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Chapter 4 

Simple Nuclear 𝑪∗-Algebras and Some Theorem 

We  are interested in simple 𝐶∗-algebras  with  lower rank.We show that 𝐴 ≅ 𝐵 if and 

only if there is an order and unit preserving isomorphism 𝛾 =

(𝛾0, 𝛾1, 𝛾2): (𝐾0(𝐴), 𝐾0(𝐴)+, [1𝐴], 𝐾1(𝐴), 𝑇(𝐴)) ≅ (𝐾0(𝐵), 𝐾0(𝐵)+, [1𝐵], 𝐾1(𝐵), 𝑇(𝐵)), 

where 𝛾2
−1(𝜏)(𝑥) = 𝜏(𝛾0(𝑥)) for each 𝑥 ∈ 𝐾0(𝐴) and 𝜏 ∈ 𝑇(𝐵). 

Section (4.1) Simple Nuclear 𝑪∗-Algebras of Tracial Topological Rank One 

In this  section  we  are only  interested in simple 𝐶∗-algebras  with  lower rank.We show that 

𝐴 ≅ 𝐵 if and only if there is an order and unit preserving isomorphism 𝛾 =

(𝛾0, 𝛾1, 𝛾2): (𝐾0(𝐴), 𝐾0(𝐴)+, [1𝐴], 𝐾1(𝐴), 𝑇(𝐴)) ≅ (𝐾0(𝐵), 𝐾0(𝐵)+, [1𝐵], 𝐾1(𝐵), 𝑇(𝐵)), 

where 𝛾2
−1(𝜏)(𝑥) = 𝜏(𝛾0(𝑥)) for each 𝑥 ∈ 𝐾0(𝐴) and 𝜏 ∈ 𝑇(𝐵). 

This section is a part of the program to classify separable nuclear 𝐶∗-algebras initiated by 

George A. Elliott (see [38] and [39]). By a classification theorem for a class of nuclear 𝐶∗-

algebras, one means the following: two 𝐶∗-algebras in the class with the same K -theoretical 

data are isomorphic (as 𝐶∗-algebras) and the range of the invariant can be described for the 

class so that given a set of K-theoretical data in the range there is a 𝐶∗-algebra in the class 

which possesses the given K-theoretical data. By the K-theoretical data, one usually means 

the Elliott invariant which contains the K-theory and traces, at least for the simple case. In 

this paper we are only interested in simple 𝐶∗-algebras with lower rank. By 𝐶∗-algebras of 

lower rank, one often means that the 𝐶∗-algebras have real rank zero, or stable rank one. 

Many important 𝐶∗-algebras which arise naturally are of real rank zero or stable rank one. 

Notably, all purely infinite simple 𝐶∗-algebras have real rank zero and many 𝐶∗-algebras 

arising from dynamical systems are of stable rank one. One of the classical results of this kind 

states that all irrational rotation 𝐶∗-algebras are simple nuclear 𝐶∗-algebras with real rank 

zero and stable rank one (see [34] and [117]). 

One may view (simple) 𝐶∗-algebras of real rank zero and stable rank one as some kind of 

generalization of AF-algebras. A more suitable generalization of AF-algebras has been 

demon-strated to be 𝐶∗-algebras with tracial topological rank zero. Simple 𝐶∗-algebras with 

tracial topological rank zero have real rank zero, stable rank one, with weakly unperforated 

K0 and are quasidiagonal. All simple AH-algebras with slow dimension growth and with real 

rank zero have tracial topological rank zero. This shows that simple 𝐶∗-algebras with zero 

tracial rank could have rich K-theory. Simple AH-algebras with slow dimension growth and 

with real rank zero have been classified in [31] (together with [9,21] and [50]). A 

classification theorem for unital nuclear separable simple 𝐶∗-algebras with tracial topological 

rank zero which satisfy the UCT was given in [93] (see also [32,36] and [24] for earlier 
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references). Simple 𝐶∗-algebras with tracial topological rank zero are also called TAF 

(tracially AF𝐶∗-algebras. 

We studiedly 𝐶∗-algebras of tracial rank one. A standard example of a 𝐶∗-algebra with stable 

rank one is of course Mk (C([0, 1])) (which also has tracial rank one). A notion of tracially 

approximately interval 𝐶∗-algebras (TAI 𝐶∗-algebras) is introduced in this paper—see Defin-

ition 2.2 below. It turns out that simple TAI 𝐶∗-algebras are the same as simple 𝐶∗-algebras 

with tracial topological rank no more than one. Roughly speaking, TAI 𝐶∗-algebras are those 

𝐶∗-algebras whose finite subsets can be approximated by 𝐶∗-subalgebras which are finite di-

rect sums of finite-dimensional 𝐶∗-algebras and matrix algebras over C([0, 1 ]) in “measure” 

or rather in trace. 

It is proved here that simple TAI 𝐶∗-algebras have stable rank one. From a result of G. Gong 

[51] we observe that all simple AH-algebras with very slow dimension growth are in fact TAI 

𝐶∗-algebras. It is also shown here that simple TAI 𝐶∗-algebras are quasidiagonal, their 

ordered K0-groups are weakly unperforated and satisfy the Riesz interpolation property, and 

these 𝐶∗-algebras also satisfy the Fundamental Comparison Property of Blackadar. 

Elliott, Gong and Li in [36] (also [51]) give a complete classification (up to isomorphism) for 

simple AH-algebras with bounded dimension growth by their K-theoretical data (an 

important special case can be found in K. Thomsen’s work [131]). G. Gong also has a proof 

[52] that simple AH-algebras with very slow dimension growth can be rewritten as simple 

AH-algebras with bounded dimension growth. 

These 𝐶∗-algebras are nuclear separable simple 𝐶∗-algebras of stable rank one. Their work is 

a significant advance in classifying finite simple 𝐶∗-algebras after the remarkable result of 

[31] which classifies simple AH-algebras of real rank zero (with slow dimension growth). 

Therefore, it is the time to classify nuclear simple separable finite 𝐶∗-algebras with real rank 

other than zero without assuming that they are inductive limits (AH-algebras are inductive 

limits of finite direct sums of some standard homogeneous 𝐶∗-algebras) of certain special 

building blocks. 

 Since then a great deal of progress on the subject has been made. The present paper absorbs 

both parts of the original preprint and reflects the new developments. But it is significantly 

shorter than the original preprint. More importantly, the main result of the paper has been 

greatly im-proved and a technical condition in original preprint has been removed. Let A and 

B be two unital separable nuclear simple 𝐶∗-algebras with TR(A)≤ 1, TR(B)≤ 1 and 

satisfying the UCT. Then A ≅ B if and only if they have the same Elliott invariant. 

