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 يةلآا

 قال تعالي :

ضِ } رَأ ُ نوُرُ السهمَاوَاتِ وَالْأ باَحٌ  ۚ  اللَّه كَاةٍ فِيهَا مِصأ  ۚ  مَثلَُ نوُرِهِ كَمِشأ

باَحُ فِي زُجَاجَةٍ  ي   ۚ  الأمِصأ كَبٌ درُ ِ جَاجَةُ كَأنَههَا كَوأ يوُقدَُ مِنأ  الزُّ

بِيهةٍ يكََادُ زَيأتهَُا يضُِيءُ وَلوَأ  قِيهةٍ وَلََ غَرأ شَجَرَةٍ مُباَرَكَةٍ زَيأتوُنةٍَ لََ شَرأ

هُ ناَرٌ  سَسأ دِي ۚ  نوُرٍ ۚ  نوُرٌ عَلىَ ۚ  لمَأ تمَأ ُ لِنوُرِهِ مَنأ يشََاءُ  يهَأ  ۚ  اللَّه

ثاَلَ لِلنهاسِ  مَأ ُ الْأ رِبُ اللَّه ءٍ عَلِيمٌ{ ۚ  وَيضَأ ُ بكُِل ِ شَيأ وَاللَّه  

35سورة النور الآية   
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Abstract 

 

In this research, the running of quarks masses and flavor mixing in five dimensional 

standard models has been studied. The evolution properties of quark mass and flavor 

mixing are performed for the one-loop renormalization group equations in the five 

dimensional standard model. It is found that the five dimension model has a significant 

effect on the running of the fermion masses, including both quark and lepton sectors. We 

quantitatively discussed these quantities for R−1 = 1 TeV, 5 TeV and 13 TeV resulting in 

similar behaviors for all values of the compactification radius.  
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 ملخص البحث

 

)نظرية النموذج  بعاد الزائدهاكات في نظرية الأالكور ونكهه ومزج  نشاة كتل رس البحث د  في هذا 

الكورك للرتبه  نكههومزج  القياسي للجسيمات الاولية في خمسة أبعاد(. تم دراسه وحساب  نشاة كتله

المعايره في نظريه الابعاد الزائده. وجد ان نظريه  همجموعلل الحلقه الدولي معادلات باستخدامالاولي 

ومزج  كتلهنوقش الأبعاد الزائده تساهم بصوره كبيره علي نشاة كتله الفيرمونات كواركات وليبتونات. 

R−1الكورك عند طاقات  نكهه = 1 TeV, 5 TeV and 13 TeV لهذه الكميات  ووجد نتائج متشابه

 .اتعند هذه الطاق
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CHAPTER I 

 

 

1-1 General Introduction 

All known elementary particle physics phenomena are extremely well understood within 

the Standard Model (SM) of elementary particles and their fundamental interactions 

(Salam, 1968). The SM of particle physics is a theory that describes the interaction between 

elementary particles (Guigg, 1983). It combines the Glashow-Weinberg-Salam theory of 

electroweak interaction (that unified the weak and electromagnetic interactions), based on 

𝑆𝑈(2)𝐿 × 𝑈(1)𝑌group (S.L.Glashow, 1961) and the strong interactions known as Quantum 

Chromo dynamics (QCD), based on 𝑆𝑈(3)𝐶group (Guigg, 1983). 

The matter fields are fermions,  have spin s = 1/2 and are classified into leptons and quarks. 

The known leptons are: the electron, 𝑒−, the muon 𝜇−, and the  tau 𝜏−, with electric charge  

Q= −1; and the corresponding neutrinos 𝜈𝑒,𝜈𝜇,and 𝜈𝜏with electric charge Q = 0.  

The known quarks are consist of six different flavors u, d, c, s, t and b with fractional 

electric charge Q = 2/3,−1/3, 2/3,−1/3, 2/3,−1/3 respectively (J.donoghue, 1994). 

The SM gauge sector is composed of 12 gauge fields have spin s = 1, which mediate the 

interactions between the matter fields; the photon (mediate the electromagnetic 

interactions) being neutral, the three weak gauge bosons (charged 𝑊±and neutral 𝑍 mediate 

the weak interactions) which are the four gauge bosons of 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌and eight gluons 

 (g𝛼;𝛼= 1, 2,...,8 mediate the strong interactions) which are the gauge bosons of 𝑆𝑈(3)𝐶. 

The Z boson in the Glashow-Salam-Weinberg model is a mixture of the neutral spin 

𝑆𝑈(2)𝐿 and the hypercharge 𝑈(1)𝑌 gauge fields, with the mixing parameterized by 𝑠𝑖𝑛2𝜃𝑊 

The 𝑍 boson interacts with vector and axial-vector currents of matter (Veltman, 2003). 

 The 𝑍 -matter couplings, including the mixing angle, are affected by radiative corrections 

so that high-precision analyses allow both tests at the quantum level and extrapolations to 

new scales of virtual particles. Despite the success of the standard model. However, there 

are some issues with the standard model; these issues suggest the extension of the standard 

model to account for these unsolved problems (Falcone, 2002).  
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A theory of fermion masses and the associated mixing angles provide an interesting puzzle 

and a likely suggested a window to physics beyond the Standard Model (SM), where one of 

the main issues in particle physics is to understand the fermion mass hierarchy and mixings 

(E.~Poppitz, 2001).  

There have been many attempts to understand the fermion mass hierarchies and their 

mixings by utilizing the technique of Renormalization Group Equations (RGEs) especially 

for Universal Extra Dimension (UED) models and their possible extensions 

(A.~Abdalgabar, 2013) (A.~S.~Cornell, 2010) (L.~-X.~Liu, 2010).  

There are several versions of UED models, the simplest being the case of one flat extra 

dimension compactified on an 𝑆1/𝑍2  orbifold which has a size 1/R ≈ 1 TeV. This 

compactification will lead to a new particle states in the effective 4-dimensional (4D) 

theory. As such, in the 4D effective theory there appears an infinite tower of massive 

Kaluza-Klein (KK) states, with a mass contribution inversely proportional to the radius of 

the extra-dimension (N.~Maru, 2010). 

 

1-2 The importance of the study 

There are many reasons to consider such models, primarily as they provide a way to 

address the “hierarchy problem”, that is, the question of why there is huge gap between 

Planck scale  𝑀𝑃𝑙 = 1019  GeV and weak scale 246 GeV, but also to provide a means of 

breaking the electroweak symmetry, the generation of fermion mass hierarchies, and in 

studying the CKM matrix and new sources of CP violation. Furthermore, TeV scale grand 

unification and sources of dark matter are also possible in these theories. To date much of 

the interest in UED models has 

been for its source of beyond the SM TeV-scale physics, largely arising from the tower of 

KK states approximately degenerate in mass at the scale set by the inverse of the 

compactification radius. KK parity and the 4D conservation of momentum imply that 

contributions to SM particle masses occur only for interactions at loop level, and that the 

lightest KK particle will be stable and a suitable dark matter candidate. 

