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Chapter 5 

Multiple operator integrals and operator Holder Zygmund  

We improve earlier results by Sten’kin. In order to do this, we give a new approach to multiple 
operator integrals. This approach improves the earlier approach given by Sten’kin. We also 
consider a similar problem for unitary operators. We study moduli of continuity, for which 
(ܣ) ݂‖ − ܣ ‖)constω≥ ‖ (ܤ) ݂ −  for self-adjoint A and B, and for an arbitrary function ݂ in (‖ ܤ
ܳ(ܣ) ݂ ω. We obtain similar estimates for commutators߉ −  and quasicommutators (ܣ) ݂ܳ 

ܳ(ܣ) ݂  − ∑ Finally,we estimate the norms of finite differences .(ܤ) ݂ܳ  (−1)ି(
ୀ

݉
݆ ܣ)݂ ( +

 ఠ,  that is defined in terms of finite differences and a modulus continuity߉ for ݂ in the class (ܭ݆
ω of order ݉. We also obtain similar results for unitary operators and for contractions. 
Section (5.1): Higher Operator Derivative 
    If ܣ is a bounded self-adjoint operator on Hilbert space, the spectral theorem allows one 
for a Borel function ߮ on the real line ℝ to define the function ߮(ܣ) of ܣ. We are going to 
study smoothness property of the map ܣ →  It is easy tosee that if this map is  .(ܣ)߮
differentiable (in the sense of Gâteaux), then ߮ is continuously differentiable. 
    If ܭ is another bounded self-adjoint operator, consider the function ݐ → ܣ)߮ + ݐ ,(ܭݐ ∈ ℝ. 
In [179] it was shown that if ߮ ∈  ଶ(ℝ)  (i.e., is twice continuously differentiable), then theܥ
map ݐ → ܣ)߮ +  is norm differentiable and (ܭݐ

݀
ݏ݀

൫߮(ܣ + ൯ห(ܭݐ
௦ୀ

= න න
(ߣ)߮ − (ߤ)߮

ߣ − ߤ
 (1)                      (ߤ)ܧ݀ܭ(ߣ)ܧ݀

whereܧis the spectral measure of ܣ. Note that in the case ߣ =  we assume that ߤ
(ߣ)߮ − (ߤ)߮

ߣ − ߤ
= ߮ᇱ(ߣ). 

The expression on the right-hand side of (1) is a double operator integral. Later Birman and 
Solomyak developed their beautiful theory of double operator integrals in [180-182](see 
also [183]). 
    If we integrate a function on ℝௗ(orॻௗ) and the domain of integration is not specified, it is 
assumed that the domain of integration is ℝௗ(orॻௗ).  
Birman and Solomyak relaxed in [182] the assumptions on ߮ under which (1) holds. They 
also considered the case of an unbounded self-adjoint operator ܣ. However, it turned out 
that the condition ߮ ∈ ݐ ଵ(ℝ)is not sufficient for the differentiability of the functionܥ →
ܣ)߮ +  This can be deducedfrom an explicit example  .ܣ even in the case of bounded  (ܭݐ
constructed by Farforovskaya [185] (in fact, this can also be deduced from an example 
given in [184]). 
In [186] a necessary condition on ߮  for the differentiability of the functionݐ → ܣ)߮ +  (ܭݐ
for all ܣ and ܭ was found. That necessary condition was deducedfrom the nuclearity 
criterion for Hankel operators (see the monograph [187]) and it implies that the condition 
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߮ ∈  ଵ(ℝ) is not sufficient. We also refer to[188] where a necessary condition is given inܥ
the case of an unbounded self-adjoint operator ܣ. 
Sharp sufficient conditions on ߮ for the differentiability of the function ݐ → ܣ)߮ +  were (ܭݐ
obtained in [186] in the case of bounded self-adjoint operators and in[188] in the case of an 
unbounded self-adjoint operator ܣ. In particular, it follows fromthe results of [188] that if ߮ 
belongs to the homogeneous Besov space ஶଵ

ଵ (ℝ),ܣ is a self-adjoint operator and ܭ is a 
bounded self-adjoint operator, then the functionݐ → ܣ)߮ +  is differentiable and (1)(ܭݐ
holds. Inthe case of bounded self-adjoint operators formula (1) holds if ߮ belongs 
to ஶଵ

ଵ (ℝ)locally (see [186]). 
A similar problem for unitary operators was considered in [182] and later in [186]. Let ߮ be 
a function on the unit circle ॻ. For a unitary operator ܷ and a bounded self-adjoint 
operator ܣ, consider the function ݐ → ߮(݁௧ܷ). It was shown in [186] that if߮ belongs to 
the Besov space ஶଵ

ଵ , then the function ݐ → ߮(݁௧ܷ) is differentiable and 
݀

ݏ݀
߮(݁௦ܷ)ห

௦ୀ
= ݅ ൭ඵ ߬

(ߣ)߮ − (ߤ)߮
ߣ − ߤ

൱(ߤ)ܧ݀ܣ(ߣ)ܧ݀  ܷ              (2) 

(earlier this formula was obtained in [182] under more restrictive assumptions on ߮). We 
refer the reader to [186] and [188] for necessary conditions. We also mention herethe 
paper [189], which slightly improves the sufficient condition ߮ ∈ ஶଵ 

ଵ . 
The problem of the existence of higher derivatives of the function ݐ → ܣ)߮ +  was(ܭݐ
studied by Sten’kin in [190]. He showed that under certain conditions on ߮ the function ݐ →
ܣ)߮ +  has m derivatives and (ܭݐ

݀

ݏ݀ ൫߮(ܣ௦)൯ห
௦ୀ

= ݉! න … න∙
ᇣᇤᇥ

݉+1

,1ߣ)(߮݉ु) … , ܭ(1ߣ)ܣܧ݀(1+݉ߣ …  (3)         ,(1+݉ߣ)ܣܧ݀ܭ

where for a ݇ times differentiable function߮ the divided differences ु߮ of order ݇ are 
defined inductively as follows: 

ु߮ ≝ ߮; 
if ݇ ≥ 1, then 

(ु߮)(ߣଵ, … , (ାଵߣ ≝

⎩
⎪
⎨

⎪
⎧(ुିଵ߮)(ߣଵ, … , ,ିଵߣ (ߣ − (ुିଵ߮)(ߣଶ, … , ,ିଵߣ (ାଵߣ

ߣ − ାଵߣ
ߣ    , ≠ ,ାଵߣ

߲
ݐ߲

൫(ुିଵ߮)(ߣଵ, … , ,ିଵߣ ൯ฬ(ݐ
௧ୀఒೖ

ߣ                , = ,ାଵߣ
 

(the definition does not depend on the order of the variables). We are also going to use the 
notation 

ु߮ = ुଵ߮. 
The Birman–Solomyak theory of double operator integrals does not generalize to the case 
of multiple operator integrals. In [191] multiple operator integrals 

න … න∙
ᇣᇧᇤᇧᇥ



,ଵߣ)߰ … , (ଵߣ)ଵܧ݀(ାଵߣ ଵܶ݀ܧଶ(ߣଶ) ଶܶ … ܶିଵ݀ܧ(ߣ), 
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were defined for bounded operators ଵܶ, ଶܶ, … , ܶିଵ and sufficiently smooth functions ߰. 
In  [190],  Sten’kin  considered  iterated  integration  and  he  defined  multiple  operator 
integrals for a certain class of functions ߰ . However, the approaches of [191] and [190] 
inthe case ݇ = 2 lead to a considerably smaller class of functions ߰   than the Birman–
Solomyak approach. In particular the function߰ identically equal to 1, is not integrablein the 
sense of the approach developed in [190], while it is very natural to assume that 

න … න∙
ᇣᇧᇤᇧᇥ



(ଵߣ)ଵܧ݀ ଵܶ݀ܧଶ(ߣଶ) ଶܶ … ܶିଵ݀ܧ(ߣ) = ଵܶ ଶܶ … ܶିଵ. 

We use a different approach to the definition of multiple operator integrals. The approach is 
based on integral projective tensor products. In the case݇ = 2 our approach produces the 
class of integrable functions that coincides with theclass of so-called Schur multipliers, 
which is the maximal possible class of integrable functions in the case ݇ = 2 . 
We also mention here the paper by Solomyak and Sten’kin [192], in which the authors 
found sufficient conditions for the existence of multiple operator integrals in the case when 

,ଵߣ)߰ … , (ߣ = (ुିଵ߮)(ߣଵ, … ,  .(ߣ
Our approach allows us to improve the results of [192] and Sten’kin’s results on the 
existence of higher order derivatives of the function ݐ → ܣ)߮ +  We prove that formula  .( ܭݐ
(3) holds for functions ߮ in the intersection  ஶଵ

 (ℝ) ∩ ஶଵ 
ଵ (ℝ)homogeneous Besov spaces. 

    Note that the Besov spaces  ஶଵ
ଵ and  ஶଵ

ଵ (ℝ) appear in a natural way when studying the 
applicability of the Lifshits–Krein trace formula for trace class perturbations(see [186] and 
[188]), while the Besov spaces  ஶଵ

ଶ  and   ஶଵ
ଶ (ℝ)  arise when studying the applicability of 

the Koplienko–Neidhardt trace formulae for Hilbert–Schmidtperturbations (see [193]). 
It is also interesting to note that the Besov class  ஶଵ

ଶ (ℝ) appears in a natural wayin 
perturbation theory in [194], where the following problem is studied: in which case 

߮( ܶ ) − ఝܶ∘ ∈  ? ଵࡿ
( ܶis a Toeplitz operator with symbol ݃.) 
 We obtain similar results in the case of unitary operators and generalize formula(2) to the 
case of higher derivatives. 
Let 0 < , ݍ ≤ ∞ and ݏ ∈ ℝ. The Besov class  

௦ of functions (or distributions)on ॻcan be 
defined in the following way. Let ݓ be a ܥஶfunction on ℝsuch that 

ݓ ≥ 0,      supp ݓ ⊂ 
1
2

, 2൨ ,         and    (ݔ2)ݓ = 1
ஶ

ିஶ

for    ݔ > 0.       (4) 

Consider the trigonometric polynomials ܹ , and ܹ
#  defined by 

ܹ(ݖ) =  ݓ
∈ℤ

൬
݇

2൰ ݊   , ݖ ≥ 1,   ܹ(ݖ) = ̅ݖ + 1 +  and     ,ݖ

ܹ
(ݖ)# = ܹ(ݖ)തതതതതതതത,      ݊ ≥ 0. 

Then for each distribution ߮on ॻ, 
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߮ =  ߮ ∗ ܹ
ஹ

+  ߮ ∗ ܹ
#

ஹ

. 

The Besov class  
௦ consists of functions (in the case ݏ > 0) or distributions ߮ on ॻsuch 

that 
{‖2௦߮ ∗ ܹ‖}ஹ ∈ ℓand{‖2௦߮ ∗ ܹ

#‖}ஹଵ ∈ ℓ 
Besov classes admit many other descriptions. For ݏ > 0, the space  

௦ admits the following 
characterization. A function݅belongs to 

௦ , ݏ > 0, if and only if  

න
‖∆ఛ

‖


|1 − ߬|ଵା௦
ॻ

(߬)݀ < ∞       for    ݍ < ∞ 

and 

sup
ఛஷଵ

‖∆ఛ
‖

|1 − ߬|௦ < ∞    for    ݍ = ∞, 

Where  is normalized Lebesgue measure on ॻ, ݊ is an integer greater than ݏ  and ∆ఛ is the 
difference operator: (∆ఛ݂)(߬ߞ) = (ߞ߬)݂ − ,(ߞ)݂ ߞ ∈ ॻ. 
To define (homogeneous) Besov classes  

௦ (ℝ) on the real line, we consider the same 
function ݓ as in (4) and define the functions ܹ  and ܹ

#  on ℝ by 

ℱ ܹ(ݔ) = ݓ ቀ
ݔ

2ቁ ,        ℱ ܹ
(ݔ)# = ℱ ܹ(−ݔ),   ݊ ∈ ℤ, 

where ℱ is the Fourier transform. The Besov class  
௦ (ℝ) consists of distributions ߮ on ℝ 

such that 
{‖2௦߮ ∗ ܹ‖}∈ℤ ∈ ℓ(ℤ)and{‖2௦߮ ∗ ܹ

#‖}∈ℤ ∈ ℓ(ℤ). 
According to this definition, the space  

௦ (ℝ)contains all polynomials However, it is not 
necessary to include all polynomials. 
We need only Besov spaces ஶଵ

ௗ , ݀ ∈ ℤା. In the case of functions onthe real line it is 
convenient to restrict the degree of polynomials in  ஶଵ

ௗ (ℝ)by  . Itis also convenient to 
consider the following seminorm on     ஶଵ

ௗ (ℝ): 

ಮభ ‖߮‖
 (ℝ) = sup

௫∈ℝ
ห߮(ௗ)(ݐ)ห +  2ௗ

∈ℤ

‖߮ ∗ ܹ‖ಮ +  2ௗ

∈ℤ

‖߮ ∗ ܹ
#‖ಮ . 

The classes  ஶଵ
ௗ (ℝ) can be described as classes of function on ℝ in the followingway: 

߮ ∈ ஶଵ 
ௗ (ℝ)   ⟺   sup

௫∈ℝ
ห߮(ௗ)(ݐ)ห + න

ฮ∆௧
ௗାଵ߮ฮ

ಮ

|߬|ௗାଵ
ℝ

ݐ݀ < ∞, 

Where ∆௧ is the difference operator defined by (∆௧߮)(ݔ) = ݔ)߮ + (ݐ −  We refer to.(ݔ)߮
[195] for more detailed information on Besov classes.    We define multiple operator 
integrals using integral projective tensor products of ܮஶ-spaces. However, we begin with a 
brief review of the theory of doubleoperator integrals that was developed by Birman and 
Solomyak in [BS1–BS3]. We state a description of the Schur multipliers associated with two 
spectral measures in terms of integral projective tensor products. This suggests the idea to 
define multiple operator integrals with the help of integral projective tensor products. 
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Double operator integrals. Let (ࣲ, ,ࣳ) and (ܧ  ܨ and ܧbe spaces with spectral measures (ܨ
on a Hilbert space ℋ.  Let us first define double operator integrals 

න න ,ߣ)߰ (ߤ
ࣳ

(ߤ)ܨ݀ܶ(ߣ)ܧ݀
ࣲ

,                                            (5) 

for bounded measurable functions ߰ and operators ܶ of Hilbert Schmidt  class  ࡿଶ . Consider 
the spectral measure ℰwhose values are orthogonal projections on the Hilbert spaceࡿଶ, 
which is defined by 

ℰ(Λ × ∆)ܶ = ܶ   ,(∆)ܨܶ(Λ)ܧ ∈  ,ଶࡿ
Λand∆ being measurable subsets of ࣲ and ࣳ. Then ℰ extends to a spectral measure on  ࣲ ×
ࣳ  and if ߰ is a bounded measurable function on ࣲ × ࣳ , by definition, 

න න ,ߣ)߰ (ߤ
ࣳ

(ߤ)ܨ݀ܶ(ߣ)ܧ݀
ࣲ

= ቆන ߰݀ℰ
ࣲ×ࣳ

ቇ ܶ. 

Clearly, 

ብන න ,ߣ)߰ (ߤ
ࣳ

(ߤ)ܨ݀ܶ(ߣ)ܧ݀
ࣲ

ብ
మࡿ

≤ ‖߰‖ಮ‖ܶ‖ࡿమ . 

If 

න න ,ߣ)߰ (ߤ
ࣳ

(ߤ)ܨ݀ܶ(ߣ)ܧ݀
ࣲ

∈  ଶࡿ

for every ܶ ∈  associated with thespectral (ଵࡿ of) ଶ , we say that ߰ is a Schur multiplierࡿ
measure ܧ  and ܨ . In this case by duality the map 

ܶ ⟼  න න ,ߣ)߰ (ߤ
ࣳ

(ߤ)ܨ݀ܶ(ߣ)ܧ݀
ࣲ

,          ܶ ∈  ଶ,                          (6)ࡿ

extends to a bounded linear transformer on the space of bounded linear operators on ℋ. 
We denote by ै(ܧ,  ଵassociated with the spectralࡿ the space of Schur multipliers of (ܨ
measures ܧ and ܨ . The norm of ߰ in ै(ܧ,  is, by definition, the norm of the transformer (ܨ
(6) on the space of bounded linear operators. 
In [182] it was shown that if ܣ is a self-adjoint operator (not necessarily bounded), ܭ is a 
bounded self-adjoint operator and if߮ is a continuously differentiable function on ℝ such 
that the divided difference ुఝ is a Schur multiplier of ࡿଵwith respect tothe spectral 
measures of ܣ  and ܣ +  then , ܭ

ܣ)߮ + (ܭ − (ܣ)߮ = ඵ
(ߣ)߮ − (ߤ)߮

ߣ − ߤ
 (7)            (ߤ)ܧ݀ܭ(ߣ)ାܧ݀

and 
ܣ)߮‖ + (ܭ − ‖(ܣ)߮ ≤ const‖߮‖ै(ாಲ,ாಲశ಼)‖ܭ‖, 

 i.e., ߮ is an operator Lipschitz function. 
It is easy to see that if a function ߰ on ࣲ × ࣳ  belongs to the projective tensor product 
(ܧ)ஶܮ ⊗  (i.e., ߰ admits a representation) (ܨ)ஶܮ and (ܧ)ஶܮ of (ܨ)ஶܮ
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,ߣ)߰ (ߤ =  ݂(ߣ)
ஹ

݃(ߤ), 

where ݂ ∈ ݃ ,(ܧ)ஶܮ ∈  and ,(ܨ)ஶܮ

‖ ݂‖ಮ

ஹ

‖݃‖ಮ < ∞, 

then  ߰ ∈ ,ܧ)ै  For such functions ߰ we have .(ܨ

න න ,ߣ)߰ (ߤ
ࣳ

(ߤ)ܨ݀ܶ(ߣ)ܧ݀
ࣲ

=  ቆන ݂
ࣲ

ቇܧ݀
ஹ

ܶ ቆන ݃
ࣳ

 .ቇܨ݀

More generally, ߰ is a Schur multiplier of ࡿଵ if ߰ belongs to the integral projective tensor 
product ܮஶ(ܧ) ⊗  i.e., ߰ admits a representation) (ܨ)ஶܮ and (ܧ)ஶܮ of (ܨ)ஶܮ

,ߣ)߰ (ߤ = න ,ߣ)݂ ,ߤ)݃(ݔ (ݔ)ߪ݀(ݔ
ொ

,                                    (8) 

where(ܳ, ࣲ is a measure space, ݂ is a measurable function on (ߪ × ܳ, ݃ is a measurable 
function on ࣳ × ܳ, and 

න ‖݂(∙, ,∙)݃‖ಮ(ா)‖(ݔ (ݔ)ߪ݀ಮ(ி)‖(ݔ < ∞.
ொ

                            (9) 

If ߰ ∈ (ܧ)ஶܮ ⊗  then ,(ܨ)ஶܮ

න න ,ߣ)߰ (ߤ
ࣳ

(ߤ)ܨ݀ܶ(ߣ)ܧ݀
ࣲ

= න ቆන ,ߣ)݂ (ߣ)ܧ݀(ݔ
ࣲ

ቇ ܶ ቆන ,ߤ)݃ (ߤ)ܨ݀(ݔ
ࣳ

ቇ
ொ

 .(ݔ)ߪ݀

Clearly, the function ݔ ↦ ൫∫ ,ߣ)݂ ࣲ(ߣ)ܧ݀(ݔ ൯ܶ ቀ∫ ,ߤ)݃ ࣳ(ߤ)ܨ݀(ݔ ቁ is weakly mea-surable 

න ብቆන ,ߣ)݂ (ߣ)ܧ݀(ݔ
ࣲ

ቇ ܶ ቆන ,ߤ)݃ (ߤ)ܨ݀(ݔ
ࣳ

ቇብ
ொ

(ݔ)ߪ݀ < ∞. 

It turns out that all Schur multipliers can be obtained in this way. More precisely, the 
following result holds (see [186]): 
Theorem on Schur multipliersLet߰ be a measurable function on ࣲ × ࣳ . Thefollowing are 
equivalent: 
(i) ߰ ∈ ,ܧ)ै  ;(ܨ
(ii) ߰ ∈ (ܧ)ஶܮ ⊗  ;(ܨ)ஶܮ
(iii) there exist measurable functions ݂ on ࣲ × ܳ  and ݃on ࣳ × ܳ such that (8)holds and 

ብන |݂(∙, (ݔ)ߪଶ݀|(ݔ
ொ

ብ
ಮ(ா)

ብන |݃(∙, (ݔ)ߪଶ݀|(ݔ
ொ

ብ
ಮ(ி)

< ∞.              (10) 

Note that the implication (iii)⇒(ii) was established in [182]. Note also that in thecase  of  
matrix  Schur  multipliers  (this  corresponds to  discrete  spectral  measures  ofmultiplicity 
1) the equivalence of (i) and (ii) was proved in [196]. 
It is interesting to observe that if ݂ and ݃ satisfy (9), then they also satisfy (10), but the 
converse is false. However, if ߰ admits a representation of the form (8) with ݂ and ݃ 
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satisfying (10), then it also admits a (possibly different) representation of the form (8) with 
݂ and ݃ satisfying (9). 
In a similar way we can define the projective tensor product ܣ ⊗  andthe integral  ܤ
projective tensor product ܣ ⊗  .ܤ andܣ of arbitrary Banach functions spaces ܤ
The equivalence of (i) and (ii) in the Theorem on Schur multipliers suggests an idea how to 
define multiple operator integrals. 
Multiple operator integralsWe can easily extend the definition of the projective tensor 
product and the integral projective tensor product to three ormore function spaces. 
    Consider first the case of triple operator integrals. 
Let (ࣲ, ,ࣳ)  ,(ܧ ,ࣴ) and ,(ܨ  on a Hilbert ܩ and ,ܨ,ܧ be spaces with spectral measures  (ܩ
space ℋ.  Suppose that ߰ belongs to the integral projective tensor 
productܮஶ(ܧ) ⊗ (ܨ)ஶܮ ⊗  i.e., ߰ admits a representation ,(ܩ)ஶܮ

,ߣ)߰ ,ߤ (ߥ = න ,ߣ)݂ ,ߤ)݃(ݔ ,ߥ)ℎ(ݔ (ݔ
ொ

 (11)                            ,(ݔ)ߪ݀

where  (ܳ, ࣲ  is  a  measure  space, ݂ is  a  measurable function  on  (ߪ × ܳ, ݃  is  a 
measurable function on ࣳ × ܳ, ℎ is a measurable function on ࣴ × ܳ,  and 

න ‖݂(∙, ,∙)݃‖ಮ(ா)‖(ݔ ,∙)ಮ(ி)‖ℎ‖(ݔ (ݔ)ߪ݀(ீ)ಮ‖(ݔ < ∞.
ொ

             (12) 

We define the norm‖߰‖ಮ⊗ಮ⊗ಮin the spaceܮஶ(ܧ) ⊗ (ܨ)ஶܮ ⊗  as theinfimum of the(ܩ)ஶܮ
left-hand side of (12) over all representations (11). 
Suppose now that ଵܶ  and ଶܶ be bounded linear operators on ℋ. For a function ߰ 
inܮஶ(ܧ) ⊗ (ܨ)ஶܮ ⊗  of the form (11), we put(ܩ)ஶܮ

න න න ,ߣ)߰ ,ߤ (ߣ)ܧ݀(ߥ
ࣲࣴࣳ

ଵܶ݀(ߤ)ܨ ଶܶ݀(ߥ)ܩ ≝ න ቆන ,ߣ)݂ (ߣ)ܧ݀(ݔ
ࣲ

ቇ ଵܶ ቆන ,ߤ)݃ (ߤ)ܨ݀(ݔ
ࣳ

ቇ
ொ

 

× ଶܶ ቆන ℎ(ߥ, (ߥ)ܩ݀(ݔ
ࣴ

ቇ  (13)                                    .(ݔ)ߪ݀

The following lemma shows that the triple operator integral 

න න න ,ߣ)߰ ,ߤ (ߣ)ܧ݀(ߥ
ࣲࣴࣳ

ଵܶ݀(ߤ)ܨ ଶܶ݀(ߥ)ܩ 

is well-defined. 
Lemma(5.1.1)[178]. Suppose that ߰ ∈ (ܧ)ஶܮ ⊗ (ܨ)ஶܮ ⊗  Then the right-hand side .(ܩ)ஶܮ
of (13) does not depend on the choice of a representation (11) and 

ብන න න ,ߣ)߰ ,ߤ (ߣ)ܧ݀(ߥ
ࣲࣴࣳ

ଵܶ݀(ߤ)ܨ ଶܶ݀(ߥ)ܩብ 

≤ ‖߰‖ಮ⊗ಮ⊗ಮ ∙ ‖ ଵܶ‖ ∙ ‖ ଶܶ‖.                                     (14) 
Proof. To show that the right-hand side of (13) does not depend on the choice of a 
representation (11), it suffices to show that if the right-hand side of (11) is the zero 
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function, then the right-hand side of (13) is the zero operator. Denote our Hilbert spaceby 
ℋ and let ߞ ∈ ℋ.  We have 

න ቌන ,ߣ)݂ ,ߤ)݃(ݔ ,ߥ)ℎ(ݔ (ݔ
ொ

ቍ(ݔ)ߪ݀ (ߥ)ܩ݀ = 0 
ࣴ

 for almost ߣ and ߤ, 

and so for almost allߣ and ߤ , 

න ,ߣ)݂ ,ߤ)݃(ݔ (ݔ ଶܶ
ொ

൭න ℎ(ߥ, (ݔ
ࣴ

൱(ߥ)ܩ݀ (ݔ)ߪ݀ ߞ

= ଶܶ න ቌන ,ߣ)݂ ,ߤ)݃(ݔ ,ߥ)ℎ(ݔ (ݔ
ொ

ቍ(ݔ)ߪ݀ ߞ(ߥ)ܩ݀ = 0 
ࣴ

. 

Putting 

௫ߦ = ଶܶ ൭න ℎ(ߥ, (ݔ
ࣴ

൱(ߥ)ܩ݀  ,ߞ

we obtain 

න ,ߣ)݂ ,ߤ)݃(ݔ ௫ߦ(ݔ
ொ

(ݔ)ߪ݀ = 0      for almost ߣ and ߤ. 

 We can realize the Hilbert space ℋ as a space of vector functions so that 
integration with respect to the spectral measure ܨ corresponds to multiplicat-on. It follows 
that 

න ,ߣ)݂ (ݔ ଵܶ
ொ

ቆන ,ߤ)݃ (ߤ)ܨ݀(ݔ
ࣳ

ቇ (ݔ)ߪ௫݀ߦ = ଵܶ න න ,ߣ)݂ ,ߤ)݃(ݔ ௫ߦ(ݔ
ொ

(ߤ)ܨ݀(ݔ)ߪ݀ = 0
ࣳ

 

for almost all ߣ. Let now 

௫ߟ = ଵܶ ቌන ,ߤ)݃ (ݔ
ࣳ

ቍ(ߤ)ܨ݀ ௫ߦ , 

We have 

න ,ߣ)݂ ௫ߟ(ݏ
ொ

(ݔ)ߪ݀ = 0      for almost all ߣ. 

 Now we can realize ℋ as a space of vector functions so that integration with respect to the 
spectral measure ܧ corresponds to multiplication. It follows that 

න ቆන ,ߣ)݂ (ߣ)ܧ݀(ݔ
ࣲ

ቇ (ݔ)ߪ௫݀ߟ
ொ

= න න ,ߣ)݂ ௫ߟ(ݔ
ொ

(ߣ)ܨ݀(ݔ)ߪ݀ = 0
ࣲ

. 