Consider two 𝐶∗-algebras A and B as above. As in [36], we will construct the following 

approximately commutative diagram: 

An important fact is the following classification of monomorphisms from ⊕𝑘=1
𝑛 𝑀𝑟(𝑘)  

(C([0,1])) to a simple TAI-algebra. For any unital 𝐶∗-algebra C, denote by T (C) the tracial 
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state space of C (it could be an empty set). Let A =  ⊕𝑘=1
𝑛 𝑀𝑟(𝑘)  (C([0,1]))   and B be a 

unital simple TAI 𝐶∗-algebra. Suppose that ∅𝑖 : A → B (i = 1,2) are two unital 

monomorphisms which induce  the same map at the level of 𝐾0 and satisfy   

      τ ◦ 𝜑1(a) = τ ◦ 𝜑2(a) 

for all a ∈ A and all τ ∈ T (B). Then there exists a sequence of unitaries 𝑢𝑛∈ B such that  

lim
𝑛→∞

𝑢𝑛
∗ 𝜑1(a) = 𝜑2(a)            for all a ∈ A 

The uniqueness theorem also has to be adjusted to deal with other complications caused by 

the fact that our 𝐶∗-algebras are no longer assumed to have real rank zero. A careful 

treatment on exponential length is needed. Our existence theorem also needs to be improved 

from that in [93]. The existence theorem should also control the exponential length. It turns 

out that when 𝐶∗-algebras are assumed to have only torsion 𝐾1, the proof can be made much 

shorter. This is done without using de la Harpe and Skandalis determinants as in [36]. 

Let A be a 𝐶∗-algebra. 

Definition(4.1.1)[89]: We denote byI the class of all unital 𝐶∗-algebras with the form 

⊕𝑖=1
𝑛 𝐵𝑖,  where each 𝐵𝑖≅𝑀𝑘(𝑖) for some integer k(i) or 𝐵𝑖≅𝑀𝑘(𝑖)  (C([0,1])). Let A 𝜖I . We 

have the  following well-known facts. 

(i)    Every 𝐶∗-algebra in I is of stable rank one.    

(ii)   Two projections p and q in a 𝐶∗-algebra A ∈I  are equivalent if and only if  

τ (p) = τ (q)for all τ ∈ T (A). 

(iii)  For any ε > 0 and any finite subset ℱ⊂ A, there exist δ > 0 and a finite subset 𝒢⊂ A sat- 

isfying the following: if L : A → B is a 𝒢-δ-multiplicative contractive completely positive  

linear map, where B is a 𝐶∗-algebra, then there exists a homomorphism h : A → B such that 

‖h (a)-L (a)‖< ε for all a ∈ℱ. 

Definition(4.1.2)[89]:    A unital 𝐶∗-algebra A is said to be tracially AI (TAI) if for any finite 

subset   ℱ⊂ A containing a nonzero element b, ε > 0, integer n > 0 and any full element a 

∈𝐴+, there exist a nonzero projection p ∈ A and a 𝐶∗-subalgebra I ⊂ A with I ∈I and 1𝐼 = p, 

such that: 

(i) ‖[𝑥 , 𝑝]‖ <  𝜀 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ ℱ, 

(ii)𝑝𝑥𝑝 ∈ 𝜀 𝐼 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ ℱ 𝑎𝑛𝑑  ‖𝑝𝑏𝑝‖   ≥  ‖𝑏‖   −  𝜀, 

(iii)𝑛[1 −  𝑝]  ≤   [𝑝] 𝑎𝑛𝑑 1 −  𝑝 ≼   𝑎. 

A non- unital 𝐶∗-algebra A is said to be TAI if A ̃ is TAI. 

In 4.10, we show that, if A is simple, condition (iii) can be replaced by 

(iii') 1 − p is unitarily equivalent to a projection in eAe for any previously given nonzero 

projec-tion e ∈ A. 

If A has the Fundamental Comparability (see [5]), condition (iii) can be replaced by 

(iii '') τ (1 − p) < σ for any prescribed σ > 0 and for all normalized quasi-traces of A. 
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From the definition, one sees that the part of A which may not be approximated by 𝐶∗--

algebras in I has small “measure” or trace. Note in the above, if I is replaced by finite-

dimensional 𝐶∗-algebras, then it is precisely the definition of TAF 𝐶∗-algebras (see [92]). 

Every AF-algebra is TAI. Every TAF 𝐶∗-algebra introduced in [92] is a TAI 𝐶∗-algebra. 

However, in general, TAI 𝐶∗-algebras have real rank other than zero. In 4.5 we will show that 

every simple TAI 𝐶∗-algebra has stable rank one, which implies that simple TAI 𝐶∗-algebras 

have real ra-nk one or zero. It is obvious that every direct limit of 𝐶∗-algebras in I is a TAI 

𝐶∗-algebra. These 𝐶∗-algebras provide many examples of TAI 𝐶∗-algebras that have real rank 

one. However, TAI 𝐶∗-algebras may not be inductive limits of 𝐶∗-algebras in I. 

Let A=  lim
𝑛→∞

(𝐴𝑛, ∅𝑛,𝑚 ),where𝐴𝑛 =⊕𝑖=1
𝑠(𝑛)

𝑃𝑛,𝑖𝑀𝑛,𝑖 (C(𝑋𝑛,𝑖  ))𝑃𝑛,𝑖 ,𝑋𝑛,𝑖is a finite-dimensional 

compact metric space and 𝑃𝑛,𝑖∈𝑀𝑛,𝑖 (C(𝑋𝑛,𝑖 )) is a projection for all n and Such a 𝐶∗-algebra 

is called an AH-algebra. Suppose that A is unital. Following [51], A is said to have very slow 

dimension growth if  

lim
𝑛→∞

min
𝑖

𝑟𝑎𝑛𝑘 (𝑃𝑛,𝑖)

(dim 𝑋𝑛,𝑖 + 1)3
= ∞ 

A is said to have no dimension growth if there is an integer m > 0 such that dim 𝑋𝑛,𝑖 ≤ m. 

Note these 𝐶∗-algebras may not be of real rank zero. Since these 𝐶∗-algebras could have non-

trivial K1-groups (see 10.1), they are not inductive limits of 𝐶∗-algebras in I. In [92], example 

of simple TAF 𝐶∗-algebras which are non-nuclear was given. In particular, there are simple 

TAI 𝐶∗-algebras that are not even nuclear. 

Lemma (4.1.3)[89]:        Let a be a positive element in a unital 𝐶∗-algebra A with sp(a) ⊂ [0, 

1]. Then for any ε > 0, there exists b ∈𝐴+ such that sp(b) is a union of finitely many mutually 

disjoint closed intervals and finitely many points and 

‖𝑎 −  𝑏‖ <  𝜀. 

Proof: Fix ε > 0. Let 𝐼1, 𝐼2, . . . , 𝐼𝐾 be all disjoint closed intervals in sp(a) with length at least 

ε/8 such that if I ⊃𝐼𝑗 is an interval, then I ⊄ sp(a). Let d' = min{dist(𝐼𝑖 , 𝐼𝑗 ), i ≠ j } and d = 

min(d '/2, ε/16). 

