect to Lebesgue measure, and

$$O(z) = \lambda \exp\left\{\frac{1}{2\pi} \int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} k\left(e^{it}\right) dt\right\}_{(8)}$$

where λ is a unimodular constant and *k* is real-valued integrable function. Also φ has the factorization (canonical factorization)

$$\varphi = IO \tag{9}$$

where I is an inner function (has a unit modulus a.e on D), and O as in Eq.(5).^(1, 2)

It is a well-known that if φ is an inner function, then $\frac{w-\varphi(z)}{1-\widehat{w}\varphi(z)}$ is a Blaschke

product for all $w \in D$ with the exception at most of a set of capacity $\text{zero}^{(3)}$.

Theorem $\mathbf{A}^{(3)}$:

Let N_* denote the set of all analytic functions f on the unit disk such that the functions $\log^+ |f_r|$ have uniformly absolutely continuous integrals, and let $\varphi \in N_*$, then the set of points w for which $\varphi(z)-w$ has non-trivial singular inner factor has logarithmic capacity zero. Conversely, given any compact set E of logarithmic capacity zero, there is a bounded analytic function φ such that $\varphi(z)-w$ has a non-trivial singular inner factor if and only if $w \in E$.

The converse statement is well-known. Let *E* be a compact set of capacity zero in *D*, the covering map *F* of the domain $D \setminus E$ is an inner function since *E* has capacity zero. For each $w \in E$, $\frac{F(z)-w}{1-wF(z)}$ is a non-vanishing inner function and so is singular. Thus since 1-wF(z) is an outer function, F(z)-w is a function with nontrivial singular inner factor for all *w* in *E*.

Note that for mutually prime inner functions u and v which have no zero in common and that there is singular inner function S with $u = Su_1$ and $v = Sv_1$ for inner functions u_1 and v_1 , and $\rho > 0$, the function $u(z) + \rho e^{it} v(z)$ has a trivial singular inner factor for almost all (w.r.to Lebesque measure) real t. The generalization of the above concept is given in the following Theorem.

Theorem B: Let $f, g \in H^p, 0 ,$ have mutually prime singular inner factors.Then the set of points*w*for which<math>f(z) - wg(z) has a non-trivial singular inner factor has logarithmic capacity zero⁽³⁾.

In Theorem B above, we see that if g is an outer function, then the lack of a singular factor in f(z) - wg(z) is equivalent to the lack of a singular factor in the decomposition of the function $\frac{f(z)}{g(z)} - w$ in N_* , and is thus covered in Theorem A.

Now let $\varphi \in H^2$, then there exist a harmonic function *h* in *D*, such that

$$\left|\varphi(z)\right|^{2} \le h(z) \tag{10}$$

and *h* is called the harmonic majorant of $\varphi^{(4-6)}$. It is well known that if φ has harmonic majorant in *D*, then there exist a least harmonic majorant , hence there exist a harmonic function h_{φ} in *D*, such that:

$$\left|\varphi(z)\right|^{2} \le h_{\varphi}(z) \tag{11}$$

and such that $h_{\varphi} \leq h$. Also if $\varphi \in H^2$, then for a fixed $z_0 \in D$ there is a norm on H^2 defined by: $\|\varphi\| = \inf \left\{ h(z)^{\frac{1}{2}} : h \text{ is} \right\}$ a harmonic majorant of $|\varphi|^2$

Now, one can make the following definitions:

Definition 1: for $\varphi \in H^2$, we say that *h* is the harmonic majorant of φ in *D* if *h* is harmonic function in *D*, such that $\varphi \leq h$.

Definition 2: let $\varphi \in H^2$, and *h* is the harmonic majorant of φ in *D*, we say that h_{φ} is least harmonic majorant of φ in *D* if h_{φ} is harmonic function in *D*, such that $\varphi \leq h_{\varphi}$, and such that $h_{\varphi} \leq h$.

Now let φ and φ' be two functions in H^2 . We say that φ divides φ' (or $\varphi | \varphi'$), if φ' can be written as $\varphi' = \varphi u$, for some $u \in H^2$.

Now we need the following lemma.