This exactly means that the right-hand side of (13) is the zero operator.  
Inequality (14) follows immediately from (13).      
In a similar way we can define multiple operator integrals 

න … න∙
ᇣᇧᇤᇧᇥ

ାଵ

,ଵߣ)߰ … , (ଵߣ)ଵܧ݀(ାଵߣ ଵܶ݀ܧଶ(ߣଶ) ଶܶ … ܶିଵ݀ܧ(ߣ) 
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for functions ߰ in the integral projective tensor product ܮஶ(ܧଵ) ⊗···⊗ ᇣᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇥ(ܧ)ஶܮ


 (the latter 

space is defined in the same way as in the case ݇ = 2). 

Let ܷ be a unitary operator and ܣ a bounded self-adjoint on Hilbert space. For ݐ ∈ ℝ, we put 
௧ܷ = ݁௧ܷ. 

We obtain sharp conditions on the existence of higher operator derivatives of the 
function ݐ ⟼ ߮( ௧ܷ). 
Recall that it was proved in [186] that for a function ߮ in the Besov space ஶଵ

ଵ the divided 
differenceुఝbelongs to the projective tensor product  ܥ(ॻ) ⊗  andso for arbitrary  ,(ॻ)ܥ
unitary operators ܷ and ܸ  the following formula holds: 

߮(ܸ) −  ߮(ܷ) = ඵ
(ߣ)߮ − (ߤ)߮ 

ߣ − ߤ
ܸ)(ߣ)ܧ݀ − .(ߤ)ܧ݀(ܷ (15) 

First we state the main results for second derivatives. 
Theorem(5.1.2)[178]. If    ߮ ∈ ஶଵ

ଵ , then 
(ुଶ߮) ∈ (ॻ)ܥ  ⊗ (ॻ)ܥ ⊗  (ॻ)ܥ

Proof .It is easy to see that 

(ुଶ߮)(ݖଵ, ,ଶݖ (ଷݖ =  ො߮
,,ஹ

(݅ + ݆ + ݇ + ଵݖ(2
 ଶݖ

ݖଷ
 +  ො߮

,,ஸ

(݅ + ݆ + ݇ − ଵݖ(2
 ଶݖ

ݖଷ
, (16) 

where ො߮(݊)  is the nth Fourier coefficient of ߮ . We prove that 

 ො߮
,,ஹ

(݅ + ݆ + ݇ + ଵݖ(2
 ଶݖ

ݖଷ
 ∈ (ॻ)ܥ ⊗ (ॻ)ܥ ⊗  .(ॻ)ܥ

The fact that 

 ො߮
,,ஸ

(݅ + ݆ + ݇ − ଵݖ(2
 ଶݖ

ݖଷ
 ∈ (ॻ)ܥ ⊗ (ॻ)ܥ ⊗  .(ॻ)ܥ

can be proved in the same way. Clearly, we can assume that  ො߮(݆) = 0 for ݆ < 0. 
We have 

 ො߮
,,ஹ

(݅ + ݆ + ݇ + ଵݖ(2
 ଶݖ

ݖଷ
 =  ߙ ො߮

,,ஹ

(݅ + ݆ + ݇ + ଵݖ(2
 ଶݖ

ݖଷ
 

+  ߚ ො߮
,,ஹ

(݅ + ݆ + ݇ + 2)먂ଵ
 ଶݖ

ݖଷ
 +  ߛ ො߮

,,ஹ

(݅ + ݆ + ݇ + ଵݖ(2
 ଶݖ

ݖଷ
, 

where 

ߙ =

⎩
⎨

⎧
1
3  ,                ݅ = ݆ = ݇ = 0,

݅
݅ + ݆ + ݇  ,    ݅ + ݆ + ݇ ≠ 0,

 

ߚ =

⎩
⎨

⎧
1
3  ,                ݅ = ݆ = ݇ = 0,

݆
݅ + ݆ + ݇  ,    ݅ + ݆ + ݇ ≠ 0,
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and 

ߛ =

⎩
⎨

⎧
1
3  ,                ݅ = ݆ = ݇ = 0,

݇
݅ + ݆ + ݇  ,    ݅ + ݆ + ݇ ≠ 0.

 

Clearly, it suffices to show that 

 ߙ ො߮
,,ஹ

(݅ + ݆ + ݇ + ଵݖ(2
 ଶݖ

ݖଷ
 ∈ (ॻ)ܥ ⊗ (ॻ)ܥ ⊗  (17)                   .(ॻ)ܥ

It is easy to see that 

 ߙ ො߮
,,ஹ

(݅ + ݆ + ݇ + ଵݖ(2
 ଶݖ

ݖଷ
 

 
 

=  ൮ቌ൫(ܵ∗)ାାଶ߮൯ ∗  ߙ ݖ

ஹ

ቍ ൲(ଵݖ)
,ஹ

ଶݖ
ݖଷ

, 

whereܵ∗is backward shift, i.e., (ܵ∗)߮ = ℙା̅ݖ߮ (ℙା is the orthogonal projectionfrom ܮଶ  
onto the Hardy class ܪଶ). Thus, 

ቯ  ߙ ො߮
,,ஹ

(݅ + ݆ + ݇ + ଵݖ(2
 ଶݖ

ݖଷ
ቯ

ಮ⊗ಮ⊗ಮ

≤  ะ൫(ܵ∗)ାାଶ߮൯ ∗  ݖߙ

ஹ

ะ
ಮ,ஹ

 

 Put 

ܳ(ݖ) = 
݅ − ݉

݅
ஹ

݉   ,ݖ > 0   and   ܳ(ݖ) =
1
3  ݖ

ஹଵ

. 

Then it is easy to see that 

ะ൫(ܵ∗)ାାଶ߮൯ ∗  ݖߙ

ஹ

ะ
ಮ

= ฮ߰ ∗ ܳାฮ
ಮ , 

where߰ = (ܵ∗)ଶ߮  , and so 

ቯ  ߙ ො߮
,,ஹ

(݅ + ݆ + ݇ + ଵݖ(2
 ଶݖ

ݖଷ
ቯ

ಮ⊗ಮ⊗ಮ

≤  ฮ߰ ∗ ܳାฮ
ಮ

,ஹ

= (݉ + 1)‖߰ ∗ ܳ‖ಮ

ஹ

. 

Consider the function ݎ on ℝ defined by 

(ݔ)ݎ = ቐ
|ݔ|   ,1 ≤ 1;
1

|ݔ|   ,|ݔ| ≥ 1. 

It is easy to see that the Fourier transform ℱݎ of ℎ belongs toܮଵ(ℝ).  Define the 
functionsܴ , ݊ ≥ 1, on ॻ by 

ܴ(ߞ) =  ݎ ൬
݇
݊

൰
∈ℤ

 .ߞ
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Lemma (5.1.3)[178]. 
‖ܴ‖భ ≤ const. 

Proof . For ܰ > 0 consider the function ߦேdefined by 

(ݔ)ேߦ = ൞

|ݔ|                        ,1 ≤ ܰ,
2ܰ − |ݔ|

ܰ ,    ܰ ≤ |ݔ| ≤ 2ܰ,

|ݔ|                             ,0 ≥ 2ܰ.

 

It is easy to see that  ℱߦே ∈  ே‖భ(ℝ) does not depend on  . Letߦଵ(ℝ)  and ‖ℱܮ

ܴே,(ߞ) =  ݎ ൬
݇
݊

൰
∈ℤ

ேߦ ൬
݇
݊

൰ ߞ     ,ߞ ∈ ॻ. 

It was proved in Lemma 2 of [186] thatฮܴே,ฮ
భ ≤ ‖ℱ(ߦݎே)‖భ(ℝ) . Since 

‖ℱ(ߦݎே)‖భ(ℝ) ≤ ‖ℱݎ‖భ(ℝ)‖ℱߦே‖భ(ℝ) = const, 
it follows that the ܮଵ-norms ofܴே,are uniformly bounded. The result follows from the 
obvious fact that 

lim
ே→ஶ

ฮܴ − ܴே,_ฮమ = 0. 

Let us complete the proof of Theorem (5.1.1).  
For ݂ ∈  ஶ,  we haveܮ

‖݂ ∗ ܳ‖ಮ = ‖݂ − ݂ ∗ ܴ‖ಮ ≤ ‖݂‖ಮ + ‖݂ ∗ ܴ‖ಮ ≤ const‖݂‖ಮ . 
Thus, 

(݉ + 1)‖߰ ∗ ܳ‖ಮ

ஹ

= (݉ + 1) ะ ߰ ∗ ܹ ∗ ܳ
ஹ

ะ
ಮஹ

≤  (݉ + 1)‖߰ ∗ ܹ ∗ ܳ‖ಮ

,ஹ

 

=   (݉ + 1)‖߰ ∗ ܹ ∗ ܳ‖ಮ

ஸஸଶశభஹ

≤ const   (݉ + 1)‖߰ ∗ ܹ‖ಮ

ஸஸଶశభஹ

≤ const  2ଶ

ஹ

‖߰ ∗ ܹ‖ಮ ≤ const‖߰‖ಮభ
మ , 

where the ܹ are defined . 
 This proves that 

 ߙ ො߮
,,ஹ

(݅ + ݆ + ݇ + ଵݖ(2
 ଶݖ

ݖଷ
 ∈ ஶ(ॻ)ܮ ⊗ (ॻ)ܥ ⊗  (ॻ)ܥ

and 

ቯ  ߙ ො߮
,,ஹ

(݅ + ݆ + ݇ + ଵݖ(2
 ଶݖ

ݖଷ
ቯ

ಮ(ॻ)⊗(ॻ)⊗(ॻ)

≤ const‖߮‖ಮభ
మ           (18) 

    To prove (17), it suffices to represent ߮ as 

߮ =  ߮ ∗ ܹ
ஹ

. 

Then we can apply the above reasoning to each polynomial ߮ ∗ ܹ . Since 
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ቌ൫(ܵ∗)ାାଶ߮ ∗ ܹ൯ ∗  ݖାାߙ

ஹ

ቍ 

is obviously a polynomial, the above reasoning shows that 

 ߮ߙ ∗ ܹ
,,ஹ

(݅ + ݆ + ݇ + ଵݖ(2
 ଶݖ

ݖଷ
 ∈ (ॻ)ܥ ⊗ (ॻ)ܥ ⊗  (ॻ)ܥ

and by (18), 

ቯ  ߮ߙ ∗ ܹ
,,ஹ

(݅ + ݆ + ݇ + ଵݖ(2
 ଶݖ

ݖଷ
ቯ

(ॻ)⊗(ॻ)⊗(ॻ)

≤ const‖߮ ∗ ܹ‖ಮభ
మ

≤ const2ଶ‖߮ ∗ ܹ‖ಮ . 
The result follows now from the fact that 
∑ 2ଶ‖߮ ∗ ܹ‖ಮஹ ≤ const‖߮‖ಮభ

మ . 
Theorem (5.1.4)[178]. Let φbe  a  function  in  the  Besov  class  Bஶଵ

ଵ ,  then  the  function t ⟼
φ(U୲) has second derivative and 

d
ds

(φ(Uୱ))|ୱୀ = −2 ൬ම(ुଶφ)(λ, μ, ν) dE(λ)AdE(μ)AdE(ν)൰ Uଶ.   (19) 

Note that by Theorem (5.1.2), the right-hand side of (19) makes sense and determines a 
bounded linear operator. 
Proof . It follows from the definition of the second order divided difference that 

ߤ) − ,ߣ)(ଶ߮ु)(ߥ ,ߤ (ߥ = ,ߣ)(߮ु) (ߤ − ,ߣ)(߮ु)  (20)                           .(ߥ
By (15), we have 
1
ݐ

൬
݀

ݏ݀
(߮( ௦ܷ))ฬ

௦ୀ௧
−

݀
ݏ݀

(߮( ௦ܷ))ฬ
௦ୀ

൰ 

=
݅
ݐ

൬ඵ(ु߮)(ߣ, ܧ݀(ߥ
ܣ(ߣ) ܧ݀

(ߥ) ௧ܷ − ඵ(ु߮)(ߤ, ܣ(ߤ)ܧ݀(ߥ  ൰ܷ(ߥ)ܧ݀

=
݅
ݐ

ቆඵ(ु߮)(ߣ, ܧ݀(ߥ
ܣ(ߣ) ܧ݀

(ߥ) − ඵ(ु߮)(ߤ, ܣ(ߤ)ܧ݀(ߥ ቇ(ߥ)ܧ݀ ௧ܷ 

+
݅
ݐ

൬ඵ(ु߮)(ߤ, ܣ(ߤ)ܧ݀(ߥ ܧ݀
(ߥ) ௧ܷ − ඵ(ु߮)(ߤ, ܣ(ߤ)ܧ݀(ߥ ܧ݀

 ൰ܷ(ߥ)

+
݅
ݐ

ቆඵ(ु߮)(ߣ, ܣ(ߣ)ܧ݀(ߥ ܧ݀
(ߥ) − ඵ(ु߮)(ߣ, ܣ(ߣ)ܧ݀(ߥ ቇ(ߤ)ܧ݀ ܷ. 

By (20), we have 



161 
 

ඵ(ु߮)(ߣ, ܧ݀(ߥ
ܧ݀ܣ(ߣ)

(ߥ) − ඵ(ु߮)(ߤ, ܧ݀ܣ(ߤ)ܧ݀(ߥ
(ߥ)

= ම(ु߮)(ߣ, ܧ݀(ߥ
ܧ݀ܣ(ߤ)ܧ݀(ߣ)

(ߥ)

− ම(ु߮)(ߤ, ܧ݀(ߥ
ܧ݀ܣ(ߤ)ܧ݀(ߣ)

(ߥ)

= ම(ुଶ߮)(ߣ, ,ߤ ߣ)(ߥ − ܧ݀(ߤ
 ൫Ǵ൯ܧ݀ܣ(ߤ)ܧ݀(ߣ)

= ම(ुଶ߮)(ߣ, ,ߤ ܧ݀(ߥ
(ߣ) ௧ܷ݀ܧ(ߤ)ܧ݀ܣ

 (ߥ)

− ම(ुଶ߮)(ߣ, ,ߤ ܧ݀(ߥ
ܧ݀ܣ(ߤ)ܧܷ݀(ߣ)

(ߥ)

= ම(ुଶ߮)(ߣ, ,ߤ ܧ݀(ߥ
௧݁)(ߣ) − ܧ݀ܣ(ߤ)ܧܷ݀(ܫ

 .(ߥ)

Similarly, 

ඵ(ु߮)(ߣ, ܧ݀ܣ(ߣ)ܧ݀(ߥ
(ߥ) − ඵ(ु߮)(ߣ, (ߤ)ܧ݀ܣ(ߣ)ܧ݀(ߤ

= ම(ुଶ߮)(ߣ, ,ߤ ௧݁)(ߤ)ܧ݀ܣ(ߣ)ܧ݀(ߥ − ܧ݀ܣܷ(ܫ
 .(ߥ)

Thus, 
1
ݐ

൬
݀

ݏ݀
(߮( ௦ܷ))ฬ

௦ୀ௧
−

݀
ݏ݀

(߮( ௦ܷ))ฬ
௦ୀ

൰

=
݅
ݐ

൬ම(ुଶ߮)(ߣ, ,ߤ ܧ݀(ߥ
௧݁)(ߣ) − ܧ݀ܣ(ߤ)ܧܷ݀(ܫ

൰(ߥ) ௧ܷ

+
݅
ݐ

൬ඵ(ु߮)(ߤ, ܧ݀ܣ(ߤ)ܧ݀(ߥ
(ߥ) ௧ܷ − ඵ(ु߮)(ߤ, ܧ݀ܣ(ߤ)ܧ݀(ߥ

(ߥ) ܷ൰

+
݅
ݐ

൬ම(ुଶ߮)(ߣ, ,ߤ ൫݁௧짴(ߤ)ܧ݀ܣ(ߣ)ܧ݀(ߥ − ܧ൯ܷ݀ܫ
൰(ߥ) ܷ. 

Since lim
௧→

‖ ௧ܷ − ܷ‖ = 0, to complete the proof it suffices to show that 

lim
௧→

1
ݐ

ම(ुଶ߮)(ߣ, ,ߤ ܧ݀(ߥ
௧݁)(ߣ) − ܧ݀ܣ(ߤ)ܧܷ݀(ܫ

(ߥ)

= ݅ ම(ुଶ߮)(ߣ, ,ߤ  (21)                      ,ܷ(ߥ)ܧ݀ܣ(ߤ)ܧ݀ܣ(ߣ)ܧ݀(ߥ

lim
௧→

ඵ(ुଶ߮)(ߤ, ܧ݀ܣ(ߤ)ܧܷ݀(ߥ
(ߥ)

= ඵ(ुଶ߮)(ߤ, ܷ(ߥ)ܧ݀ܣ(ߤ)ܧ݀(ߣ)ܧ݀(ߥ ,                                 (22) 

and 

lim
௧→

1
ݐ

ම(ुଶ߮)(ߣ, ,ߤ ௧݁)(ߤ)ܧ݀ܣ(ߣ)ܧ݀(ߥ − ܧܷ݀(ܫ
(ߥ)

= ݅ ම(ुଶ߮)(ߣ, ,ߤ  (23)                      .ܷ(ߥ)ܧ݀ܣ(ߤ)ܧ݀ܣ(ߣ)ܧ݀(ߥ
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Let us prove (21). Since ुଶ߮ ∈ (ॻ)ܥ ⊗ (ॻ)ܥ ⊗ ,it suffices to show that for݂  ,(ॻ)ܥ ݃, ℎ ∈
 ,(ॻ)ܥ

lim
௧→

1
ݐ

ම ܧ݀(ߥ)ℎ(ߤ)݃(ߣ)݂
௧݁)(ߣ) − ܧ݀ܣ(ߤ)ܧܷ݀(ܫ

 (ߥ)

= ݅ ම .ܷ(ߥ)ܧ݀ܣ(ߤ)ܧ݀ܣ(ߣ)ܧ݀(ߥ)ℎ(ߤ)݃(ߣ)݂                  (24) 

We have 
1
ݐ

ම ܧ݀(ߥ)ℎ(ߤ)݃(ߣ)݂
௧݁)(ߣ) − ܧ݀ܣ(ߤ)ܧܷ݀(ܫ

(ߥ)

= ݂( ௧ܷ) ൬
1
ݐ

(݁௧ − ൰ܷ(ܫ )ℎܣ(ܷ)݃ ௧ܷ) 

and 

ම ܷ(ߥ)ܧ݀ܣ(ߤ)ܧ݀ܣ(ߣ)ܧ݀(ߥ)ℎ(ߤ)݃(ߣ)݂ =  .ܷ(ܷ)ℎܣ(ݑ)݃ܣ(ܷ)݂

Since ݂ and ℎ are in ܥ(ॻ),  it follows that 
(it suffices to prove this for trigonometric polynomials ݂ and ℎ which is evident). This 
together with the obvious fact 

lim
௧→

ቆ
1
ݐ

(݁௧ − ቇ(ܫ =  ܣ݅

proves (24) which in turn implies (21). 
The proof of (23) is similar. To prove (22), we observe that ஶଵ

ଶ ⊂ ஶଵ
ଵ  and usethe fact that 

ुଶ߮ ∈ (ॻ)ܥ ⊗ ,݂ Again, it suffices to provethat for .(this was proved in [186])  (ॻ)ܥ ݃ ∈
 ,(ॻ)ܥ

lim
௧→

ඵ ܧ݀ܣ(ߤ)ܧ݀(ߥ)݃(ߤ)݂
(ߥ) = ඵ  (ߥ)ܧ݀ܣ(ߤ)ܧ݀(ߥ)݃(ߤ)݂

which follows from the obvious equality: 
lim
௧→

‖݃( ௧ܷ) − ݃(ܷ)‖ = 0. 

The proofs of Theorems (5.1.1) and (5.1.2) given above generalize easily to the case of 
higher derivatives. 
Theorem(5.1.5)[178]. Let ݉ be a positive integer. If    ߮ ∈ ஶଵ

 , then 
ुଶ߮ ∈ (ॻ)ܥ ⊗ ⋯ ⊗ ᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ(ॻ)ܥ

ାଵ

. 

Theorem(5.1.6)[178]. Let ݉ be a positive integer and let ߮ be a function in the Besov 
classஶଵ

  , then the function ݐ ⟼ ߮( ௧ܷ) has mth derivative and 

݀

ݏ݀ (߮( ௦ܷ))ฬ
௦ୀ

= ݅݉!

⎝

⎜
⎛

න … න∙
ᇣᇧᇤᇧᇥ

ାଵ

(ुଶ߮)(ߣଵ, … , ܣ(ଵߣ)ܧ݀(ାଵߣ … (ାଵߣ)ܧ݀ܣ

⎠

⎟
⎞

ܷ . 

We consider the problem of the existence of higher derive- atives of the function 
ݐ ⟼ (௧ܣ)߮ = ܣ)߮ +  .(ܭݐ
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Here ܣ is a self-adjoint operator (not necessarily bounded), ܭ is a bounded self-adjoint 
operator, and ܣ௧ ≝ ܣ +  . ܭݐ
In [188] it was shown that if ߮ ∈ ஶଵ

ଵ (ℝ), then ु߮ ∈ ी(ℝ) ⊗ ी(ℝ),  whereी(ℝ)is the 
space of bounded Borel functions on ℝ equipped with the sup-norm, and so 

ܣ)߮‖ + (ܭݐ − ‖(ܣ)߮ ≤ const‖߮‖ಮభ
భ  (25)                            .‖ܭ‖

In fact, the construction given in [188] shows that for ߮ ∈ ஶଵ
ଵ (ℝ), the functionݐ ⟼

ܣ)߮ +  is differentiable and (ܭݐ
݀

ݏ݀
ฬ((௦ܣ)߮)

௦ୀ
= ඵ(ु߮)(ߣ,  (26)                   .(ߤ)ܧ݀ܭ(ߣ)ܧ݀(ߤ

For completeness, we show briefly how to deduce (26) from the construction given in[188]. 
We are going to give a detailed proof in the case of higher derivatives.  
We need the following. 
Definition(5.1.7). A continuous function ߮on ℝ is called operator continuous if 

lim
௦→

ܣ)߮‖ + (ܭݐ −  ‖(ܣ)߮

for any self-adjoint operator ܣ  and any bounded self-adjoint operator ܭ . 
It follows from (25) that functions in ஶଵ

ଵ (ℝ)are operator continuous. It is alsoeasy to see 
that the product of two bounded operator continuous functions is operator continuous. 
Proof of (26) . The construction given in [188] shows that if ߮ ∈ ஶଵ

ଵ (ℝ), then  ु߮ admits a 
representation 

,ߣ)(߮ु) (ݔ = න ,ߣ)݂ ,ߤ)݃(ݔ (ݔ)ߪ݀(ݔ
ொ

, 

Where(ܳ, is a measure space, ݂ and g are measurable functions on ℝ (ߪ × ܳ  suchthat 

න ‖ ௫݂‖ी(ℝ)
ொ

‖݃௫‖ी(ℝ)݀(ݔ)ߪ < ∞, 

and for almost all ݔ ∈ ܳ, and ௫݂and ݃௫are operator continuous functions where ௫݂ (ߣ) ≝
,ߣ)݂ and  ݃௫  (ݔ (ߤ)  ≝ ,ߤ)݂  Indeed, it is very easy to verify that thefunctions ௫݂and .(ݔ
݃௫constructed in [188] are products of bounded functions inஶଵ

ଵ (ℝ). 
By (7), we have 

1
ݏ

൫߮(ܣ௦) − ൯(ܣ)߮ =
1
ݏ

ඵ(ु߮)(ߣ, ೞܧ݀(ߤ
(ߤ)ܧ݀ܭݏ(ߣ) = න ௫݂(ܣ௦)݃ܭ௫(ܣ)݀(ݔ)ߪ

ொ
. 

Since ௫݂is operator continuous, we have 
lim
௦→

‖ ௫݂(ܣ௦) − ௫݂(ܣ)‖ = 0. 

It follows that 

ብන ௫݂(ܣ௦)݃ܭ௫(ܣ)݀(ݔ)ߪ
ொ

− න ௫݂(ܣ)݃ܭ௫(ܣ)݀(ݔ)ߪ
ொ

ብ ≤ ‖ܭ‖ න ‖ ௫݂(ܣ௦) − ௫݂(ܣ)‖
ொ

∙ ‖݃௫(ܣ)‖݀(ݔ)ߪ

→ 0   as → 0, 
which implies  (26).      
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    Consider first the problem of the existence of the second operator derivative. Firstwe 
prove that if ݂ ∈ ஶଵ

ଶ (ℝ) , thenुଶ߮ ∈ ी(ℝ) ⊗ ी(ℝ) ⊗ ी(ℝ).Actually, to provethe 
existence of the second derivative, we need the following slightly stronger result. 
Theorem (5.1.8)[178]. Let ߮ ∈ ஶଵ

ଶ (ℝ). Then there exist a measure space (ܳ,  and (ߪ
measurable functions ݂, ݃, and h on ℝ × ܳ  such that 

(ुଶ߮)(ߣ, ,ߤ (ߥ = න ,ߣ)݂ ,ߤ)݃(ݔ ,ߥ)ℎ(ݔ ,(ݔ)ߪ݀(ݔ
ொ

                  (27) 

௫݂ , ݃௫ , and ℎ௫are operator continuous functions for almost all ݔ ∈ ܳ,  and 

න ‖ ௫݂‖ी(ℝ)
ொ

‖݃௫‖ी(ℝ)‖ℎ௫‖ी(ℝ)݀(ݔ)ߪ ≤ const‖φ‖ಮభ
మ (ℝ).               (28) 

As before, ௫݂(ߣ) = ,ߣ)݂ ,(ݔ ݃௫(ߤ) = ,ߤ)݃ (ߥ)and ℎ௫ ,(ݔ = ,ߥ)݃  .(ݔ
Theorem (5.1.8) will be used to prove the main result. 
 Proof . Suppose thatsupp ℱφ ⊂ [M/2,2M].  Let us show that each summand on the right-
hand side of (30) admits a desired representation. Clearly, it suffices to do it for the first 
summand. Put 

ψ(λ, μ, ν) = ඵ ൫(S୲ା୳
∗ φ) ∗ q୲ା୳൯(λ)e୧୲ஜe୧୳

ℝశ×ℝశ

dtdu = ඵ f୲ା୳(λ)g୲(μ)h୳(ν)
ℝశ×ℝశ

�tdu, 

where 
f୴(λ) = ൫(S୴

∗φ) ∗ q୴൯(λ), g୲(μ) = e୧୲ஜand    h୳(ν) = e୧୳.  
Clearly, ‖g୲‖ी(ℝ) = 1 and‖h୳‖ी(ℝ) = 1. Since 

‖f୴‖ी(ℝ) = ‖f୴‖ಮ = ‖φ − φ ∗ r୴‖ಮ ≤ ൜
(1 + ‖r୴‖భ)‖φ‖ಮ ,    v ≤ 2M,
0,                                       v >  ,ܯ2

we have 

‖ψ‖ी(ℝ)⊗ी(ℝ)⊗ी(ℝ) ≤ const‖φ‖ಮ ඵ dtdu
୲,୳வ,௧ା௨ஸଶெ

≤ const ∙ Mଶ‖φ‖ಮ . 