   Choose 𝐽𝑖 = {ξ ∈ [0, 1]: dist(ξ , 𝐼𝑗 ) <𝑑𝑖}, i = 1, 2, . . . , k with 𝑑𝑖≤ d and the endpoints of 𝐽𝑖 

are not in sp(a). Since the endpoints of 𝐽𝑖 are not in sp(a), there are open inter- 

Vals 𝐽′𝑖⊂𝐽𝑖  such that  ̅𝐽′𝑖  ⊂ 𝐽𝑖and 𝐼𝑖⊂𝐽′𝑖. Set Y=sp(a) \ (∪𝑖=1
𝑘 𝐽𝑖). Then Y = sp(a)\ (∪𝑖=1

𝑘 𝐽′𝑖)= 

sp (a) \(∪𝑖=1
𝑘 𝐽′𝑖̅̅̅) .Since Y is compact and Y contains no intervals with length more than ε/8, 

it is routine to show that there are finitely many disjoint closed intervals 𝐾1, 𝐾2, … . , 𝐾𝑛in 

[0,1]\ (∪𝑖=1
𝑘 𝐽𝑖) with length more than 9ε /64 such that Y ⊂∪𝑖=1

𝑚 𝐽𝑖. 
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Note that {𝐽′1̅̅ ̅, 𝐽′2
̅̅ ̅, … . , 𝐽′𝑘

̅̅̅̅ , 𝐾1, 𝐾2, … . , 𝐾𝑛} are disjoint closed intervals . Fix a pointξ𝑗  ∈  𝐾𝑗 ,, 

j=1,2,……,m. One can define a continuous function ℱ : (∪𝑖=1
𝑘 𝐽′𝑖̅) ∪ (∪𝑠=1

𝑛 𝐾𝑠)→ [0,1] which 

maps each 𝐾1  onto 𝐼𝑖, i=1,2,….,k and maps 𝐾𝑗 to single point ξ𝑗such that  

|f(ξ)- ξ|<ε / 2  for all ξ∈ [0,1] 

Define b = f (a). We see that b meets the requirements of the lemma. 

Theorem(4.1.4)[89]:     Let A be a unital simple AH-algebra with very slow dimension 

growth. Then A is TAI.  

Proof. As  in [51] (and [35]), to show that A is TAI, it suffices to  assume  that A=  

lim
𝑛→∞

(𝐴𝑛, ∅𝑛,𝑚),where𝐴𝑛 =⊕𝑖=1
𝑖(𝑛)

𝑀𝑛(𝑖)(C(𝑋𝑛,𝑖 )) ,𝑋𝑛,𝑖are simplicial complexes 

and ∅𝑛,𝑚are injective . Moreover, we may also assume that A satisfies the condition of very 

slow dimension growth. 

Let ε > 0, ℱ⊂ A be a finite subset and e ∈ A be a non-zero projection. To verify (1), (ii) and 

(iii' ) in 2.2, without loss of generality, we may assume that F ⊂𝐴1 and e ∈𝐴1. By considering 

each summand separately, without loss of generality, we may also assume that 𝐴1= 𝑀𝑟 

(C(X)) for some finite simplicial complex and integer r≥ 1. Let ℱ1⊂ C(X) be a finite subset 

such that 

ℱ ⊂ {(𝑓𝑖,𝑗)𝑟 ×𝑟 : 𝑓𝑖,𝑗∈ℱ1}. 

   Let J > r + 1 be an integer. Let ε/2𝑟2> η > 0 such that |f (x)− f (x' )| < ε/9𝑟2 for all f ∈ℱ1 

whenever dist(x, x' ) < 2η. Let δ > 0 and L be as in Theorem 4.35 corresponding to ε/2𝑟2, η 

and ℱ1 above. Since A is simple, as in [51], each partial map of ∅1,𝑚 (for sufficiently large 

m) has the property sdp(η/32, ε/2𝑟2). To simplify notation, without loss of generality, we 

may assume that 𝐴𝑚= 𝑀𝑘 (C(Y )) and rank(∅1,𝑚(1)) > 2J 𝐿22𝐿(𝑑𝑖𝑚 𝑋 +  𝑑𝑖𝑚 𝑌 +  1)3, 

where Y is a finite simplicial complex. To simplify notation, by considering each summand 

separately, without loss of generality, we may assume that Y is connected. Since A is simple, 

by choosing a larger m, we further assume that e ∈𝑀𝑘 (C(Y )) is a non-zero projection which 

has the rank at least rank(∅1,𝑚(1))/r. 

As  in [51], there are three mutually orthogonal projections 𝒬0, 𝒬1, 𝒬2∈𝐴𝑚 and 

homomorphisms 𝜓𝑖 : 𝐴1 → 𝒬𝑖𝐴𝑚𝒬𝑖 (i = 0, 1, 2) such that: 

(i)∅1,𝑚 = 𝒬0 + 𝒬1 + 𝒬3; 

(ii)‖∅𝑛,𝑚 (f)  − (∅0 (f )  ⊕ ∅1 (f )  ⊕ ∅2 (f ))‖< ε/2 for all f ∈ℱ; 

(iii)𝜓2 factors through 𝑀𝑟 (C([0, 1]); 

(iv)𝜓1 has finite-dimensional range; 

( v)J [𝒬0] ≤  [𝒬1]. 

Put ψ = 𝜓𝑖⊕𝜓𝑖. It follows from Lemma (4.1.3)  that there is a unital 𝐶∗-subalgebra 𝐵1∈I of 

(𝒬1 + 𝒬2)Am(𝒬1 + 𝒬2) such that 

ψ (ℱ ) ∈ε 𝐵1 for f ∈ℱ. 
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We also have 

[𝒬0]≤ [e]. 

Thus, A is of TAI. 

Lemma (4.1.5)[89]:     For any d > 0 there are 𝑓1, 𝑓2, . . . , 𝑓𝑚∈ C([0, 1])+ with the following 

properties. For any n, and any positive element x ∈ B = 𝑀𝑛(C([0, 1])) with ‖𝑥‖≤1 if there 

exist 𝑎𝑖𝑗∈ B, 

i = 1, 2, . . . , n(j ), j = 1, 2, . . . , m with 

‖∑ 𝑎𝑖,𝑗  , 𝑓𝑗(𝑥)𝑎𝑖,𝑗
∗ − 1𝐴

𝑛(𝑗)
𝑖=1 ‖< 1/2,   j = 1, 2, . . . , m, 

then, for any subinterval J of [0, 1] with μ(J )≥ d (μ is the Lebesgue measure), sp(𝜋𝑡 (x))   ∩    

J ≠∅ for all t ∈ [0, 1], where 𝜋𝑡 : B → 𝑀𝑛 is the point evaluation at t. Moreover, denote by 

N = max{n(j ): j = 1, 2, . . . , m}, 

|𝑠𝑝 (𝜋𝑡(𝑥)) ∩  𝐽 |≥1/N |𝑠𝑝 (𝜋𝑡 (𝑥))|  , 

where |S| means the number of elements in the finite set S (counting multiplicities). 

Proof: Divide [0, 1] into m closed subintervals {𝐽𝑗 } each of which has the same length < d/4. 

Let 𝑓𝑗∈ C([0, 1]) be such that 0 ≤𝑓𝑗≤1, 𝑓𝑗 (t ) = 1 for t ∈𝐽𝑗 and 𝑓𝑗 (t ) = 0 for dist(t, 𝐽𝑗 )≥ μ(𝐽𝑗 ). 

Note that, for any subinterval 𝐽 with μ(𝐽 ) ≥d, there exists j such that 𝐽𝑗⊂𝐽. For any t ∈ [0, 1], 

set 

I ={g ∈ B: g(t ) = 0} . 

Then I is a (closed) ideal of A. If sp(𝜋𝑡 (x)) ∩ 𝐽 = ∅, there would be j such that 𝜋𝑡 (𝑓𝑗 (x)) = 0. 

