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LONGITUDINAL RELAXATION TIME FROM MAXWELL
EQUATIONS USING SPIN UP AND SPIN DOWN APPROXIMATION

By
Kamal Ali Hamad' and Mubarak Dirar Abd Alla’

ABSTRACT

In this work Maxwell equations were utilized to derive an
expression for the magnetic dipoie moment. Treating the total dipole
moment as resulting from spin up and spin down atoms, solution for
the dipole moment and longitudinal relaxation time was obtained. It
was found that relaxation time is related to the frequency and
susceptibility.
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RESONANCE DEFINITION [1:2345.6.9.13,...,17,18,19)
If a certain magnetic field is applied to a certain atom, each
energy level splits into two or more sublevels, as proposed by
Zeeman. In a simple case, each level splits into two levels where the
spin up particles occupy the lower level, whereas the spin down
particles occupy the upper level. When a photon of energy equals to
the difference in energy between the two states is incident on this
atom, resonance occurs and some particles from the lower state
absorb the photon energy and are transferred to the higher state.
Resonance effect can also be explained on classical basis
where each nucleus forms a very tiny magnetic dipole which, when
placed in an external magnetic field, it tends to align itself along the
field. Due to this interaction the magnetic moment tips away from
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the direction of the applied field and rotates around it with a certain

frequency. When the frequency of the applied radio signal is equal to

the precession frequency, the nucleus absorbs the radio energy and
this is known as resonance.

Relaxation Time Phenomena " : Excitation of an equilibrium system

always transfers the system to an unstable state. A similar unstable

situation is created; the time required to the return to the equilibrium
state is called the relaxation time.

The relaxation process is induced by field fluctuation due to
molecular motion; relaxation may be defined as the lag in the
response of a system to change in the force to which it is subjected. It
is a very general phenomenon and its mechanism and rate depend
upon the forces and upon the system.

Relaxation time is considered as the length of time taken by
the nuclei to return to their original position that is aligned with the
magnetic field. There are two types of relaxation times **/

1- Longitudinal relaxation time T,, also known as spin-lattice
relaxation time, is the time needed to align the protons in static
magnetic field after being perturbed by an electromagnetic field.

2- Transfer relaxation time T2 which is the time needed for the
protons to lose coherent energy in an NMR” measurement. =

Relaxations are exponential decays for which T, and T, are the -

time constants. Different mechanisms contribute to both T; and T».

Initially this work was aimed at studying the longitudinal
relaxation time T;. The longitudinal relaxation time T, represents the
lifetime of the first order rate process that returns the magnetization
to the Bohzmann equilibrium along the Z- axis. The longitudinal
relaxation process T, governs the time interval between two
transitions.

Attempts of Some Previous Studies to Find T, %% 1011 12]

Different attempts were made to solve T, problem. In Debye
model T; is shown to be dependent on the frequency of the radiation.
Solomon suggested a model in which T; depends on the interaction
between the spin of the electron and the proton. In Korringa model

" NMR (Nuclear Magnetic Resonance).
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T, depends on the density of the electronic state at Fermi level and
on temperature.

Other attempts were also made to find T, but the drawback
of these attempts is due to the fact that these attempts do not reflect
the experimentally observed dependence of T, on mass, magnetic
field, and susceptibility.

Relaxation time plays an important role in magnetic reson-
ance phenomena in physics, chemistry and medicine. Different
attempts were made to find its dependence on the properties of the
medium as well as on the applied external fields. These attempts are
mainly based on classical grounds and show a dependence of the
longitudinal relaxation time on frequency, temperature, and viscosity.

Maxwell equation is used to obtain the expression for the
magnetization. The longitudinal relaxation time expressed from the
magnetization due to the transition from one energy state to another.
The treatment shows that the longitudinal relaxation time is related to
the frequency and susceptibility.

EQUATION FOR MAGNETIC DIPOLE
Maxwell equations are regarded as the basic equations of the
electromagnetic field.. The four field equations are as follows:

2 E =0 (a)
B H =0 (b)
v X E =-dB/dt - ()
¥ It g E/dt+ ol (d)

Where:

E is the electric field strength, H is the magnetic field strength
B is the magnetic flux density, € is the electric permittivity, o is the
conductivity.