In the same way we can treat the case whensupp Fφ ⊂ [−2M, −M/2].  Ifφ     is apolynomial 
of degree at most 2, the result is trivial. 
Let now    φ ∈ Bஶଵ

ଶ (ℝ)  and 

φ =  φ ∗ W୬
୬∈ℤ

+  φ ∗ W୬
#

୬∈ℤ

. 

It follows from the above estimate that 
‖ुଶφ‖ी(ℝ)⊗ी(ℝ)⊗ी(ℝ) ≤ const(∑ 2ଶ୬‖φ ∗ W୬‖ಮ୬∈ℤ + ∑ 2ଶ୬‖φ ∗ W୬

#‖ಮ୬∈ℤ ). To complete 
the proof of Theorem (5.1.8), we observe that the functions λ ⟼ e୧୲ areoperator 
continuous, because they belong toBஶଵ

ଵ (ℝ).  On the other hand, it is easy tosee that 
ifsupp φ ⊂ [−2M, −M/2], then the function  (S୴

∗φ) ∗ q୴ is the product of e୧୲୴and a bounded 
function in    Bஶଵ

ଵ (ℝ). 
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Theorem(5.1.9)[178]. Suppose that A is a self-adjoint operator, ܭ is a bounded self-adjoint 
operator. If    ߮ ∈ ஶଵ

ଶ (ℝ) ∩ ஶଵ
ଵ (ℝ) , then the function ݏ ⟼  has second derivativethat (௦ܣ)

is a bounded operator and 
݀ଶ

ଶݏ݀ ቤ((௦ܣ)߮)
௦ୀ

= 2 ඵ(ुଶ߮)(ߣ, ,ߤ  (29)            .(ߥ)ܧ݀ܭ(ߤ)ܧ݀ܭ(ߣ)ܧ݀(ߥ

Note that by Theorem (5.1.8), the right-hand side of (29) makes sense and is a bounded 
linear operator. 
Forݐ > 0 and a function ݂ , we define ࡿ௧

∗݂  by 

൫ℱ(ࡿ௧
∗݂)൯(ݏ) = ൜(ℱ݂)(ݏ − ݐ     ,(ݐ ≤ ,ݏ

ݐ                         ,0  >  ,ݏ

We also define the distributions ݍ௧and ݎ௧, ݐ > 0, by 

(ℱݍ௧)(ݏ) = ൝
ݏ

ݏ + ݐ
ݏ     , ≥ 0,

ݏ              ,0   < 0 ,
 

and 

(ℱݎ௧)(ݏ) = ൝
|ݏ|             ,1 ≤ ,ݐ
1
ݏ

|ݏ|             , > , ݐ
 

It is easy to see that ݎ௧ ∈  .ݐ ௧‖భ(ℝ)  does not depend onݎ‖ ଵ(ℝ)  andܮ
Proof .It follows from Lemma (5.1.11) that 

1
t

൬ඵ(ुφ)(λ, μ)dE౪(λ)KdE౪(μ) − ඵ(ुφ)(λ, ν)dE౪(λ)KdE(ν)൰

= ම(ुଶφ)(λ, μ, ν)dE౪
(λ)KdE౪

(μ)KdE(ν). 

Similarly 
1
t

൬ඵ(ुφ)(λ, ν)dE౪(λ)KdE(ν) − ඵ(ुφ)(μ, ν)dE(μ)KdE(ν)൰

= ම(ुଶφ)(λ, μ, ν)dE౪
(λ)KdE(μ)KdE౪

(ν). 

Thus,     
1
t

൬
d
ds

(φ(Aୱ))ฬ
ୱୀ୲

−
d
ds

(φ(Aୱ))ฬ
ୱୀ

൰

= ම(ुଶφ)(λ, μ, ν)dE౪
(λ)KdE౪

(μ)KdE(ν)

+ ම(ुଶφ)(λ, μ, ν)dE౪
(λ)KdE(μ)KdE(ν). 

The fact that 

lim
୲→

ම(ुଶφ)(λ, μ, ν)dE౪
(λ)KdE౪

(μ)KdE(ν) = ම(ुଶφ)(λ, μ, ν)dE(λ)KdE(μ)KdE(ν) 

follows immediately from (27) and (28) and from the fact that the functions f୶, g୶, and h୶   
in (27) are operator continuous. 
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Similarly, 

lim
୲→

ම(ुଶφ)(λ, μ, ν)dE౪
(λ)KdE(μ)KdE(ν) = ම(ुଶφ)(λ, μ, ν)dE(λ)KdE(μ)KdE(ν), 

which completes the proof.      
Lemma (5.1.10)[178]. Let  M > 0  and let φbe a bounded function on ℝ such thatsuppℱφ ⊂
[M/2,2M]. Then 

(ुଶφ)(λ, μ, ν)

= − ඵ ൫(S୲ା୳
∗ φ) ∗ q୲ା୳൯(λ)e୧୲ஜe୧୳

ℝశ×ℝశ

 ݑ݀ݐ݀

− ඵ ቀ(ݑ+ݏࡿ
∗ ߮) ∗ ቁݑ+ݏݍ ߥݑ݅݁ߣݏ݅݁(ߤ)

ℝ+×ℝ+

ݑ݀ݏ݀

− ඵ ቀ(ݐ+ݏࡿ
∗ ߮) ∗ ቁݐ+ݏݍ ߤݐ݅݁ߣݏ݅݁(ߥ)

ℝ+×ℝ+

 (30)                              .ݐ݀ݏ݀

Proof. Let us first assume that ℱ߮ ∈  ଵ(ℝ).  We haveܮ

ඵ ൫(ࡿ௧ା௨
∗ ߮) ∗ ௧ఓ݁௨ఔ݁(ߣ)௧ା௨൯ݍ

ℝశ×ℝశ

ߥ݀ߤ݀

= ම (ℱ߮)(ݏ + ݐ + (ݑ
ݏ

ݏ + ݐ + ℝశ×ℝశ×ℝశݑ

݁௦ఒ݁௧ఓ݁௨ఔ݀ݑ݀ݐ݀ݏ. 

We can write similar representations for the other two terms on the right-hand side of(30), 
take their sum and reduce (30) to the verification of the following identity: 

(ुଶ߮)(ߣ, ,ߤ (ߥ = ම (ℱ߮)(ݏ + ݐ + (ݑ
ℝశ×ℝశ×ℝశ

݁௦ఒ݁௧ఓ݁௨ఔ݀ݑ݀ݐ݀ݏ 

This identity can be verified elementarily by making the substitution ܽ = ݏ + ݐ + ܾ,ݑ = ݐ +
ܿ and ,ݑ =  .ݑ
Consider now the general case, i.e.,  ߮ ∈ ஶ(ℝ) andsupp ℱ߮ܮ ⊂  Consider a  .[ܯ2,2/ܯ]
smooth function ߱on ℝ such that  ߱ ≥ 0, supp ߱ ⊂ [−1,1], and ‖߱‖భ(ℝ) = 1.For ߝ > 0 we 
put    ߱ఌ(ݔ) = and define the function ߮ఌ  by ℱ߮ఌ ߝ/(ߝ/ݔ)߱ = (ℱ߮) ∗ ߱ఌ .Clearly, 

ℱ߮ఌ ∈ ଵ(ℝ),    limܮ
ఌ→

‖߮ఌ‖ಮ(ℝ) = ‖߮‖ಮ(ℝ), 

and 
lim
ఌ→

߮ఌ(ݔ) = ݔ    for almost all(ݔ)߮ ∈ ℝ. 

Since we have already proved that (30) holds for ߮ఌ in place of ߮, the result follows by 
passing to the limit as ߝ → ∞.      
To prove (26), we need the following lemma. 
Lemma (5.1.11)[178].  Let ܣ be a self-adjoint operator and let ܭ be a bounded self-adjoint 
operator. Suppose that ߮is a function on ℝ such that ु߮ ∈ ஶ(ℝ)ܮ ⊗ ஶ(ℝ)and ुଶ߮ܮ ∈
ஶ(ℝ)ܮ ⊗ ஶ(ℝ)ܮ ⊗  ஶ(ℝ).  Thenܮ
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ඵ(ु߮)(ߣ, (ߤ)ାܧ݀ܭ(ߣ)ାܧ݀(ߤ − ඵ(ु߮)(ߣ, (ߥ)ܧ݀ܭ(ߣ)ାܧ݀(ߥ

= ම(ुଶ߮)(ߣ, ,ߤ  .(ߥ)ܧ݀ܭ(ߤ)ାܧ݀ܭ(ߣ)ାܧ݀(ߥ

Proof. Put 
ܲ = ,݊−])ܧ ݊]),ܳ = ,݊−])ାܧ []ܣ,([݊ = ܲܣ and ܤ[] = ܳ(ܣ +  .(ܭ

We have 

ඵ(ु߮)(ߣ, (ߤ)ାܧ݀ܭ(ߣ)ାܧ݀(ߤ − ඵ(ु߮)(ߣ, (ߥ)ܧ݀ܭ(ߣ)ାܧ݀(ߥ

= ම(ु߮)(ߣ, (ߥ)ܧ៴ܭ(ߤ)ାܧ݀ܭ(ߣ)ାܧ݀(ߤ

− ම(ु߮)(ߣ,  .(ߥ)ܧ݀ܭ(ߤ)ାܧ݀ܭ(ߣ)ାܧ݀(ߥ

Thus, 

ܳ ൬ඵ(ु߮)(ߣ, (ߤ)ାܧ݀ܭ(ߣ)ାܧ݀(ߤ − ඵ(ु߮)(ߣ, ൰(ߤ)ܧ݀ܭ(ߣ)ାܧ݀(ߤ ܲ

= න න න ,ߣ)(߮ु) (ߤ)ାܧ݀ܭ(ߣ)ାܧ݀(ߤ


ି



ି



ି
(ߥ)ܧ݀

− න න න ,ߣ)(߮ु) (ߤ)ାܧ݀ܭ(ߣ)ାܧ݀(ߥ


ି



ି



ି
݀_(ߥ)

= ම(ߤ − ,ߣ)(ଶ߮ु)(ߥ ,ߤ  ,(ߥ)[]ܧ݀ܭ(ߤ)[]ܧ݀ܭ(ߣ)[]ܧ݀(ߥ

since 
,ߣ)(߮ु) (ߤ − ,ߣ)(߮ु) (ߥ = ߤ) − ,ߣ)(ଶ߮ु)(ߥ ,ߤ  .(ߥ

On the other hand, 

ܳ ൬ම(ुଶ߮)(ߣ, ,ߤ ൰(ߥ)ܧ݀ܭ(ߤ)ାܧ݀ܭ(ߣ)ାܧ݀(ߥ ܲ

= න න න (ुଶ߮)(ߣ, ,ߤ ܣ)൫(ߤ)ାܧ݀ܭ(ߣ)ାܧ݀(ߥ + (ܭ − ൯ܣ


ି



ି



ି
(ߥ)ܧ݀

= න න න (ुଶ߮)(ߣ, ,ߤ (ߤ)ାܧ݀ܭ(ߣ)ାܧ݀(ߥ


ି



ି



ି
ܳ × ൫(ܣ + (ܭ − ൯ܣ ܲܧ(ߥ)

= න න න (ुଶ߮)(ߣ, ,ߤ (ߤ)ାܧ݀ܭ(ߣ)ାܧ݀(ߥ


ି



ି



ି
× ൫ܤ[] ܲ − ܳܣ[]൯݀ܧ(ߥ)

= ම(ुଶ߮)(ߣ, ,ߤ []ܧ݀(ߥ
[]ܧ݀ܭ(ߣ)

[]ܤ)(ߤ) ܲ − ܳܣ[])ܧ݀ܭ[](ߥ). 

It is easy to see that this is equal to 
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ම(ुଶ߮)(ߣ, ,ߤ []ܧ݀(ߥ
[]ܧ݀ܭ(ߣ)

[]ܤ(ߤ) ܲ݀ܧ[](ߥ)

− ම(ुଶ߮)(ߣ, ,ߤ []ܧ݀(ߥ
[]ܧ݀ܭ(ߣ)

[]ܧ݀[]ܣܳ(ߤ)
(ߥ)

= ම ,ߣ)(ଶ߮ु)ߤ ,ߤ []ܧ݀(ߥ
[]ܧ݀ܭ(ߣ)

[]ܧ݀(ߤ)
(ߥ)

− ම ,ߣ)(ଶ߮ु)ߥ ,ߤ []ܧ݀(ߥ
[]ܧ݀ܭ(ߣ)

[]ܧ݀(ߤ)
(ߥ)

= ම(ߤ − ,ߣ)(ଶ߮ु)(ߥ ,ߤ []ܧ݀(ߥ
[]ܧ݀ܭ(ߣ)

[]ܧ݀(ߤ)
 .(ߥ)

The result follows now from the fact that 
lim
→ஶ ܲ = lim

→ஶ
ܳ =  ܫ

in the  strong  operator  topology.      
Theorem (5.1.12)[178]. Let ݉ be a positive integer and let ߮ ∈ ஶଵ

 (ℝ). Then there exist a 
measure space (ܳ, ,and measurable functions ଵ݂ (ߪ . . . , ݂ାଵ on ℝ × ܳ  such that 

(ु߮)(ߣଵ, … , (ାଵߣ = න ଵ݂(ߣଵ, (ݔ ଶ݂(ߣଶ, (ݔ
ொ

⋯ ݂ାଵ(ߣାଵ,  ,(ݔ)ߪ݀(ݔ

the functions ଵ݂(·, ,(ݔ . . . , ݂ାଵ(·, ݔ are operator continuous for almost all (ݔ ∈ ܳ,and 

න ‖ ଵ݂(·, ी(ℝ)‖(ݔ
ொ

⋯ ‖ ݂ାଵ(·, (ݔ)ߪ݀ी(ℝ)‖(ݔ ≤ const‖݂‖ಮభ
 (ℝ). 

Theorem(5.1.13)[178]. Let ݉be a positive integer. Suppose that ܣ is a self-adjoint 
operatorand ܭ is a bounded self-adjoint operator. If ߮ ∈ ஶଵ

 (ℝ) ∩ ஶଵ
ଵ (ℝ), then the 

functionݏ →  has mth derivative that is a bounded operator and (௦ܣ)߮
݀

ݏ݀ ൫߮(ܣ௦)൯ห
௦ୀ

= ݉! න … න∙
ᇣᇧᇤᇧᇥ

ାଵ

(ु߮)(ߣଵ, … , ܭ(ଵߣ)ܧ݀(ାଵߣ …  .(ାଵߣ)ܧ݀ܭ

Section (5.2): Operator Hölder–Zygmund Functions 

It is well known that a Lipschitz function on the real line is not necessarily operator 

Lipschitz, i.e., the condition 

‖f(x) − f(y)‖ ≤ const|x − y|,     x, y ∈ ℝ, 
does not imply that for self-adjoint operators A and B on Hilbert space, 

‖f(x) − f(y)‖ ≤ const‖ݔ −  .‖ݕ
The existence of such functions was proved in [198]. Later in [199] necessary conditions 
were found for a function ݂ to be operator Lipschitz. Those necessary conditions also imply 
that Lipschitz functions do not have to be operator Lipschitz. It was shown in [199] that an 
operator Lipschitz function must belong locally to the Besovspace ଵ

ଵ(ℝ). Note that in [199] 
and [200] a stronger necessary condition was also obtained. 
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It is also well known that a continuously differentiable function does not have to be 
operator differentiable. Moreover, the fact that ݂ is continuously differentiable does not 
imply that for bounded self-adjoint operators ܣ and ܭ the function 

ݐ ⟼ ܣ)݂ +  (ܭݐ
is differentiable. For ݂ to be operator differentiable it must satisfy the same necessary 
conditions [31, 33].(Note that Widom posed in [201] a problem entitled “When are 
differentiable functions differentiable?”.) 
On the other hand it was proved in [199] and [200] that the condition that a function 
belongs to the Besov space ஶଵ

ଵ (ℝ) is sufficient for operator Lipschitzness (as well as for 
operator differentiability). We also mention here [202,203,204-206]and [207] that study 
operator Lipschitz functions. 
Many mathematicians working on such problems in perturbation theory believed that a 
similar situation occurs when considering Hölder classes of order ߙ and operator Hölder 
classes of order 0 ,ߙ < ߙ < 1. In particular, Farforovskaya obtained in [198] the following 
estimate 

(ܣ)݂‖ − ‖(ܤ)݂ ≤ const‖݂‖௸ഀ(ℝ) ൬logଶ
ଶ ܾ − ܽ

ܣ‖ − ‖ܤ + 1൰
ఈ

ܣ‖ − ఈ‖ܤ  

for self-adjoint operators A and B with spectra in [a, b] and for an arbitrary function ݂ in 
ఈ(ℝ),0߉ < ߙ < 1. She also obtained the same inequality for ߙ = 1 and a Lipschitz function ݂ 
(seealso [298]). 
However, we show that the situation changes dramatically if we consider Hölder classes 
ఈ(ℝ) with 0߉ < ߙ < 1. In this case Hölder functions are necessarily operator Hölder, i.e., 
the condition 

(ݔ)݂| − |(ݕ)݂ ≤ const |ݔ − ,ݔ ,ఈ|ݕ ݕ ∈  ℝ,                            (31) 
implies that for self-adjoint operators ܣ and ܤ on Hilbert space, 

(ܣ)݂‖ − ‖(ܤ)݂ ≤ const‖ܣ −  ఈ.                                        (32)‖ܤ
The constant in (32) must depend not only on the constant in (31), but also on ߙ and must 
tend to infinity as the constant in (31) is fixed and α goes to 1. 
Our method gives the following estimate: 

(ܣ)݂‖ − ‖(ܤ)݂ ≤ const(1 − ܣ‖ଵ‖݂‖௸ഀ(ℝ)ି(ߙ − ఈ‖ܤ ,   0 < ߙ < 1,        (33) 
where 

‖݂‖௸ഀ(ℝ) ≝ sup
௫ஷ௬

(ݔ)݂| − |(ݕ)݂
ݔ| − ఈ|ݕ . 

We consider the same problem for the Zygmund class߉ଵ(ℝ), i.e., the problem of whether a 
function ݂ in the Zygmund class ߉ଵ(i.e., f is continuous and satisfies the inequality 

ݔ)݂| + (ݐ − (ݔ)2݂ + ݔ)݂ − |(ݐ ≤ const|ݔ     ,|ݐ, ݐ ∈ ℝ 
 

implies that ݂ is operator Zygmund, i.e., for arbitrary self-adjoint operators ܣ and ܭ , 
ܣ)݂‖ + (ܭ − (ܣ)2݂ + ܣ)݂ − ‖(ܭ ≤ const‖ܭ‖. 
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This problem was posed in [209]. 
We show that the situation is the same as in the case of Hölder classes߉ఈ(ℝ),0 < ߙ < 1. 
Namely we prove that a Zygmund function must necessarily be operator Zygmund. 
We also obtain similar results for the whole scale of Hölder–Zygmundclasses ߉ఈ(ℝ), 0 <
ߙ < ∞, of continuous functions ݂ satisfying 

อ(−1)ି ቀ݉
݇ ቁ



ୀ

ݔ)݂ + อ(ݐ݇ ≤ ݉  ఈ( here|ݐ| − 1 ≤ ߙ < ݉).         

There are many natural equivalent (semi)norms on߉ఈ(ℝ), for example, 

‖݂‖௸ഀ(ℝ) ≝ sup
௫ஷ௬

ఈ|ݐ| อ(−1)ି ቀ݉
݇ ቁ



ୀ

ݔ)݂ + อ(ݐ݇ .                   (34) 

Analogs of these results for unitary operators and for contractions. 
We estimate  ‖݂(ܣ) − ܣ‖  in terms of  ‖(ܤ)݂ −  ,.ఠ , (i.e߉for functions ݂ of class  ‖ܤ
(ݔ)݂| − |(ݕ)݂ ≤ const ߱(|ݔ −  for arbitrary moduli of continuity ߱. In particular, we ((|ݕ
study those moduli of continuity, for which the fact that ݂ ∈  ఠ  implies that߉

(ܣ)݂‖ − ‖(ܤ)݂ ≤ const ߱(‖ݔ −  (‖ݕ
for arbitrary self-adjoint operators ܣ and ܤ . We compare this class of moduli of continuity 
with the class of moduli of continuity ߱, for which the Hilbert transform acts on߉ఠ . 
We study the class of operator continuous functions and for a uniformly continuous 
function ݂ we introduce the operator modulus of continuity ߗ . The material is closely 
related. We construct a universal family {ܣ௧}௧ஹ of self-adjoint operators in the sense that to 
compute ߗfor arbitrary ݂ , it suffices to consider the family {ܣ௧}௧ஹ. 
We compare the operator modulus of continuity with several othermoduli of continuity 
defined in terms of commutators and quasicommutators. 

We obtain norm estimates for finite differences 

(−1)ି ቀ
݉
݆ ቁ



ୀ

ݔ)݂ +  (35)                                           (ܭ݆

where݂ belongs to the class ߉ఠ, that is defined in terms of finite differences and ߱ is a 
modulus of continuity of order ݉. 
We collect necessary information on Besov classes (and in particular, the Hölder– Zygmund 
classes), and spaces ߉ఠand߉ఠ, . We give a brief introduction into double and multiple 
operator integrals. 
In [211] we are going to study the problem of the behavior of functions of operators under 
perturbations of Schatten–von Neumann classࡿ. We are going to study properties of 
functions of perturbed dissipative operators in [236], where we improve results of [212]. 
Finally, we would like mention that Farforovskaya and Nikolskaya have informed us 
recently that they had found another proof of the fact that a Hölder function of order ߙ, 0 <
ߙ < 1, must be operator Hölder of order ߙ. However, their method gives the estimate 



171 
 

(ܣ)݂‖ − ‖(ܤ)݂ ≤ const(1 − ܣ‖ଶ‖݂‖௸ഀ(ℝ)ି(ߙ − ,ఈ‖ܤ 0 < ߙ < 1 
(compare with (33)). 
We are extremely grateful to the referee for his numerous remarks to improve the text. 
The purpose of this point  is gave a brief introduction to the Besov spaces that play an 
important role in problems of perturbation theory. We start with Besov spaces on the unit 
circle. 
Let1 ≤ , ݍ ≤ ∞  and  ݏ ∈ ℝ. The Besov class 

௦ of functions (or distributions) on ॻcan 
bedefined in the following way. Let ݓ be an infinitely differentiable function on ℝsuch that 

ݓ ≥ 0,    supp ݓ ⊂ 
1
2

, 2൨   ,   and   (ݔ)ݓ = 1 − ݓ ቀ
ݔ
2

ቁ for ݔ ∈ [1, 2].        (36) 

Consider the trigonometric polynomials ܹ , and ܹ
#   defined by 

ܹ(ݖ) =  ൬ ݓ
݇

2൰ ݊   ,ݖ ≥ 1, ܹ(ݖ) = ̅ݖ
∈ℤ

+ 1 + ,ݖ and ܹ
(ݖ)# = ܹ(ݖ)തതതതതതതത, ݊ ≥ 1 

Then for each distribution ݂ on ॻ, 

݂ =  ݂ ∗ ܹ
ஹ

+  ݂ ∗ ܹ
#

ஹଵ

. 

The Besov class 
௦ consists of functions (in the case ݏ > 0) or distributions ݂ on ॻsuch 

that 
{‖2௦݂ ∗ ܹ‖ಮ}ஹଵ ∈ ℓand{‖2௦݂ ∗ ܹ

#‖}ஹଵ ∈ ℓ.           (37) 
To define a regularized de la ValléePoussin type kernel ܸ, we define the ܥஶ function ݒ on 
ℝby 

(ݔ)ݒ = 1forݔ ∈ [−1,1]  and (ݔ)ݒ = |ݔ| if (|ݔ|)ݓ ≥ 1,              (38) 
whereݓ is a function described in (36). Then the trigonometric polynomial ܸis defined by 

ܸ(ݖ) =  ݒ ൬
݇

2൰
∈ℤ

,ݖ ݊ ≥ 1. 

Besov classes admit many other descriptions. In particular, for ݏ > 0, the space 


௦ admitsthe following characterization. A function ݂ ∈ ܮ   belongs to 
௦ ݏ , > 0, if and 

only if 

න
‖∆ఛ

݂‖


|1 − ߬|ଵା௦
ॻ

(߬)݀ < ∞   for  ݍ < ∞ 

and 

sup
ఛஷଵ

‖∆ఛ
݂‖

|1 − ߬|௦ < ∞  for  ݍ = ∞,                                     (39) 

where݉ is normalized Lebesgue measure on ॻ, m is an integer greater than ݏ , and  ∆ఛ, ߬ ∈
ॻ, isthe difference operator: 

(∆ఛ݂)(ߞ) = (ߞ߬)݂ − ߞ   ,(ߞ)݂ ∈ ॻ. 
We use the notation 

௦ for 
௦  . 

The spaces ߉ఈ ≝ ஶ
ఈ form the Hölder–Zygmund scale. If 0 < ߙ < 1, then ݂ ∈  ఈ if and onlyif߉
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(ߞ)݂| − ݂(߬)| ≤ const|ߞ − ߬|ఈ ,   ߞ, ߬ ∈ ॻ, 
while݂ ∈  ଵ if and only if f is continuous and߉

(߬ߞ)݂ | − (ߞ)2݂ + |(̅߬ߞ)݂ ≤ const|1 − ,ߞ   ,|߬ ߬ ∈ ॻ. 
By (39), for ߙ > 0, ݂ ∈  ఈ if and only if ݂ is continuous and߉

|(∆ఛ
݂)(ߞ)| ≤ const|ߞ − ߬|ఈ, 

where݉ is a positive integer such that ݉ >  .ߙ
By analogy with (34) we can define the natural (semi)norm on ߉ఈin terms of finite 
differences. Note that the seminorm of a function ݂ in ߉ఈis equivalent to 

ฮ൫݂ − መ݂(0)൯ ∗ ܹฮ
ಮ + sup

ஹଵ
2ఈ (‖݂ ∗ ܹ‖ಮ + ‖݂ ∗ ܹ

#‖ಮ), 

where for a function or a distribution ݂ on ॻ, መ݂(݊) is the nth Fourier coefficient of ݂ . 
We denote by ߣఈ  the closure of the set of trigonometric polynomials in ߉ఈ . It is easy to see 
that f belongs to ߣఈif and only if 

lim
→ஶ

2ఈ ‖݂ ∗ ܹ‖ಮ = lim
→ஶ

2ఈ ‖݂ ∗ ܹ
#‖ಮ = 0. 