Therefore 𝑓𝑗∈I. But this is impossible, since there is an element 𝓏∈ B with  

𝓏 (∑ 𝑎𝑖,𝑗  𝑓𝑗(𝑥)𝑎𝑖,𝑗
∗

𝑖=1

) = 1𝐵 

For the last part of the lemma, fix t ∈ [0, 1] and an interval 𝐽 with t ∈𝐽 and μ(𝐽 )≥d. Let 𝜋𝑡 (B) 

= 𝑀1(t ). Then |sp(𝜋𝑡(𝑥))| = l(t ). Suppose that 𝐽𝑗⊂𝐽 so that 𝑓𝑗 (t ) = 0 for all t ∈/ J. Let 𝑞𝑡 be 

the spectral projection of 𝜋𝑡 (x) in 𝑀1(t ) corresponding to 𝐽. Then qt≥𝑓𝑗(𝜋𝑡(𝑥)). An 

elementary linear algebra argument shows that rank 𝑞𝑡≥(1/N )l(i). 

Theorem(4.1.6)[89]: Every unital simple 𝐶∗-algebra satisfying (i) and (ii) in property (SP), 

i.e., every hereditary 𝐶∗-subalgebra contains a nonzero projection. 

Corollary(4.1.7)[89]:  Let A be a unital simple 𝐶∗-algebra satisfying (i) and (ii) 2. Then, for 

any 

integer N , we may assume that 𝐼 =⊕𝑖=1
𝑘 𝑀𝑚𝑖(𝐶([0,1]))⨁𝑗=1

𝑙 𝑀𝑛𝑖𝑤ℎ𝑒𝑟𝑒𝑚𝑖 , 𝑛𝑖 ≥ 𝑁.  

Proof:In the proof of 3.2, we see that if 1/2d≥ N , since sp(𝜋𝑡 (pap)) ∩ 𝐽𝑖 = ∅ for each j, then 

𝜋𝑡 (pap) has at least N distinct eigenvalues (see also the proof of 3.1). Therefore, each 

summand C in the proof 3.2 has rank at least N . 



071 
 

Proposition (4.1.8[89]:  Let A be a unital TAI 𝐶∗-algebra and e ∈ A be a full projection. 

Then eAe satisfies (i) and (ii), and for any full positive element a ∈ eAe, we can have 

(iii' ) 1 − p≼a. 

If A is also simple, eAe is TAI. 

Proof: Fix ε > 0, a finite subset ℱ⊂ eAe, an integer n > 0 and nonzero elements a, b ∈ eAe 

with a≥ 0 and b ∈ℱ . Let ℱ1 = {e} ∪ℱ. Since A is TAI, there exists q ∈ A and a 𝐶∗-

subalgebra C ∈I with 1𝐶 = q such that: 

(i)‖[𝑥, 𝑞]‖< ε/64 for all x ∈ℱ, 

(ii)qxq ∈ε/64 C for all x ∈ℱ, and  ‖𝑞𝑏𝑞‖  ≥ ‖𝑏‖  − ε/64; and, 

(iii)n[1 − q] ≤  [q] and 1 − q ≼  a. 

Note that, by the second part of (ii), qeq ≠ 0. We estimate that 

‖(𝑒𝑞𝑒)2  −  𝑒𝑞𝑒 ‖< ε/64  and ‖𝑒𝑞𝑒 −  𝑞𝑒𝑞 ‖< ε/32. 

Therefore there is a projection p ∈ eAe such that 

‖𝑝 −  𝑒𝑞𝑒‖< ε/16. 

Consequently, there is a projection d ∈ C such that 

‖𝑑 −  𝑝‖< ε/8. 

Note that 

‖𝑞𝑝 −  𝑝𝑞‖< ε/8 +‖𝑞𝑒𝑞𝑒 −  𝑒𝑞𝑒𝑞‖< ε/8 + ε/32 = 5ε/32, 

and B = [dCd ∈I. With ε/2 < 1/2, we obtain a unitary u ∈ A such that 

‖𝑢 −  1‖< ε/4 and u*du = p. 

Set 𝐶1 = u*Bu. Then 𝐶1∈ I and 𝐶1⊂ eAe. Now 1𝐶1
 = p, 

(i) ‖[𝑥, 𝑝]‖< ε/2 for all x ∈ℱ, 

(ii)  pxp ∈ε/2 𝐶1 for all x ∈ℱ and  ‖𝑝𝑏𝑝‖ ≥ ‖𝑏‖  − ε/2. 

We also have 

‖(𝑒 −  𝑝)  −  (1 −  𝑞)(𝑒 −  𝑝)(1 −  𝑞)‖ 

≤ ‖(𝑒 − 𝑝) − (𝑒 − 𝑝)(1 − 𝑞) + 𝑞(𝑒 − 𝑝)(1 − 𝑞)‖ 

<‖(𝑒 −  𝑝)𝑞 ‖ + ε/16 < 5ε/32 + ε/64 + ‖ 𝑞𝑒𝑞 −  𝑞𝑝𝑞 ‖ + ε/16 

<5ε/32 + ε/64 + ε/16 +  ‖𝑞𝑒𝑞 −  𝑞𝑒𝑞𝑒𝑞  ‖+ ε/16 < 9ε/32. 

We have (with ε < 1) 

(3 ') (e − p) ≼(1 − q) ≼a. 

Finally, if we assume that A is simple, there is a nonzero projection 𝑝1 ≤ p such that n[𝑝1]≤ 

[p]. There is a nonzero projection 𝑝1∈𝑎𝐴𝑎̅̅ ̅̅ ̅. We obtain a nonzero projection 𝑞1 ≤ 𝑝1 such that 

n[𝑞1]≤ [𝑝1 ]. Applying the first part of the proof to (e − p)ℱ(e − p), we obtain a projection p'≤ 

(e − p) and a unital 𝐶∗- subalgebra 𝐶2∈I with 1𝐶2
 = p' such that: 

(i'')‖[(𝑒 −  𝑝)𝑥(𝑒 −  𝑝), 𝑝′ ]‖ < ε/2 for all x ∈ℱ, 

(ii'' ) p' xp'∈ε/2 𝐶2 for all x ∈ℱ, and  

(iii '') (e − p − p' )≼𝑝1. 
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Now since n[𝑝1] ≤ [p] ≤ [p + p' ] and (e − p − p' ) ≼ (e − p) ≼ a, we obtain 

(iii) n[(e − p − p' )] ≤ [p + p' ] and (e − p − p' ) ≼ a. 

We also have ‖[𝑥, (𝑝 +  𝑝′ )]‖ < ε and (p + p' ) x (p + p' ) ∈ε 𝐶1⊕𝐶2 for all x ∈ℱ. Hence eAe 

is TAI. 

Corollary (4.1.9) [89]:  If A is a unital simple TAI 𝐶∗- algebra, then condition (2) can be 

strengthened to (ii') pxp ∈𝜀 B and ‖𝑝𝑥𝑝‖ ≥ ‖𝑥‖ − ε for all x ∈ℱ. 

We omit the proof. 

 Theorem (4.1.10)[89]:   Let A be a unital simple 𝐶∗- algebra. Then A is TAI if and only if 

𝑀𝑛(A) is TAI for all n (or for some n > 0). 