To date much of the interest in UED models has been for its source of beyond the SM TeV-

scale physics, largely arising from the tower of KK states approximately degenerate in 

mass at the scale set by the inverse of the compactification radius. KK parity and the 4D 
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conservation of momentum imply that contributions to SM particle masses occur only for 

interactions at loop level, and that the lightest KK particle will be stable and a suitable dark 

matter candidate. 

 

1-3 The main objectives of the study 

The main objective is to discuss and study the evolution of quark mass and flavor mixing in 

extra dimension models  at one loop level by using the techniques of renormalization group 

equation. 

 

1-4 Outline of the Research 

This research is structured as follow: In chapter II we briefly introduced the standard model 

of particle physics, which describe the interaction among the elementary particles. Chapter 

III is devoted to calculation of the renormalization group equations in five dimensional 

models. We present our numerical result, discussions and conclusions in chapter IV.  
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CHAPTER II 

 

 

Introduction to the Standard Model and Beyond 

(2-1)The Standard Model 

After three decades of great cumulative theoretical and experimental effort, today it seems 

to possess the theory of both strong and electroweak interactions. This is the so-called 

Standard Model (J.donoghue, 1994), based on the invariance under the symmetry group 

𝐺𝑠𝑡 = 𝑆𝑈(3)𝐶  × 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌                                                                                 (1.1) 

More correctly phrased, it is based on the partial spontaneous symmetry breaking of 𝐺𝑠𝑡 . 

The basic constituents of matter, the elementary fermions, i.e. the Quarks and leptons have 

the following transformation properties under 𝐺𝑠𝑡 (for simplicity we concentrate only in the 

first generation of Fermions) see table 1.1. 

 The 𝑆𝑈(3)𝐶 gauge group or colour group is the symmetry group of strong interactions. 

 The 𝑆𝑈(2)𝐿⊗𝑈(1)𝑌 is the gauge group of the unified weak and electromagnetic 

interactions ‘where 𝑆𝑈(2)𝐿is the weak isospin group, acting on left-handed fermions, 

and 𝑈(1)𝑌 is the   hypercharge group (Guigg, 1983). 

 

(2-2) Symmetries in the Standard Model 

1-Global symmetries:- 

The continuous parameters of the transformation do not depend on the space-time 

coordinates. Some examples are: SU(2) Isospin symmetry, SU(3) flavor symmetry, U(1)B 

baryon symmetry, U(1)L lepton symmetry (L.F.Li, 1991).  

 

2-Local (Gauge) symmetries:- 

The continuous parameters of the transformation do depend on the space-time coordinates. 

Some examples are: U(1)emelectromagnetic symmetry, SU(2)Lweak isospin symmetry, 

U(1)Yweak hypercharge symmetry, SU(3)Ccolor symmetry (Guigg, 1983). 
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Table 1.1: The SM fields with their representations under 𝑆𝑈(3)𝑐and SU(2)Land their 

charges under 𝑈(1)𝑌and 𝑈(1)𝐸𝑀,Q is the electric charge and s is the spin of the field. 

 

 

 

Field Notation 𝑆𝑈(3)𝑐 𝑆𝑈(2)𝐿 𝑈(1)𝑌 𝑈(1)𝐸𝑀 

 

 

 

Quarks 

(s=1/2) 

𝑄𝐿 = (
𝑢𝐿

𝑑𝐿
) , (

𝑐𝐿

𝑠𝐿
) , (

𝑡𝐿

𝑏𝐿
) 

𝑢𝑅 , 𝑐𝑅 , 𝑡𝑅 

𝑑𝑅 , 𝑠𝑅 , 𝑏𝑅 

 

 

    3 

 

    3 

    3 

 

2 

 

1 

1 

 

1/6 

 

2/3                 

-1/3 

(
2/3

−1/3
) 

 

          

2/3 

         -

1/3 

 

 

Leptons 

(s=1/2) 

𝐿𝐿 = (
𝜈𝑒

𝑒𝐿
) , (

𝜈𝜇

𝜇𝐿
) , (

𝜈𝜏

𝜏
) 

𝑒𝑅 , 𝜇𝑅 , 𝜏𝑅 

 

1 

 

 

1 

 

2 

 

 

1 

-1/2 

 

 

1 

(
0

−1
) 

 

-1 

 

 

Gauge (s=1) 

g 

 

𝑊3,𝑊± 

 

                    B    

8 

 

1 

 

1 

1 

 

3 

 

1 

0 

 

0 

 

0 

0 

 

0,±1 

 

0 

 

Higgs (s=0) 

Φ

= (
𝜙+

𝜙0 =
1

√2
(ν + ℎ + 𝑖φ

0
)
) 

 

     1 

 

      2 

 

1/2 
(

1

0
) 
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(2-3) The Standard Model Lagrangian 

The SM Lagrangian can be divided as: 

ℒ𝑆𝑀= ℒ𝐺𝑎𝑢𝑔𝑒 + ℒFermions + ℒHiggs +ℒYukawa + ℒGauge.fixing  +ℒGhost.                                    

(2.1) 

We shall now briefly introduce each sector of this Lagrangian 

ℒGauge  = 

−4 
1 𝐺𝜇𝑣

𝐴 𝐺𝐴𝜇𝑣−4 
1 𝑊𝜇𝑣

𝑎 𝑤𝑎𝜇𝑣−4
1𝐵𝜇𝐵𝜇                                                                                         (2.2) 

ℒFermion  = ∑ 𝑓̅
𝑓 𝑖𝛾𝜇𝐷𝜇𝑓                                                                                            (2.3)           

ℒHiggs =

(DμΦ)†(DμΦ) − V(Φ)                                                                                                            (2.4) 

ℒYukawa =

Yij
dql

iΦdR
j

+ Yij
uql

iΦ~uR
j

+ Yij
eLl

i ΦeR
j

+ h. c                                                                       (2.5) 

ℒGauge fixing

= −
1

2

ζ

2
(∂μAμ)2                                                                                                                 (2.6) 

ℒGhost =

Cb
̅̅ ̅ ∂μDμ

abCa                                                                                                                                (2.7) 

 

(2-4)The Higgs Mechanism 

If mass terms for gauge bosons and for left/right-chiral fermions are introduced by hand, 

they break the gauge invariance of the theory. So we need a mechanism to give masses to 

these particles. This issue has been solved by means of the Higgs mechanism in which 

masses are introduced into gauge theories in a consistent way. The solution of the problem 

is achieved at the expense of a new fundamental degree of freedom, the Higgs field, which 

is a scalar field. 