The electric displacement and the magnetic flux density are
related to the magnetic and electric field strengths by the polarization
and the magnetization.

B=pH+M), B=puyymH, B=pH M=y,H (1)
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~ Where: .

B is the magnetic flux density, p 4 is the magnetic moment in
vacuum, ¥ m, 18 susceptibility, p is the magnetic moment, M is the
magnetization, H is magnetic ficld strength.

Attempts at solving Maxwell Equations:
If the curl of the fourth Maxwell equation is taken one gets:

RV =tu"rE/dt+toVvxXE )
The left hand side can be deduced to be:

vx(vxH) =v(v*H)- v’ H w25 )

gyt o (4)
Equation (2) by using equation (3) and (4) can be obtained as:

-v* H =edvxE/dt+cvxE (5)

From the third law of Maxwell equations one gets:

vx E =-dB/dt (6)
Substituting equation (6) into equation (5) to get:

-v? H=-¢d’B/dt*~cdB/dt (7)

Where d* B / d t? is obtained through substituting for vYx E=-d B /d
t inside the differential to get:

dvxE/dt=-d(dB/dt)/dt=-d*B/d

The Derivation of Magnetization:
From the relation of the magnetic flux density:

o s F (8)
By substituting equation (8) into equation (7) one gets:
-VH+ped®H/dt? +podH/dt=0 (9)

Multiplying equation (9) by ¥ m one obtains: |
—szmH+u8d2xm H/dt?+podynH/dt=0 (10)

The magnetization M can be written as:
M . x m H ' (1 1)
By substituting equation (11) into equation (10) one gets:

-VM+pedM/d+uocdM/dt=0 (12)
9
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ATTEMPTS AT SOLVING THE MAGNETIZATION
Try the solution for:

s K e , (13)

dM/dt=(dMn/dt)e' @ _jwM,e'®*™ (14)

d*M/dt’=

M, /de-iwdMa/dt-iwdM,/dt-wMye'® ™ (15a)
s M e T (15b)

By substituting the relations (14), (152) and (15b) into equation (12)

one obtains:

+KMpe'® ™4 pa[(dsz/dtz)-—deMn(,QZ/dt]ei(kz““)+o

pAdMp/dt-iwMgle'® ™ - wpeMue'®@ ™ =0  (16)

Dividing equation (16) by e '**~™ and setting ¢ = 0, one gets:

+KEMp+pe[dMp/dt?—2iwdMy/dt-wMy] =0 (17)
Considering a slowly varying function:

&My /dt? <<dMy/dt (18)

Therefore any term containing d*M,, / d t* is neglected and one gets:
2iwpedMy/dt=[k-pew] My, (19a)
Reanan%ing equation (19a) one gets:

dMp /M =[(k*-pew?)/Qiwpe)]dt (19b)

By integrating equation (19b) one obtains:

JdMa/Ma=J[(K*-pew’)/Qiwpe)]dt+M, (20a)

where M, is the integration constant.
Integrating equation (20a) yields:
Mm(t)=Moé i[(p.ewz—kz)f(Zpsw)]t (20b)
Therefore equation (13) becomes: '
M=M,e —i[iwH[K2-pewd)/Qwpe)t-kz]

M=M0eikzei[(pswzu—Kz—w)/(Zpaw)]t (21)

Taking the real part of equation (21) after setting z = 0, assuming that
M is along z-axis, the real part becomes:

M, (t) =M, =Mgcos [(ne W - K> —w)/ 2 pew)]t (22)
At t = 0: M(0) = M, That is because when t = 0, the angle becomes
zero and then cos zero=1; which is the maximum value of the cosine.
Therefore:

M) =My (23)
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INTERPRETATION OF MAXIMUM AND MINIMUM
MAGNETIZATION

The nuclei align themselves in one of two possible
orientations, defined as the spin up directions (low energy state) or
spin down direction (high energy state).

This observed phenomenon can be described in terms of a
vector force M,. The nuclei are constantly exchanging between spin
up and spin down orientations, but they will quickly reach an
equilibrium state where there is an excess number of nuclei in the
spin up (lower energy state) alignment and the atom is referred to as
being fully magnetized.