Proof. If 𝑀𝑛(A) is TAI,  then by identifying  A with a unital  hereditary 𝐶∗- subalgebra of 

𝑀𝑛(A) . We  know  A is  TAI. It remains  to  prove the “only if” part. 

We prove this in two steps. The first step is to prove that 𝑀𝑛(A) satisfies (i) and (ii) To do 

this, we let ε > 0 and ℱ be a finite subset of the unit ball of 𝑀𝑛(A). Set 𝒢 = {𝑓𝑖𝑗∈ A: 

(𝑓𝑖𝑗  )𝑛×𝑛∈ℱ}. Note that 𝒢⊂ A. Since A is TAI, there exists a projection p ∈ A and a unital 

𝐶∗- subalgebra B ∈I such that: 

(i)‖[𝑥, 𝑝]‖< ε/2𝑛2, 

(ii)pxp ∈𝜀∕2𝑛2  B for all x ∈𝒢 and for some 𝑥1∈𝒢,  ‖𝑝𝑥1𝑝‖  ≥  ‖𝑥1‖1  − ε/2𝑛2. 

Put P = diag(p, p, . . . , p) ∈𝑀𝑛(A) and D = 𝑀𝑛(B). Then, it is easy to check that 

(i)‖[𝑓, 𝑃 ]‖< ε and 

(ii)Pf P ∈ε D for all 𝑓∈ℱ and  ‖𝑝𝑓1𝑝‖ ≥ ‖𝑓1‖  − ε (if 𝑓1 is prescribed). 

This completes the first step. Now we also know that 𝑀𝑛(A) has (SP). Let a ∈𝑀𝑛(A) be 

given. Choose any nonzero projection e ∈ 𝑎𝑀𝑛 (𝐴)𝑎̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. Since 𝑀𝑛(A) is simple and has (SP), in 

[92], there is a nonzero projection q≤e and [q]≤[1𝐴], there exists a nonzero projection 𝑞1 ≤ q 

such that (n + 1)[𝑞1]≤ [q]. In the first step, we can also require, for any integer N > 0, that 

(iii) N [1𝐴 − p] ≤ [p] and 1𝐴 – p ≼ 𝑞1. 

This implies that 

(iii) N [1𝑀𝑛(𝐴)
 − P ] ≤ [P ] and (1𝑀𝑛(𝐴)

− P ) ≼ q ≼ e. 

Therefore 𝑀𝑛(𝐴) is TAI. 

Next we show that every simple TAI 𝐶∗- algebra has the property introduced by Popa [116]. 

Proposition (4.1.11)[89]:    Let A be a unital simple TAI 𝐶∗- algebra. Then for any finite 

subset ℱ⊂ A and ε > 0, there exists a projection p ∈ A and a finite-dimensional 𝐶∗- algebra F 

⊂ A with 1𝐹 = p such that 

(P1)‖  [𝑥, 𝑝] ‖< ε and 

(P2) pxp ∈𝜀 F for all x ∈ ℱ and ‖𝑝𝑥𝑝‖ ≥ ‖𝑥‖− ε for all x ∈ℱ. 

Proof. The clear that it suffices to prove the following claim: for any unital 𝐶∗- subalgebra B 

∈I, the proposition holds for any finite subset ℱ⊂ B ⊂ A. 
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This can be further reduced to the case that B = C([0, 1]) ⊗𝑀𝑘 . Moreover, it suffices to 

prove the claim for the case in which B = C([0, 1]). In this reduced case, we only need to 

consider the case in which ℱ contains a single element x ∈ B, where x is the identity function 

on [0, 1]. Now, for any ε > 0, let ξ1, ξ2, . . . , ξ𝑛 be ε/4-dense in [0, 1] and dist(ξ𝑖 , ξ𝑗 ) > ε/8 if 

i ≠ j. Denote by 𝑓𝑖 continuous functions with 0≤ 𝑓𝑖 ≤1, which are one on (ξ𝑖− ε/32, ξ𝑖 + ε/32) 

and zero on  [0, 1] \(ξ𝑖 − ε/16, ξ𝑖ε/16). By 3.2, there is a nonzero projection 𝑒𝑖∈ 𝑓𝑖𝐴𝑓𝑖
̅̅ ̅̅ ̅̅ . 

Note that 𝑒𝑖𝑒𝑗 = 0 if i ≠ j. Set p =∑ 𝑒𝑖
𝑛
𝑖=1  .   

‖𝑥 – [ (1 −  𝑝)𝑥(1 –  𝑝)  + ∑ 𝜉𝑖𝑒𝑖
𝑛
𝑖=1    ] ‖< ε/2 and ‖[𝑝, 𝑥] ‖< ε by (P1). 

Let 𝐹1 be the finite-dimensional 𝐶∗- subalgebra generated by 𝑒1, 𝑒2, . . . , 𝑒𝑛. Then by (P2), 

pxp ∈ε 𝐹1 and ‖𝑝𝑥𝑝‖ ≥ ‖ 𝑥 ‖− ε. 

Theorem(4.1.12)[89]:    Every unital separable simple TAI 𝐶∗- algebra is MF [7]. 

Proof:  Let A be such a 𝐶∗- algebra and let {𝑥𝑛} be a dense sequence in the unit ball of A, 

there are projections pn ∈ A and finite-dimensional 𝐶∗- subalgebras 𝐵𝑛 with 1𝐵𝑛
 = 𝑝𝑛 such 

that 

(i)‖[𝑝𝑛, 𝑥𝑖  ] ‖< 1/n, and 

(ii)p𝑥𝑖 p ∈1/n 𝐵𝑛 and ‖𝑝𝑛𝑥𝑖𝑝𝑛‖  ≥ ‖𝑥𝑖‖   − 1/n for i = 1, 2, . . . , n. 

Let 𝑖𝑑𝑛 : 𝐵𝑛 → 𝐵𝑛 be the identity map and let j : 𝐵𝑛 → 𝑀𝐾(𝑛)
 be a unital embedding. We note 

that such j exists provided that 𝐾(𝑛) is large  enough , there exists a completely positive map 

𝐿′𝑛 : 𝑝𝑛A 𝑝𝑛 → 𝑀𝐾(𝑛)
 such that 𝐿′𝑛\𝐵𝑛 = j ◦ 𝑖𝑑𝑛. Since 𝐿′𝑛 is unital. 