If ߙ > 0, this is equivalent to the fact that 

lim
ఛ→ଵ

‖∆ఛ
݂‖ಮ

|1 − ߬|ఈ = 0,   ݉ >  .ߙ

It is well known that the dual space (ߣఈ)∗ can be identified naturally with the Besov 
spaceଵ

ିఈ with respect to the following pairing: 

〈݂, ݃〉 =  መ݂(݊) ො݃(݊)
∈ℤ

 

in the case when ݃ is a trigonometric polynomial. It is also well known that the dual space 
ଵ)

ିఈ)∗can be identified naturally with the space ߉ఈwith respect to the same pairing. 
It is easy to see from the definition of Besov classes that the Rieszprojectionℙା, 

ℙା݂ =  መ݂(݊)ݖ

∈ℤ

, 

is bounded on 
௦ . Functions (or distributions) in ൫

௦ ൯
ା

≝ ℙା
௦ admit a natural 

extensionto analytic functions in the unit disk following description: 
॰. It is well known that the functions in ൫

௦ ൯
ା

 admit the 

݂ ∈ ൫
௦ ൯

ା
  ⇔     න (1 − (ି௦)ିଵ(ݎ

ଵ


ฮ ݂

()ฮ



ݎ݀ < ∞, ݍ < ∞, 

and 
݂ ∈ ൫

௦ ൯
ା

  ⇔     sup
ழழଵ

(1 − ି௦(ݎ ฮ ݂
()ฮ


< ∞, 

where ݂(ߞ) ≝  .ݏ and ݉ is a nonnegative integer greater than (ߞݎ)݂
Let us proceed now to Besov spaces on the real line. We consider homogeneous Besov 
spaces 

௦ (ℝ)of functions (distributions) on ℝ. We use the same function ݓ as in (36) and 
define the functions ܹ and ܹ

#   on ℝ by 
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ℱ ܹ(ݔ) = ݓ ቀ
ݔ

2ቁ ,     ℱ ܹ
(ݔ)# = ℱ ܹ(−ݔ),   ݊ ∈ ℤ, 

whereℱis the Fourier transform: 

(ℱ݂)(ݐ) = න ௫௧ି݁(ݔ)݂

ℝ
݂     ,ݔ݀ ∈  .ଵܮ

With every tempered distribution ݂ ∈ ࣭ᇱ(ℝ) we associate a sequence { ݂}∈ℤ , 
݂ ≝ ݂ ∗ ܹ + ݂ ∗ ܹ

#. 
Initially we define the (homogeneous) Besov class ̇

௦ (ℝ)  as the set of all ݂ ∈ ࣭ᇱ(ℝ)  
suchthat 

{2௦‖ ݂‖}∈ℤ ∈ ℓ(ℤ).                                            (40) 
According to this definition, the space ̇

௦ (ℝ)contains all polynomials. Moreover, the 
distribution ݂ is defined by the sequence { ݂}∈ℤ  uniquely up to a polynomial. It is easy to 
see that theseries ∑ ݂ஹ converges in࣭ᇱ(ℝ). However, the series  ∑ ݂ழ can diverge in 
general. It iseasy to prove that the series ∑ ݂

()
ழ  converges on uniformly ℝfor each 

nonnegative integerݎ > ݏ − ݍ Note that in the case ./1 = 1 the series ∑ ݂
()

ழ converges 
uniformly, whenever ݎ ≥ ݏ −  ./1
Now we can define the modified (homogeneous) Besov class

௦ (ℝ). We say that a 
distribution ݂ belongs to 

௦ (ℝ) if {2௦‖ ݂‖}∈ℤ ∈ ℓ(ℤ) and ݂() = ∑ ݂
()

∈ℤ  in the 
space࣭ᇱ(ℝ),where ݎ is the minimal nonnegative integer such that ݎ > ݏ − ݎ) /1 ≥ ݏ − 1/
ݍ if = 1). Nowthe function ݂ is determined uniquely by the sequence { ݂}∈ℤ  up to a 
polynomial of degree lessthan ݎ , and a polynomial ߮belongs to 

௦ (ℝ) if and only if 
deg ߮ <  . ݎ
We can also define de la ValléePoussin type functions ܸ,݊ ∈ ℤ by 

ℱ ܸ(ݔ) = ݒ ቀ
ݔ

2ቁ, 

whereݒ is a function given by (38). We put ܸ ≝ ܸ. 
We use the same notation ܸ , ܹ  and ܹ

#   for functions on ॻ and on ℝ. This will not lead to 
confusion. For positive ݊ we can easily obtain the function ܸon the circle from the 
corresponding function ܸon the line. It suffices to consider the 2ߨ-periodic function 

1
ߨ2

 ܸ
∈ℤ

ݔ) +  (ߨ2݆

and identify it with a function on ॻ. The same can be done with the functions ܹand ܹ
#. 

Besov spaces 
௦ (ℝ)admit equivalent definitions that are similar to those discussed above 

inthe case of Besov spaces of functions onॻ. In particular, the Hölder–Zygmund 
classes߉ఈ(ℝ) ≝ ஶ 

ఈ (ℝ), ߙ > 0, can be described as the classes of continuous functions ݂ on 
ℝ such that 

|(∆௧
)(ݔ)| ≤ const|ݐ|ఈ,   ݐ ∈ ℝ, 

where the difference operator ∆௧ is defined by 
(∆௧݂)(ݔ) = ݔ)݂ + (ݐ − ݔ    ,(ݔ)݂ ∈ ℝ, 
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and݉ is the integer such that ݉ − 1 ≤ ߙ < ݉. 
As in the case of functions on the unit circle, we can introduce the following equivalent 
semi-norm on ߉ఈ(ℝ) that is equivalent to the seminorm (34): 

sup
∈ℤ

2ఈ (‖݂ ∗ ܹ‖ಮ + ‖݂ ∗ ܹ
#‖ಮ),      ݂ ∈  .ఈ(ℝ)߉

Consider now the classߣఈ(ℝ), which is defined as the closure of the Schwartz class ࣭(ℝ)in 
ߙఈ(ℝ)forߣ ఈ(ℝ). The following result gives a description of߉ > 0. We use the following 
notation: ܥ(ℝ) stands for the space of continuous functions ݂ on ℝsuch 
thatlim|௫|→ஶ ݂(ݔ) = 0. 
Theorem (5.2.1)[197]. Let ߙ > 0 and let ݉ be the integer such that ݉ − 1 ≤ ߙ < ݉. Suppose 
that ݂ ∈  :ఈ(ℝ). The following are equivalent߉
(i) ݂ ∈ λఈ(ℝ); 
(ii) ݂ ∈ ݊ (ℝ)for everyܥ ∈ ℤ and 

lim
||→ஶ

2௦ ‖ ݂‖ಮ = 0; 

(iii) the following equalities hold: 
lim
௧→

ఈି|ݐ| (∆௧
݂)(ݔ) = 0 uniformly in ݔ ∈ ℝ, 

lim
|௧|→

ఈି|ݐ| (∆௧
݂)(ݔ) = 0 uniformly in ݔ ∈ ℝ, 

and 
lim

|௫|→
ఈି|ݐ| (∆௧

݂)(ݔ) = 0 uniformly in ݐ ∈ ℝ\{0}. 

Proof. (ii) ⇒ (i). It follows from the deϐinition of ߉ఈ(ℝ)  in terms of convolutions with 
ܹand ܹ

# that 

lim ะ݂ −  ݂

ே

ୀିே

ะ
௸ഀ(ℝ)

= 0. 

 Thus it suffices to prove that ݂ ∈  ఈ(ℝ). However, this is a consequence of the followingߣ
easily verifiable fact: 

lim
ఌ→

sup
௫∈ℝ

ቚ൫݁ିఌమ௫మ
݂(ݔ)൯

()
− ݂

()(ݔ)ቚ = 0  for all ݆ ≥ 0.          (41) 

Indeed, (41) is obvious if we observe that all derivatives of ݂belong to ܥ(ℝ). 
The implication (i) ⇒ (iii) follows very easily from the fact that (iii) holds for all functions 
in࣭(ℝ) which can easily be established. 
It remains to show that (iii) implies (ii). Consider the function ܳ defined by 

ܳ(ݐ) = (−1)ିଵ


ୀଵ

ቀ݉
݇ ቁ

1
݇ ܸ ൬

ݐ
݇൰ .                                                                       (42) 

It is easy to see that 
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(ݔ)݂ − (݂ ∗ ܳ)(ݔ) = (ݔ)݂ − න ݔ)݂ − (ݐ
ℝ

(−1)ିଵ


ୀଵ

ቀ݉
݇ ቁ

1
݇ ܸ ൬

ݐ
݇൰ ݐ݀

= (ݔ)݂ + න (−1)


ୀଵℝ
ቀ݉

݇ ቁ ݔ)݂ − (ݐ݇ ܸ(ݐ)݀ݐ

= න (∆ି௧
 (ݔ)(݂

ℝ
ܸ(ݐ)݀(43)                                                                                             .ݐ 

Hence, 

2ఈ‖݂ − ݂ ∗ ܳ‖ಮ = sup
௫∈ℝ

2ఈ ቤන (∆ି௧
 (ݔ)(݂

ℝ
ܸ(ݐ)݀ݐቤ = sup

௫∈ℝ
ቤන

൫∆ିଶష௧
 ݂൯(ݔ)
ఈ2ିఈ|ݐ|

ℝ
ቤݐఈ݀|ݐ|(ݐ)ܸ → 0  as |݊|

→ ∞ 
by the Lebesgue dominated convergence theorem. 
Let us observe now that suppℱܳ ⊂ [−2ାଵ, 2ାଵ], and so 

‖݂ − ݂ ∗ ܸ‖ಮ = ‖݂ − ݂ ∗ ܳିଵ − (݂ − ݂ ∗ ܳିଵ) ∗ ܸ‖ಮ

≤ ‖݂ − ݂ ∗ ܳିଵ‖ಮ + ‖(݂ − ݂ ∗ ܳିଵ) ∗ ܸ‖ಮ ≤ const ‖݂ − ݂ ∗ ܳିଵ‖ಮ 
which immediately implies that 

lim
||→ஶ

2௦ ‖ ݂‖ಮ = 0. 

Similarly, we can prove that ݂ − ݂ ∗ ܳ ∈ (ℝ)and ݂ܥ ∈      .(ℝ)ܥ
The dual space (ߣఈ(ℝ))∗to ߣఈ(ℝ) can be identified in a natural way with ଵ

ିఈ(ℝ) with 
respect to the pairing 

〈݂, ݃〉 ≝ lim
ே→ஶ

 න ൫ℱ( ݂)൯(ݐ)
ℝ

ே

ୀିே

(ℱ݂)(ݐ)݀ݐ, ݂ ∈ ,ఈ(ℝ)ߣ ݃ ∈ ଵ
ିఈ(ℝ). 

The dual space (ଵ
ିఈ(ℝ))∗ to ଵ

ିఈ(ℝ) can be identified with ߉ఈ(ℝ) with respect to the  
same pairing. 
We refer to [213] and [214] . 
Lemma(5.2.2)[197]. Let ߙ > 0 and let ܲ be a polynomial whose degree is at most ߙ. Then 
for an arbitrary ߝ > 0 there exists a function ݂ ∈  ఈ(ℝ) with compact support such that߉

݂|[0,1] = ܲ|[0,1]and‖݂‖௸ഀ(ℝ) <  ߝ
Proof. It suffices to consider the case when ܲ(ݔ) = ݊ withݔ ≤ ݊ Assume first that .ߙ <  .ߙ
Let ݃ be an arbitrary function in ߉ఈ(ℝ) with compact support and such that ݃(ݔ) =  ݔ
for ݔ ∈ [0,1]. For ݐ ∈ (0,1), we define the function ݃௧  by 

݃௧(ݔ) =  .(ݔݐ)݃ିݐ
It is easy to see that ݃௧(ݔ) = ݔ   forݔ ∈ [0,1] and 

‖݃௧‖௸ഀ(ℝ) = ఈି‖݃‖௸ഀ(ℝ)ݐ → 0    as ݐ → 0. 
Suppose now that ߙ is an integer and ݊ =  It is well known that the function ℎ defined by .ߙ
ℎ(ݔ) =  (ℝ) with߉ (ℝ). Multiplying it by a suitable function in߉belongs to |ݔ|logݔ
compact support, we obtain a function ݃ ∈ (ݔ)݃ (ℝ) with compact support such that߉ =
ݔ for |ݔ|logݔ ∈ [0,1]. For ݐ ∈ (0,1), we define the function ݃௧by 

݃௧(ݔ) = (ݔݐ)݃ିݐ) − /((ݔ)݃ log  .ݐ
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Then ݃௧(ݔ) = ݔ  forݔ ∈ [0,1] and 
‖݃௧‖௸(ℝ) ≤ 2|log ଵ‖݃‖௸(ℝ)ି|ݐ → 0    as ݐ → 0. 

 Theorem(5.2.3)[197]. Let α > 0. Then for each ε > 0 and each function f ∈ Λ(ℝ)  there 
exists a function g ∈ Λ(ℝ) with compact support such that f(t) = g(t) for t ∈ [0,1] and 

‖g‖ஃಉ ≤ const‖f‖ஃಉ + ε, 
where the constant can depend only on α. 
To prove Theorem (5.2.2), we use the well-known fact that if φand f are functions in 
Λ(ℝ)and φhas compact support, then φf ∈ Λ(ℝ). We refer to [215], Section 4.5.2 for the 
proof. 
Proof .Let ߮be a function in ߉(ℝ) with compact support. We fix a subset∆  of [0,1] that has 
݉ elements, where ݉ is the largest integer such that ݉ ≤ ߙ  + 1. It follows from the closed 
graph theorem that  ‖݂߮‖௸ഀ  ≤ ,߮)ܥ ,ߙ ∆)‖݃‖௸ഀ   for every ݂ ∈   that vanisheson ∆. It߉
remains to observe that an arbitrary function in ߉can be represented as the sum of a 
polynomial of degree at most ߙ and a function ߉vanishing on ∆.     
Let ߱ be a modulus of continuity, i.e., ߱ is a nondecreasing continuous function on 
[0, ∞)such that ߱(0) = 0, (ݔ)߱ > 0for ݔ > 0, and 

ݔ)߱ + (ݕ ≤ (ݔ)߱ + ,ݔ    ,(ݕ)߱ ݕ ∈ [0, ∞). 
We denote by߉ன(ℝ) the space of functions on ℝ such that 

‖݂‖௸ഘ(ℝ) ≝ sup
௫ஷ௬

(ݔ)݂| − |(ݕ)݂
ݔ|)߱ − (|ݕ < ∞. 

We also consider the spaces ߉னof functions on the unit circle and (߉ன)ା of func- tions 
analytic in the unit disc that can be defined in a similar way. 
Theorem (5.2.4)[197]. There exists a constant ܿ > 0 such that for an arbitrary modulus of 
continuity ߱and for an arbitrary function ݂ in߉ன(ℝ), the following inequality holds: 

‖݂ − ݂ ∗ ܸ‖ಮ ≤ ܿ߱(2ି)‖݂‖௸ഘ(ℝ),    ݊ ∈ ℤ.                                  (44) 
Proof. We have 

(ݔ)݂| − (݂ ∗ ܸ)(ݔ)| = 2 ቤන ൫݂(ݔ) − ݔ)݂ − ݕ݀(ݕ2)൯ܸ(ݕ
ℝ

ቤ ≤ 2‖݂‖௸ഘ(ℝ) න (|ݕ|)߱
ℝ

|ܸ(2ݕ)|݀ݕ 

= 2‖݂‖௸ഘ(ℝ) න (|ݕ|)߱
ଶష

ିଶష

|ܸ(2ݕ)|݀ݕ + 2ାଵ‖݂‖௸ഘ(ℝ) න (ݕ)߱
ஶ

ଶష

|ܸ(2ݕ)|݀ݕ. 

Clearly, 

2 න (|ݕ|)߱
ଶష

ିଶష

|ܸ(2ݕ)|݀ݕ ≤ ߱(2ି)‖ܸ‖భ . 

On the other hand, keeping in mind the obvious inequality 2ି ߱(ݕ) ≤ ݕ for (2ି) ߱ݕ2  ≥
2ି,we obtain 

2ାଵ න (ݕ)߱
ஶ

ଶష

|ܸ(2ݕ)|݀ݕ ≤ 4 ∙ 2ଶ߱(2ି) න ݕ
ஶ

ଶష

|ܸ(2ݕ)|݀ݕ  
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                                                                  = 4߱(2ି) න ݕ
ஶ

ଵ

ݕ݀|(ݕ)ܸ| ≤ const ߱(2ି). 

This proves (44).   
Corollary(5.2.5)[197]. There exists ܿ > 0 such that for every modulus of continuity ߱ and 
for every ݂ ∈  :ன(ℝ), the following inequalities hold߉

‖݂ ∗ ܹ‖ಮ ≤ ܿ߱(2ି)‖݂‖௸ഘ(ℝ),    ݊ ∈ ℤ, 
and 

‖݂ ∗ ܹ
#‖ಮ ≤ ܿ߱(2ି)‖݂‖௸ഘ(ℝ),    ݊ ∈ ℤ. 

We proceed now to moduli of continuity of higher order. For a continuous function ݂ on ℝ, 
we define the ݉th modulus of continuity ߱,  of ݂ by 

߱,(ݔ) = sup
{:ஸஸ௫}

‖∆
݂‖ಮ = sup

{:ஸ||ஸ௫}
‖∆

݂‖ಮ ݔ   , > 0. 

The following elementary formula can easily be verified by induction: 

(∆ଶ
 (ݔ)(݂ =  ቀ

݉
݆ ቁ



ୀ

(∆
݂)(ݔ + ݆ℎ).                                  (45) 

It follows from (15) that ߱,(2ݔ) ≤ 2߱,(ݔ), ݔ > 0. 
Suppose now that ߱ is a nondecreasing function on (0, ∞) such that 

lim
௫→

(ݔ)߱ = 0 and   ߱(2ݔ) ≤ 2߱(ݔ)   for  ݔ > 0.                     (46) 

It is easy to see that in this case 
(ݔݐ)߱ ≤ 2ݐ߱(ݔ),   for all  ݔ > 0  and    ݐ > 1.                     (47) 

‖݂‖௸ഘ,(ℝ) ≝ sup
௧வ

‖∆௧
݂‖ಮ

(ݐ)߱
< +∞. 

Theorem(5.2.6)[197]. There exists ܿ > 0 such that for an arbitrary nondecreasing function 
߱ on (0, ∞)satisfying (46) and for an arbitrary function ݂ ∈  ఠ,(ℝ), the following߉
inequality holds: 

‖݂ − ݂ ∗ ܸ‖ಮ ≤ ܿ߱(2ି)‖݂‖௸ഘ,(ℝ),    ݊ ∈ ℤ. 
Proof. Consider the function ܳ defined by (42). Applying formula (43), we obtain 

(ݔ)݂| − (݂ ∗ ܳ)(ݔ)| = ቤන (∆ି௧
 (ݔ)(݂ ܸ(ݐ)݀ݐ

ℝ
ቤ ≤ ‖݂‖௸ഘ,(ℝ) න (|ݐ|)߱

ℝ
| ܸ(ݐ)|݀ݐ. 

It follows from (47) that 

න (|ݐ|)߱
ℝ

| ܸ(ݐ)|݀ݐ = න (|ݐ|)߱
ଶష

ିଶష

| ܸ(ݐ)|݀ݐ + 2ାଵ න (ݐ)߱
ஶ

ଶష

|ܸ(2ݐ)|݀ݐ

≤ ‖ ܸ‖భ߱(2ି) + 2ାଵ ∙ 2(ାଵ)߱(2ି) න ݐ

ஶ

ଶష

|ܸ(2ݐ)|݀ݐ

= ‖ܸ‖భ ߱(2ି) + 2ାଵ߱(2ି) න ݐ

ஶ

ଵ

ݐ݀|(ݐ)ܸ| ≤ const߱(2ି). 
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Summarizing the above estimates, we obtain 
‖݂ − ݂ ∗ ܳ‖ಮ ≤ const ߱(2ି)‖݂‖௸ഘ,(ℝ) 

As in the proof of Theorem 2.1, we have 
‖݂ − ݂ ∗ ܸ‖ಮ = ‖݂ − ݂ ∗ ܳିଵ − (݂ − ݂ ∗ ܳିଵ) ∗ ܸ‖ಮ

≤ ‖݂ − ݂ ∗ ܳିଵ‖ಮ + ‖(݂ − ݂ ∗ ܳିଵ) ∗ ܸ‖ಮ ≤ const‖݂ − ݂ ∗ ܳିଵ‖ಮ

≤ const ߱(2ି)‖݂‖௸ഘ,(ℝ). 
Corollary(5.2.7)[197]. Let ݉be a positive integer. Then there exists a positive number ܿ 
such that for every ߱ satisfying (46) and for every ݂ ∈  ఠ,(ℝ), the following inequalities߉
hold: 

‖݂ ∗ ܹ‖ಮ ≤ ܿ߱(2ି)‖݂‖௸ഘ(ℝ),   ݊ ∈ ℤ,  
and 

‖݂ ∗ ܹ
#‖ಮ ≤ ܿ߱(2ି)‖݂‖௸ഘ(ℝ),   ݊ ∈ ℤ. 

As in the case ݉ = 1, a similar result holds for the space ߉ఠ, of functions on the unitcircle, 
which consists of continuous ݂ functions such that 

‖݂‖௸ഘ, ≝ sup
ఛஷଵ

|(∆ఛ
݂)(ߞ)|

߱(|1 − ߬|)
< ∞. 

Again, identifying a function ݂ in ߉ఠ, with a 2ߨ-periodic function on ℝ, we can see that 
‖݂ − ݂ ∗ ܸ‖ಮ ≤ const ߱(2ି)‖݂‖௸ഘ, ,   ݊ > 0. 

We give a brief introduction in the theory of double operator integrals developed by 
Birman and Solomyak in [9,10] and [218], see also their survey [219]. 
Let (ࣲ, ,ࣳ) ଵ) andܧ  ଶ on Hilbert spacesܧ ଵandܧ ଶ) be spaces with spectral measuresܧ
ℋଵandℋଶ. Let us first define double operator integrals 

න න Φ(ݔ, (ݕ)ଶܧ݀ܳ(ݔ)ଵܧ(ݕ
ࣲࣳ

,                                                   (48) 

for bounded measurable functions Φ and operators ܳ: ℋଶ → ℋଵ  of Hilbert–Schmidt class 
 whose values are orthogonal projections on the Hilbert ܨ ଶ.Consider the set functionࡿ
spaceࡿଶ(ℋଶ, ℋଵ) of Hilbert–Schmidt operators from ℋଶtoℋଵ, which is defined on 
measurable rectangles by 

ଵ∆)ܨ × ∆ଶ)ܳ = ܳ        ,ଶ(∆ଵ)ܧܳଵ(∆ଵ)ܧ ∈ ,ଶ(ℋଶࡿ ℋଵ), 
∆ଵand∆ଶ being measurable subsets of ࣲand ࣳ. Note that left multiplication by ܧଵ(∆ଵ) obvi- 
ously commutes with right multiplication byܧଶ(∆ଵ). 
It was shown in [237] that ܨextends to a spectral measure on ࣲ × ࣳ . If Φ is a bounded 
measurable function on ࣲ × ࣳ, we define 

න න Φ(ݔ, (ݕ)ଶܧ݀ܳ(ݔ)ଵܧ(ݕ
ࣲࣳ

= ቌ න Φ݀ܨ
 ࣲ×ࣳ

ቍ ܳ. 

Clearly, 
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ብන න Φ(ݔ, (ݕ)ଶܧ݀ܳ(ݔ)ଵܧ(ݕ
ࣲࣳ

ብ
మࡿ

≤ ‖Φ‖ಮ మࡿ‖ܳ‖ . 

    If the transformer 

ܳ ⟼ න න Φ(ݔ, (ݕ)ଶܧ݀ܳ(ݔ)ଵܧ(ݕ
ࣲࣳ

 

maps the trace class ࡿଵinto itself, we say that Φ is a Schur multiplier of ࡿଵassociated with 
the spectral measures ܧଵ  and ܧଶ. In this case the transformer 

ܳ ⟼ න න Φ(ݔ, (ݕ)ଶܧ݀ܳ(ݔ)ଵܧ(ݕ
ࣲࣳ

,     ܳ ∈ ,ଶ(ℋଶࡿ ℋଵ),            (49) 

extends by duality to a bounded linear transformer on the space of bounded linear 
operators fromℋଵto ℋଶ and we say that the function ߖ on ࣲ × ࣳ  defined by 

,ݔ)ߖ (ݕ = Φ(ݔ,  (ݕ
is a Schur multiplier of the space of bounded linear operators associated with ܧଶand ܧଵ. We 
denote the space of such Schur multipliers by ै(ܧଶ,  .(ଵܧ
To state a very important formula by Birman and Solomyak, we consider for a continuously 
differential function ݂ on ℝ, the divided difference ु݂ , 

,ݔ)(݂ु) (ݕ ≝
(ݔ)݂ − (ݕ)݂

ݔ − ݕ
ݔ   , ≠ ,ݔ)(݂ु)     ,ݕ (ݔ ≝ ݂ ᇱ(ݔ), ,ݔ ݕ ∈ ℝ. 

Birman in Solomyak proved in [218] that if ܣ is a self-adjoint operator (not necessarily 
bounded),ܭ is a bounded self-adjoint operator, and ݂ is a continuously differentiable 
function on ℝsuch that ु݂ ∈ ,ାܧ)ै   ), thenܧ

ܣ)݂ + (ܭ − (ܣ)݂ = ඵ(ु݂)(ݔ, (ݕ
ℝ×ℝ

 (50)                 (ݕ)ܧ݀ܭ(ݔ)ାܧ݀

and 
ܣ)݂‖ + (ܭ − ‖(ܣ)݂ ≤ const‖ु݂‖ै‖ܭ‖, 

where‖ु݂‖ै is the norm of ु݂in ै(ܧା,  .(ܧ
A similar formula and similar results also hold for unitary operators, in which case we have 
tointegrate the divided difference ु݂of a function ݂ on the unit circle with respect to the 
spectral measures of the corresponding operator integrals. 
It is easy to see that if a function Φ on ࣲ × ࣳ belongs to the projective tensor 
productܮஶ(ܧଵ) ⊗  i.e., Φ admits a representation) (ଶܧ)ஶܮ and (ଵܧ)ஶܮ of (ଶܧ)ஶܮ
 

Φ(ݔ, (ݕ =  ߮(ݔ)߰(ݕ)
ஹ

,                                                (51) 

where ߮ ∈ ߰ ,(ଵܧ)ஶܮ ∈  and ,(ଶܧ)ஶܮ

‖߮‖ಮ‖߰‖ಮ

ஹ

< ∞,                                            (52) 

then Φ ∈ ,ଵܧ)ै   .ଶ), i.e., Φ is a Schur multiplier of the space of bounded linear operatorsܧ
Forsuch functions Φ we have 
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න න Φ(ݔ, (ݕ)ଶܧ݀ܳ(ݔ)ଵܧ(ݕ
ࣲࣳ

=  ቆන ߮݀ܧଵ
ࣲ

ቇ
ஹ

ܳ ቆන ߰݀ܧଶ
ࣳ

ቇ. 

Note  that  if  Φ  belongs to  the  projective tensor  product  ܮஶ(ܧଵ) ⊗   its  norm  ,(ଶܧ)ஶܮ
inܮஶ(ܧଵ) ⊗  is, by definition, the infimum of the left-hand side of (52) over all (ଶܧ)ஶܮ
representations (51). 
More generally, Φ is a Schur multiplier if Φ belongs to the integral projective tensor 
productܮஶ(ܧଵ) ⊗  i.e., Φ admits a representation ,(ଶܧ)ஶܮand (ଵܧ)ஶܮ of (ଶܧ)ஶܮ

Φ(ݔ, (ݕ = න ,ݔ)߮ ,ݕ)߰(߱ (߱)ߪ݀(߱
ఆ

, 

where(ߗ, ࣲ finite measure space, ߮is a measurable function on-ߪ is a (ߪ ×  is a ߰ , ߗ
measurable function on ࣳ ×  and ,ߗ

න ‖߮(∙, ߱)‖ಮ(ாభ)‖߰(∙, ߱)‖ಮ(ாమ)݀ߪ(߱)
ఆ

< ∞. 