Lemma C⁽³⁾:

If φ_1 and φ_2 are inner functions without a common factor, then:

$$\lim_{r \to 1} \int_{T} \log \left(\max \left\{ \left| \varphi_{1}\left(re^{i\theta} \right) \right|, \left| \varphi_{2}\left(re^{i\theta} \right) \right| \right\} \right) d\sigma(\theta) = 0$$

where $d\sigma$ is the normalized Lebesgue measure on the unit circle *T*.

proof: The limit on the left side is the value at the origin of the least harmonic majorant in D of the subharmonic function $\max\left\{\log |\varphi_1|, \log |\varphi_2|\right\}^{(2,8)}$. So it remains to show that this least harmonic majorant is the constant function 0. Let h denote this least harmonic majorant. Then $\log |\varphi_1| \le h \le 0$. This implies that h has radial limits 0 almost everywhere on T. So, if h is not identically zero, then h is the Poisson integral of a negative singular measure on T. Hence $\varphi = e^{h+i\tilde{h}}$ is a singular inner function (here \tilde{h} denotes the harmonic conjugate of h in $D^{(9)}$. Since $|\varphi_1| \leq |e^{h+i\tilde{h}}|$, the inner function φ divides φ_1 . But $|\varphi_2| \leq |e^{h+i\tilde{h}}|$ implies that φ also divides φ_2 , contradicting our assumption about φ_1 and φ_2 . Thus $h \equiv 0$. This completes the proof of the lemma.

RESULTS

Now we arrive to the following theorem which gives the principle result of this paper.

REFERNCES:

 Jonathan, R. P., (2008). Hardy spaces, inner and outer functions, shift-invariant subspaces, Toeplitz and Hankel operators, http://www1.maths.leeds.ac.u k/~pmt6jrp/yorkleeds.pdf (retrieved June 2011). **Theorem 1:** If φ_1 and φ_2 are inner functions with a common factor, $\operatorname{say} \varphi$, then $\varphi = e^{h+i\tilde{h}}$, where \tilde{h} denotes the harmonic conjugate of *h* in *D*, and *h* is the least harmonic majorant of the subharmonic function $\max\{ \log |\varphi_1|, \log |\varphi_2| \}$

Proof:

By lemma C above, if h denotes the least harmonic majorant of the subharmonic $\max\{\log|\varphi_1|, \log|\varphi_2|\},\$ function then $\log |\varphi_1| \le h \le 0$. This implies that h has radial limits 0 almost everywhere on T. So, if h is not identically zero, then h is the Poisson integral of a negative singular measure on T. Hence $\varphi = e^{h+i\tilde{h}}$ is a singular inner function. Since $|\varphi_1| \leq |e^{h+i\tilde{h}}|$, the inner function φ divides φ_1 . But $|\varphi_2| \le |e^{h+i\tilde{h}}|$ implies that φ also divides φ_2 , moreover this representation of inner function φ is similar to that one in Eq. (9), i.e. $\varphi = e^{h + i\tilde{h}} = e^{h} \cdot e^{i\tilde{h}}$, where $e^{i\tilde{h}}$ determine the inner factor, and e^{h} determine the outer factor, and the theorem is proved.

- 2. Duren, P. (1970). *Theory of H^p Spaces*, Academic Press, New York and London.
- 3. Stephen D. Fisher and Jonathan E. Shapiro,(1991). Singular Factors are Rare, Mathematics Subject Classification, Primary 30H05; Secondary 46E20.

- 4. Walter, R., (2010). Analytic Functions of class *H*^{*p*}, http://www.ams.org/journals/tran/1955-078-01/S0002-9947-1955-0067993-3/S0002-9947-1955-0067993-3.pdf (retrieved June 2011).
- Sawai, N., (1973). On Least Harmonic majorants in Half-spaces, *London Math. Soc.* 27: 243-260.
- Matts, E., (1987). Harmonic majorization and Thinness, *The Czech Mathematics Library*, http://project.dml.cz. (retrieved June 2011).
- 7. Yun-Su, K., (2008). Quasi-inner functions of the Generalized Beurling's

Theorem, 2000 Mathematics Subject Classification. 47A15, 47A56, 47B37, 47B38.

- 8. Andreas, H., (2006). Interpolation and Harmonic majorants in big Hardy-Orlicz spaces, 1991 Mathematical Subject Classification. 30E05, 31A05.
- Aini, J., (2009). Properties of Harmonic functions which are Starlike of Complex Order with respect to Conjugate point, Int. J. Contemp. Math. Sciences. 4: 1353-1359.