 𝐿′𝑛 is a contraction. We define 𝐿𝑛 : A → 𝑀𝐾(𝑛)
 by 𝐿𝑛(a) = 𝐿′𝑛(𝑝𝑛a𝑝𝑛). Let 𝑦𝑖,𝑛∈𝐵𝑛such that 

‖𝑝𝑛𝑥𝑖𝑝𝑛−𝑦𝑖,𝑛‖< 1/n, n = 1, 2, . . . . Then 

‖𝐿𝑛(𝑥𝑖) − 𝑝𝑛𝑥𝑖𝑝𝑛‖ ≤ ‖𝐿𝑛(𝑥𝑖 − 𝑦𝑖,𝑛) − (𝑦𝑖,𝑛 − 𝑝𝑛𝑥𝑖𝑝𝑛) ‖< 2/n → 0 

As n → ∞.Combining this with (i) above, we see that      

  ‖𝐿𝑛(𝑎𝑏) − 𝐿𝑛(𝑎)𝐿𝑛(𝑏)‖  → 0 

as n→ ∞. Define Φ : A → ∏ 𝑀𝑚(𝑛)
∞
𝑛=1 by sending a to{𝐿𝑛(a)} . Then Φ is a completely  

positive map. Denote by π:∏ 𝑀𝑚(𝑛)
∞
𝑛=1 → ∏ 𝑀𝑚(𝑛)

∞
𝑛=1  /⊕𝑛=1

∞ 𝑀𝑚(𝑛). Then 

π ◦ Φ : A →∏ 𝑀𝑚(𝑛)
∞
𝑛=1  /⊕𝑛=1

∞ 𝑀𝑚(𝑛). 

is a (nonzero) homomorphism. Since A is simple, π ◦ Φ is injective. It follows from [4, 3.22] 

that A is an MF-algebra. 

Corollary (4.1.3)[89]:    Every separable unital 𝐶∗- algebra satisfying (P1) and (P2) is MF. 

Proof: We actually proved this above. Note, simplicity is not needed for injectivity since 

‖𝑝𝑛𝑥𝑝𝑛‖→‖𝑥‖ . 

Proposition (4.1.14)[89]: Every nuclear separable simple TAI 𝐶∗- algebra is quasidiagonal. 

Proof. As in [7], a separable nuclear MF 𝐶∗- algebra is NF, and it is quasidiagonal. In fact it 

is strong NF (see [8]). 
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Corollary. (4.1.15)[89]: Every unital separable simple TAI 𝐶∗- algebra has at least one 

tracial state. 

Proof: It is well known that ∏ 𝑀𝑚(𝑛)
∞
𝑛=1  /⊕𝑛=1

∞ 𝑀𝑚(𝑛). has tracial states. Tracial states are 

defined by weak limits of tracial states on each 𝑀𝑚(𝑛). Let τ be such a tracial state. Then, in 

the proof of 4.2, let t (a) = τ ◦ π ◦ Φ(a). 

Theorem(4.1.16)[89]:      A unital simple TAI 𝐶∗- algebra has stable rank one. 

Proof:Let A be a unital simple 𝐶∗- algebra. Take a nonzero element a ∈ A. We will show that 

a is a norm limit of invertible elements in A. So we may assume that a is not invertible and 

‖𝑎‖= 1. Since A is finite, a is not one-sided invertible. For any ε > 0, by [50, 3.2], there is a 

zero divisor b ∈ A such that ‖𝑎 −  𝑏‖< ε/2. We further assume that ‖𝑏‖ ≤ 1. Therefore, by 

[122], there is a unitary u ∈ A such that ub is orthogonal to a nonzero positive element c ∈ A. 

Set d = ub. Since A has (SP), there exists a nonzero projection e ∈ A such that de = ed = 0. 

Since A is simple and has  (SP) , we may write e = 𝑒1⊕𝑒2 with 𝑒2 ≲ 𝑒1. Note that d≤ (1 − e) 

≤ (1 − 𝑒1). Moreover, (1 − 𝑒1)A(1 − 𝑒1) is TAI. 

Let η > 0 be a positive number. There is a projection p ∈ (1 − 𝑒1)A(1 − 𝑒1) and a unital 𝐶∗- 

subalgebra B ∈I with 1𝐵 = p such that: 

(i)‖ [𝑥, 𝑝] ‖< η, 

(ii)pxp ∈η B for all x ∈ℱ, and 

(iii)[1 −𝑒1 − p]  ≤ [𝑒2], 

where ℱ contains d. Thus, with sufficiently small η, we may assume that 

‖𝑑 − (𝑑1  +  𝑑2)‖< ε/16, 

where 𝑑1∈ B and 𝑑2∈ (1 − 𝑒1 − p)A(1 − 𝑒1 − p). 

Since 𝐶∗- algebras in I have stable rank one and B ∈I, there is an invertible 𝑑′1∈ B such 

that‖𝑑1 − 𝑑′1‖< ε/8. 

Let v be a partial isometry such that v∗v = (1 − 𝑒1 − p) and vv∗≤ 𝑒1. Set 𝑒′1 = vv∗ and 𝑑′2 = 

ε/8(𝑒1 − 𝑒′1) + (ε/8)v + (ε/8)v∗ + 𝑑2. Note that (ε/8)v + (ε/8)v∗ + 𝑑2 has matrix 

decomposition 

(
0 𝜀/8

𝜀/8 𝑑2
) 

Therefore 𝑑′2  is invertible in (1−p)A(1−p). This implies that d'=𝑑′1+𝑑′2 is invertible in A.

  

We also have 

‖𝑑′2 − 𝑑2‖ < 𝜀/8 

whence  

‖𝑑 − 𝑑′‖ < ‖𝑑 − (𝑑1 + 𝑑2)‖ + ‖(𝑑1 + 𝑑2) − (𝑑′
1 + 𝑑′2)‖ < 𝜀/16 + 𝜀/8 + 𝜀/8 < 3𝜀 /8 

We have           

‖𝑏 − 𝑢 ∗ 𝑑′‖ ≤ ‖𝑢 ∗ 𝑢(𝑏 − 𝑢 ∗ 𝑑′)‖ = ‖𝑢𝑏 − 𝑑′‖ < 3𝜀/8. 
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Finally, 

‖𝑎 − 𝑢 ∗ 𝑑′‖ ≤ ‖𝑎 − 𝑏‖ + ‖𝑏 − 𝑢 ∗ 𝑑′‖ < 𝜀/2 + 3𝜀/8 < 𝜀. 

Note that u∗d'  is invertible. 

Corollary (4.1.17)[89]: Every unital simple TAI 𝐶∗-algebra has the cancellation of 

projections, i.e., if p ⊕ e ∼ q ⊕ e then p ∼ q. 

Theorem (4.1.18)[89]: Every unital simple TAI 𝐶∗-algebra has the following Fundamental 

Compara- 

bility [5]: if p, q ∈ A are two projections with τ (p) < τ (q) for all tracial states τ on A, then p 

⋞q. 

Proof:Denote by T (A) the space of all normalized traces. It is compact. There is d > 0 such 

that τ (q − p) > d for all τ ∈ T (A). It follows  that  there  exists  a nonzero projection e ≤q 

such that τ (e) < d/2 for all τ ∈ T (A). Set q' = q − e. Then τ (q' − p) > d/2 for all τ∈ T (A). 

   It follows from [8, 6.4] that there exists a nonzero a ∈𝐴+ such that q' − p − (d/4) = a + 𝓏 and 

there   is   a sequence {𝑢𝑛} in A 

𝓏 = ∑ 𝑢𝑛 ∗ 𝑢𝑛 −𝑛 ∑ 𝑢𝑛𝑢𝑛 ∗.𝑛  

Choose an integer N > 0 such that 

‖∑ 𝑢𝑛 ∗ 𝑢𝑛 −𝑛 ∑ 𝑢𝑛 ∗ 𝑢𝑛
𝑁
𝑛=1 ‖< d/128 and‖∑ 𝑢𝑛𝑢𝑛 ∗ −𝑛 ∑ 𝑢𝑛 ∗ 𝑢𝑛

𝑁
𝑛=1 ‖ < 𝑑/128. 