This Scalar field is denoted by 𝜙 and has hypercharge𝑌𝜙 = 1 and can interact with each 

other, the interaction between fermion fields and the Higgs field is of Yukawa type 

(P.~W.~Higgs, 1964). 
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The Higgs doublet Lagrangian should contain a “spontaneous symmetry breaking” 

potential, this will give the Higgs a vev and self-interactions, and kinetic terms which will 

generate the gauge boson masses and interactions between the Higgs and the gauge bosons. 

This scalar particle has been discovered by the ATLAS (al, 2012) and CMS (al, 2012) 

experiments, which is compatible with the SM. Higgs expectations with a mass 126 GeV. 

 

The Higgs potential is given by 

𝑉(Φ) = −
1

2
𝜇2Φ+Φ −

λ

4
(Φ+Φ)2                                              (2.9)     

 

Which involves two new real parameters 𝜇 𝑎𝑛𝑑 𝜆 we demand 𝜆 > 0  for the potential to be 

bounded; otherwise the potential is unbounded from below and there will be no stable 

vacuum 

state. 

𝜇 Takes the following two values: 

• 𝜇2 > 0 Then the vacuum corresponds toΦ = 0, the potential has a minimum at the origin 

(see figure 2.2). 

• 𝜇2 < 0 Then the potential develops a non-zero Vacuum Expectation Value (VEV) and the 

minimum is along a circle of radius 
𝜐

√2
=

246

√2
 (see figure 2.1). 
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 Figure (2.1): The Higgs potential 𝑉(𝛷) with, the case 𝜇2 > 0; as function of |𝛷|  =

 √𝛷†𝛷 
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 Figure (2.2): The Higgs potential 𝑉(𝛷) with, the case 𝜇2 < 0; as function of 

|𝛷|  =  √𝛷†𝛷 

(2-5) Problem of standard model 

Despite the success of the standard model. Below we list some of unsolved problem in the 

standard model. 

1- Cosmological consideration: The observed matter density of galaxies falls short of the 

measured matter as measured by the rotation curves. It is theorized that the baryon matter 

density 

is∼ 4%. The rest of the universe is made up of ∼ 24% dark matter and ∼ 72% dark energy. 

In the last decade, the direct observation of gravitational lensing and observations in 

galactic 

Collision (in the ’Bullet’ cluster) events have provided hard evidence for the existence of 

Dark Matter (DM).The WMAP probe has measured the dark matter density to be between 

(0.087 < DMh2 <0.138) at 3σ range. SM neither provides any explanation for dark energy 

nor does it have a suitable dark matter candidate (Collaboration], 2011).  
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2- Gauge Hierarchy problem:  

The gauge Hierarchy problem is the question of why there is such a huge difference 

between the electroweak scale 𝑴𝑬𝑾 = 𝓞(𝟏𝟎𝟎) 𝑮𝒆𝒗 and the Planck scale 𝑴𝑷𝑳 =

𝓞(𝟏𝟎𝟏𝟖)𝑮𝒆𝒗 . This is also known as the naturalness problem (L.F.Li, 1991). 

3.-Gravity is not included: Gravity is not put on the same footing as other interactions in 

the 

SM.  

4-Fermion mass: In particle physics one of the major issues is to explain the fermion mass 

hierarchy and their mixings. The practical feature of the fermion mass spectrum gives us 

𝑚𝑢 ≪ 𝑚𝑐 ≪ 𝑚𝑡,         𝑚𝑑 ≪ 𝑚𝑠 ≪ 𝑚𝑏 ,       𝑚𝑒 ≪ 𝑚𝜇 ≪ 𝑚𝜏 

where a completely satisfactory theory of fermion masses and the related problem of 

mixing angles is certainly lacking at present. However, there has been considerable effort to 

understand the hierarchies of these mixing angles and fermion masses in terms of the 

renormalization group equations (RGE) (K.~S.~Babu, 1987).   

 

(2-6)Universal Extra Dimensions  

Whilst our universe seems to consist of four space-time dimensions, the possibility of 

including extra spatial dimensions is an idea which dates back quite some time. In fact, as 

early as the 1920’s Kaluza and Klein proposed the existence of an additional spatial 

dimension compactified in such a way as to make it too small to have as yet been observed 

(T.~Kaluza, 1921). There are several versions of this model, the simplest being the case of 

one flat extra dimension compactified on an 𝑆1/𝑍2 orbifold which has a size 1/R ∼ 1 TeV. 

This compactification lead to a tower of new particle states in the effective four 

dimensional theory  As such, in the four dimensional effective theory there appears an 

infinite tower of massive KK states, with a mass contribution inversely proportional to the 

radius of the extra-dimension (H.~-U.~Yee, 2003). 

The Universal Extra Dimension (UED) model is an effective theory in four dimensions 

with a cutoff Λ, with the consequence that the tree level spectrum is highly degenerate and 

where loop corrections to masses become Important. The phenomenology of these UED 
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models will arise when their flat extra dimensions allow all (or a subset) of the SM fields to 

propagate in the full space-time. There are many reasons to study such models (see section 

2.5 for more detail). In this section we will discuss the model building of five extra 

dimensions in the universal extra dimensional model (N.~Maru, 2010) 

 

(2-7) Decomposing the five dimensions Kaluza Klein fields 

 

We study a generic model with one universal extra dimension called Universal Extra 

Dimension (UED) model, where all the SM fields propagate universally in 5D space-time. 

The space-time coordinate 𝑥𝜇 (μ= 1, 2, 3, 4) denotes the usual Minkowski space, and the 

fifth extra spatial dimension coordinates 𝑥5 = 𝑦 is compactified on a circle (N.~Maru, 

2010). 

