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ABDELERAHMAN ELZUBIER MOHAMED' AND FATAH
ELRAHMAN MOHAMED ADAM®

ABSTRACT:

A finite element formulation is presented for conducting large
deformation analysis of shells. The element adopted herein is a
degenerated three-dimensional 8-nodes isoparametric finite element.
Derivations of the nonlinear geometric element stiffness matnices

were made on the basis of total lagrangian formulation by using both
geometric strains (Engineering Strains) and Green's stans The
formulations were implemented into a nonlinear finite element
program.  The nonlinear equilibnum equations are solved by
combined incremental load and Newton-Raphson method. Examples
are presented for the analysis of cylindrical shells Agreement with
existing solutions is generally good.
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Introduction

A formulstion of three dimensional large rotation clasto-plastic
theory for thin curved eccentric beams elements has been developed
by AbdelRahman Elzubier "' which involves the use of geometric
strains in the formulation. Hedmtlulthuw:hgdlﬂ'umm
stresses obtamed when using the geometnc strains and Green's
strains in the case of large rotations.

In this paper A Elzubier formulation using geometric strains '"),
15 extended using shell finite element 1o enable large deformation
finite element analysis of shell structures to be examined using
geometric stains and Green’s strains in gaemhl nonlinear
formulation

mMﬂmuMMuﬁdmﬁm
dimensional analysis was used by Ahmed, Irons, and Zienkiewicz ¥/

and Pawsey ' and it seems to provide asimple and efficient strategy
development of isoparametric shell elements.

Mdmm;h#ndmmﬂwwwdmufﬂﬂr
began to appear in the late 1960s, Bogner, Fox, and Schmit
describe a cyhndncal shell elememt, which used interpolation
functions defined the shell coordinates Aformulation of geometrically
nonlinear formulation for the axisymmiteric shell element is given by
Surana "', using total lagrangian formulation with the concept that
the dmplmmem.s are nonlinear functions of nodal rotations

The formulation by Zienkiewicz " involves the use of Green's
strains tensor with large displacement fo:mlmun,u an nppllminn
on plates and shells.

Atotal lagrangian lhrmnl:uonhmdmmicmmh
geometric stresses and Green's strains with 2* Piola Kirchhoff
stresses is adopted in this paper Results obtained using geometric
strains and Green's strains compared with previous solutions are
presented numerically.

Geometric Definition of the element: -

A typical curved shell element, with eight nodes on mid-surface
15 shown in Fig(1). Each node has five degrees of freedom, three
translations and two rotations as shown in Fig.(2). By assuming the

-
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lines joining the top and bottom nodes to be straight, the shape of the
element 1s defined by the eight nodal values as.

[ (1)

Where x, .y, .z, are the global coordinates of the mid-surface node 1.,
t, It is the shell thickness at node /, vs is aunit vector in the direction
narmal to the middle plane. and N, is the shape function at node ¢
The displacement vector can be written as:

Pl

(2)

Fig.(1): 8-Nodes Element
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Fig.(2): Geometry of the element

Where V3i is a vector in the direction normal to the middle

plane, V); is perpendicular to the plane defined by V', and x axis and
¥ is normal to the V1i and V3i.

Ore e -2

Strain-displacement Relation:
Green's Strains:
The Green's strains as defined by Ref munh:writtun follows:
p-oind }‘5('-*')’ f-'-)" f'-—)’
R g nrr—f r —f}
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(3)
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Where:

e.=B,a

(4)

where a 15 the element nodal displacements vector.

& -"2Ayq

(5)

e, are the strains for infinitesimal displacements.

e are the strains due to large displacements

B, is a (5x40) matrix contains shape functions derivatives.
A and ¢ are given as follows:

r 1

T a2

-
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(6)
6=, 6, 6,/=Ga

(7)

where:
Jou v owl , [ow v ow] . fow dv aw]
*1ox ox ox| 7 |ay oy E‘yr ler o l’-‘l}

[~

G i3 a (9x40) matrix containing shape function derivatives.
Geometric strains:

The geometric strains «', , &', are defined by the change in length
per unit imitial length of line elements originally onented paraliel 1o
the x,y axes rea?ac:l:ively. The sheer strain is defined by the change in

the right angle '
The geometric strains are given as follows:
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where e, = (I+2e,) ; &, = (1+2¢)
Variations of strains:
By taking the vanation of Eq.(8),we have:
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Taking the varition of Eq (4), we have:
de, = B, da
(10)