If Φ ∈ (ଵܧ)ஶܮ ⊗  then ,(ଶܧ)ஶܮ

ඵ Φ(ݔ, (ݕ)ଶܧ݀ܳ(ݔ)ଵܧ(ݕ
ࣲ×ࣳ

= න ቌන ,ݔ)߮ (ݔ)ଵܧ݀(߱
ࣲ

ቍ
ఆ

ܳ ቌන ,ݕ)߰ (ݕ)ଶܧ݀(߱
ࣳ

ቍ  (53)         .(߱)ߪ݀

Clearly, the function 

߱ ⟼ ቌන ,ݔ)߮ (ݔ)ଵܧ݀(߱
ࣲ

ቍ ܳ ቌන ,ݕ)߰ (ݕ)ଶܧ݀(߱
ࣳ

ቍ 

is weakly measurable and 

න ቯቌන ,ݔ)߮ (ݔ)ଵܧ݀(߱
ࣲ

ቍ ܳ ቌන ,ݕ)߰ (ݕ)ଶܧ݀(߱
ࣳ

ቍቯ
ఆ

(߱)ߪ݀ < ∞. 

      It turns out that all Schur multipliers of the space of bounded linear operators can be 
obtained in this way (see [199]). 
In connection with the Birman–Solomyak formula, it is important to obtain sharp estimates 
of divided differences in integral projective tensor products of ܮஶ spaces. It was shown in 
[199]that if ݂ is a trigonometric polynomial of degree ݀ , then 

‖ु݂‖(ॻ)⨂ (ॻ) ≤ const ݀‖݂‖ಮ .(54) 
On the other hand, it was shown in [200] that if f is a bounded function on ℝ whose 
Fouriertransform is supported on [−ߪ,  in other words, ݂ is an entire function of) [ߪ
exponential type at most ߪ that is bounded on ℝ), then ु݂ ∈ ஶܮ ⊗  ஶandܮ

‖ु݂‖ಮ⊗ಮ ≤ const ߪ‖݂‖ಮ(ℝ).(55) 
Note that inequalities (54) and (55) were proved in [199] and [200] under the assumption 
that the Fourier transform of ݂ is supported on ℤା (orℝା); however it is very easy to 
deduce the general results from those partial cases. 
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Inequalities (54) and (55) led in [199] and [200] to the fact that functions in ஶଵ
ଵ and 

ஶଵ
ଵ (ℝ)are operator Lipschitz. 

It was observed in [200] that it follows from (50) and (55) that if ݂ is an entire function of 
exponential type at most ߪ that is bounded on ℝ, and ܣ and ܤ are self-adjoint operators 
withbounded ܣ −  then , ܤ

(ܣ)݂‖ − ‖(ܤ)݂ ≤ const ߪ‖݂‖ಮ‖ܣ −  .‖ܤ
Actually, it turns out that the last inequality holds with constant equal to 1. This will be 
proved in [220]. 
The approach by Birman and Solomyak to double operator integrals does not generalize to 
the case of multiple operator integrals. However, formula (53) suggests an approach to 
multiple operator integrals that is based on integral projective tensor products. This 
approach was given in [221]. 
To simplify the notation, we consider here the case of triple operator integrals; the case of 
arbitrary multiple operator integrals can be treated in the same way. 
Let (ࣲ, ,ࣳ) ,(ଵܧ ,ࣴ) ଶ), andܧ  ଷ  onHilbertܧ ଶ , andܧ ,ଵܧ ଷ) be spaces with spectral measuresܧ
spaces ℋଵ, ℋଶ, and ℋଷ. Suppose that Φ belongs to the integral projective tensor 
productܮஶ(ܧଵ) ⊗ (ଶܧ)ஶܮ ⊗  i.e., Φ admits a representation ,(ଷܧ)ஶܮ

Φ(ݔ, ,ݕ (ݖ = න ,ݔ)߮ ,ݕ)߰(߱ ,ݖ)߯(߱ (߱)ߪ݀(߱
ఆ

,                              (56) 

where(ߗ, ߯ is a σ -finite measure space, ߮is a measurable function on (ߪ ×  is a ߰ , ߗ
measurable function on ࣳ × ࣴ is a measurable function on ߯ , ߗ ×  and , ߗ

න‖߮(∙, ߱)‖ಮ(ாభ)‖߰(∙, ߱)‖ಮ(ி)‖߯(∙, ߱)‖ಮ(ீ)݀ߪ(߱)
ఆ

< ∞. 

Suppose now that ଵܶ is a bounded linear operator from ℋଶto ℋଵ and ଶܶis a bounded linear 
operator from ℋଷtoℋଶ. For a function Φ in ܮஶ(ܧଵ) ⊗ (ଶܧ)ஶܮ ⊗  ,of the form (56) (ଷܧ)ஶܮ
we put 

න න න Φ(ݔ, ,ݕ (ݔ)ଵܧ݀(ݖ ଵܶ݀ܧଶ(ݕ) ଶܶ݀ܧଷ(ݖ)
ࣲࣴࣳ

 

≝ න ቌන ,ݔ)߮ ߱)
ࣲ

ቍ(ݔ)ଵܧ݀
ஐ

ଵܶ ൮න ,ݕ)߰ ߱)
ࣳ

൲(ݕ)ଶܧ݀ ଶܶ ቌන ,ݖ)߯ ߱)
ࣴ

ቍ(ݖ)ଷܧ݀  (57)                  (߱)ߪ݀

It was shown in [221] (see also [222] for a different proof) that the above definition does 
not depend on the choice of a representation (56). 
It is easy to see that the following inequality holds 

ቯන න න Φ(ݔ, ,ݕ (ݔ)ଵܧ݀(ݖ ଵܶ݀ܧଶ(ݕ) ଶܶ݀ܧଷ(ݖ)
ࣲࣴࣳ

ቯ ≤ ‖Φ‖ಮ⊗ಮ⊗ಮ ∙ ‖ ଵܶ‖ ∙ ‖ ଶܶ‖. 
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In particular, the triple operator integral on the left-hand side of (57) can be defined if 
Φbelongs to the projective tensorproductܮஶ(ܧଵ) ⊗ (ଶܧ)ஶܮ ⊗  i.e., Φ admits a(ଷܧ)ஶܮ
representation 

Φ(ݔ, ,ݕ (ݖ =  ߮(ݔ)߰(ݕ)߯(ݖ)
ஹଵ

, 

where ߮ ∈ ߰ ,(ଵܧ)ஶܮ ∈ ߯,(ଶܧ)ஶܮ ∈  and (ଷܧ)ஶܮ

‖߮‖ಮ(ாభ)‖߰‖ಮ(ாమ)‖߯‖ಮ(ாయ)
ஹଵ

< ∞. 

In a similar way one can define multiple operator integrals, see [221]. 
Recall that multiple operator integrals were considered earlier in [223] and [224]. 
However, in those papers the class of functions Φ for which the left-hand side of (57) was 
defined is much narrower than in the definition given above. 
Multiple operator integrals are used in [221] in connection with the problem of evaluating 
higher order operator derivatives. To obtain formulae for higher operator derivatives, one 
has to integrate divided differences of higher orders (see [221]). 
We are going to integrate divided differences of higher orders to estimate the norms of 
higher order differences (35). 
For a function ݂ on the circle the divided differences ुof order ݇ are defined inductivelyas 
follows: 

ु݂ ≝ ݂; 
if ݇ ≥ 1, then in the case when ߣଵ, ,ଶߣ . . . ,  ,ାଵ  are distinct points in ॻߣ

(ु݂)(ߣଵ, ,ଶߣ . . . , (ାଵߣ ≝
(ुିଵ݂)(ߣଵ, . . . , ,ିଵߣ (ߣ − (ुିଵ݂)(ߣଵ, . . . , ,ିଵߣ (ାଵߣ

ߣ − ାଵߣ
 

(the definition does not depend on the order of the variables). Clearly, 
ु݂ = ुଵ݂; 

If  ݂ ∈   (ॻ),  then  ु݂ extends  by  continuity to  a  function  defined for  all  pointsܥ
,ଵߣ ,ଶߣ . . . ,  .ାଵߣ
It can be shown that 

(ु݂)(ߣଵ, ,ଶߣ . . . , (ାଵߣ =  (ߣ)݂
ାଵ

ୀଵ

ෑ(ߣ − )ିଵߣ
ିଵ

ୀ

ෑ ߣ) − )ିଵߣ
ାଵ

ୀାଵ

. 

Similarly, one can define the divided difference of order ݇ for functions on the real line. It 
was shown in [221] that if ݂ is a trigonometric polynomial of degree ݀, then 

‖ु݂‖(ॻ)⨂ ⋯⨂ (ॻ) ≤ const ݀‖݂‖ಮ .                              (58) 
If f is an entire function of exponential type at most ߪ that is bounded on ℝ, then 

‖ु݂‖ಮ⨂ ⋯⨂ ಮ ≤ const ݀‖݂‖ಮ(ℝ).                               (59) 
In [225] Haagerup tensor products were used to define multiple operator integrals. 
However, it is not clear whether this can lead to stronger results in perturbation theory. 
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Let ℋbe a Hilbert space and let (ࣲ, ी) be a measurable space. A map ℰfrom ीto the algebra 
ℬ(ℋ) of all bounded operators on ℋis called a semi-spectral measure if 

ℰ(∆) ≥  ,   ∆∈ ी, 
ℰ(∅) = andℰ(ࣲ) =  ,ܫ

and for a sequence {∆}ஹଵ of disjoint sets in ी, 

ℰ ቌራ ∆

ஶ

ୀଵ

ቍ = lim
ே→ஶ

ℰ(∆) in the weak operator topology. 

If ࣥis a Hilbert space, (ࣲ, ी) is a measurable space, ܧ: ी → ℬ(ࣥ) is a spectral measure, and 
ℋis a subspace of ࣥ, then it is easy to see that the map ℰ: ी → ℬ(ℋ) defined by 

ℰ(∆) = ℋܲܧ(∆)|ℋ,   ∆∈ ी,                                                    (60) 
is a semi-spectral measure. Here ℋܲstands for the orthogonal projection onto ℋ. 
Naimark proved in [226] that all semi-spectral measures can be obtained in this way, i.e., 
asemi-spectral measure is always a compression of a spectral measure. A spectral measure 
 .satisfying (60) is called a spectral dilation of the semi-spectral measure ℰܧ
A spectral dilation ܧ of a semi-spectral measure ℰis called minimal if 

ࣥ = clos span {ܧ(∆)ℋ: ∆∈ ी}. 
It was shown in [227] that if ܧ is a minimal spectral dilation of a semi-spectral measure ℰ, 
then ܧ and ℰare mutually absolutely continuous and all minimal spectral dilations of a 
semi-spectral measure are isomorphic in the natural sense. 
If ߮ is a bounded complex-valued measurable function onࣲ and ℰ: ी → ℬ(ℋ)is a 
semispectral measure, then the integral 

න (ݔ)ℰ݀(ݔ)߮
ࣲ

                                                        (61) 

can be defined as 
 

න (ݔ)ℰ݀(ݔ)߮
ࣲ

= ℋܲ ቌන (ݔ)ܧ݀(ݔ)߮
ࣲ

ቍቮ ℋ,                               (62) 

whereܧ is a spectral dilation of ℰ. It is easy to see that the right-hand side of (62) does not 
depend on the choice of a spectral dilation. The integral (61) can also be computed as the 
limit of sums 

 ఈݔ     ,ℰ(∆ఈ)(ఈݔ)߮   ∈ ∆ఈ  , 

over all finite measurable partitions {∆ఈ}ఈ   of ࣲ . 
If ܶ is a contraction on a Hilbert space ℋ, then by the Sz.-Nagy dilation theorem (see 
[228]),ܶ has a unitary dilation, i.e., there exist a Hilbert space ࣥsuch that ℋ ⊂ ࣥ and a 
unitary operatorܷ on ࣥsuch that 

ܶ = ℋܷܲ|ℋ,     ݊ ≥ 0,(63) 
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where ℋܲis the orthogonal projection onto ℋ. Let ܧ  be the spectral measure of ܷ . 
Consider the operator set function ℰdefined on the Borel subsets of the unit circle ॻ by 

ℰ(∆) = ℋܲܧ(∆)|ℋ,     ∆⊂ ॻ. 
Then ℰis a semi-spectral measure. It follows immediately from (63) that 

ܶ = න (ߞ)݀ℰߞ
ॻ

= ℋܲ නߞܧ(ߞ)|ℋ
ॻ

,      ݊ ≥ 0.                     (64) 

Such a semi-spectral measure ℰis called a semi-spectral measure of ܶ . Note that it is not 
unique. To have uniqueness, we can consider a minimal unitary dilation ܷ of ܶ , which is 
unique up to an isomorphism (see [228]). 
It follows easily from (64) that 

݂(ܶ) = ℋܲ න݂(ߞ)ܧ(ߞ)|ℋ
ॻ

 

for an arbitrary function ߮in the disk-algebra ܥ . 
In [129] and [230] double operator integrals and multiple operator integrals with respect 
to semi- spectral measures were introduced. 
Suppose that (ࣲ, ीଵ) and (ࣳ, ीଶ) are measurable spaces, and ℰଵ: ीଵ → ℬ(ℋଵ) and ℰଶ: ीଶ →
ℬ(ℋଶ) are semi-spectral measures. Then double operator integrals 

ඵ Φ(ݔ, (ݕ)ℰଶ݀ܳ(ݔ)ℰଵ݀(ݕ
ࣲ×ࣳ

 

were defined in [230] in the case when ܳ ∈  .ଶ  and Φ is a bounded measurable functionࡿ
Doubleoperator integrals were also defined in [230] in the case when ܳ is a bounded linear 
operator andΦ belongs to the integral projective tensor product of the spaces ܮஶ(ℰଵ) and 
 .ஶ(ℰଶ)ܮ
In particular, the following analog of the Birman–Solomyak formula holds: 

݂(ܴ) − ݂(ܶ) = ඵ(ु݂)(ߞ , ߬)݀ℰோ(ߞ)(ܴ − ܶ)݀ℰ்(߬)
ॻ×ॻ

(65) 

Here ܶ and ܴ contractions on Hilbert space, ℰ்and ℰோ are their semi-spectral measures, and 
݂is an analytic function in ुof class (ஶଵ

ଵ )ା 
Similarly, multiple operator integrals with respect to semi-spectral measures were 
definedin [230] for functions that belong to the integral projective tensor product of the 
correspondingܮஶ spaces. 
We also mention here [231], in which another approach is used to study perturbations of 
functions of contractions. 
We show that Hölder functions on ℝ of order α, 0 <α < 1, must also be operator Hölder of 
order ߙ. We also obtain similar results for all Hölder–Zygmund classes߉ఈ(ℝ),0 < ߙ < ∞. 
For simplicity, we give complete proofs in the case of bounded self-adjoint operatorsand 
explain without details that similar inequalities also hold for unbounded self-adjoint 
operators. We are going to give a detailed treatment of the case of unbounded operators in 
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[220]. In the case of first order differences, the corresponding estimates for unbounded 
operators also follow from Theorem (5.2.37). 
If ܣ and ܤ are self-adjoint operators, we say that the operator ܣ − ܤ is bounded if ܤ = ܣ +
 In particular, this implies that the domains of .ܭ for some bounded self-adjoint operator ܭ
ܣ‖  coincide. We say that ܤ and ܣ − ‖ܤ = ∞  if there is no such a bounded operator ܭ 
that ܤ = ܣ +  . ܭ
Theorem(5.2.8)[197].Let 0 < ߙ < 1. Then there is a constant ܿ > 0 such that for every ݂ ∈
 on Hilbert space the following ܤ and ܣ ఈ(ℝ) and for arbitrary self-adjoint operators߉
inequality holds: 

(ܣ)݂‖ − ‖(ܤ)݂ ≤ ܿ‖݂‖௸ഀ(ℝ) · ܣ ‖ −  .ఈ‖ܤ
Proof. If ܣ and ܤ  are bounded operators, it follows from Theorem 2.2 that we may assume 
that ݂ ∈ (ܣ)݂‖  ஶ(ℝ)  and we have to obtain an estimate forܮ −  that does not  ‖(ܤ)݂
dependon  ‖݂‖ಮ . 
Put 

݂ = ݂ ∗ ܹ + ݂ ∗ ܹ
#. 

Let us show that 

(ܣ)݂ − (ܤ)݂ =  ൫ ݂(ܣ) − ݂(ܤ)൯
ஶ

ୀିஶ

                                                         (66) 

and the series on the right converges absolutely in the operator norm. 
For ܰ ∈ ℤ, we put 

݃ே = ݂ ∗ ேܸ  
Clearly, 

݂ = ݂ ∗ ேܸ +  ݂
வே

 

and the series on the right converges absolutely in the ܮஶ norm. Thus 

(ܣ)݂ = (݂ ∗ ேܸ)(ܣ) +  ݂(ܣ)
வே

and   ݂(ܤ) = (݂ ∗ ேܸ)(ܤ) +  ݂(ܤ)
வே

 

and the series converge absolutely in the operator norm. We have 

(ܣ)݂ − (ܤ)݂ −  ( ݂(ܣ) − ݂(ܤ))
வே

= ൭݂(ܣ) −  ݂(ܣ)
வே

൱ − ൭݂(ܤ) −  ݂(ܤ)
வே

൱

= ݃ே(ܣ) − ݃ே(ܤ). 
Since ݃ே ∈  ஶ(ℝ)  and ݃ே  is an entire function of exponential type at most 2ேାଵ , it followsܮ
from (50) and (55) that 
‖݃ே(ܣ) − ݃ே(ܤ)‖ ≤ const2ே‖݂ ∗ ேܸ‖ಮ‖ܣ −  ‖ܤ

≤ const2ே‖݂‖ಮ‖ܣ − ‖ܤ → 0 
as ܰ → −∞. This proves (66). 
Let now ܰ be the integer such that 

2ିே  < ܣ‖ − ‖ܤ ≤ 2ିே ାଵ.                                                (67) 
We have 
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(ܣ)݂ − (ܤ)݂ − ( ݂(ܣ) − ݂(ܤ))
ஸே

+  ( ݂(ܣ) − ݂(ܤ))
வே

. 

It follows from Corollary(5.2.5) and from (67) that 

ะ( ݂(ܣ) − ݂(ܤ))
ஸே

ะ + ‖ ݂(ܣ) − ݂(ܤ)‖
ஸே

≤ const  2

ஸே

‖݂‖ಮ ܣ‖ −  ‖ܤ

 

                      ≤ const  22ିఈ

ஸே

‖݂‖௸ഀ(ℝ)‖ܣ − ‖ܤ ≤ const2ே(ଵିఈ)‖݂‖௸ഀ(ℝ)‖ܣ − ‖ܤ

≤ ‖݂‖௸ഀ(ℝ)‖ܣ − ఈ‖ܤ . 
On the other hand, 

ะ ( ݂(ܣ) − ݂(ܤ))
வே

ะ +  (‖ ݂(ܣ)‖ + ‖ ݂(ܤ)‖)
வே

≤ 2  ‖݂‖ಮ

வே

≤ const  2ିேఈ

ஸே

‖݂‖௸ഀ(ℝ)

≤ const 2ିேఈ‖݂‖௸ഀ(ℝ) ≤ const‖݂‖௸ഀ(ℝ)‖ܣ − ఈ‖ܤ  
by(67). This completes the proof in the case of bounded self-adjoint operators. 
In the case of unbounded self-adjoint operators the same reasoning holds if by ݂(ܣ) −
 we understand the series(ܤ)݂

( ݂(ܣ) − ݂(ܤ))
∈ℤ

. 

which converges absolutely.    
Note that. (i)The proof of Theorem(5.2.8) allows us to obtain the following estimate 

(ܣ)݂ ‖ − ‖(ܤ)݂ ≤  const(1 −)ିଵ‖݂‖௸ഀ(ℝ)‖ܣ − ఈ ,   0‖ܤ < ߙ < 1. 
We do not know whether this estimate can be improved. 
(ii)Birman, Koplienko, and Solomyak obtained in [232] the following result: ifܣ and ܤ are 
positive self-adjoint operators and 0 < ߙ < 1, then 

ఈܣ‖ − ‖ఈܤ ≤ ܣ‖ −  .ఈ‖ܤ
It follows from Theorem(5.2.8) that under the same assumptions 

ఈܣ‖ − ‖ఈܤ ≤ const ‖ܣ − ఈ‖ܤ . 
Indeed, it suffices to apply Theorem(5.2.8) to the operators ܣ, ݂ and the function  ܤ ∈
(ݐ)݂ ఈ(ℝ)defined by߉ = ఈ|ݐ| ݐ, ∈ ℝ. 
We state the result for arbitrary Hölder–Zygmund classes߉ఈ(ℝ). 
Lemma (5.2.9)[197]. Let ݉ be a positive integer and let ݂ be a bounded function of class 
ஶଵ

 (ℝ). If ܣand ܭ are self-adjoint operators on Hilbert space, then 

(−1)ି ቀ
݉
݆ ቁ ܣ)݂ + (ܭ݆



ୀ

= ݉! න ⋯ න∙
ᇣᇧᇤᇧᇥ

ାଵ

,ଵݔ)(݂ु) … , ܭ(ଶݔ)ାܧ݀ܭ(ଵݔ)ܧ݀(ାଵݔ ⋯  .(ାଵݔ)ାܧ݀ܭ

Proof. In the case ݉ = 2 we have to establish the following formula for ∈ ஶଵ
ଶ (ℝ): 
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ܣ)݂ + (ܭ − (ܣ)2݂ + ܣ)݂ − (ܭ = 2 ම(ुଶ݂)(ݔ, ,ݕ  .(ݖ)ିܧ݀ܭ(ݕ)ܧ݀ܭ(ݔ)ାܧ݀(ݖ

Put ܶ = ܣ)݂ + (ܭ − (ܣ)2݂ + ܣ)݂ −  ,By (50) .(ܭ
     ܶ = ܣ)݂ + (ܭ − (ܣ)݂ − ൫݂(ܣ) − ܣ)݂ −  ൯(ܭ

= ඵ(ु݂)(ݔ, (ݕ)ܧ݀ܭ(ݔ)ାܧ݀(ݕ − ඵ(ु݂)(ݔ,  (ݕ)ିܧ݀ܭ(ݔ)ܧ݀(ݕ

= ඵ(ु݂)(ݔ, (ݕ)ܧ݀ܭ(ݔ)ାܧ݀(ݕ − ඵ(ु݂)(ݔ,  (ݕ)ିܧ݀ܭ(ݔ)ାܧ݀(ݕ

+ ඵ(ु݂)(ݔ, (ݕ)ିܧ݀ܭ(ݔ)ାܧ݀(ݕ − ඵ(ु݂)(ݔ,  .(ݕ)ିܧ݀ܭ(ݔ)ܧ݀(ݕ

We have 

ඵ(ु݂) ,ݔ) (ݕ)ܧ݀ܭ(ݔ)ାܧ݀(ݕ − ඵ(ु݂) ,ݔ) (ݕ)ିܧ݀ܭ(ݔ)ାܧ݀(ݕ

= ඵ(ु݂) ,ݔ) (ݕ)ܧ݀ܭ(ݔ)ାܧ݀(ݕ − ඵ(ु݂) ,ݔ) (ݖ)ିܧ݀ܭ(ݔ)ାܧ݀(ݖ

= ම(ु݂)(ݔ, (ݖ)ିܧ݀(ݕ)ܧ݀ܭ(ݔ)ାܧ݀(ݕ

− ම(ु݂)(ݔ, (ݖ)ିܧ݀(ݕ)ܧ݀ܭ(ݔ)ାܧ݀(ݖ

= ම(ݕ − ,ݔ)(ଶ݂ु)(ݖ ,ݕ (ݖ)ିܧ݀(ݕ)ܧ݀ܭ(ݔ)ାܧ݀(ݖ

= ම(ुଶ݂)(ݔ, ,ݕ  .(ݖ)ିܧ݀ܭ(ݕ)ܧ݀ܭ(ݔ)ାܧ݀(ݖ

Similarly, 

ඵ(ु݂) ,ݔ) (ݕ)ିܧ݀ܭ(ݔ)ାܧ݀(ݕ − ඵ(ु݂) ,ݔ)  (ݕ)ିܧ݀ܭ(ݔ)ܧ݀(ݕ

= ම(ुଶ݂)(ݔ, ,ݕ  .(ݖ)ିܧ݀ܭ(ݕ)ܧ݀ܭ(ݔ)ାܧ݀(ݖ

Thus 
ܶ = 2 ∭(ुଶ݂)(ݔ, ,ݕ   .(ݖ)ିܧ݀ܭ(ݕ)ܧ݀ܭ(ݔ)ାܧ݀(ݖ
Theorem(5.2.10)[197]. Let 0 < ߙ < ݉ and let ݂ ∈ ܿ ఈ(ℝ). Then there exists a constant߉ > 0 
such that for every self-adjoint operators ܣ and ܭ on Hilbert space the following inequality 
holds: 

ቯ(−1)ି ቀ
݉
݆ ቁ ܣ)݂ + (ܭ݆



ୀ

ቯ ≤ ‖݂‖௸ഀ(ℝ)‖ܭ‖ఈ. 

We need the following lemma. 
 

Proof .By Theorem (5.2.2), we may assume that ݂ is a bounded function. 
We are going to use the same notation ݂  and ݃ே  as in the proof of Theorem(5.2.8). In the 
case when ܣ and ܭ are bounded self-adjoint operators we show that 

ܣ)݂ + (ܭ − (ܣ)2݂ + ܣ)݂ − (ܭ =  ൫ ݂(ܣ + (ܭ − 2 ݂(ܣ) + ݂(ܣ − ൯(ܭ
ஶ

ୀିஶ

,                   (68) 
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and the series converges absolutely in the operator norm. As in the proof of 
Theorem(5.2.8), we can easily see that 

ܣ)݂ + (ܭ = (݂ ∗ ேܸ)(ܣ + (ܭ +  ݂(ܣ + (ܭ
வே

, 

(ܣ)݂ = (݂ ∗ ேܸ)(ܣ) +  ݂(ܣ)
வே

, 

and 

ܣ)݂ − (ܭ = (݂ ∗ ேܸ)(ܣ − (ܭ +  ݂(ܣ − (ܭ
வே

, 

and the series converge absolutely in the operator norm. It follows that 
ܣ)݂ + (ܭ − (ܣ)2݂ + ܣ)݂ − (ܭ −  ൫ ݂(ܣ + (ܭ − 2 ݂(ܣ) + ݂(ܣ − ൯(ܭ

வே

= ൭݂(ܣ + (ܭ −  ݂(ܣ + (ܭ
வே

൱ − 2 ൭݂(ܣ) −  ݂(ܣ)
வே

൱ + ൭݂(ܣ − (ܭ −  ݂(ܣ − (ܭ
வே

൱

= ݃ே(ܣ + (ܭ − 2݃ே(ܣ) + ݃ே(ܣ −  .(ܭ
Since݃ே ∈  ஶ(ℝ)  and ݃ேis an entire function of exponential type at most 2ேାଵ , it followsܮ
from Lemma (5.2.9)and from (59) that 

‖݃ே(ܣ + (ܭ − 2݃ே(ܣ) + ݃ே(ܣ − ‖(ܭ ≤ const2ଶே‖݃ே‖ಮ‖ܭ‖ ≤ const2ଶே‖݂‖ಮ‖ܭ‖
→ 0 as ܰ → −∞. 

This implies that the series on the right-hand side of (68) converges absolutely in the 
operator norm. 
As in the proof of Theorem(5.2.8), we consider the integer ܰ satisfying 

2ିே < ‖ܭ‖ ≤ 2ିேାଵ .                                                   (69) 
 Put now 

ଵܶ ≝ ൫ ݂(ܣ + (ܭ − 2 ݂(ܣ) + ݂(ܣ − ൯(ܭ
ஸே

 

and 

ଶܶ ≝  ൫ ݂(ܣ + (ܭ − 2 ݂(ܣ) + ݂(ܣ − ൯(ܭ
வே

. 