The Lagrangian for a scalar field Φ is 

ℒHiggs = ∫ dy (DμΦ)†(DμΦ)

− V(Φ)                                                                                            (2.7)     

To get the effective 4 dimension we integrate the fifth coordinate y and after Fourier 

decomposition along the extra coordinates, the fields can be written as a sum of KK 

modes.as  

Φ 

(x,y)=
1

√𝜋𝑅
(Φ(𝑥 , 𝑦) +

√2 ∑ Φ𝑛(𝑥) cos
𝑛𝑦

𝑅
∞
𝑛=1      (𝑠𝑐𝑎𝑙𝑎𝑟 𝑓𝑖𝑒𝑙𝑑 𝑜𝑟 ℎ𝑖𝑔𝑔𝑠 𝑓𝑖𝑒𝑙𝑑)                (2.8) 

 

 

The Lagrangian for an Abelian gauge field (also for non-Abelian gauge symmetries at 

quadratic level) is 

ℒGauge  =∫ 𝑑𝑦(−4 
1 𝐺𝑀𝑁

𝐴 𝐺𝐴𝑀𝑁−4 
1 𝑊𝑀𝑁

𝑎 𝑤𝑎𝑀𝑁−4
1𝐵𝑀𝐵𝑀) 

Therefore each of the gauge fields has five components and decomposes into towers of 4D 

spin-1 fields and one tower of real scalar belonging to the adjoint representation, and their 

Fourier decomposition are 
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𝐵𝜇(𝑥 , 𝑦) =  
1

√𝜋𝑅
 ( 𝐵𝜇

0(𝑥)

+  √2 ∑ 𝐵𝜇
𝑛(𝑥) cos

𝑛𝑦

𝑅

∞

𝑛=1
)                                                           (2.9) 

𝐵5(𝑥 , 𝑦)

=  √
2

𝜋𝑅
∑ 𝐵5

𝑛
∞

𝑛=1
(𝑥) sin

𝑛𝑦

𝑅
                                                                                         (2.10)   

𝑊𝜇(𝑥 , 𝑦) =  
1

√𝜋𝑅
 (𝑊𝜇

0(𝑥)

+ √2 ∑ 𝑊𝜇
𝑛(𝑥) cos

𝑛𝑦

𝑅

∞

𝑛=1

 )                                                           (2.11 )    

  𝑊5(𝑥 , 𝑦)

=  √
2

𝜋𝑅
  ∑ 𝑊5 (𝑥)

∞

𝑛=1

sin
𝑛𝑦

𝑅
                                                                                         (2.13)   

   𝐺𝜇(𝑥 , 𝑦) =
1

√𝜋𝑅
(𝐺𝜇

0(𝑥)

+ √2 ∑ 𝐺𝜇
𝑛  (x)cos

𝑛𝑦

𝑅

∞

𝑛=1
 )                                                          (2.14)  

   𝐺5(𝑥 , 𝑦)

= √
2

𝜋𝑅
  ∑ 𝐺5

𝑛(𝑥)

∞

𝑛=1

sin
𝑛𝑦

𝑅
                                                                                            (2.15)  

So the gauge field in 5D Bμ = (Bμ , B5), Wμ = (Wμ , W5), Gμ 

= (Gμ, G5)                          (2.16)  

The Lagrangian for fermions read: 

 ℒFermion = ∫ 𝑑𝑦 ∑ �̅�𝑓 𝑖𝛾𝑀𝐷𝑀𝜓 

The decomposition of fermions can be written as  

𝑄(𝑥 , 𝑦) =
1

√𝜋𝑅
(𝑞𝐿(𝑥)

+ √2 ∑ (𝑄𝐿
𝑛(𝑥) cos

𝑛𝑦

𝑅
+ 𝑄𝑅

𝑛 (x)sin
𝑛𝑦

𝑅
)

∞

𝑛=1

                                        (2.17) 
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SU(2)quark doublet , QL
n(x)is the kk left handed doublet  QR 

n is the kk the right handed doublet 

𝑈(𝑥 , 𝑦) =
1

√𝜋𝑅
 (𝑈𝑅(𝑥)

+ √2 ∑ (𝑈𝑅
𝑛 (𝑥) cos

𝑛𝑦

𝑅
+ 𝑈𝐿

𝑛  (x)sin
𝑛𝑦

𝑅
)

∞

𝑛=1
)                             (2,18)   

 𝑆𝑈(2)𝑠𝑖𝑛𝑔𝑙𝑒𝑡 , 𝑢𝑝 𝑡𝑦𝑝𝑒 𝑞𝑢𝑎𝑟𝑘  

𝑑(𝑥 , 𝑦) =
1

√𝜋𝑅
 (𝑑𝑅(𝑥)

+ √2 ∑ (𝑑𝑅
𝑛(𝑥) cos

𝑛𝑦

𝑅
+ 𝑑𝐿

𝑛 sin
𝑛𝑦

𝑅
)

∞

𝑛=1
)                                     (2.19)    

SU(2) singlet down type quark 

𝐿(𝑥 , 𝑦) =
1

√𝜋𝑅
(𝐿𝐿(𝑥)

= +√2 ∑ (𝐿𝐿
𝑛(𝑥) cos

𝑛𝑦

𝑅
+ 𝐿𝑅

𝑛 sin
𝑛𝑦

𝑅
)

∞

𝑛=1
)                                    (2.20) 

Lepton SU(2) doublet 

e (x ,y)  = 

1

√𝜋𝑅
(𝑒𝑅(𝑥) + √2 ∑ (𝑒𝑅

𝑛(𝑥) cos
𝑛𝑦

𝑅
+ 𝑒𝐿

𝑛 (x)sin
𝑛𝑦

𝑅
)∞

𝑛=1 )                                             (2.21) 

electron right handed SU(2) singlet. 
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Chapter III 

 

 

(3-1)Renormalization group equation 

This chapter shall discuss the RGEs and dimensional regularization method. Basically the 

renormalization theory is implemented to remove all the divergences in loop integrals from 

the physical measurable quantities. These loop diagrams are supposed to give finite results 

to the physical quantities but they give infinities instead (L.F.Li, 1991). In order to 

understand and study some of the issues in the SM listed in chapter 2, such as the mixing 

angles and fermion masses hierarchies, a great deal of work has gone into analyzing the 

RGEs of UEDs and their possible extensions (see Refs. (A.~S.~Cornell, 2010) 

(A.~Abdalgabar, 2013)and references therein).  

 

 (3-1-1) RGEs for gauge couplings in SM 

In the Standard Model (SM), the one-loop corrections to the gauge couplings are given by 

16π2 dgi

dt
=

bi
SMgi

3                                                                                                                                      (3.1)  

Where bi
SM = (

41

10
, −

19

6
, −7), and can be calculated by summing all the contribution in 

figure 3.1,  t = ln(
𝐸

𝑀𝑍
), and 𝑀𝑍 is the Z boson mass. These equations lead directly to the 

well-known gauge unification around 1014 GeV scale. 
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Figure 3.1 Feynman diagrams for self gauge couplings correction up to one-loop level in 

SM 

(3-2-1) RGEs for Guage couplings in five dimensional model 

At each excited KK level, the one-loop corrections to the gauge couplings arise from the 

diagrams exactly mirroring those of the SM ground states. Note that for the closed fermion 

loop diagrams one need to count the contributions from both the left-handed and right-

handed KK modes of each chiral fermion to the self-energy of the gauge filed 

(A.~Abdalgabar, 2013). 