By using Eq.(7) and taking the vaiation of Eq.(5), we have:

oo =4 A0+ % A0 =Ad0=AGda= By, da
(1)
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e = de, + dey = (B, + By) da =B du

(12)

Substituting Eq.(12) in Eq (9), we have

de'=HBdéa=B da , B =HB

(13)

Stresses and Strains Relations:

By considering the material to be linear elastic, the engineering

stresses corresponding to the geometric strains are defined by
rd b

&/

¥ |

" q

0=y Iﬁn,l'

oy

-y
a

-
=

(14) ,
Where D is the elasticity matrix for isoparametric material and s
mmwmﬂf

Tangent Stiffness Matrix:

The rtangent stiffness matrix K7 is obtained by differentiating the
residual force vector y with respect to the displacement vector a.
Where  is given by

w=B"adv-1

(15)

where [ is the external force vector.
Taking the variation of Eq (14), we have
‘f“-""l +L+‘;'

(16)

Where

K.~ [B"H" DHB,av

(7
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K. = [&"H DHB + B H DHE + B H DHB)d

(18)a

K.«K = [B"DB dv= ] B'H' DH Bdv
(18)b

K. is the initial stress stiffness matrix given by
K, = [G’ P Gy

(19)a

P’ is the initial stress matrix given by

BN RN

P= | ﬂ,'[l] r,,'[l] . s a 3x3 identity mairix
E ' oft]
(19)b
,u._]i
o,
e’ =41, t=Hg
s
.‘w-
(19)c

K, is i ic stiffness matrix and s gi :
A — rh
(20)a :

P, is the additional imitial stress matrix and is given in terms of the
initsal stress and strains by




J. S, Tech Vol 4(2)2003

(_ +3f "g) T:'E; -1“ T
CLY '» . &8 e'e’ .5
el T T

b e e v, e % 4
Symmetric 0

(20)b

The solution 1s based on the Newton-Raphson method with
incremental loading

Numerical Examples:

1- A glass-epoxy thin-walled cylinder:

The cylinder 1s clamped at both ends and subjected to internal
pressure Fig (3) By use of symmetry, only one-eight of the cviinder
was modeled by 4x4 mesh elements. The matenal is assumed to be
linearly elastic and isotropic The pressure load was applied in 10-
equal increments, The incremental solution converges with an

average of 3 iteration cycles. The load deformation response is

compared with those obtained by Chang and Sawamiphakdi '’ Good

agreement can be seen from Fig (3).

L —

-----
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Pig. (3): Largs defloction ...m::.ﬁ" uuquuu
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2-Circular cylindrical shell:
The circular cylindrical shell as shown in Fig.(4) is clamped
alonglllfnurdWmd subjected to a uniform surface pressure up
to 3 kN/m’. The material property is linearly elastic and isotropic
One quarter of the shell was modeled by 4x4 mesh elements In the
mlymtheprmeluadmme:nwuvMHMmgts 0.25
kN/m* for the softening part, 0.0625 kN/m" near the snap through
deformation and 0 25 kN/m’ for the stiffing part. The incremental
solution at the initial and final stages converges with an average of 2
iteration cycles and for the softening part | iteration cycle The load
deformation rugmue is compared with those obtained by Chang and
Sawamiphakd: ' Again, good agreement can be seen from Fig (4).

Fig (4)° A cylindrical shell subjected 10 uniform press.

3-Hinged cylindrical shell subjected to central point load:

Fig (5) shows a circular cyvlindrical shell with a concentrated
load applied at the center of the convex side. The longitudinal sides
are hinged whereas the curved edges are free. Pica and Wood '™ have
investigated this snap through problem Their results are compared
to those obtamed using 4x4 mesh elements. The central load
deflection results shown in Fig (5), agree with those presented in
Ref [8] up to a load of about 2.1 kN, after that the solution diverges.
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Fig (5): Hinge cvhindrical shell

Conclusions:

This paper has presented a geometncally nonhnear analvsis of
shells using the total lagrangian formulation based on  geometric
strains. The nonlinear equiibrium equations are solved by combined
mcremental and Newton-Raphson method It is demonsirated that
the displacements obtained by using geometric strains are nearly the
same as those obtained by using Green's struns in the case of small
rotations and further investigation is necessary for the case of large
rotation.

In wndunmucmb:sutadthatthemuluahtnmdhyusmg
Green's strains and the results obtained by using geometric strains
are in good agreement with published solutions for cylindrical shells
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