Introduction

A C^* -algebra is called primitive if it admits a faithful and irreducible *representation. We show that if A_1 and A_2 are separable, unital, residually finite
dimensional C^* -algebras satisfying $(\dim(A_1) - 1)(\dim(A_2) - 1) \ge 2$, then the unital C^* -algebra full free product, $A = A_1 * A_2$, is primitive. It follows that A is antiliminal,
it has an uncountable family of pairwise in equivalent irreducible faithful *representations and the set of pure states is w^* -dense in the state space. We prove the
following: Suppose that $\phi, \psi: A \to B$ are unital *-monomorphisms. There exists a
sequence of unitaries $\{u_n\} \subset B$ such that $\lim_{n\to\infty} u_n^*\phi(a)u_n = \psi(a)$ for all $a \in A$ if and
only if $[\phi] = [\psi]$ in KL(A,B), $\phi_{\#} = \psi_{\#}$ and $\phi^{\dag} = \psi^{\dag}$, where $\phi_{\#}, \psi_{\#}$: Aff $(T(A)) \to$ Aff(T(B)) and $\phi^{\dag}, \psi^{\dag}: U(A)/CU(A) \to U(B)/CU(B)$ are the induced maps (where T(A) and T(B) are the tracial state spaces of A and B, and CU(A) and CU(B) are the
closures of the commutate subgroups of the unitary groups of A and B, respectively).
Also show that there is a unital homomorphism $\phi: A \to B$ so that $([\phi], \phi_{\#}, \phi^{\dag}) =$ $(\kappa, \lambda, \gamma)$, at least in the case that $K_1(A)$ K1(A) is a free group.

Let A be a unital separable simple Z-stable C^* -algebra which has rational tracial rank almost one and let $u \in U_0(A)$, where $U_0(A)$ is the connected component of the unitary group of A containing the identity. We show that, for any $\epsilon > 0$, there exists a self-adjoint element $h \in A$ such that $\|u - \exp(ih)\| < \epsilon$. But there is no control of $\|h\|$ in general. For the Jiang–Su algebra \mathbb{Z} , we show that, if $u \in U_0(\mathbb{Z})$ and $\epsilon > 0$, there exists areal number $-\pi < t \le \pi$ and a self-adjoint element $h \in \mathbb{Z}$ with $\|h\| \le \pi$ such that $\|e^{it}u - \exp(ih)\| < \epsilon$. Also we show ϕ and ψ are approximately unitarily equivalent if and only if $[\phi] = [\psi]$ in KL(C,A), $\tau \circ \phi = \tau \circ \psi$ for all tracial states of A and $\phi^{\dagger} = \psi^{\dagger}$, where ϕ^{\dagger} and ψ^{\dagger} are homomorphisms from $U(C)/CU(C) \to U(A)/CU(A)$ induced by ϕ and ψ , respectively, and where CU(C) and CU(A) are closures of the subgroup generated by commutators of the unitary groups of C and C are C and C

Let $\epsilon > 0$ be a positive number. Is there a number $\delta > 0$ satisfying the following. Given any pair of unitaries u and v in a unital simple C^* -algebra A with [v] = 0 in $K_1(A)$ for which $||uv - vu|| < \delta$, there is a continuous path of unitaries $\{v(t): t \in [0,1]\} \subset A$ such that v(0) = v, v(1) = 1 and $||uv(t) - v(t)u|| < \epsilon$ for all $t \in [0,1]$. An answer is given to this question when A is assumed to be a unital simple C^* -algebra with tracial rank no more than one. Also we study the case that A is no longer assumed to have real rank zero, or tracial rank zero.

We give a classification theorem for unital separable nuclear C^* -algebras with tracial rank no more than one. Let A and B be two unital separable simple nuclear C^* -algebras with TR(A), $TR(B) \le 1$ which satisfy the universal coefficient theorem.