The gauge coupling constants equation is given by 

16π2
dgi

dt

= bi
SMgi

3 + bi
5Dgi

3                                                                                                                    (3.2) 

 

. Where bi
5D = (

81

10
, −

7

6
,

5

2
), and, 𝑆(𝑡) = 𝑚𝑍𝑅𝑒𝑡 = 𝜇𝑅, for  𝑚𝑍 < 𝜇 < Λ  (Λ 

is the cut-off scale as shall be discussed in more detail latter). 



16 
 

 

 

 

(3-2) Renormalization group equation of Yukawa couplings 

The evolution of a generic Yukawa coupling (which describes the fermion-scalar-boson 

interactions) is given by a beta function. The proper Yukawa vertex renormalization 

depends on the corresponding beta functions, and includes contributions from the 

anomalous dimensions of the field operators. 

 

Y0Ψ̅L
0ΨR

0Φ0

= YRZcouplingΨ̅L
RΨR

RΦR                                                                                                   (3.3) 

We have the normalized fields defined by:- 

𝛹𝐿
0

= 𝑍𝛹𝐿

1

2 𝛹𝐿
𝑅                                                                                                                                               (3.4) 

𝛹𝑅
0

= 𝑍𝛹𝑅

1

2 𝛹𝑅
𝑅                                                                                                                                              (3.5) 

Φ0

=  𝑍Φ

1

2  Φ𝑅                                                                                                                                             (3.6) 

So equation (3.1) becomes  

𝑌0 �̅�𝐿
0 𝛹𝑅

0 Φ0

= 𝑌0 [𝑍𝛹𝐿

1

2 �̅�𝐿
𝑅] [𝑍𝛹𝑅

1

2  𝛹𝑅
𝑅] [𝑍Φ

1

2  Φ𝑅]                                                                            (3.6) 

= 𝑍𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 𝑌𝑅 �̅�𝐿
𝑅 𝛹𝑅

𝑅 Φ𝑅                                                                                                                    (3.6) 

Therefore  
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𝑌0𝑍𝛹𝐿

1

2 𝑍𝛹𝑅

1

2 𝑍Φ

1

2  =

 𝑍𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 𝑌𝑅                                                                                                               (3.7)  

𝑌0

= 𝑍𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 𝑍𝛹𝐿

−1

2 𝑍𝛹𝑅

−2
1

𝑍Φ
−2

1

𝑌𝑅                                                                                                               (3.8) 

We would like to track the arbitrariness in the mass scale  𝜇   to that end we take the bone 

parameter 𝑌0to be independent of 𝜇  and deterimind how the renormalized coupling so that 

λ
0
 remain constant, we have therefore 

𝜇
𝑑

𝑑𝜇
𝜆0   

=  0                                                                                                                                            (3.9)  

0 = [𝜇
𝑑

𝑑𝜇
𝑍𝑐𝑜𝑢𝑝][𝑍𝛹𝐿

−2
1

𝑍𝛹𝑅

−2
1

𝑍∅
−2

1

𝑌𝑅] −
1

2
 𝑍𝑐𝑜𝑢𝑝 𝑍𝛹𝐿

3

2 𝜇 
𝑑

𝑑𝜇
 𝑍𝛹𝐿

. 𝑍𝛹𝑅

1

2 𝑍Φ
−2

1

𝑌𝑅 −

1

2
𝑍𝑐𝑜𝑢𝑝 𝑍𝛹𝐿

−2
1

𝑍𝛹𝑅

−2
3

𝜇
𝑑

𝑑𝜇
𝑍𝛹𝑅

𝑍Φ
−2

1

𝑌𝑅 −
1

2
𝑍𝑐𝑜𝑢𝑝𝑍𝛹𝐿

−2
1

𝑍𝛹𝑅

−2
1

𝑍Φ

3

2 𝜇
𝑑

𝑑𝜇
𝑍Φ𝑌𝑅 +

 𝑍𝑐𝑜𝑢𝑝𝑍𝛹𝐿

−2
1

𝑍𝛹𝑅

−2
1

𝑍Φ
−2

1

𝜇
𝑑

𝑑𝜇
𝑌𝑅   

(3.10) 

Dividing both side by    𝑍𝑐𝑜𝑢𝑝𝑍𝛹𝐿

−2
1

𝑍𝛹𝑅

−2
1

𝑍Φ
−2

1

𝑌𝑅 

We obtain:- 

 0 = 𝜇
1

𝑍𝑐𝑜𝑢𝑝

𝑑

𝑑𝜇
𝑍𝑐𝑜𝑢𝑝 – 

1

2
 𝜇 

𝑑

𝑍𝛹𝐿

𝑑

𝑑𝜇
𝑍𝛹𝐿

 –  
1

2
μ

1

𝑍𝛹𝑅

 
𝑑

𝑑𝜇
 𝑍𝛹𝑅

−
1

2
 𝜇 

1

𝑍Φ
 

𝑑

𝑑𝜇
 𝑍Φ +  𝜇 

1

𝑌𝑅
 

𝑑

𝑑𝜇
 𝑌𝑅   

(3.11) 

  

 0 = 𝜇
𝑑

𝑑μ
ln 𝑍𝑐𝑜𝑢𝑝 −

1

2
 𝜇 

𝑑

𝑑𝜇
ln 𝑍𝛹𝐿

 – 
1

2
 𝜇 

𝑑

𝑑𝜇
ln 𝑍𝛹𝑅

  −
1

2
 𝜇 

𝑑

𝑑𝜇
ln 𝑍Φ −

1

2
 𝜇 

𝑑

𝑑𝜇
 ln 𝑍Φ +

𝜇 
𝑑

𝑑𝜇
 ln 𝑌𝑅                                                                                                                                                  (3.12) 
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Thus we obtain the renormalization group equation   

𝜇 
𝑑

𝑑𝜇
ln 𝑌𝑅 =  

1

2
 𝜇 

𝑑

𝑑𝜇
 ln 𝑍𝛹𝐿

+
1

2
μ 

𝑑

𝑑𝜇
 ln 𝑍𝛹𝑅

+
1

2
𝜇

𝑑

𝑑𝜇
ln 𝑍Φ

− 𝜇
𝑑

𝑑𝜇
 ln 𝑍𝑐𝑜𝑢𝑝                   (3.13)  

The gauge𝑔i, Yukawa couplings𝑌i, RGEs at one-loop in the UED model will be calculated 

by utilizing the technique of dimensional regularization. Here we show one example figure 

3.1b 

 