  Let ℱ = {p, q, q' , e, z, un, u∗n, n = 1, 2, . . . , N } and let 0 < ε < 1. Since A is TAI, there 

exists a projection P ∈ A and a C∗ -subalgebra B ∈I with 1𝐵 = P such that: 

 (i) ‖[𝑥, 𝑃 ]‖< ε/2N , 

 (ii)P xP ∈𝜀/2𝑁 B for all x ∈ℱ and 

 (iii)(1 − P ) ⋞ e. 

With sufficiently small ε, using a standard perturbation argument, we obtain projections q'' = 

𝑞1 + 𝑞2, p' = 𝑝1 + 𝑝2, where 𝑞1, 𝑞2, 𝑝1, 𝑝2 are projections, 𝑝1, 𝑞1∈ B and 𝑞2, 𝑝2∈ (1 − P )A(1 

− p) such that 

‖𝑞′′ −  𝑞′ ‖< d/32 and ‖𝑝′ −  𝑝 ‖< d/32. 

Furthermore (with sufficiently small ε), we obtain 𝑣1, 𝑣2, . . . , 𝑣𝑁∈ B such that  

‖(𝑞1  −  𝑝1 − (𝑑/4)𝑃 ) − ( 𝑏 + ∑ 𝑣𝑛 ∗ 𝑣𝑛
𝑁
𝑛=1 ∑ 𝑣𝑛𝑣𝑛 ∗𝑁

𝑛=1 )‖< d/16, 

where b∈ 𝐵+and ‖𝑃 𝑎𝑃 − 𝑏‖< ε/2N .Denote by T (B) the space of all normalized traces on 

B. 

Then 

τ(𝑞1  −  𝑝1 − (d/4)P − b )> −d/16 

for all τ ∈ T (B). Therefore 

τ(𝑞1  −  𝑝1) > d/4 − d/16 = 3d/16 

for all τ ∈ T (B). This implies that 𝑝1 ≼ 𝑞1 q1 in B, whence also in A. Since 𝑝2 ⋞ (1 − P )⋞ e, 

we conclude that 

[p] = [𝑝1 + 𝑝2] ≤ [𝑞1] + [e] ≤ [q]. 
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Theorem(4.1.19)[89]: Let A be a unital simple TAI 𝐶∗-algebra. Then 𝐾0(A) is weakly 

unperforated and satisfies the Riesz interpolation property. 

Theorem (4.1.20)[89]:  Let A be a unital simple 𝐶∗- algebra. Then A is TAI if and only if the 

following hold. For any finite subset ℱ⊂ A containing a nonzero element b, ε > 0, integers n 

> 0 and N >0, and any nonzero projection e ∈A, there exist a nonzero projection p ∈A and a 

𝐶∗- subalgebra  

 I =⊕𝑖=1
𝑘 𝑀𝑛𝑖

(C([0, 1])), with 1𝐼 = p and min{𝑛𝑖: 1≤   i≤   k} ≥  N , such that:  

(i) ‖ [𝑥, 𝑝] ‖< ε for all x ∈ F, 

(ii) pxp ∈ε I for all x ∈ℱ and ‖𝑝𝑏𝑝‖ ≥ ‖𝑏‖ − ε, and 

(iii ) 1 − p is unitarily equivalent to a projection in eAe. 

Proof: To show that the above is sufficient for A being TAI we note that A has property (SP) 

Then, a result of Cuntz, there exists a projection q ∈ eAe such that (n + 1)[q]≤ [e]. Then it is 

clear that the above (iii' ) implies (iii) (if we use the projection q instead of e). 

To see it is also necessary, we use the fact that simple TAI 𝐶∗- algebras have stable rank one 

(so they have cancellation). 

Definition(4.1.21)[89]:  Let A be a unital simple 𝐶∗- algebra. Then A has tracial topological 

rank no more than one, denote by TR(A) ≤1, if the following holds. For any ε > 0, and any 

finite subsetℱ⊂A containing a nonzero element a ∈𝐴+, there is a 𝐶∗- subalgebra C in A with 

C =⊕𝑖=1
𝑘 𝑀𝑛𝑖

(C([𝑋𝑖)), where each 𝑋𝑖  is a finite CW complex with dimension no more than 

One such that 1𝐶 =p satisfying the following:    

(i)‖𝑝𝑥 −  𝑥𝑝 ‖< ε for x ∈ ℱ, 

(ii)pxp ∈ɛ C for x ∈ ℱ and 

(iii)1 − p is equivalent to a projection in 𝑎𝐴𝑎̅̅ ̅̅ ̅. 

In the above definition, if T can be chosen to be a finite-dimensional T* -subalgebra then we 

write TR(A) = 0 (see [91]). If TR(A)≤ 1 but TR(A) ≠ 0 (see [91]) then we will write TR(A) 

= 1. 

In the light of [91] in what follows, we will replace unital simple TAI 𝐶∗- algebras by unital 

simple 𝐶∗- algebras with tracial topological rank no more than one and write TR(A) ≤1. 

Definition (4.1.22)[89]:   A unital simple 𝐶∗- algebra A is said to be tracially approximately 

divisible if for any ε > 0, any projection e ∈ A, any integer N > 0 and any finite subset ℱ ⊂ A, 

there exists a projection q ∈ A and there exists a finite-dimensional 𝐶∗- subalgebra B with 

each simple summand having rank at least N such that: 

(𝑖)  ‖𝑞𝑥 −  𝑥𝑞‖< ε for all x ∈ ℱ, 

(ii) ‖𝑦(1 −  𝑞)𝑥(1 −  𝑞)  − (1 −  𝑞)𝑥(1 −  𝑞)𝑦]‖< ε for all x ∈ ℱ and all y ∈ B with 

‖ 𝑦‖ ≤1, and 

  (iii)q is unitarily equivalent to a projection of eAe. 
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     Of course if A is approximately divisible, then A is tracially approximately divisible (see 

[4]). 

Theorem(4.1.23)[89]:   Every nonelementary unital simple 𝐶∗- algebra with TR(A) ≤1 is 

tracially ap-proximately divisible. 

Proof. Let A be a unital simple 𝐶∗- algebra with TR(A)≤ 1. Fix ε > 0, σ > 0, N > 0 and a 

finite subset ℱ ⊂ A. Let b ∈ A with ‖𝑏‖ = 1 and assume that b ∈F. There exist a projection p 

∈ A and a 𝐶∗- subalgebra C ∈I with 1𝐶 = p such that: 

(i)‖𝑝𝑥 −  𝑥𝑝 ‖< ε/4 for all x ∈ ℱ, 

(ii)pxp ∈ε/4 C and  ‖𝑝𝑏𝑝‖  ≥  ‖𝑏‖  − ε/2, and 

(iii)τ (1 − p) < σ/2 for all traces τ on A. 