It follows now from Corollary (5.2.7), Lemma (5.2.9), from (69), and (59) that 

‖Tଵ‖ ≤ ‖f୬(A + K) − 2f୬(A) + f୬(A − K)‖
୬ஸ

= 2  ฯම൫ु2݂݊൯(ݔ, ,ݕ ฯ(ݖ)ܭ−ܣܧ݀ܭ(ݕ)ܣܧ݀ܭ(ݔ)ܭ+ܣܧ݀(ݖ
݊≤ܰ

≤ const  22݊ฮ݂݊ฮ
∞ܮ

݊≤ܰ

2‖ܭ‖ ≤ const  α(ℝ)߉‖݂‖(ߙ−2)2݊
݊≤ܰ

2‖ܭ‖

≤ const 2ܰ(2−ߙ)‖߉‖݂‖2‖ܭα(ℝ) ≤ const ‖݂‖߉α(ℝ)‖ߙ‖ܭ. 
On the other hand, by (69), 
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‖ ଶܶ‖ ≤  ‖ ݂(ܣ + (ܭ − 2 ݂(ܣ) + ݂(ܣ − ‖(ܭ
வே

≤ 4  ‖ ݂‖ಮ

வே

≤ const  2ିఈ‖݂‖௸ಉ(ℝ)
வே

≤ const 2ିேఈ‖݂‖௸ಉ(ℝ) ≤ const‖ܭ‖ఈ . 
As in the case ߙ < 1, for unbounded self-adjoint operators we understand by ݂(ܣ + (ܭ −
(ܣ)2݂ + ܣ)݂ −  the sum of the following series (ܭ

൫ ݂(ܣ + (ܭ − 2 ݂(ܣ) + ݂(ܣ − ൯(ܭ
∈ℤ

, 

which converges absolutely. We refer to [220] where the case of unbounded self-adjoint 
operators will be considered in more detail.    
Corollary (5.2.11)[197]. There exists a constant ܿ > 0 such that for an arbitrary function ݂ 
in the Zygmund class ߉ଵ(ℝ) and arbitrary self-adjoint operators ܣ and ܭ , the following 
inequality holds: 

ܣ)݂‖ + (ܭ − (ܣ)2݂ + ܣ)݂ − ‖(ܭ ≤ ܿ‖݂‖௸భ(ℝ)‖ܭ‖. 
Note that. We can interpret Theorem(5.2.9) in the following way. Consider the measure ߥ 
on ℝdefined by 

ߥ ≝ ∆ଵ
ߜ = (−1)ି



ୀ

ቀ
݉
݆ ቁ  ,ିߜ

where for ܽ ∈ ℝ, ߜ is the unit point mass at ܽ. Then 

(−1)ି


ୀ

ቀ
݉
݆ ቁ ܣ)݂ + (ܭ݆ = න ܣ)݂ − (ݐ)ߥ݀(ܭݐ

ℝ

. 

Clearly, ߥ determines a continuous linear functional on ߣఈ(ℝ) defined by 

݂ ⟼ න (ݐ)ߥ݀(ݐ)݂
ℝ

. 

In other words, ߥ ∈ ଵ
ି. We are going to generalize Theorem(5.2.9) to the case of an 

arbitrary distribution inଵ
ି(ℝ). 

For simplicity, we consider here the case of bounded self-adjoint operators ܣ. In [220] we 
will consider the case of an arbitrary (not necessarily bounded) self-adjoint operator ܣ. 
It follows from Theorem(5.2.9) that for arbitrary vectors ݑ and ݒ in our Hilbert space ℋand 
for an arbitrary function ݂ in߉(ℝ), the function 

ݐ ⟼ ݂,
௨,௩(ݐ) ≝ ܣ)݂) − ,ݑ(ܭݐ  (ݒ

belongs to ߉(ℝ). Identifying the space ߉(ℝ) with the dual space to ଵ
ି, wecan consider 

for every distribution ݃ in ଵ
ି(ℝ) the value  〈 ݂,

௨,௩, ݃〉of ݂,
௨,௩ ∈ ଵ)

ି(ℝ))∗ at ݃.We define 
now the operator ࣫,

 (ℝ)߉ : ⟶ ℬ(ℋ) by 

ቀ൫࣫,
 ݂൯ݑ, ቁݒ = 〈 ݂,

௨,௩, ݃〉,    ݂ ∈ ,(ℝ)߉ ,ݑ ݒ ∈ ℋ. 

Theorem (5.2.12)[197]. Let ߙ > 0. Then there exists ܿ > 0 such that for every self-adjoint 
operators ܣand  , for every ݂ ∈ ݃ (ℝ), and for every߉ ∈ ଵ 

ି , 
ฮ࣫,

 ݂ฮ ≤ ܿ‖݂‖௸ಉ(ℝ)‖݃‖భ
షಉ(ℝ)‖ܭ‖ఈ.                                         (70) 
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Proof. Let ݉ be the smallest integer greater than ߙ. By Theorem(5.2.9), inequality (70) 
holds for= ∆ଵ

ߜ . Hence, the result also holds for ݃ = ∆
ߜ for arbitrary ℎ, ܽ ∈ ℝ. 

To complete the proof, it suffices to use the following fact (see [1, Theorem 3.1]): if ݃ ∈
ଵ

ି(ℝ), then g admits a representation in the form of a norm convergent series 

݃ =  ߣ
ஹଵ

∆ೕ
 ೕߜ ,        ℎ, ܽ ∈ ℝ, 

such that 

หߣห ∙
ஹଵ

ቛ∆ೕ
 ೕቛߜ

భ
షಉ(ℝ)

≤ const‖݃‖భ
షಉ(ℝ). 

We also obtain an estimate for ‖݂(ܷ) − ݂(ܸ)‖  for a function ݂ in the Zygmund class߉ଵand 
unitary operators ܷand  . 
Theorem (5.2.13)[197]. Let 0 < ߙ < 1. Then there is a constant ܿ > 0 such that for 
every ݂ ∈   and for arbitrary unitary operators ܷ and ܸ on Hilbert space the following߉
inequality holds: 

‖݂(ܷ) − ݂(ܸ)‖ ≤ ܿ‖݂‖௸ಉ
‖ܷ − ܸ‖ఈ. 

Proof.Let ∈   . We have߉
݂ = ℙା݂ + ℙି݂ = ା݂ + ݂ି . 

We estimate  ‖ ା݂(ܷ) − ା݂(ܸ)‖ . The norm of ݂ି (ܷ) − ݂ି (ܸ) can be obtained in the same 
way. Thus we assume that ݂ = ା݂. Let 

݂ ≝ ݂ ∗ ܹ . 
Then 

݂ =  ݂ .         
ஹ

(71) 

Clearly, we may assume that ܷ ≠ ܸ . Let ܰ be the nonnegative integer such that 
2ିே < ‖ܷ − ܸ‖ ≤ 2ିேାଵ.                                                   (72) 

We have 
݂(ܷ) − ݂(ܸ) = ൫ ݂(ܷ) − ݂(ܸ)൯

ஸே

+  ൫ ݂(ܷ) − ݂(ܸ)൯
வே

. 

By the Birman–Solomyak formula for unitary operators and by (54), 

ะ൫ ݂(ܷ) − ݂(ܸ)൯
ஸே

ะ ≤  ‖ ݂(ܷ) − ݂(ܸ)‖
வே

 

              ≤ const ∑ 2‖ܷ − ܸ‖வே ∙ ‖ ݂‖ಮ   ≤ const‖ܷ − ܸ‖ ∑ 2
வே 2ିఈ‖݂‖௸ಉ  

              ≤ const‖ܷ − ܸ‖2ே(ଵିఈ)‖݂‖௸ಉ ≤ const‖ܷ − ܸ‖ఈ‖݂‖௸ಉ , 
the last inequality being a consequence of (72). 
On the other hand, 

ะ ൫ ݂(ܷ) − ݂(ܸ)൯
வே

ะ ≤  2‖ ݂‖ಮ

வே

≤ const  2ିఈ

வே

‖݂‖௸ಉ  

≤ const2ିே‖݂‖௸ಉ ≤ const‖ܷ − ܸ‖ఈ‖݂‖௸ಉ  
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To obtain an analog of Theorem(5.2.9) for unitary operator, we are going to represent a 
finite difference 

(−1)ିଵ
ே

ୀଵ

൬ܰ − 1
݆ − 1 ൰ ݂൫ ܷ൯ 

for unitary operators ଵܷ, . . . , ܷே  as a linear combination of multiple operator integrals. 
Note that algebraic formulae in the case of unitary operators are more complicated than 
inthe case of self-adjoint operators. That is why we consider the case of unitary operators in 
more detail. 
We first illustrate the idea in the special case ܰ = 3. 
Let us show that for unitary operators ଵܷ, ܷଶand ܷଷ and for ∈ ஶଵ

ଶ  , 
݂( ଵܷ) − 2݂( ଶܷ) + ݂( ଷܷ)

= 2 ම(ुଶ݂) ,ߞ) ߬, )(ߞ)ଵܧ݀(߭ ଵܷ − ଶܷ)݀ܧଶ(߬)( ଶܷ − ଷܷ)݀ܧଷ(߭)

+ ඵ(ु݂)(ߞ, )(ߞ)ଵܧ݀(߬ ଵܷ − 2 ଶܷ + ଷܷ)݀ܧଷ(߬),                    (73) 

whereܧ is the spectral measure of ܷ  , 1 ≤ ݆ ≤ 3. 
Indeed, let ܶ = ݂( ଵܷ) − 2݂( ଶܷ) + ݂( ଷܷ). Then 
ܶ = ݂( ଵܷ) − ݂( ଶܷ) − ൫݂( ଶܷ) − ݂( ଷܷ)൯ 

= ඵ(ु݂)(ߞ, )(ߞ)ଵܧ݀(߬ ଵܷ − ଶܷ)݀ܧଶ(߬) − ඵ(ु݂)(ߞ, )(ߞ)ଶܧ݀(߬ ଶܷ − ଷܷ)݀ܧଷ(߬) 

= ඵ(ु݂)(ߞ, )(ߞ)ଵܧ݀(߬ ଵܷ − ଶܷ)݀ܧଶ(߬) − ඵ(ु݂)(ߞ, )(ߞ)ଵܧ݀(߬ ଵܷ − ଶܷ)݀ܧଷ(߬) 

+ ඵ(ु݂)(ߞ, )(ߞ)ଵܧ݀(߬ ଵܷ − ଶܷ)݀ܧଷ(߬) − ඵ(ु݂)(ߞ, )(ߞ)ଵܧ݀(߬ ଶܷ − ଷܷ)݀ܧଷ(߬) 

   + ඵ(ु݂)(ߞ, )(ߞ)ଵܧ݀(߬ ଶܷ − ଷܷ)݀ܧଷ(߬) − ඵ(ु݂)(ߞ, )(ߞ)ଶܧ݀(߬ ଶܷ − ଷܷ)݀ܧଷ(߬). 

We have 

ඵ(ु݂)(ߞ, )(ߞ)ଵܧ݀(߬ ଵܷ − ଶܷ)݀ܧଶ(߬) − ඵ(ु݂)(ߞ, )(ߞ)ଵܧ݀(߬ ଵܷ − ଶܷ)݀ܧଷ(߬) 

= ඵ(ु݂)(ߞ, )(ߞ)ଵܧ݀(߬ ଵܷ − ଶܷ)݀ܧଶ(߬) − ඵ(ु݂)(ߞ, )(ߞ)ଵܧ݀(߭ ଵܷ − ଶܷ)݀ܧଷ(߭) 

   = ම(ु݂) ,ߞ) )(ߞ)ଵܧ݀(߬ ଵܷ − ଶܷ)݀ܧଶ(߬)݀ܧଷ(߭) − ම(ु݂) ,ߞ) )(ߞ)ଵܧ݀(߭ ଵܷ − ଶܷ)݀ܧଶ(߬)݀ܧଷ(߭) 

= ම(߬ − ߭)(ुଶ݂) ,ߞ) ߬, )(ߞ)ଵܧ݀(߭ ଵܷ − ଶܷ)݀ܧଶ(߬)݀ܧଷ(߭) 

= ම(ुଶ݂) ,ߞ) ߬, )(ߞ)ଵܧ݀(߭ ଵܷ − ଶܷ)݀ܧଶ(߬)( ଶܷ − ଷܷ)݀ܧଷ(߭). 

Similarly, 

ඵ(ु݂)(ߞ, )(ߞ)ଵܧ݀(߬ ଶܷ − ଷܷ)݀ܧଷ(߬) − ඵ(ु݂)(ߞ, )(ߞ)ଶܧ݀(߬ ଶܷ − ଷܷ)݀ܧଷ(߬) 

= ම(ुଶ݂) ,ߞ) ߬, )(ߞ)ଵܧ݀(߭ ଵܷ − ଶܷ)݀ܧଶ(߬)( ଶܷ − ଷܷ)݀ܧଷ(߭). 

Finally, 
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ඵ(ु݂)(ߞ, )(ߞ)ଵܧ݀(߬ ଵܷ − ଶܷ)݀ܧଷ(߬) − ඵ(ु݂)(ߞ, )(ߞ)ଵܧ݀(߬ ଶܷ − ଷܷ)݀ܧଷ(߬) 

        = ඵ(ु݂)(ߞ, )(ߞ)ଵܧ݀(߬ ଵܷ − 2 ଶܷ + ଷܷ)݀ܧଷ(߬). 

Consider now the general case. Suppose that ࣯ = { ܷ}ଵ
ே  is a finite family of unitary 

operators. 
Denote by ܧ the spectral measure of ܷ . For 1 ≤ ݆ < ݇ ≤ ܰ , we put 

ܶ(݆, ݇) = (−1)௦

ି

௦ୀ

ቀ݇ − ݆
ݏ ቁ ܷା௦ .                                  (74) 

Note that 
ܶ(݆, ݇) − ܶ(݆ + 1, ݇ + 1) = ܶ(݆, ݇ + 1), 1 ≤ ݆ < ݇ ≤ ܰ − 1.              (75) 

We would like to mention that formula (75) is purely algebraic and it is valid for arbitrary 
operators ܷ   in (74). 
Let ܬ be a nonempty subset of {1, 2, . . . , ܰ }. We denote by ݀ = ݀  the number of 
elementsof ܬ. Suppose that ܬ = { ଵ݆, ݆ଶ, . . . , ݆ௗ}, where ଵ݆ < ݆ଶ < ⋯ < ݆ௗ . For ݂ ∈ ஶଵ

ௗିଵ , we put 

ॎ(࣯, ݂) ≝ න ⋯ න∙
ᇣᇧᇤᇧᇥ

ௗ

(ुௗିଵ݂)(ߞଵ, … , భܧ݀(ௗߞ
(ଵߞ) ෑ ܶ(݆௦ିଵ, ௦݆)

ௗ

௦ୀଶ

ೞܧ݀
 .(௦ߞ)

Though, we need the case, ݀ ≥ 2, but we still can assume that ݀ = 1, in which case we put 

ॎ(࣯, ݂) ≝ න (ߞ)݂ ܬ  where    ,(ߞ)ܧ݀ = {݆}. 

We denote by िthe collection of all finite subsets of the set of positive integers and by 
िேthe collection of all subsets ܬ ∈ ि such that the maximal element of ܬ is ܰ. 
Ifܬଵ, ଶܬ ∈ ि, we say that ܬଵis an ancestor of ܬଶif ܬଶcan be partitioned in nonempty subsetsܬଶ

ᇱ  
and ܬଶ

ᇱᇱsuch that max ଶܬ
ᇱ < max ଶܬ

ᇱᇱ  and ܬଵ = ଶܬ
ᇱ ∪ ଶܬ)

ᇱᇱ − 1) (by ߉ − 1 we mean the left 
translateof a subset ߉ of ℤ by 1). Each such partition is called an evidence of the fact that 
,ଵܬ)# ଶ. We denote byܬ  ଵis an ancestor ofܬ  ଶ) the number of such evidences and we putܬ
,ଵܬ)# (ଶܬ = 0 if ܬଵis notan ancestor ofܬଶ. Note that the property of being an ancestor is not 
transitive. 
If #(ܬଵ, (ଶܬ ≥ 1, then max ଶܬ = 1 + max ଵ and 0ܬ ≤ ݀మ − ݀భ ≤ 1. It is also easy to see that 
if݀భ − ݀మ  , then #(ܬଵ, (ଶܬ = 0 = 1. 
Let us construct now the family ई  of integers by induction. Putई{ଵ} = 1. Suppose that 
thenumbers   ईare defined for ܬ ∈ िேିଵ. Let ܬ ∈ िே . Put 

ई =  ,ܫ)# ईூ(ܬ
 ூ∈िಿషభ

. 

Clearly,ई  is a positive integer for every ܬ ∈ िே. We leave for the reader the verification of 
the fact that for { ଵ݆, ݆ଶ, . . . , ݆ௗ} ∈ ि, 

ई =
(݆ௗ − ଵ݆)!

∏ ܶ( ௦݆ − ݆௦ିଵ)!ௗ
௦ୀଶ

. 
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Theorem (5.2.14)[197]. Let ܰbe a positive integer and let ࣯ = { ܷ}ଵ
ேbe unitary operators on 

Hilbertspace. Suppose that ݂ is a function in the Besov space ஶଵ
ேିଵ. Then 

(−1)ିଵ
ே

ୀ

൬ܰ − 1
݆ − 1 ൰ ݂( ܷ) =  ई

 ூ∈िಿ

ॎ(࣯, ݂). 

We need one more lemma. To state it, we introduce some more notations. For ܬ ∈ ि, we 
denoteby े(ܬ) the collection of nonempty proper subsets of ܬ such that 

max ߉ < min(߉\ܬ). 
For ߉ ∈  we put ,(ܬ)े

߉
∘ ≝ ߉and ߉\ܬ

• ≝ ߉
∘ ∪ {max  {߉

If ܬ is specified, we write ߉∘ and ߉• instead of ߉
∘and߉

•. 
Proof. We argue by induction on ܰ. For ܰ = 1, we have 

݂( ଵܷ) = න (ଵߞ)݂  .(ଵߞ)ܧ݀

Suppose that the result holds for N − 1 unitary operators. Put ࣯ି ≝ { ܷାଵ}ୀଵ
ேିଵ . We have 

(−1)ିଵ
ேିଵ

ୀଵ

൬ܰ − 2
݆ − 1 ൰ ݂( ܷ) =  ई

 ∈िಿషభ

ॎ(࣯, ݂) 

and 

(−1)ିଵ
ேିଵ

ୀଵ

൬ܰ − 2
݆ − 1 ൰ ݂( ܷାଵ) =  ई

 ∈िಿషభ

ॎ(࣯ି, ݂) =  ई
 ∈िಿషభ

ॎାଵ(࣯, ݂). 

It follows now from Lemma (5.2.15) and from (75) with ݂( ܷ) in place of ܷthat 

(−1)ିଵ
ே

ୀଵ

൬ܰ − 1
݆ − 1 ൰ ݂( ܷ) =  ई

 ∈िಿషభ

ॎ ቀ(࣯, ݂) − ॎାଵ(࣯, ݂)ቁ 

=  ई
 ∈िಿషభ

൮  ॎ௸∪(௸∘ାଵ)(࣯, ݂)
 ௸∈े()

+  ॎ௸∪(௸•ାଵ)(࣯, ݂)
 ௸∈े()

+ ॎ∪{ே}(࣯, ݂)൲. 

It remains to observe that a set ܬ  in िேିଵ is an ancestor of a set ܬin िேif and only if ܬ =
߉ ∪ ∘߉) + 1) for some ߉ ∈ ܬor (ܬ)े = ߉ ∪ •߉) + 1) for some ߉ ∈ ܬor (ܬ)े = ܬ ∪ {ܰ}.    
 Lemma (5.2.15)[197]. Let ∈ िேିଵ . Then 

ॎ(࣯, ݂) − ॎାଵ(࣯, ݂) =  ॎ௸∪(௸∘ାଵ)(࣯, ݂)
 ௸∈े()

+  ॎ௸∪(௸•ାଵ)(࣯, ݂)
 ௸∈े()

+ ॎ∪{ே}(࣯, ݂). 

Proof. The above identity can be verified straightforwardly if we observe that the multiple 
operator integral 

න ⋯ න∙
ᇣᇧᇤᇧᇥ

ௗ

(ुௗିଵ݂)(ߞଵ, … , (ଵߞ)ଵܨ݀(ௗߞ ෑ ܳ௦ିଵ

ௗ

௦ୀଶ

 (௦ߞ)௦ܨ݀

is a multilinear function in the operators ܳ௦and use the following easily verifiable identity: 
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ඵ(ु݂)(ߞଵ, )(ଵߞ)ଵܧ݀(ଶߞ ଵܷ − ଶܷ)݀ܧଶ(ߞଵ) = න (ߞ)݂ (ߞ)ଵܧ݀ − න (ߞ)݂  .(ߞ)ଶܧ݀

Theorem (5.2.16)[197']. Let ݉ be a positive integer and 0 < ߙ < ݉. Then there exists a 
constant ܿ > 0such that for every ݂ ∈  ఈ and for an arbitrary unitary operator ܷ and an߉
arbitrary boundedself-adjoint operator ܣ on Hilbert space, the following inequality holds: 

ะ(−1)


ୀ

ቀ݉
݇ ቁ ݂(ܷ݁)ะ ≤ ܿ‖݂‖௸ഀ

ఈ‖ܣ‖ . 

Proof. For simplicity we give a proof for ݉ = 2. The general case can be treated in the same 
way. We have to show that for 0 < ߙ < 2, there is a constant ܿ > 0 such that for every ݂ ∈
 ఈand for arbitrary unitary operators ܷ and ܸ on Hilbert space the following inequality߉
holds: 

‖݂(ࣰܷ) − 2݂(ܷ) + ݂(ࣰ∗ܷ)‖ ≤ ܿ‖݂‖௸ഀ
ܫ‖ − ࣰ‖ఈ. 

As in the proof of Theorem (5.2.13), we assume that ݂ = ା݂ and consider the expansion 

݂ =  ݂
ஹ

. 

Let ܰ be the nonnegative integer such that 
2ିே < ܫ‖ − ࣰ‖ ≤ 2ିேାଵ.(76) 

We have 
݂(ࣰܷ) − 2݂(ܷ) + ݂(ࣰ∗ܷ)

= ൫ ݂(ࣰܷ) − 2 ݂(ܷ) + ݂(ࣰ∗ܷ)൯
ஸே

+  ൫ ݂(ࣰܷ) − 2 ݂(ܷ) + ݂(ࣰ∗ܷ)൯
வே

. 

Let ܶ = ݂(ࣰܷ) − 2 ݂(ܷ) + ݂(ࣰ∗ܷ). It follows from (73) that 

ܶ = 2 ම(ुଶ
݂) ,ߞ) ߬, ࣰ)(ߞ)ࣰܧ݀(߭ − ܫ)(߬)ܧܷ݀(ܫ − (߭)∗ࣰܧܷ݀(∗ࣰ

+ ඵ(ु ݂) ,ߞ) ࣰ)(ߞ)ࣰܧ݀(߬ − ܫ2 +  .(߬)∗ࣰܧܷ݀(∗ࣰ

By (58), we have 

ฯම(ुଶ
݂) ,ߞ) ߬, ࣰ)(ߞ)ࣰܧ݀(߭ − ܫ)(߬)ܧܷ݀(ܫ −  (߭)ฯ∗ࣰܧܷ݀(∗ࣰ

≤ const 2ଶ‖ܫ − ࣰ‖ଶ‖ ݂‖ಮ . 
On the other hand, by (54), 

ฯඵ(ु ݂) ,ߞ) ࣰ)(ߞ)ࣰܧ݀(߬ − ܫ2 + (߬)ฯ∗ࣰܧܷ݀(∗ࣰ ≤ const 2‖ࣰ − ܫ2 + ࣰ∗‖‖ ݂‖ಮ

≤ const 2‖ܫ − ࣰ‖ଶ‖ ݂‖ಮ  
Thus 

ะ൫ ݂(ࣰܷ) − 2 ݂(ܷ) + ݂(ࣰ∗ܷ)൯
ஸே

ะ ≤ const‖ܫ − ࣰ‖ଶ  2ଶ

ஸே

‖ ݂‖ಮ

≤ const‖ܫ − ࣰ‖ଶ  2ଶ2ିఈ

ஸே

‖݂‖௸ഀ ≤ const‖ܫ − ࣰ‖ଶ2ே(ଶିఈ)‖݂‖௸ഀ

≤ const‖݂‖௸ഀ
ܫ‖ − ࣰ‖ఈ  

by(76). 
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To complete the proof, we observe that 

ะ ൫ ݂(ࣰܷ) − 2 ݂(ܷ) + ݂(ࣰ∗ܷ)൯
வே

ะ ≤  ฮ൫ ݂(ࣰܷ) − 2 ݂(ܷ) + ݂(ࣰ∗ܷ)൯ฮ
வே

≤  4
வே

‖ ݂‖ಮ

≤ const‖݂‖௸ഀ  2ିఈ

வே

≤ const‖݂‖௸ഀ 2ିேఈ ≤ const‖ܫ − ࣰ‖ఈ 

by(76).    
The following result gives an estimate for  ‖݂(ܷ) − ݂(ܸ)‖  for functions ݂ in the 
Zygmundclass߉ଵ. 
Theorem (5.2.17)[197]. There exists a constant ܿ > 0 such that for every function ݂ ∈  ଵ߉
and for arbitrary unitary operators ܷ and ܸ on Hilbert space the following inequality holds: 

‖݂(ܷ) − ݂(ܸ)‖ ≤ ܿ‖݂‖௸భ ൬2 + logଶ
1

‖ܷ − ܸ‖൰ ‖ܷ − ܸ‖. 

Proof. Again, as in the proof of Theorem (5.2.13), we assume that ݂ = ା݂ and ܰ is the 
nonnegative integer satisfying (72). Using the notation introduced in the proof of Theorem 
(5.2.13), we obtain 

ะ൫ ݂(ܷ) − ݂(ܸ)൯
ஸே

ะ ≤ ‖ ݂(ܷ) − ݂(ܸ)‖
ஸே

≤ const  2

ஸே

‖ܷ − ܸ‖ ∙ ‖ ݂‖ಮ

≤ const(1 + ܰ)‖݂‖௸ഀ
‖ܷ − ܸ‖ ≤ const‖݂‖௸ഀ ൬2 + logଶ

1
‖ܷ − ܸ‖൰ ‖ܷ − ܸ‖. 

On the other hand, 

ะ ൫ ݂(ܷ) − ݂(ܸ)൯
வே

ะ ≤  2
வே

‖ ݂‖ಮ ≤ const  2ି

வே

‖݂‖௸ഀ ≤ const 2ିே‖݂‖௸ഀ

≤ const 2ିே‖݂‖௸ഀ
‖ܷ − ܸ‖. 