𝐼

= ∫
𝑑𝑑𝑝

(2π)d
  (−igƔμ ta) (  

igμv

p2
)(−igƔvtb)

i(p̸ + k̸ )

(p + k)2
                                                               (3.14) 

I

=  −g2 tr(tatb) ∫
ddp

(2π)d

Ɣμgμv

p2

(p̸ + k̸)
Ɣ

v

(p + k)2
                                                                                    (3.15) 

Now  

𝑁(numerator) = 𝛾𝜇 𝑔𝜇𝑣 𝛾𝑣(�̸� + �̸� )

= 𝛾𝜇 𝛾𝜇𝛾𝜌(𝑝𝜌 + 𝑘𝜌)                                        (3.16) 

We have  

𝛾μ γρ γμ

=  −(𝑑 − 2)𝛾𝜌                                                                                                        (3.17)  

Therefore  

 

N = −(d − 2)γρ (pρ + kρ) =

(p + k)                                                                                          (3.18)  
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I =

g2 Ta Tb(d −

2) ∫
ddp

(2π)d  
((p̸+k̸) )

p2(p+k)2                                                                                                (3.19) 

We have also the following relation 

Ta Tb

=  c2(r)                                                                                                                                         (3.20) 

Then  

 

I =

g2 (d −

2)c(r)2  ∫
ddp

(2π)d  
((�̸�+�̸�))

p2(p+k)2                                                                                                (3.21)  

To evaluate the above integral we use Feynman parameterization integral:- 

1

𝑎𝑏

=  ∫ 𝑑𝑧 
1

 (𝑏 + (𝑎 − 𝑏)𝑧)2
                                                                                                            (3.22)  

𝑙𝑒𝑡 𝑏 =  𝑝2  𝑎𝑛𝑑    𝑎

=  (𝑝 + 𝑘)2                                                                                                        (3.23) 

Then equation (3.21) becomes 

I

= g2 (d

− 2)c2 (r) ∫
ddp

(2π)d
 ∫

((p̸ + k̸))   dz

(p2 + (k2 + 2pk)z)2

1

0

                                                             (3.24)  

By introducing new variable q 
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q = p + kz ⇒ dq =

dp                                                                                                                        (3.25) 

 so that (p2 + (k2 + 2pk)z) = (q2 + k2z(1 − z)).                                                               

(3.26) 

And the numerator becomes 

𝑁 = ((�̸� + �̸�)) = (𝑞̸ − �̸�𝑧 + �̸�)

= �̸�(1 − 𝑧)                                                                                   (3.27) 

drop all linear term in q as give zero, we get 

⇒  g2(d

− 2)c2(r) ∫
ddq

(2π)d
 ∫

k̸(1 − z)dz

(q2 +  k2z(1 − z)

1

0

                                                                       (3.28) 

= ∫
𝑑𝑑𝑞

(2𝜋)𝑑
 

(�̸�(1 − 𝑧))

(𝑝2 + 𝑘2𝑧(1 − 𝑧))
2                                                                                                         (3.29) 

 Comparing Eq (3.29) with the standard integral  

∫ ddq 
1

(q2 + S + iε)2
=  

iπ
d

2  Γ(2 −
d

2
)

S2−
d

2

                                                                                    (3.30) 

we obtain 

𝐼 = ∫
𝑑𝑑𝑞

(2𝜋)𝑑
  

𝑘̸(1−𝑧)

(𝑞2+𝑘2𝑧(1−𝑧)+𝑖𝜀 )2
   =

𝑘̸(1−𝑧)

(2𝜋)𝑑
 ( 

𝑖 𝜋
𝑑
2  𝛤(2−

𝑑

2
)

(𝑘2𝑧(1−𝑧))
2−

𝑑
2

 )                                      (3.31) 

So  

 I = i π
d

2   
g2(d−2) c2 (r) k̸ Γ(2−

d

2
)

(2π)d (k)2
2−

d
2  

 ∫
(1−z)dz

(z(1−z))
2−

d
2

1

0
                                                                     (3.32)    
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𝐼 = ∫
(1 − 𝑧)𝑑𝑧

(𝑧(1 − 𝑧))2−
𝑑

2

1

0

= ∫ 𝑑𝑧 𝑧
𝑑

2
−2

1

0

 (1 − 𝑧)
𝑑

2
−1                                                                         (3.33)   

Compare Eq (2.33) by 𝛽(m ,n) function  

 

𝛽(𝑚 , 𝑛) =

∫ 𝑥𝑚−1 (1 − 𝑥)𝑛−1 𝑑𝑥
1

0
                                                                                                (3.34)  

I =

∫ z(
d

2
−1)−1 (1 − z)

d

2
−1dz                   

1

0
                                                                                        (3.35)  

  m =
𝑑

2
− 1    and n

=
d

2
                                                                                                                    (3.36)   

 β(m , n)

=
Γ(m)Γ(n)

Γ(m + n)
                                                                                                                           (3.37) 

 

β (
d

2
− 1 ,

d

2
) =

 Γ ( 
d

2
−1)Γ ( 

d

2
)

Γ( d−1)
                                                                                                                  (3.38) 

Therefore  

I =

 
iπ

d
2  g2 (d−2)( c2(r)k̸ Γ (2−

d

2
 )Γ( 

d

2
−1 )Γ( 

d

2
    )

(2π)d k2
2−

d
2  Γ (d−1)

                                                                                         (3.39)   
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I =

iπ
d
2  g2(4−2)c2 (r) k̸ Γ (2− 

d

2
 )Γ(2−1)Γ(2) 

(2π)4 k2
2−

d
2 Γ3

                                                                                               (3.40) 

 

 

I =

i g2 c2(r) k̸ Γ( 2 −
d

2
)

(4π)2 k2
2−

d
2  

                                                                                                                         (3.41) 

 

(3-3)The beta function for the Yukawa couplings 

The beta function for Yukawa couplings in five dimensions can be written as 

(A.~S.~Cornell, 2010) 

16π2 dY

dt
= βY

SM =

+βY
UED                                                                                                                      (3.42)  

And  

βYu
UED = (s − 1){− (

28

3
g3

2 +
15

8
g2

2 +
101

120
g1

2) +
3

2
)(yu

2 − yd
2)}yu + 2(s − 1)[ Yl + 3Yu

+ 3Yd]yu   

(3.43) 

βYd
UED = (s − 1)[− (

28

3
g3

2 +
15

8
g2

2 +
9

40
g1

2) +
3

2
(yu

2 + yd
2)]yu + 2(s − 1)[Yl + 3Yu

+ 3Yd]yu 

(3.44) 

The standard model REGs for the Yukawa coupling reads 
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βYu
SM = Yu [Tr(Yu

†Yu + 3Yd
†Yd + 3Ye

†Ye) − (
17

12
g1

2 +
9

4
g2

2 + 8g3
2)

+
3

2
(Yu

2 − Yd
2)]              (3.45a) 

βYd
SM = Yd [Tr(3Yu

†Yu + 3Yd
†Yd + 3Ye

†Ye) − (
5

12
g1

2 +
9

4
g2

2 + 8g3
2)

+
3

2
(Yd

2 − Yu
2)]           (3.45b) 

We need to rescale
17

12
 g1

2 →
17

12
×

3

5
g1

2 =
17

20
g1

2.  