Thus the net magnetic vector M at equilibrium points upwards
along the Z- axis as shown in (figure 1).
* M; = M max

Figure (1) shows the maximum magnetization
along the Z- axis

If we assume that each molecule (proton) have a magnetic
moment M, (, refer to proton), and the number of the molecules
pointing upwards is N, the magnetization M, in case that all the
protons are in the lower state, is given by:

M, =N, M,;
as shown in figure (2).
M, = maxi um

M, M, M, N M,

Figure (2) shows the magnetization due to transition from lower
energy state to upper energy state

11



T i s e R TR e S S R RN NS Vol. 5(1) 2004

In this case M, is maximum, and in view of equation (22) this
occurs whent = 0.

i.e., Mz (0)=Mo=N, M, (24a)
On the other hand, M is minimum when:
t=Ty=(/2)2uew)/(new’-w-k*) (24b)

where:
M,=Mycos [(-w—-K* +pew?)/pew)])n/2 [(-w—kz—pswz)/
new)l) = Mpcosm/2

Since cos w/ 2 = 0, then:

M;=0 - (24¢)

Equation (24c¢) means that magnetization M, equals to zero
when the number of nuclei (N,) in the lower energy state equals the
number of nuclei (Ny) in the upper energy state as shown in figure
(3). The magnetization M, due to the lower energy state is equal to:

M, =N,M, : (25)
While the magnetization M, due to the lower energy state is equal to
M; =NyM, (26)
When N, = N, (27)
From equations (25), (26), and (27) one gets:
M, = (N, — Np) M, (28)
M =0 (29)

Equation (29) is described in figure (3). The time T, which is
taken by M, to drop to zero from its maximum value is called the
longitudinal relaxation time. :

? ’

v v
2 &L

& ®
Figure (3) shows the magnetization due to equal number
of nuclei in two energy states (M, = zcro)

RELAXATION TIME T,

From equation (24b) the relaxation time T; can be expressed
as:

12
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=@ [Quew)/ (uew' =k ~w)]

—Zpsw/w (1-2pe)+k?
When w >> 1, k* and w can be neglected. Then:

Ty Zapew/w pne) (30)
=n/w _
Ti-1/w (31)

The result in equation (31) shows that the relaxation time T,

s inversely proportional to w, and we deduce that for very high
frequency w the relaxation time is very short which is in conformity
wih the classical value.

CONCLUSION

The expression for the longitudinal relaxation time T, is

shown to be inversely proportional to the frequency w, in complete
agreement with the previous classical works and the common sense.
It is also related to the susceptibility which also is in conformity with

physical reality.
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DIRAC DELTA FUNCTION AND THE PROBABILITY DENSITY
OF AN ELECTRON BOUND IN THE ANGULAR-MOMENTUM'
EIGENSTATES
By
Ayuel K' and Ibrahim T.

ABSTRACT

The Dirac delta function is shown to be an operator for the
probablllty density. General expressions for these densities are
presented and expressed in terms of multipole expansion found in
most textbooks on electricity and magnetism. Some illustrative

examples are given. 7
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INTRODUCTION

In quantum mechanics the concept of probability density is
essential. Classical theory state that the behavior of particle can be
described in terms of two parameters, position and velocity.
Quantum mechanics however, introduces only one parameter: the
wave function ¥ which is associated with the motion of the particle.
[t is interpreted as probability amplitude of the particle’s presence.
For the stationary states, the quantity:

p(r) = (1) P(r). (1)
is interpreted as probability density. This may appear conceptually
difficult, presumably for the reason, it is not associated to any
distribution function (operators). There should be an operator in
quantum mechanics which is associated to this quantity. Indeed the

! Physics Department - Kordofan University
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Dirac 8(r —r) “function” is the required one. Take the expectation
value of the 8(r —r) function between the one-particle wave
function W(r) and obtain:

(PE)8F - P )= [P T)E -nEE)r ()

where r and r are respectively the position vector of an electron
and the point at which the density is calculated. Making use of
properties of delta function:

[8(r' —mftr ydr’ = fir),
and the fact that the position functions are commutable, It is
evidently seen that the integrand of the left right side of eq.(2) will

produce the required result (right hand side of eq.(1)). One of the
states of our interest will be the spin-orbit uncoupled eigenstate:

¥(r) =l nlsm ;m ) =R (1Y, (6,4)|sm), 3)
where Y/ (6,¢) the spherical harmonics, | sm_) 1s the spin function
and Rn,' (r) is the radial wave function. The radial wave function for
the hydrogenic wave function, has the following expression [1]

n(n+1)!
Here a =2Z/na,, a, is the Bohr radius, Z the atomic number

R ()= [03 M} e (ar) ! (ar) ' (4)

and L2%0 (-a r) is the associated Lagurre polynomial which is

defined by the relation

k = exxk dq -X \, k+q

L,(x) = % a;;(e W ) (5)
To get some explicit expression (multipole expansion) for the

density of eq.(1) in the uncoupled single-electron eigenstates of eq.

(3), one may expand the delta function [1] of eq. (2) in terms of
spherical harmonics as: |

8(r ~1)= rlza(r' -~ YL@ 6)YHH6,0), 6)

and evaluate the expectation value with the Wigner-Eckrat theorem.
Although this method can be easily extended to many-electrons

16
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system [2], it requires some considerable knowledge of Wigner-
Eckrat theorem. So it is better to get results directly from eq. (1).

MULTIPOLE EXPANSION OF THE PROBABILITY DENSITY IN
UNCOUPLED SINGLE EIGENSTATES:

Substituting ¥(r) of eq. (3) in eq (1) results in:
p( ) =Ry (r)=1)" ', (0.9) ,(6.9). (7)
To get this result we make use of the identity
. 1 (@0,8)=(1". " (0,4) and the fact that the spin functions are

orthogonal. Equation (7) can be expressed in terms of a single
spherical harmonics by expanding the product of the two spherical
harmonics with the aid of

il ety o1
Yh @h b @H=)N S J (2L+1)(2), +1)(2|2+1)[, | ]
3l 4 e ;

o>
X Y (6,9).

Consequently eq. (7) will reduce to

i S
(R (r) (1) Z (2141) [2] )[I : ][ ] 68)(8)

- =

L TR e -
where it and | s are the 3j symbols which
g Gind m, m, -M

are closely related to the Celebesh-Gordan coefficients [6] and
§ ksl
M =—(m, +m,). The 3j symbol [O 0 0] will 1mpose the

condition that L must be even (L=0,2,..2).
The spherical harmonics Y, can be written as:

Wgape . 51 g W, >
s lwﬁém(uM)! } S ®)

where Pl (cos) are the associated Legendre function and Py =P,

the Legendre functions. We list here some expressions of the
associated Legendre functions which are relevant to this article:

17



J. Sc. TechVoIS(1)2004
]. 2 1 4 )
=1 F 25(3003 é-1), P4:§(35cos 6 —30cos” 6 +3),

PG=%(3lcosﬁ6’—315cos46’+10500529—5). (10)

Substitution of Y, in eq. (8) after getting its value from eq. (9).
we express the probability density of eq. (8) as:

. T s LY T |
P(r)==—— (2H1)Reu(r) L};(zun[o 5 OJ[m - OJPL (11)

MULTIPOLE EXPANSION OF THE PROBABILITY DENSITY IN
SPIN ORBIT COUPLED EIGENSTATES

In this section we will extend the previous method of last
section to get some expression for the probability density of spin-
orbit coupled eigen-states. These eigenstates are conveniently
represented as a spinor of the form

:
N7 =[‘ J (12)

- where [3]
o, =R, (0, %Yn’,
W' =Ry (0= v (13)
for low-lying spin-orbit coupled states and
wa' =Ry 0[5y,
Wa' =Ry Y} (14)

for the higher-lying spin-orbit coupled state. Using the spinor of
eq.(12), the probability density for the spin-orbit (so) coupled state is
easily seen to be:

18
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P ="y’ +y™y* (15)
Following the same procedure of obtaining eq. (11) in the last
section we express the density for low- lymg and high-lying spin-
orbit eigenstate respectively as:

F 5
e o o (l-m)( & ]
psol(r)_ 4_” R "I( )L_ZO(ZL+1)[O O O] m m O

| I L
-(I+m+1)[m+‘| (mtl) 0 HPL (16)