In a similar way we can obtain an estimate for differences of order ݊ and functions in ߉for 
an arbitrary positive integer ݊. 
Let us obtain now an analog of Theorem (5.2.12) for unitary operators. Let ܷ be a unitary 
operator and let ܣ be a bounded self-adjoint operator on a Hilbert space ℋ. Suppose 
that ݂ ∈ ,ݑ ఈ. By Theorem (5.2.16), for every߉ ݒ ∈ ℋ, the function 

݂ ⟼ ݂,
௨,௩(ݐ) ≝ (݂(݁௧ܷ)ݑ,  (ݒ

onℝ belongs to the space ߉ఈ(ℝ). Thus for every ݃ ∈ ଵ
ିఈ(ℝ), we can define the operator 

ℛ,
 : ఈ߉ → ℬ(ℋ) such that 

ቀ൫ℛ,
 ݂൯ݑ, ቁݒ = 〈 ݂,

௨,௩, ݃〉 

(here we identify the dual space (ଵ
ିఈ(ℝ))∗ with ߉ఈ(ℝ)). 

Theorem (5.2.18)[197]. Let ߙ > 0. Then there exists ܿ > 0 such that for arbitrary unitary 
operator ܷ and a boundary self-adjoint operator ܣ, and for every ݃ ∈ ଵ

ିఈ(ℝ), 
ฮℛ,

 ฮ ≤ భ‖݃‖ܿ
షഀ(ℝ)‖ܣ‖ఈ. 

Proof. Clearly, 
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ቚቀ൫ℛ,
 ݂൯ݑ, ቁቚݒ ≤ constฮ ݂,

௨,௩ฮ
௸ഀ(ℝ)

భ‖݃‖
షഀ(ℝ) ≤ const‖ݑ‖ ∙ ‖ݒ‖ ∙ ‖݂‖௸ഀ

భ‖݃‖
షഀ(ℝ)‖ܣ‖ఈ. 

Recall that if ܶis a contraction on Hilbert space, it follows from von Neumann’s inequality 
that the polynomial functional calculus ݂ ⟼ ݂(ܶ) extends to the disk-algebra ܥ 
and‖݂(ܶ)‖ ≤ ‖݂‖ಲ  , ݂ ∈  . ܥ
Theorem (5.2.19)[197]. Let 0 < ߙ < 1. Then there is a constant ܿ > 0 such that for 
every ݂ ∈  ା and for arbitrary contractions ܶ and ܴ on Hilbert space the following(ఈ߉)
inequality holds: 

‖݂(ܶ) − ݂(ܴ)‖ ≤ ܿ‖݂‖௸ഀ
‖ܶ − ܴ‖ఈ . 

Proof. The proof of Theorem (5.2.19) is almost the same as the proof of Theorem (5.2.13). 
For ݂ ∈  ା, we use expansion (71) and choose ܰ such that(ఈ߉)

2ିே < ‖ܶ − ܴ‖ ≤ 2ିேାଵ. 
Then as in the proof of Theorem (5.2.13), for ≤ ܰ , we estimate  ‖ ݂(ܶ) − ݂(ܴ)‖   in terms 
of const 2ି‖ܶ − ܴ‖  (see (65) and (54)), while for ݊ > ܰ  we use von Neumann’s 
inequality to estimate ‖ ݂(ܶ) − ݂(ܴ)‖  in terms of 2‖ ݂‖ಮ . The rest of the proof is the 
same.    
Corollary  (5.2.20)[197]. Let ݂ be a function in the disk algebra and 0 < ߙ < 1. Then the 
following two statements are equivalent: 
(i)  ‖݂(ܶ) − ݂(ܴ)‖ ≤ const‖ܶ − ܴ‖ఈfor all contractions ܶ and ܴ, 
(ii)  ‖݂(ܷ) − ݂(ܸ)‖ ≤ const‖ܷ − ܸ‖ఈfor all unitary operators ܷ and ܸ . 
Remark. This corollary is also true for ߙ = 1. This was proved by Kissin and Shulman [231]. 
The following result is an analog of Theorem (5.2.16) for contractions. 
Theorem (5.2.21)[197]. Let m be a positive integer and 0 < ߙ < ݉. Then there exists a 
constant ܿ > 0 such that for every ݂ ∈  ା and for arbitrary contractions ܶ and ܴ on(ఈ߉)
Hilbert space the followinginequality holds: 

ะ(−1)


ୀ

ቀ݉
݇ ቁ ݂ ൬ܶ +

݇
݉

(ܴ − ܶ)൰ะ ≤ ܿ‖݂‖௸ഀ
‖ܶ − ܴ‖ఈ. 

To prove Theorem  (5.2.21), we use the following analog of Lemma 4.3. 
Lemma  (5.2.22)[197]. Let ݉ be a positive integer and let ݂ be a function of class (ஶଵ

 )ା. If 
ܶ and ܴ arecontractions on Hilbert space, then 

(−1)


ୀ

ቀ݉
݇ ቁ ݂ ൬ܶ +

݇
݉

(ܴ − ܶ)൰ 

=
݉!
݉ න ⋯ න∙

ᇣᇧᇤᇧᇥ
ାଵ

(ु݂)(ߞଵ, … , ܴ)(ଵߞ)ାଵ)݀ℰଵߞ − ܶ) ⋯ (ܴ − ܶ)݀ℰାଵ(ߞାଵ) 

whereℰis a semi-spectral measure of ܶ + 


(ܴ − ܶ). 
Theorem (5.2.23)[197]. There exists a constant ܿ > 0 such that for every function ݂ ∈  ା(ଵ߉)
and for arbitrary contractions ܶand ܴ on Hilbert space the following inequality holds: 
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‖݂(ܶ) − ݂(ܴ)‖ ≤ ܿ‖݂‖௸భ ൬2 + logଶ
1

‖ܶ − ܴ‖൰ ‖ܶ − ܴ‖. 

We consider the problem of estimating  ‖݂(ܣ) −  ܤ and ܣ  for self-adjoint operators  ‖(ܤ)݂
and functions ݂ in the space ߉ఠ, where ߱ is an arbitrary modulus of continuity. We give 
complete proofs for bounded self-adjoint operators. The same estimates also hold for 
unbounded self-adjoint operators. This will follow from Theorem (5.2.37). We also obtain 
similar results for unitary operators and for contractions. 
We have mentioned in the introduction that a Lipschitz function does not have to be 
operator Lipschitz and a continuously differentiable function does not have to be operator 
differentiable. On the other hand, we have proved that a Hölder function of order ߙ ∈ (0,1) 
must beoperator Hölder of order α as well as a Zygmund function must be operator 
Zygmund. Moreover, the same is true for all classes ߉ with ߙ > 0. This suggests an idea 
that the situation is similar with continuity properties of the Hilbert transform.We consider 
the problem forwhich moduli of continuity ߱ the fact that ݂ ∈  ఠ  implies that f belongs to߉
the “operator space߉ఠ”, i.e., 

(ܣ)݂‖ − ‖(ܤ)݂ ≤ const ߱(‖ܣ −  .(‖ܤ
We are going to compare this property with the fact that the Hilbert transform acts on߉ఠ. 
Given a modulus of continuity ω, we define the function ߱∗ by 

 

(ݔ)∗߱ = ݔ න
ω(t)

ଶݐ

ஶ

௫
,ݐ݀ ݔ > 0. 

Theorem (5.2.24)[197]. There exists a constant ܿ > 0 such that for every modulus of 
continuity ߱, every ݂ ∈  the ,ܤ andܣ ఠ(ℝ)  and for arbitrary self-adjoint operators߉
following inequalityholds 

(ܣ)݂‖ − ‖(ܤ)݂ ≤ ܿ‖݂‖௸ഘ(ℝ)߱∗(‖ܣ −  .(‖ܤ
Proof. Since ܣ and ܤ are bounded operators and their spectra are contained in [ܽ, ܾ], we can 
replace a function ݂ ∈ ॕ݂ ఠ(ℝ) with the bounded function߉  defined by 

݂ॕ (ݔ) = ቐ
ݔ        ,(ܾ)݂ > ܾ,

ݔ   ,(ݔ)݂ ∈ [ܽ, ܾ],
ݔ         ,(ܽ)݂ < ܽ.

(77) 

Clearly,  ‖݂ॕ ‖௸ഘ(ℝ) ≤ ‖݂‖௸ഘ(ℝ) . Thus we may assume that ݂ is bounded. 
Let ܰ be an integer. We claim that 

(ܣ)݂ − (ܤ)݂ =  ൫ ݂(ܣ) − ݂(ܤ)൯
ே

ୀିஶ

+ ൫(݂ − ݂ ∗ ேܸ)(ܣ) − (݂ − ݂ ∗ ேܸ)(ܤ)൯(78) 

andthe series converges absolutely in the operator norm. Here 
݂ = ݂ ∗ ܹ + ݂ ∗ ܹ

#  . Suppose that ܯ < ܰ . Indeed, it is 
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(ܣ)݂ − (ܤ)݂ − ቌ  ൫ ݂(ܣ) − ݂(ܤ)൯
ே

ୀெାଵ

+ ൫(݂ − ݂ ∗ ேܸ)(ܣ) − (݂ − ݂ ∗ ேܸ)(ܤ)൯ቍ

= (݂ ∗ ெܸ)(ܣ) − (݂ ∗ ெܸ)(ܤ). 
Clearly, ݂ ∗ ேܸ is an entire function of exponential type at most2ெାଵ. Thus it follows from 
(55)that 

‖(݂ ∗ ெܸ)(ܣ) − (݂ ∗ ெܸ )(ܤ)‖ ≤ const2ெ‖݂‖ಮ‖ܣ − ‖ܤ → 0  as ܯ → −∞. 
Suppose now that ܰ is the integer satisfying (67). It follows from (2.2.4) that 
‖(݂ − ݂ ∗ ேܸ)(ܣ) − (݂ − ݂ ∗ ேܸ)(ܤ)‖ ≤  2ெ‖݂ − ݂ ∗ ேܸ‖ಮ 

≤ const‖݂‖௸ഘ(ℝ)߱(2ିே) 
                                                                   ≤ const‖݂‖௸ഘ(ℝ)߱(‖ܣ −  .(‖ܤ

On the other hand, it follows from Corollary(5.2.5) and from (55) that 

 ‖ ݂(ܣ) − ݂(ܤ)‖
ே

ୀିஶ

≤ const  2
ே

ୀିஶ

‖݂‖ಮ ܣ‖ − ‖ܤ ≤ const  2߱(2ି)
ே

ୀିஶ

‖݂‖௸ഘ(ℝ)‖ܣ − ‖ܤ

= const  2ேି߱(2ିேା)
ே

ஹ

‖݂‖௸ഘ(ℝ)‖ܣ − ‖ܤ

≤ const ቆන
(ݐ)߱

ଶݐ

ஶ

ଶషಿ
ቇݐ݀ ‖݂‖௸ഘ(ℝ)‖ܣ − ‖ܤ ≤ const2ே߱∗(2ିே)‖݂‖௸ഘ(ℝ)‖ܣ − ‖ܤ

≤ const‖݂‖௸ഘ(ℝ)߱∗(‖ܣ −  .(‖ܤ
The result follows now from the obvious inequality ߱(ݔ) ≤ ,(ݔ)∗߱ ݔ > 0.    
 Obviously, if  ߱∗(ݔ) < ∞ for some ݔ > 0, then ߱∗(ݔ) < ∞ for every ݔ > 0. It follows easily 
from l’Hôpital’s rule that in this case 

lim
௫→

(ݔ)∗߱ = 0. 

Moreover, in this case ߱∗is also a modulus of continuity. Indeed, it is easy to see that 

(ݔ)∗߱ = න
(ݔݏ)߱

ଶݏ

ஶ

ଵ
 ݏ݀

which implies that 
ݔ)∗߱ + (ݕ ≤ (ݔ)∗߱ + ,(ݕ)∗߱ ,ݔ ݕ ≥ 0 

and 
(ݔ)∗߱ ≤ 0   ,(ݕ)∗߱ ≤ ݔ ≤  .ݕ

Note that if the modulus of continuity ߱ is bounded, then obviously,  ߱∗(ݔ) < ∞ for 
every ݔ > 0. In the case when ܣ and ܤ are bounded self-adjoint operators and their 
spectra are contained in [ܽ, ܾ], we can replace ݂ with the function ݂ॕ  defined by (77) 
redefine the function ߱ on [ܾ − ܽ, ∞) by putting ߱(ݔ) = ߱(ܾ − ܽ). Clearly, the modified 
modulus of continuity is bounded. 

Corollary (5.2.25)[197]. Let ߱ be a modulus of continuity such that 
(ݔ)∗߱ ≤ const ߱(ݔ),    ݔ > 0. 
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Then for an arbitrary function ݂ ∈  ܤ and ܣ ఠ(ℝ) and for arbitrary self-adjoint operators߉
onHilbert space the following inequality holds: 

(ܣ)݂‖ − ‖(ܤ)݂ ≤ const‖݂‖௸ഘ(ℝ) ߱(‖ܣ −  (79)                    .(‖ܤ
In the next result we do not pretend for maximal generality. 
Corollary (5.2.26)[197]. Let ߱ be a modulus of continuity such that ߱(2ݔ) ≤ ई߱(ݔ) for 
some   ई < 2 and all ݔ > 0. Then ߱∗(ݔ) ≤ const ߱(ݔ) and 

(ܣ)݂‖ − ‖(ܤ)݂ ≤ const‖݂‖௸ഘ(ℝ) ߱(‖ܣ −  (‖ܤ
for arbitrary self-adjoint operators ܣ and ܤ . 
Proof. It is easy to see that 

(ݐ)߱ ≤ ई ൬
ݐ
ݔ

൰
୪୭మ ई

 ,(ݔ)߱

whenever 0 < ݔ ≤  Thus . ݐ

(ݔ)∗߱ = ݔ න
(ݐ)߱

ଶݐ

ஶ

௫
ݐ݀ ≤ ईݔଵି୪୭మ ई߱(ݔ) න ݐ ୪୭మ ईିଶ݀ݐ

ஶ

௫
≤

ई
1 − logଶ ई

 (ݔ)߱

In [233] it was proved that if ܣ and ܤ are self-adjoint operators on Hilbert space whose 
spectra are contained in [ܽ, ܾ] and ݂ is a continuous function on [ܽ, ܾ], then 

(ܣ)݂‖ − ‖(ܤ)݂ ≤ 4 ൬log ൬
ܾ − ܽ

ܣ‖ − ൰‖ܤ + 1൰
ଶ

߱(‖ܣ −  ,(‖ܤ

where 
߱(ߜ) = sup{|݂(ݔ) − :|(ݕ)݂ ,ݔ ݕ ∈ [ܽ, ܾ], ݔ| − |ݕ <  .{ߜ

The following corollary improves the result of Farforovskaya and Nikolskaya. 
Corollary (5.2.27)[197]. Supposethat A and B be self-adjoint operators with spectra in an 
interval [ܽ, ܾ]. Then for a continuous function ݂ on [ܽ, ܾ] the following inequality holds: 

(ܣ)݂‖ − ‖(ܤ)݂ ≤ const log ൬݁
ܾ − ܽ

ܣ‖ − ൰‖ܤ ߱(‖ܣ −  .(‖ܤ

Proof. Put ߱ = ߱ . Clearly, we may assume that ߱(ݔ) = ߱(ܾ − ܽ) for ݔ > ܽ. Using the 
obviousinequality 

(ݐ)߱
ݐ

≤ 2
(ݔ)߱

ݔ
ݔ   , ≤  ,ݐ

we obtain 

(ݔ)∗߱ = ݔ න
(ݐ)߱

ଶݐ ݐ݀
ஶ

௫
= ݔ න

(ݐ)߱
ଶݐ ݐ݀

ି

௫
+ න

(ݐ)߱
ଶݐ ݐ݀

ஶ

ି
≤ (ݔ)2߱ න

ݐ݀
ݐ + ݔ

߱(ܾ − ܽ)
ܾ − ܽ

ି

௫

≤ (ݔ)2߱ log
ܾ − ܽ

ݔ + (ݔ)2߱ =≤ (ݔ)2߱ log ൬݁
ܾ − ܽ

ݔ ൰. 

The result follows now from Theorem (5.2.24).    
Corollary (5.2.28)[197]. Let ݂be a Lipschitz function on ℝ. Then for self-adjoint operators ܣ 
and ܤ with spectra in an interval [ܽ, ܾ], the following inequality holds 

(ܣ)݂‖ − ‖(ܤ)݂ ≤ const ‖݂‖୧୮ log ൬݁
ܾ − ܽ

ܣ‖ − ൰‖ܤ ܣ‖ −  (80)             .‖ܤ
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Note that a similar estimate can be obtained for bounded functions ݂ in the Zygmund 
class߉ଵ(ℝ).  
Inequality (80) improves the estimate 

(ܣ)݂‖ − ‖(ܤ)݂ ≤ const ‖݂‖୧୮ ൬log ൬݁
ܾ − ܽ

ܣ‖ − ‖ܤ + 1൰ + 1൰
ଶ

ܣ‖ −  ‖ܤ

obtained in [198] (see also [298]). 
We state analogs of Theorem (5.2.24) for unitary operators and for contractions. 
Theorem (5.2.29)[197]. There exists a constant ܿ > 0 such that for every modulus of 
continuity ߱, for every ݂ ∈  ఠ , and for arbitrary unitary operators ܷand  , the following߉
inequality holds 

‖݂(ܷ) − ݂(ܸ)‖ ≤ ܿ‖݂‖௸ഘ߱∗(‖ܷ − ܸ‖). 
Theorem (5.2.30)[197]. There exists a constant ܿ > 0 such that for every modulus of 
continuity ߱, for every ݂ ∈  ା, and for arbitrary contractions ܶ and ܴ, the following(ఠ߉)
inequality holds 

‖݂(ܶ) − ݂(ܴ)‖ ≤ ܿ‖݂‖௸ഘ߱∗(‖ܶ − ܴ‖). 
The proofs of Theorems (5.2.29)and (5.2.30) are similar to the proof of Theorem (5.2.24). 
Actually, they are even simpler, since we do not have to deal with convolutions with ܹ and 

ܹ
# with negative݊ which makes analogs of formula (78) trivial. 

We introduce notions of operator continuous functions and uniformly operator continuous 
functions. We also define for a given continuous function on ℝ the operator modulus of 
continuity associated with the function. We prove that a function is operator continuous if 
and only if it is uniformly operator continuous. 
Definition1(5.2.31)[197]. For a continuous function ݂ on ℝ, we consider the map 
ܣ               ⟼  (81)    (ܣ)݂
defined on the set of (not necessarily bounded) self-adjoint operators. We say that ݂ is 
operator continuous if the map (81) is continuous at every (bounded or unbounded) self-
adjoint operator ܣ. 
This means that if ܣ is a (not necessarily bounded) self-adjoint operator, then for an 
arbitraryߝ > 0 there exists ߜ > 0 such that‖ ݂(ܣ + (ܭ − ‖(ܣ)݂ < -is a self ܭ whenever ,ߝ
adjoint operatorwhose norm is less than ߜ. 
It is easy to see that if ݂ is a continuous function on ℝ, then the map (81) is continuous at 
every bounded self-adjoint operator ܣ. Indeed, this is obvious for polynomials ݂. The result 
for arbitrary continuous functions follows from the Weierstrass theorem. 
Definition2 (5.2.32)[197]. Let ݂ be a Borel function on ℝ. It is called uniformly operator 
continuous if for every ߝ > 0 there exists ߜ > 0 such that‖݂(ܣ) − ‖(ܤ)݂ <  ܣ whenever ,ߝ
and ܤ are bounded self-adjoint operators such that‖ܣ − ‖ܤ <  .ߜ
Theorem (5.2.33)[197]. Let ݂ be a bounded uniformly continuous function on ℝ. Then ݂ is 
uniformly operator continuous. 
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Proof. Let = ߱ . Then ߱ is a bounded modulus of continuity, and so ߱∗(ݔ) < ݔ ,∞ > 0. The 
result follows now from Theorem (5.2.24)and the remark following that theorem.    
Definition (5.2.34)[197]. Let ݂ be a continuous function on ℝ. Put 

(ߜ)ߗ ≝ (ܣ)݂‖upݏ − ߜ   , ‖(ܤ)݂ > 0, 
where the supremum is taken over all bounded self-adjoint operators ܣ  and ܤ  such 
that‖ܣ − ‖ܤ ≤  . ݂ is the operator modulus of continuity ofߗ We say that .ߜ
It suffices to consider only operators ܣ and ܤ that are unitary equivalent to each other. 
Indeed, if ܣ and ܤ are self-adjoint operators on a Hilbert space ℋ, we can define on 
thespace ℋ ⊕ ℋ the self-adjoint operators ࣛand ℬ by 

ࣛ = ቀܣ 0
0 ቁandℬܤ = ቀܤ 0

0  ቁܣ

Obviously, 
‖ࣛ − ℬ‖ = ܣ‖ − (ࣛ)݂‖and‖ܤ − ݂(ℬ)‖ = (ܣ)݂‖ −  . ‖(ܤ)݂

We have by Theorem (5.2.24), 
 

߱(ߜ) ≤ (ߜ)ߗ ≤ const(߱)∗(ߜ),    ߜ > 0. 
Theorem (5.2.35)[197]. Let ݂ be an operator continuous function. Then 

lim
ఋ→

(ߜ)ߗ = 0, 

and so ݂ is uniformly operator continuous. 
Proof. Suppose that 

lim
ఋ→

(ߜ)ߗ > ߪ > 0, 

Then there are sequences of self-adjoint operators {ܣ}ஹ  and {ܭ}ஹ on Hilbert space 
ℋsuch that ฮܭฮ < 1/݆  and  ฮ݂(ܣ + (ܭ − ฮ(ܣ)݂ >   and ܴ ܣ We define the operators . ߪ
onℓଶ(ℋ) by 

ܣ ൮

ℎ
ℎଵ
ℎଶ
⋮

൲ = ൮

ℎܣ
ଵℎଵܣ
ଶℎଶܣ

⋮

൲   and   ܴ = ൮

ℎ
ℎଵ
ℎଶ
⋮

൲ =

⎝

⎜⎜
⎛

0
⋮
0

ℎܭ
ାଵℎାଵܭ

⋮ ⎠

⎟⎟
⎞

. 

Clearly,  ‖ܴ‖  → 0 as ݊ → 0, while  ‖݂(ܣ + ܴ) − ‖(ܣ)݂ > ݊ forߪ ≥ 0, and so the map 
(81)is not continuous at ܣ.    
Example (5.2.36)[197]. Consider the function g defined by ݃(ݐ) = ݐ ,|ݐ| ∈ ℝ. It was proved 
in [234] that the function g is not operator Lipschitz. It was observed in [233] that the 
function ݃ is not operator continuous. Let us show that 

(ߜ)ߗ = ∞for every ߜ > 0, 
which will also imply that ݃ is not operator continuous. Indeed, suppose that ߗ(ߜ) < ∞ 
for someߜ > 0. Since g is homogeneous,it follows thatߗ(ߜ) = ߜߜ

ିଵߗ(ߜ) = constߜ. 
However,this implies that ݃ is an operator Lipschitz function which contradicts the result of 
[234]. 
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Theorem (5.2.37)[197]. Let ܣ and ܤ be a pair of (not necessarily bounded) self-adjoint 
operators such that ܣ −  is bounded. Then ܤ

(ܣ)݂‖ − ‖(ܤ)݂ ≤ ܣ‖)ߗ −  (82)                                                                 (‖ܤ
for every continuous function ݂ on ℝ.  
Proof . Clearly, if ߗ(ߜ) < ∞ for some ߜ > 0, it follows that ݂ satisfies the hypotheses of 
Lemma (5.2.39). Let ܭ = ܤ −  is a bounded self-adjoint operator. Put ܭ Then .ܣ

ܣ ≝ ,݆−])ܧ  .ܣ([݆
Clearly, (83) holds. It follows easily from Lemma (5.2.39) that 

ܣ)݂‖ + ݑ(ܭ − ‖ݑ(ܣ)݂ ≤ lim sup
→ஶ

ฮ݂൫ܣ + ݑ൯ܭ − ฮݑ(ܣ)݂ ≤ ,‖ݑ‖(‖ܭ‖)ߗ ݑ ∈ ु 

To complete the proof, it suffices to observe that if ݂ satisfies the hypotheses of Lemma 
(5.2.39), then ݂(ܣ)  is the closure of its restriction to ु. The same is true for ݂(ܣ +   .(ܭ
This implies (82).    
 
Lemma (5.2.38)[197]. Let ݂ be a bounded continuous function on ℝ. Suppose that ܣ is a 
self-adjoint operator (not necessarily bounded) and {ܣ}ஹ is a sequence of bounded self-
adjoint operatorssuch that 

lim
→ஶ

ฮܣݑ − ฮݑܣ = 0  for every ݑ in the domain of (83)                      ܣ 

Then 
lim
→ஶ

(ܣ)݂ = (ܣ)݂ in the strong operator topology.                   (84) 

Proof. We consider first the special case when (ݐ) = ߣ) − ߣ , ଵି(ݐ ∈ ℂ\ℝ. Let ݑ be a vector in 
ु , where ुdenotes the domain of ܣ. Put ݑఒ ≝ ܫߣ) − ఒݑ ,Clearly .ݑ ଵି(ܣ ∈ ु  and 

ܫߣ) − ݑ)ିଵܣ = ܫߣ) − ܫߣ))ିଵܣ −  ఒݑ(ܣ
= ఒݑ + ܫߣ) − ݑܣ))ିଵܣ − (ݑܣ → ݆  ఒasݑ → ∞. 

Since the linear combinations of such rational fractions are dense in the space ܥ(ℝ) of 
continuous functions on ℝ vanishing at infinity, it follows that (84) holds for an arbitrary 
function ݂in ܥ(ℝ). 
Suppose now that ݂ is an arbitrary bounded continuous function on ℝ. By subtracting from 
݂a continuous function with compact support, we may assume that f vanishes on [−1,1]. 
Then there exists a function ݃ in ܥ(ℝ) such that ݂(ݐ) = ݐ ,(ݐ)݃ݐ  ∈ ℝ. Let ∈ ु . We have 

= ݑ(ܣ)݂ ݑܣ(ܣ)݃  = ݑܣ(ܣ)݃ + ݑܣ)(ܣ)݃ −  (ݑܣ
→ ݑܣ(ܣ)݃ = → ݆  as    ݑ(ܣ)݂  ∞.             (85) 

Lemma (5.2.39)[197]. Let ݂ be a continuous function on ℝ such that |݂(ݐ)| ≤ const(1 +  ,(| ݐ|
ݐ ∈ ℝ, and let ܣ and {ܣ}ஹ be as in Lemma (5.2.38). Then 

lim
→ஶ

ฮ݂൫ܣ൯ݑ − ฮݑ(ܣ)݂ = 0 for every  ݑ ∈ ु. 

Proof. As in the proof of Lemma (5.2.38), we may assume that ݂ vanishes on [−1,1] and 
define the continuous function ݃ by݂(ݐ) = ݐ ,(ݐ)݃ݐ  ∈ ℝ. It follows now from Lemma 
(5.2.38) that (85) holds for every ݑ ∈ ु .     
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Corollary (5.2.40)[197]. Let ݂be a continuous function on ℝ. Then ݂ is operator continuous 
if and only if it is uniformly operator continuous. 
We conclude with an estimate for the operator modulus of continuity of a bounded function 
in the Zygmund class߉ଵ(ℝ). The proof of the following theorem is similar to the proof of 
Theorem 3.4 of Ch. 2 of [238]. 
Theorem  (5.2.41)[197]. Let ݂ be a bounded function in߉ଵ(ℝ). Then there exists ܿ > 0 such 
that 

(ߜ)ߗ ≤ ߜܿ log
2
ߜ

for  ߜ ≤ 1. 

Proof. By Corollary (5.2.11), there is a constant ܿଵ such that 
ܣ)݂‖ + (ܭ2 − ܣ)2݂ + (ܭ + ‖(ܣ)݂ ≤ ܿଵ‖݂‖௸భ(ℝ)‖ܭ‖. 