 

Figure 3.2: Diagrams contributing to Yukawa coupling RGEs in five dimensional models in 

the Landau gauge. Solid (broken) lines correspond to fermions (SM scalars), while wavy 

lines (wavy+solid lines) represent ordinary gauge bosons (fifth components of gauge 

bosons). 

 

To calculate the factor 𝑔3
2 in equation (3.43) we use dimensional regularization to calculate 

the contribution from figure 3.2( a), we get  

Zcoup

= 1 − g3
2  

8

6
 

1

16π2
 
1

ε
 (μ2)−ε                                                                                                     (3.46) 

Then 
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−μ 
∂

∂μ
ln Zcoup

=  − g3
2  

8

3
 

1

16π2
                                                                                                     (3.47)  

Calculation of figure 3.2 (b) gives  

 ZuR

=  1 −  g3
2  

8

6
 

1

16π2
 
1

ε
 (μ2)−ε   

1

2
                                                                                              (3.48) 

then 

1

2
 μ 

∂

∂μ
ln ZuR

=  
1

2
 g3

2  
8

6
 

1

16π2
                                                                                                        (3.49) 

Likewise figure 3.2 (c) give us  

1

2
 μ 

∂

∂μ
 ln Zql

=  
1

2
 g3

2  
8

6
 

1

16π2
                                                                                                       (3.50) 

And figure 3.2( e) similar to the standard model as in equation (3.45a) give us  

−μ 
∂

∂μ
 ln Zcoup

=  −8 g3
2  

1

16π2
                                                                                                      (3.51) 

 Consider Equations (3.55), (3.56), (3.58), and (3.59) gives us  

−g3
2  

8

3
 

1

16π2
+

1

2
 g3

2  
8

6
 

1

16π2
+

1

2
g3

2  
8

6
 

1

16π2
− 8 g3

2  
1

16π2
=

 −
28

3
 g3

2  
1

16π2                                       (3.52)  

which exactly matches the factor of g3
2 in equation (3.43) 
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Calculate the factor of the g2
2 in equation (3.43) 

Consider figure 3.2 (i) 

1

2
 μ 

∂

∂μ
 ln ZqL

=  
1

2
 g2

2  
3

4
 

1

16π2
                                                                                                        (3.53)  

And figure 3.2 (f) is identical to the standard model in equation (3.45 a) gives us  

1

2
 μ 

∂

∂μ
 ln ZΦ 

=  −
9

4
 g2

2  
1

16π2
                                                                                                        (3.54) 

And figure 3.2 (h) has no contribution to g2
2 since the right handed fermion does not couple 

to W bosons  

Then consider equation (3.61) + equation (3.62) gives us  

1

2
 g2

2  
3

4
 

1

16π2
− 

9

4
 g2

2  
1

16π2

=  − 
15

8
 g2

2  
1

16π2
                                                                            (3.55)  

Which exactly matches the factor of the g2
2 in Eq (3. 45) 

Calculate the factor of the g1
2 in Eq (3.45) 

Similar to figure 3.2 (i), the calculation is similar, only the vertex factor is different, so we 

take 

off the 𝐶2(𝑟) =
3

4
 and replaced by (

𝑌𝑄

2
)2 = (

1

6
)2 

1

2
 μ 

∂

∂μ
 ln ZqL

=  
1

2
 g1

2 (
1

6
)2  

1

16π2
                                                                                                    (3.56)  
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Similar to Figure 3.2.(h) in equation (3.45), the calculation is similar, only the vertex factor 

is different, so we take off the 𝐶2(𝑟) =
8

6
 and replaced by (

𝑌𝑢

2
)2 = (

2

3
)2 

1

2
 μ 

∂

∂μ
 ln ZuR

=  
1

2
 g1

2 (
2

3
)2  

1

16π2
                                                                                                    (3.57)  

Similar to Figure 3.2.(g) in Eq.(3.45), the calculation is similar, only the vertex is different, 

so we take off the 𝐶2(𝑟) =
8

6
 and replaced by 

𝑌𝑄

2

𝑌𝑢

2
=

1

6

2

3
 

 

Zcoup

= 1 −  g1
2  

1

6
 
2

3
 

1

16π2
 
1

ε
 (μ2)−ε                                                                                                (3.58) 

Then  

−μ 
∂

∂μ
 ln Zcoup =  − g1

2 2.
1

6
 .

2

3
 

1

16π2

=  − g1
2  

2

9
 

1

16π2
                                                              (3.59) 

And figure 3.2 (e) + figure 3.2 (f) like standard model in equation (3.45a) gives us  

− 
17

12
 𝑔1

2  
1

16𝜋2   

Then consider equation the above equation and equations (3.56), (3.57), (3.59) we get 

−
17

12
 g1

2  
1

16π2
+  

1

2
 g1

2 (
1

6
)2  

1

16π2
+  

1

2
 g1

2  (
2

3
)

2

 
1

16π2
−  g1

2  
2

9
 

1

16π2
=  

1

16π2
 g1

2  (−
17

12
+

1

72
+

2

9
−

2

9
) =  −

1

16π2
  g1

2  
101

72
   

(3.60) 

Rescale it with SU(5) normalization we get 
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− 
1

16π2
 g1

2  
101

72
 →  − 

1

16π2
 g1

2  
101

72
× 

3

5

=  − 
1

16π2
 g1

2  
101

120
                                                (3.61) 

           

Note the equations (3.52) (3.55) and (3.61) are terms appear in the beta function of the 

Yukawa coupling in equation (3.43). 
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Chapter IV 

 

 

(4-1)Numerical anlysis and Discussions 

For our numerical calculations we have chosen the compactification scale to be R−1 =

1 TeV, 5 TeV and 13 TeV.  Only some selected figures will be shown and we will comment 

on the other similar cases not explicitly presented here. We quantitatively analyses these 

quantities in UED model, though we observed similar behaviors for all values of 𝑅−1. The 

initial value we shall adopt at the 𝑀𝑧 scale is presented in table 3.1. 