T 0 B Ei] R i &
Pearl)=" Rm(r);(ZLH)(O " OM(HmH)[m &l o]

| sl o
'(l'm)[mm (m+) 0 HPL e

We list here some expressions of the 3j symbols [5] which are
suitable for evaluation of the probability density for any hydrogenic
wavefunction:

a0 &
[0 0 0]21’ Sa

(' | O]: 1R, (19)

m -m O

[1 | ZJ:("” o 3m2-I(k1) ikl
m-m O [(2-1)I(1)(241)(24-3)]

[| | 2"2]:-(%1){ 2 } [(2h2) P[> Ainfam] o
m-m O (4H1) (I —m)! (I +m) |

and

(I 4 2|): [(21)1]? 2
m -m 0) (I—m)(l+m)![(4l+1)]
19



1 9. TechVol 5(1)2004

APPLICATION TO PARTICULAR STATES

We will give in this section two examples which are relevant
to atomic magnetism [2] and which will serve as illustrations for the
calculation of multipole expansion of the probability density. We
will first evaluate the probability density for the uncoupled spin-orbit
eigenstate [n=3,[=2, m, =1,m_ =1/2). For this state L=0, 2, 4
and the radial part of the wavefunction is:

Ry (r) = o3 a8y (23)

= r‘e
015 0%

Substitution of =2 m, =1L =0,2.4 and appropriate 3]
symbols of eqs. (18)-(22) or of reference [4] in eq. (11) we get:

_R&(n) Je it
p(r) = g [P, + Z P, Z P,] (24)

after making use of eq. (10) and (23), this equation will reduce to:
& ~2r/3a 2 4
[j=———ueu @ ™ (08" B-cos” O 40
P(r) 65612’ ( ) (25)

Panels (a), (b) and (c) of Figure 1 are respectively, the
graphical representations of the radial part . .~ angular part

5 +$P2 —;P4] and the probability density p(r) of eq. (24). The
second example which we will consider here is the evaluation of the
probability density for the low-lying spin-orbit coupled eigenstate

Pi=41=3i=50E.m ; =5/2). This state is important in magnetism,’ '

s the © grenntl 7 Siane S ol ORI o g
P = m; -1/2=2,L=0,2,4,6 and the radial part of the wave
function is: '

g (r) & rSe—rMa 0 (26)

20
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Following the same procedure of obtaining the probability
density for the previous state, we find the multipole expansion for

58 this state as:

RZ () 10 3
P sol (r) . ;3_”_ [Po = “7"‘P2 . 7P4] (27)
This equation will reduce in a similar way to
r° “r/2a0 2 4
4= e 1-2cos“ 6 +cos” 6 28
Pea(r) 44040192a ( ) o
‘Panels (a), (b) and (c) of Figure2 are respectively, the graphical
representation of the radial part RZ,(r) , angular part
P, —?Pz +$P4] and the probability density p(r) of eq.(28).
CONCLUDING REMARKS

Patterns of Figures 1 and 2 ((b) and (c)) reveal that the
distribution of electron position over space is quite complicated. This
conclusion destroys any naive idea of an electron orbiting in
specified orbits around the nucleus. The behavior of an individual
electron is random and the interpretation of this behavior in terms
probability density is necessary. The electron cloud can explain this
behavior. The angular distribution of the probability density of the
first state is a double torrid. This is in accord with the findings [2]
that, the magnetic field generated by this state is a reminiscent of the
field lines produced by a Helmholtz pair (two equivalent coils spaced
a radius apart). The angular distribution of the probability density of
the second state consists of a single torrid which is much simpler
than the previous one. The magnetic field generated in this case is
also found to be a reminiscent of the field of a single loop. In
summary, we have presented a general method of calculating the
probability density of an electron bound in angular momentum
eigenstates. This method is similar to the method of obtaining the
multipole expansion for the electrostatic potentials. It has a merit of
clarifying the concept of probability density.
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Figure (1): (a) The radial part of the probability density of ¢q. (24). (b) The
distribution of the angular part in spherical coordinates (cq. (24) ) and (c) The
probability density (cq. (24)) plotted as function of r and 0.
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Figurc 2: (a) The radial part of the probability density of ¢q. (27), (b) The
distribution of the angular part in spherical coordinates (¢q. (27) ) and (c) The
probability density (cq. (27)) plotted as function of r and 0.
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