It is easy to see that 

ܣ)݂‖ + (ܭ − ‖(ܣ)݂ ≤
1
2

ܣ)݂‖ + (ܭ2 − ܣ)2݂ + (ܭ + ‖(ܣ)݂ +
1
2

ܣ)݂‖ + (ܭ2 −  .‖(ܣ)݂

It follows that 

(2/ߜ)ߗ ≤
ܿଵ

4
‖݂‖௸భ(ℝ)ߜ +

1
2

 ,(ߜ)ߗ

and so 

2ିଵߗ(2ିߜ) − 2ିଶߗ(2ଵିߜ) ≤
ܿଵ

4
‖݂‖௸భ(ℝ)ߜ, whenever ݇ ≥ 1. 

Substituting ߜ = ߜ ≝ ସ
భ

‖݂‖௸భ(ℝ)‖݂‖ಮ , and keeping in mind the trivial estimate ߗ(ߜ) ≤

2‖݂‖ಮ , ߜ > 0, we obtain 
2ିଵߗ(2ିߜ) ≤ (݊ + 1)‖݂‖ಮ . 

Hence, for = 2ିߜ , ݊ ≥ 0, we have 

(ߜ)ߗ ≤
ܿଵ

2
‖݂‖௸భ(ℝ)ߜ logଶ ቆ

8‖݂‖ಮ

ܿଵ‖݂‖௸భ(ℝ)ߜ
ቇ. 

Therefore 

(ߜ)ߗ ≤ ܿଵ‖݂‖௸భ(ℝ)ߜ logଶ ቆ
8‖݂‖ಮ

ܿଵ‖݂‖௸భ(ℝ)ߜ
ቇ for δ ≤

ߜ

2
 

andߗ(ߜ) ≤ 2‖݂‖ಮ  for ߜ ≥      ./2ߜ
We construct a universal family of (unbounded) self-adjoint operators {ܣ௧}௧ஹsuch that the 
operators ܣ௧  have purely point spectra and 

(ݐ)ߗ = (௧ܣ)݂‖ − ݐ   , ‖(ܣ)݂ > 0, 
for every continuous function ݂.In particular,‖ܣ௧ − ‖ܣ = , ݐ ݐ ≥ 0. Moreover, the 
operatorsܣ௧,ݐ ≥ 0, are unitarily equivalent to each other. 
Denote by ॆthe set of finite rank self-adjoint operators on Hilbert space and let ॆbe a 
countable dense subset of ॆ. 
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Lemma(5.2.42)[197]. Suppose that {ܣ} is a sequence of bounded self-adjoint operators that 
converges to ܣ in the strong operator topology. Then ݂(ܣ) →  strongly for an arbitrary (ܣ)݂
continuousfunction ݂ . 
Proof. The conclusion of the lemma is trivial if ݂ is a polynomial. It remains to approximate 
݂ by polynomials uniformly on ൣ−sup݆ฮܣฮ, supฮܣฮ൧.     
Corollary (5.2.43)[197]. Let ݂ ∈ ݐ and(ℝ)ܥ > 0. Then 

(ݐ)ߗ = sup{‖ܤ − :‖ܣ ,ܣ ܤ ∈ ॆ(ℋ), ܤ‖ − ‖ܣ <  .{ݐ
Proof. Clearly, we have to verify that the left-hand side is less than or equal to the right-
hand side. Let ܣ and ܤ be bounded self-adjoint operators such that  ‖ܣ − ‖ܤ <  {ܣ} Let . ݐ
and {ܭ} be sequences of operators in ॆsuch that ܣ → ܭ ,ܣ → ܤ −  in the strong ܣ
operator topology, and  ฮܭฮ ≤ ܤ‖ − (ܣ)݂ ,for all ݆. By Lemma(5.2.43)  ‖ܣ →  and  (ܣ)݂
ܣ)݂ + (ܭ →  ,strongly. Hence(ܤ)݂

(ܤ)݂‖ − ‖(ܣ)݂ ≤ lim inf
→ஶ

ฮ݂(ܣ + (ܭ → ݂൫ܣ൯ฮ 

which implies the desired inequality.    
    Suppose that { ܴ}ୀଵ

ஶ is an enumeration of ॆ. For given ݆ ≥ 1 and ݐ > 0 we consider the 
set 

ॆ௧ ≝ ൛ܣ ∈ ॆ: ฮܣ − ܴฮ <  ൟݐ

and let { ܴ
(௧)}ୀଵ

ஶ   be an enumeration of ॆ௧. Put ܴ
() ≝ ܴ . 

We can define now a universal family {ܣ௧}௧ஹ by 

௧ܣ ≝
∞
⨁

݆ = 1

∞
⨁

   ݇ = 1
ܴ
(௧).                                                      (86) 

Theorem (5.2.44)[197].The operators ܣ௧are pairwise unitarily equivalent. Each operator 
 ௧has purely point spectrum. Moreover, for every continuous function ݂ on ℝ, we haveܣ

(௧ܣ)݂‖ − ‖(ܣ)݂ = ݐ   ,(ݐ)ߗ > 0. 
Proof. It is easy to see that each operator in ॆoccurs in the orthogonal sum on the right of 
(86) infinitely many times and each operator in the orthogonal sum on the right of (86) 
belongs toॆ. Thus ܣ௧ is unitarily equivalent to ܣ  for all ݐ > 0. 
We have 

(௧ܣ)݂‖ − ‖(ܣ)݂ = sup
,

ฮ݂൫ ܴ
(௧)൯ − ݂( ܴ

())ฮ =  (ݐ)ߗ

by Corollary (5.2.43).    
We obtain estimates for the norm of quasicommutators ݂(ܣ)ܳ −   in terms of (ܤ)݂ܳ
ܳܣ‖ −  and a bounded operator ܳ. We assumefor ܤ and ܣ for self-adjoint operators   ‖ܤܳ
simplicity that ܣ and ܤ are bounded. However, we obtain estimates that do not depend 
onthe norms of ܣ and ܤ. In [220] we will consider the case of not necessarily bounded 
operators ܣ and  ܤ . In the special case ܣ =  this problem turns into the problem of ܤ
estimating the norm of commutators ݂(ܣ)ܳ − ܳܣ‖  in terms of (ܣ)݂ܳ −  On the other .  ‖ܣܳ
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hand, in the special case ܳ =  the problem turns into the problem of estimating ܫ
(ܣ)݂‖ − ܣ‖ in terms  ‖(ܤ)݂ −  .  ‖ܤ
Note that similar results can be obtained for unitary operators and for contractions. 
Birman and Solomyak (see [219]) discovered the following formula 

ܳ(ܣ)݂ − (ܤ)݂ܳ = ඵ
(ݔ)݂ − (ݕ)݂

ݔ − ݕ
ܳܣ)(ݔ)ܧ݀ −  ,(ݕ)ܧ݀(ܤܳ

whenever ݂ is a function such that the divided difference ु݂is a Schur multiplier with 
respect to the spectral measures ܧand ܧ. 
We could use this formula to obtain estimates of quasicommutators as we have done in the 
case of functions of perturbed operators. However, we are going to reduce estimates of 
quasicommutators to those of functions of perturbed operators. For this purpose we obtain 
estimates that compare different moduli of continuities (the operator modulus of 
continuity, the (quasi)commutator modulus of continuity, etc.). 
We start with the case of operator Lipschitz functions. 
The following theorem compares different operator Lipschitz norms and 
(quasi)commutator Lipschitz norms. The fact that they are equivalent is well-known, see 
[205]. The following theorem says that all those norms are equal. 
Theorem (5.2.45)[197]. Let ݂be a continuous function on ℝ. The following are equivalent: 
(i)  ‖݂(ܣ) − ‖(ܤ)݂ ≤ ܣ‖ −  ; ܤ and ܣ for arbitrary self-adjoint operators‖ܤ
(ii)  ‖݂(ܣ) − ‖(ܤ)݂ ≤ ܣ‖ −  for all pairs of unitarily equivalent self-adjoint operators‖ܤ
 ; ܤ andܣ
(iii)  ‖݂(ܣ)ܴ − ‖(ܤ)݂ܴ ≤ ܴܣ‖ −  ;ܴ and ܣ for arbitrary self-adjoint operators‖ܤܴ
(iv)  ‖݂(ܣ)ܴ − ‖(ܤ)݂ܴ ≤ ܴܣ‖ −  and bounded operators ܣ for all self-adjoint operators‖ܤܴ
ܴ; 
(v)  ‖݂(ܣ)ܴ − ‖(ܤ)݂ܴ ≤ ܴܣ‖ −  and ܤ and ܣ for arbitrary self-adjoint operators‖ܤܴ
anarbitrary bounded operator ܴ. 
Proof. The implication (i) ⇒ (ii) is obvious. 
Let us show that (ii) ⇒ (iii). Put ܤ = exp(−ܴ݅ݐ)ܣ exp(ܴ݅ݐ). Clearly, ܤ is unitarily 
equivalentto ܣand ݂(ܤ) = exp(−݅ݐ ܴ)݂(ܣ)exp(ܴ݅ݐ). Thus 
(ܣ)݂‖ − exp(−݅ݐ ܴ)݂(ܣ)exp(ܴ݅ݐ)‖ ≤ ܣ‖ − exp(−ܴ݅ݐ)ܣ exp(ܴ݅ݐ)‖forall ݐ ∈ ℝ. 
It remains to observe that 

lim
௧→

(ܣ)݂‖ − exp(−݅ݐ ܴ)݂(ܣ)exp(ܴ݅ݐ)‖
|ݐ| = ܴ(ܣ)݂‖ −  ‖(ܤ)݂ܴ

and 

lim
௧→

ܣ‖ − exp(−݅ݐ ܴ)ܣexp(ܴ݅ݐ)‖
|ݐ| = ܴܣ‖ −  .‖ܤܴ

To prove that (iii) ⇒ (iv), we consider the following self-adjoint operators 

ࣛ = ቀܣ 0
0 ቁandℛܣ = ቀ 0 ܴ

ܴ∗ 0ቁ. 

It is easy to see that 
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݂(ࣛ)ℛ = ൬ 0 ܴ(ܣ)݂
∗ܴ(ܣ)݂ 0 ൰andℛ݂(ࣛ) = ൬ 0 (ܣ)݂ܴ

(ܣ)݂∗ܴ 0 ൰. 

Hence, 
‖݂(ࣛ)ℛ − ℛ݂(ࣛ)‖ max{‖݂(ܣ)ܴ − ,‖(ܣ)݂ܴ ∗ܴ(ܣ)݂‖ −  {‖(ܣ)݂∗ܴ

and 
‖ࣛℛ − ℛࣛ‖ max{‖ܴܣ − ,‖ܣܴ ∗ܴܣ‖ − {‖ܣ∗ܴ = ܴܣ‖ −  .‖ܣܴ

It follows that 
ܴ(ܣ)݂‖ − ‖(ܤ)݂ܴ ≤ ‖݂(ࣛ)ℛ − ℛ݂(ࣛ)‖ ≤ ‖ࣛℛ − ℛࣛ‖ = ܴܣ‖ −  ‖ܣܴ

The implication (v) ⇒ (i) is trivial; it sufϐices to put ܴ =  . ܫ
To complete the proof, it remains to show that (iv) ⇒ (v). Let us ϐirst consider the special 
case 
whenܣ and ܤ are unitarily equivalent, i.e., ܣ =  for a unitary operator ܷ and we ܷܤ∗ܷ
provethat 

ܴܷ(ܤ)݂∗ܷ‖ − ‖(ܤ)݂ܴ ≤ ܴܷܤ∗ܷ‖ −  .‖ܤܴ
This is equivalent to the inequality 

ܴܷ(ܤ)݂‖ − ‖(ܤ)݂ܴܷ ≤ ܴܷܤ‖ −  ‖ܤܴܷ
which holds by (iv). 
Now we consider the case of arbitrary self-adjoint operators ܣand  . Put 

ࣛ = ቀܣ 0
0 ቁ,        ℬܣ = ቀܤ 0

0 ቁ  and  ℛܣ = ቀܴ 0
0 ܴ∗ቁ. 

Then ࣛand ℬare unitarily equivalent. We have 

݂(ࣛ)ℛ = ൬݂(ܣ)ܴ 0
0 ൰andℛ݂(ℬ)∗ܴ(ܤ)݂ = ൬ܴ݂(ܣ) 0

0  .൰(ܣ)݂∗ܴ

Hence, 
‖݂(ࣛ)ℛ − ℛ݂(ℬ)‖ = max{‖݂(ܣ)ܴ − ,‖(ܤ)݂ܴ ∗ܴ(ܤ)݂‖ −  {‖(ܣ)݂∗ܴ

and 
‖ࣛℛ − ℛℬ‖ = max{‖ܴܣ − ,‖ܤܴ ∗ܴܤ‖ − {‖ܣ∗ܴ = ܴܣ‖ −  .‖ܤܴ

It follows that 
ܴ(ܣ)݂‖ − ‖((ܤ)݂ܴ ≤ ‖݂(ࣛ)ℛ − ℛ݂(ℬ)‖ ≤ ‖ࣛℛ − ℛℬ‖ = ܴܣ‖ −  .‖ܤܴ

For a continuous function ݂ on ℝ we have defined the operator modulus of continuity 
 .We define here 3 other versions of moduli of continuity in terms of commutators andߗ
quasicommutators. 
Let ݂ be a continuous function on ℝ. For ߜ > 0, put 
ߗ

[ଵ](ߜ) ≝ sup{‖݂(ܣ)ܴ − :‖(ܣ)݂ܴ ܣ = ,∗ܣ ܴ = ܴ∗, ‖ܴ‖ = 1, ܴܣ‖ − ‖ܣܴ < {ߜ ; 

ߗ
[ଶ](ߜ) ≝ sup{‖݂(ܣ)ܴ − :‖(ܣ)݂ܴ ܣ = ,∗ܣ ‖ܴ‖ = 1, ܴܣ‖ − ‖ܣܴ < {ߜ ; 

ߗ
[ଷ](ߜ) ≝ sup{‖݂(ܣ)ܴ − :‖(ܤ)݂ܴ ܣ = ,∗ܣ ܤ = ,∗ܤ ‖ܴ‖ = 1, ܴܣ‖ − ‖ܤܴ <  .{ߜ

Obviously, ߗ
[ଵ] ≤ ߗ

[ଶ] ≤ ߗ
[ଷ]and ߗ ≤ ߗ

[ଷ]. 
Theorem (5.2.46)[197]. Let ݂ be a continuous function on ℝ. Then 
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ߗ ≤ ߗ
[ଵ] = ߗ

[ଶ] = ߗ
[ଷ] =  .ߗ2

Proof. The inequality ߗ
[ଶ] ≤ ߗ

[ଵ] can be proved in the same way as the implication (iii) ⇒ 
(iv) 
in the proof of Theorem (5.2.45)The inequality Ω

[ଷ] ≤ Ω
[ଶ] can be proved in the same way 

as theimplication (iv) ⇒ (v) in the proof of Theorem (5.2.45). It remains to prove that Ω 
ߗ     [235]

[ଵ] ≤  .. We need two lemmaߗ2
Lemma  (5.2.47)[197]. Let ܺ and ܻ be bounded operators. Then 

‖ܻܺ − ܻܺ‖ ≤ ݊‖ܻ‖ିଵ‖ܻܺ − ܻܺ‖. 
Proof. We have 

‖ܻܺ − ܻܺ‖ ≤ ะ ܻିଵ(ܻܺ − ܻܺ)ܻି


ୀଵ

ะ ≤ ݊‖ܻ‖ିଵ‖ܻܺ − ܻܺ‖. 

Lemma  (5.2.48)[197]. Let ܶ be a self-adjoint operator such that ‖ܶ‖ < 1 and let ܺbe a 
bounded operator. Then 

ฮ(ܫ − ܶଶ)ଵ/ଶܺ − ܫ)ܺ − ܶଶ)ଵ/ଶฮ ≤
‖ܶ‖ ∙ ‖ܺܶ − ܶܺ‖

(1 − ‖ܶ‖ଶ)ଵ/ଶ . 

Proof.Let ܽ ≝ (−1)ିଵ ቀ1/2
݊ ቁ . Then ܽ > 0 and (1 − ଶ)ଵ/ଶݐ = ∑ ܽݐଶஶ

ୀଵ . Thus  

ฮ(ܫ − ܶଶ)ଵ/ଶܺ − ܫ)ܺ − ܶଶ)ଵ/ଶฮ = ะ ܽ(ܺܶଶ − ܶଶܺ)
ஶ

ୀଵ

ะ ≤ ‖ܺܶ − ܶܺ‖  2݊ܽ‖ܶ‖ଶିଵ
ஶ

ୀଵ

=
‖ܶ‖ ∙ ‖ܺܶ − ܶܺ‖

(1 − ‖ܶ‖ଶ)ଵ/ଶ . 

by Lemma  (5.2.47).    
Let us complete the proof of Theorem (5.2.47). Let ܴ be a self-adjoint contraction and ߬ ∈
(0,1).Consider the operators 

ࣛ = ቀܣ 0
0 ቁ and࣯ܣ = ቆ ܴ߬ ܫ) − ߬ଶܴଶ)ଵ/ଶ

ܫ)− − ߬ଶܴଶ)ଵ/ଶ ܴ߬
ቇ. 

Clearly, ࣯is a unitary operator. We have 

݂(ࣛ)࣯ = ቆ ܴ(ܣ)݂߬ ܫ) − ߬ଶܴଶ)ଵ/ଶ݂(ܣ)
ܫ)(ܣ)݂− − ߬ଶܴଶ)ଵ/ଶ ܴ(ܣ)݂߬

ቇ. 

and 

࣯݂(ࣛ) = ቆ (ܣ)݂ܴ߬ ܫ) − ߬ଶܴଶ)ଵ/ଶ݂(ܣ)
ܫ)− − ߬ଶܴଶ)ଵ/ଶ݂(ܣ) (ܣ)݂ܴ߬

ቇ. 

Clearly, 
‖݂(ࣛ)࣯ − ࣯݂(ࣛ)‖ ≥ ܴ(ܣ)݂‖߬ −  ‖(ܣ)݂ܴ

and 
‖࣯ࣛ − ࣯ࣛ‖ ≤ ܴܣ‖߬ − ‖ܣܴ + ฮܫ)ܣ − ߬ଶܴଶ)ଵ/ଶ − ܫ) − ߬ଶܴଶ)ଵ/ଶܣฮ

≤ (߬ + ߬ଶ(1 − ߬ଶ)ିଵ/ଶ)‖ܴܣ −  ‖ܣܴ
by Lemma  (5.2.48) with ܺ = ܶ and ܣ = ܴ߬. Hence, 
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ܴ(ܣ)݂‖ − ‖(ܣ)݂ܴ ≤ ߬ିଵ‖݂(ࣛ)࣯ − ࣯݂(ࣛ)‖ = ߬ିଵ‖࣯∗݂(ࣛ)࣯ − ݂(ࣛ)‖
≤ ߬ିଵߗ(‖࣯∗࣯ࣛ − ࣛ‖) = ߬ିଵߗ(‖࣯ࣛ − ࣯ࣛ‖)
≤ ߬ିଵߗ(߬ + ߬ଶ(1 − ߬ଶ)ିଵ/ଶ)‖ܴܣ −  ‖ܣܴ

Taking ߬ = 1/2, we obtain 

ܴ(ܣ)݂‖ − ‖(ܣ)݂ܴ ≤ ߗ2 ൭൬
1
2

+
1

2√3
൰ ܴܣ‖ − ൱‖ܣܴ ≤ ܴܣ‖)ߗ2 −  .(‖ܣܴ

Lemma  (5.2.49)[197]. Let 0 < ߙ < 1. Then there exists ܿ > 0 such that for every ݂ ∈  ,ఈ(ℝ)߉
for arbitrary self-adjoint operators ܣ and ܤ and a bounded operator ܴ the following 
inequality holds: 

ܴ(ܣ)݂‖ − ‖(ܤ)݂ܴ ≤ ܿ‖݂‖௸ഀ(ℝ)‖ܴܣ −  .ఈ‖ܴ‖ଵିఈ‖ܤܴ
Proof. Clearly, we may assume that ܴ ≠ 0. By Theorems (5.2.8)and (5.2.46), 

ܴ(ܣ)݂‖ − ‖(ܤ)݂ܴ = ‖ܴ‖ ∙ ฯ݂(ܣ) ൬
1

‖ܴ‖ ܴ൰ − ൬
1

‖ܴ‖ ܴ൰ ฯ(ܤ)݂ ≤ ܿ‖݂‖௸ഀ(ℝ)‖ܴ‖ ฯ
1

‖ܴ‖ ܴܣ) − ฯ(ܤܴ
ఈ

= const‖݂‖௸ഀ(ℝ)‖ܴܣ − ఈ‖ܴ‖ଵିఈ‖ܤܴ . 
Lemma  (5.2.50)[197]. There exists ܿ > 0 such that for every modulus of continuity ߱, for 
every ݂ ∈  and a bounded nonzero , ܤ and ܣ ఠ(ℝ), for arbitrary self-adjoint operators߉
operator ܴ thefollowing inequality holds: 

ܴ(ܣ)݂‖ − ‖(ܤ)݂ܴ ≤ ܿ‖ܴ‖߱∗ ቆ
ܴܣ‖ − ‖ܤܴ

‖ܴ‖ ቇ. 

The proof of Lemma  (5.2.50) is the same as the proof of Lemma  (5.2.49). 
We obtain norm estimates for finite differences 

(∆
݂)(ܣ) ≝ (−1)ି



ୀ

ቀ
݉
݆ ቁ ܣ)݂ +  (ܭ݆

for functions ݂ ∈  For simplicity, we give . ܭ and ܣ ఠ,(ℝ) and self-adjoint operators߉
proofs in the case of bounded operators and bounded functions ݂ . Note that our estimate 
will not depend on the ܮஶ norm of ݂ , nor on the operator norm of ܣ. In [220] we consider 
the case ofan arbitrary (not necessarily bounded) self-adjoint operator ܣ (though ܭ still 
must be bounded)and an arbitrary function ݂ ∈  .ఠ,(ℝ)߉
We also obtain similar results for unitary operators and for contractions. 
Let ߱ be a nondecreasing function on (0, ∞) such that 

lim
௫→

(ݔ)߱ = 0 and   ߱(2ݔ) ≤ 2߱(ݔ)for   ݔ > 0.                    (87) 

Recall that ߉ఠ,(ℝ) is the space of continuous functions ݂ on ℝ satisfying 

‖݂‖௸ഘ,(ℝ) ≝ sup
௧வ

‖∆௧
݂‖ಮ

(ݐ)߱
< +∞. 

Given a nondecreasing function ߱ satisfying (87), we define the function ߱∗, by 

߱∗,(ݔ) = ݔ න
(ݐ)߱
ାଵݐ

ஶ

௫
ݐ݀ = න

(ݔݏ)߱
ାଵݏ

ஶ

ଵ
 .ݔ݀
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Lemma  (5.2.51)[197]. Let ݉ be a positive integer. Then there is a positive number ܿ such 
that for an arbitrary nondecreasing function ߱ on (0, ∞) satisfying (87), an arbitrary 
bounded function݂in ߉ఠ,(ℝ),  and arbitrary bounded self-adjoint operators ܣ  and ܭ  on 
Hilbert space the following inequality holds: 

‖(∆
݂)(ܣ)‖ ≤ ܿ‖݂‖௸ഘ,(ℝ)߱∗,(‖ܭ‖). 

Proof. As in the proof of Theorem (5.2.24), we can easily see that 

(∆
୫f)(A) =  (∆

୫f୬)(A)


୬ୀିஶ

+ ൫∆
(݂ − ݂ ∗ ேܸ)൯(ܣ), 

where as before, ݂ = ݂ ∗ ܹ + ݂ ∗ ܹ
# . 

Suppose that ܰ is the integer satisfying (69). By Theorem (5.2.6), 
ฮ൫∆

୫(f − f ∗ V)൯(A)ฮ ≤ const‖f − f ∗ V‖ಮ 
≤ const‖f‖ஃಡ,ౣ(ℝ)ω(2ି) ≤ const‖f‖ஃಡ,ౣ(ℝ)ω∗,୫(‖K‖). 

On the other hand, it follows from Lemma (5.2.10), (59), and Corollary (5.2.7)that 
‖(∆

୫f୬)(A)‖ ≤ const2୫୬‖f୬‖ಮ‖K‖୫ ≤ const‖f‖ஃಡ,ౣ(ℝ)2୫୬ω(2ି୬)‖K‖୫. 
Thus  

 ‖(∆


݂)(ܣ)‖
ே

ୀିஶ

≤ const  ‖݂‖௸ഘ,(ℝ)2߱(2ି)
ே

ୀିஶ

‖ܭ‖

=  2(ேି)߱(2ேି)
ஹ

‖݂‖௸ഘ,(ℝ)‖ܭ‖ ≤ const ቆන
(ݐ)߱
ାଵݐ ݐ݀

ஶ

௫
ቇ ‖݂‖௸ഘ,(ℝ)‖ܭ‖

= const‖݂‖௸ഘ,(ℝ)߱∗,(‖ܭ‖). 
This completes the proof.    
Corollary  (5.2.52)[197]. Let ߱ be a positive nondecreasing function on (0, ∞) such that 
lim௫→ ߱(ݔ) = 0and  ߱(2ݔ) ≤ ई߱(ݔ)  for some  ई < 2 and all ݔ > 0.  Then for ݔ > 0, we 
have  ߱∗,(ݔ)const ≤  and so (ݔ)߱

‖(∆
݂)(ܣ)‖ ≤ const ‖݂‖௸ഘ,(ℝ)߱(‖ܭ‖). 

The proof of Corollary  (5.2.52) is the similar to the proof of Corollary (5.2.26). 
Corollary(5.2.53)[197]. Suppose that under the hypotheses of Theorem(5.2.51)‖f‖ಮ ≤ M. 
Then for the function ߱,ெ  defined by 

߱,ெ(ݔ) = ݔ න
min(2ܯ, ((ݐ)߱

ାଵݐ

ஶ

௫
 ,ݐ݀

the following inequality holds: 
‖(∆

݂)(ܣ)‖ ≤ const ‖݂‖௸ഘ,߱,ெ(‖ܭ‖). 
The following analogs of Lemma  (5.2.51) for unitary operators and for contractions can be 
proved in a similar way. 
Theorem  (5.2.54)[197]. Let ݉be a positive integer. Then there exists a constant ܿ > 0 such 
that for every nondecreasing function ߱ on (0, ∞) satisfying (87), for every ݂ ∈  ఠ, , and߉
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for an arbitrary unitary operator ܷ and an arbitrary bounded self-adjoint operator ܣ  on 
Hilbert space, the following inequality holds: 

ะ(−1) ቀ݉
݇ ቁ



ୀ

݂൫ܷ݁൯ะ ≤ ܿ‖݂‖௸ഘ,߱∗,(‖ܣ‖). 

Theorem (5.2.55)[197]. Let ݉be a positive integer. Then there exists a constant ܿ > 0 such 
that for every nondecreasing function ߱ on (0, ∞) satisfying (87), for every ݂ ∈  and ,(ఠ,߉)
for arbitrary contractions ܶ and ܴ on Hilbert space, the following inequality holds: 

ะ(−1) ቀ݉
݇ ቁ



ୀ

݂ ൭ܶ +
݇
݉

(ܴ − ܶ)൱ะ ≤ ܿ‖݂‖௸ഘ,߱∗,(‖ܶ − ܴ‖). 