 

Table 3.1. show the initial values at 𝑀𝑧 scale used in our numerical calculations. Data 

is taken from Ref. (Z.~-z.~Xing, 2008) 

Parameter Value (90% CL) 

α1(𝑀𝑧) 0 01696 

α2(𝑀𝑧) 0 03377 

α3(𝑀𝑧) 0 1184 

m𝑢(𝑀𝑧) 0.00127  

m𝑐(𝑀𝑧) 0 619  

m𝑡(𝑀𝑧) 171 7  

m𝑑(𝑀𝑧) 2 90  

m𝑠(𝑀𝑧) 55  

m𝑏(𝑀𝑧) 2 83  

m𝑒(𝑀𝑧) 0 48657  

m𝜇(𝑀𝑧) 0.102718  

m𝜏(𝑀𝑧) 1.74624  

 

As depicted in figure. 4.1. and figure 4.2. and equation (3.1) and (3.2), the one-loop 

evolution of the gauge couplings varies with energy scale drastically and brings the 
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unification scale to lower value considerably. For instant, for the compactification 

scale R−1 = 1 TeV, 5 TeV and 13 TeV, we found that the gauge couplings approximately 

meet at around 10 4.30 GeV = 20 TeV, 10 4.97 GeV = 93.3 TeV and 10 5.36 GeV = 229TeV 

respectively. 

 

 

Figure 4.1. Running of Gauge couplings as a function of the energy in the Standard model 
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Figure 4.2. Running of gauge couplings as a function of the energy scale in UED model 

for three different compactification scales.  

 

The Yukawa couplings also receive finite corrections at each KK level whose magnitudes 

depend on the cutoff energy scale, but we know that the mass of fermions is proportional to 

Yukawa couplings. As such the hierarchy between the first two light generations, in the 

leading order approximation, we found that the running behaviors of the mass ratios are 

controlled by the combination of the third family Yukawa couplings and the CKM matrix 

elements. This indicates that the mass ratios of the first two light generations have a slowed 

running well before the unification scale (where the gauge couplings meet). After that point 

new physics would come into life and should be accounted (for example, see figure 4.3). 
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Figure 4.3. Evolution of 𝑚𝑑/𝑚𝑠 for three different compactification scales as function of 

energy scale. 

 

 

Figure 4.4. Evolution of 𝑚𝑑/𝑚𝑒 for three different compactification scales as function of 

energy scale. 

 

Quantitatively, similar to the conclusions found in the SM, here we found the scaling 

dependence of 𝑚𝑢/𝑚𝑐 and 𝑚𝑒/𝑚𝜇 is also have very slow running. 
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Figure 4.5. Evolution of 𝑚𝑠/𝑚𝜇 for three different compactification scales as function of 

energy scale. 

  

On the other hand, in Grand Unification Theories, such as the SU(5) and SO(10) theory, the 

quark and lepton fields are on the same footing when we fill out the field multiplet for the 

group representation. From the mass matrix relation we have 𝑚𝑑  =  𝑚𝑒 , 𝑚𝑠 =

𝑚𝜇 and  𝑚𝑏 = 𝑚𝜏 at the unification scale. These relations hold such that the differences of 

their mass values at the electro-weak scale are understood as a running effect. In the UED 

model, due to the power law enhancement of the Yukawa couplings, the RGEs effect on 

these relations can be large. In figure 4.4 , figure 4.5 and figure 4.6. we highlighted the 

numerical analysis of the one-loop calculation of the mass ratios𝑚𝑑/𝑚𝑒, 𝑚𝑠/𝑚𝜇 and 

𝑚𝑏/𝑚𝜏 respectively.  
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Figure 4.6. Evolution of 𝑚𝑏/𝑚𝜏 for three different compactification scales as function of 

energy scale. 

  

As illustrated, the mass ratios run in the usual logarithmic fashion when the energy is below 

1TeV, 5TeV, and 13TeV for the three different compactification cases. However, once the 

first KK threshold is reached, the contributions from the KK states become more and more 

significantly important, at which point their evolution deviates from their normal trajectory 

and begin to run rapidly. As observed, the mass ratios decreasing with increasing energy, 

which agrees with what is observed in the SM, however, the mass ratios decrease at a much 

faster rate.  
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Figure 4.7. Evolution of 𝑚𝑑/𝑚𝑠 for three different compactification scales as function of 

energy scale. 

In the UED model the mass ratios for the three families have a sizable variation, which is 

more than 60% across the whole range, and this is almost twice as great as that of the SM. 

This is an interesting feature that distinguishes these two models. Therefore, due to the fast 

power law running the unification of the Yukawa couplings is very desirable, where this 

feature has the potential to address the problem of fermion mass hierarchy. 

 

Figure 4.8. Evolution of 𝑚𝑑/𝑚𝑠 as function of energy scale 
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 On the other hand, in the quark sector, both the mass ratios and mixing parameters exhibit 

rather large hierarchies. At the electroweak scale the observed pattern of fermion masses 

and mixings does not look accidental see figure 4.7, figure 4.8 and figure 4.9. 

𝜃13~
𝑚𝑑

𝑚𝑏
   

and  

𝜃23~
𝑚𝑠

𝑚𝑏
. 

 

 

Figure 4.9. Evolution of 𝑚𝑞/𝑚𝑙 for three different compactification scales as function of 

energy scale 

 

(4-2)Conclusions 

To conclude, UED models with compactification radius near the TeV scale implies exciting 

phenomenology for collider physics. It is found that the running of the gauge couplings has 

a rapid variation in the presence of the KK modes and this leads to a much lower 

unification scale than the SM. The running of mass ratios for the three families has a 

sizable variation in UED model. We quantitatively discussed these quantities for R−1 =
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1 TeV, 5 TeV and 13 TeV observing similar behaviors for all values of the compactification 

radius below these scale their evolution run in the usual SM logarithmic fashion. We have 

shown that the scale dependence is not logarithmic; it shows a power law behavior. The 

UED model has substantial effects on the hierarchy between the quark and lepton sectors 

and provides a very desirable scenario for grand unification. 

 

(4-3)Recommendation 

 

This work can be extended in a number of ways and we discuss just a few. In this work we 

considered only the bulk scenarios in which all SM field have access to full space. We 

leave other possibilities for future work in which the 1st and 2nd generation are in the bulk, 

with the 3rd generation either in the bulk or on a brane. 

It is Also important to confirm these results and conclusions made at one loop that are 

sensitive to this scale are still consistent and under control at two (and higher) loops. For 

instance one might be concerned that one loop linear sensitivity to the cutoff behaving as 

ΛR do not result in terms of the form (ΛR)2 at two-loop, which would then indicate a 

breakdown of perturbation theory at renormalization scales of the order of the 

compactification radius. 
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