   Write C =⊕ 𝐶𝑖 , where 𝐶𝑖 = 𝑀𝑙(𝑖)(C[0, 1]), or 𝐶𝑖 = 𝑀𝑙(𝑖). It will become clear that, with- 

out loss of generality, to simplify notation, we may assume that C = 𝐶𝑖 (i.e., there is only one 

summand). If C = 𝑀𝑙 , let {eij } be matrix units for 𝑀𝑙 . Since A is not elementary, there is a 

positive element a ∈𝑒11A𝑒11 such that sp(a) = [0, 1] (see [1, p. 6.1]). This implies that C ⊂𝑀𝑙 

(C([0, 1])). So, we may assume that C = 𝑀𝑙 (C([0, 1])). Let 𝒢1⊂ C be a finite subset such that 

dist(pxp, 𝒢1) < ε/4 

for all x ∈ ℱ. Let 𝒢  be a finite subset of C containing {𝑒𝑖𝑗 } and 𝑒𝑖𝑗 g𝑒 ∗𝑖𝑗 for all g ∈𝒢1. 

Let η > 0. Denote by δ the positive number in [59] corresponding to η (instead of ε). Let {𝑓1, 

𝑓2, . . . , 𝑓𝑚} ⊂ C([0, 1]) respect to δ (= d). We identify C([0, 1]) with 𝑒11C 𝑒11. Since 𝑒11A 

𝑒11 is simple, there are 𝑏𝑖𝑗∈𝑒11A𝑒11 such that 

‖∑ 𝑏𝑖𝑗𝑓𝑗𝑏 ∗𝑖𝑗− 𝑒11

𝑖=1

‖ < 1/16 

j= 1, 2, . . . , m. Let 𝒢2 be a finite subset containing {𝑓𝑗 , 𝑏𝑖𝑗 , 𝑏 ∗𝑖𝑗 }∪ {𝑎𝑖𝑗∈𝑒11A𝑒11: 

(𝑎𝑖𝑗)𝑙×𝑙∈𝒢 }. By 3.4, TR(𝑒11A𝑒11) 1. So for any 0 <σ < η/2 and any finite subset 𝒢3⊃𝒢2, 

there exist aprojection q ∈𝑒11A𝑒11 and a 𝐶∗-subalgebra 𝐶1⊂𝑒11A𝑒11 with 1𝐶1
 = q and 𝐶1∈I 

satisfying the following: 

(a)   ‖𝑞𝑥 −  𝑥𝑞 ‖< σ, 

(b) qxq ∈σ 𝐶1 for all x ∈𝒢3, 

 (c)τ (𝑒11 − q) < σ/2𝑙 for all traces τ. 

With sufficiently small σ and sufficiently large 𝒢2, we may assume that there exists a homo-

morphism φ : C([0, 1]) → 𝐶1 such that 

(b') ‖∅ (𝑥) –  𝑞𝑥𝑞 ‖< η/2 for all x ∈𝒢2 ∩ C([0, 1]). 

Note that we also have 𝑐𝑖𝑗⊂𝐶1 such that  

‖∑ 𝑐𝑖𝑗  ∅ (𝑓𝑗)𝑐 ∗𝑖𝑗− 𝑞𝑖=1 ‖ < 1/8,   j = 1, 2, . . . , m.  



011 
 

We are now  it follows   that Sp(∅t ) is δ-dense in [0, 1]. Byapplying in  [59] there is a 

homomorphism ψ : C([0, 1]) → 𝐶1 and there is a finite-dimensional  𝐶∗-subalgebra F =⊕𝑖 𝐹𝑖  

, where each 𝐹𝑖 is simple and dim 𝐹𝑖 ≥ N , with  1𝐹= q such that  

‖𝜓 (𝑓 )  −  ∅ (𝑓 )‖< η/2  for all f∈𝒢2and 

‖𝜓 (𝑔), 𝑏‖=0 

for all g∈ C([0,1]) and  b ∈ F. Set F'= diag(F , F , . . . , F ) in F⊗𝑀𝑙, ψ' = ψ ⊗ 𝑖𝑑 𝑀𝑙
, 

∅′=∅⊗ 𝑖𝑑 𝑀𝑙
and P = diag(q, q, . . . , q) ∈𝑀𝑙 (𝐶1). With sufficiently small η and large 𝒢2, we 

have 

‖𝜓′ (𝑔)  −  ∅′ (𝑔)‖< ε/2 for g ∈ G. 

We also have 

‖[ 𝜓′ (𝑓 ), 𝑐 ] ‖ = 0 for f ∈ C and c ∈ F' . 

These imply that 

‖[𝑃 𝑥𝑃 , 𝑐]‖< ε for all x ∈F and c ∈ F' . 

Note that 1𝐹  = P . Wealso have 

τ (1 − P )  ≤ σ/2 + 𝑙σ/2𝑙 = σ. 

We conclude that A is tracially approximately divisible. When C =⨁ 𝐶𝑖 , it is clear that we 

can do exactly the same as above for each summand. Let 𝑑𝑖 = 1𝐶𝑖
 . If we find a matrix 

algebra  𝐹𝑖∈𝑑𝑖 A𝑑𝑖with rank greater than N which commutes with 𝐶𝑖 , then   ⨁𝐹𝑖commutes 

with C.            

Lemma(4.1.24)[89]:    Let A be a unital nuclear simple 𝐶∗-algebra with TR(A)≤ 1. Then for 

any ε > 0, any σ > 0, any integer n > 0, and any finite subset F⊂ A, there exist mutually 

orthogonal projections q, 𝑝1, 𝑝2, . . . , 𝑝𝑛 with q≼ 𝑝1 and [𝑝1] = [𝑝𝑖 ] (i = 1, 2, . . . , n), a 𝐶∗-

subalgebra C ∈I with 1𝐶  = 𝑝1 and completely positive linear contractions 𝐿1 : A → qAq and 

𝐿2 : A → C such that  

‖𝑥 − (𝐿1(𝑥) ⊕  𝑑𝑖𝑎𝑔(𝐿2(𝑥), 𝐿2(𝑥), . . . , 𝐿2(𝑥)))‖ < ε and 

‖𝐿𝑖  (𝑥𝑦) − 𝐿𝑖  (𝑥)𝐿𝑖  (𝑦)‖< ε, 

 where 𝐿2 (x) is repeated n times, for all x, y ∈F and  τ(q) < σ for all τ ∈ T (A). 

Proof. From the proof of 5.4, we have the following. For any η > 0, any integer K > 0, any 

integer N > 4K𝑛2 and finite subset 𝒢⊂ A (containing 1𝐴), there exists a projection P ∈ A and 

a finite-dimensional 𝐶∗-subalgebra B with 1𝐵 = P such that: 

 (i)‖[𝑃 , 𝑥]‖< η for all x ∈ G; 

 (ii)every simple summand of B has rank at least N ; 

 (iii)there is a 𝐶∗-subalgebra D ∈I with 1𝐷 = P such that [d, g] = 0 for all d ∈ D, g ∈ B 

and 

dist(x, D) < η for x ∈𝒢; and 

(iv) 5N [(1 − P )] < [P ]. 
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Let 𝐹1⊂ A be a finite subset (containing 1𝐴) and σ > 0. Since A is nuclear, with sufficiently 

large 𝒢 and sufficiently small η, by [32, 3.2], there are unital completely positive linear 

contrac-tions 𝐿′1:A → (1−P )A(1−P ) and ′𝐿2 : A → D such that ′𝐿1(a) =(1−P )a(1−P ), 

   

‖𝑥 − 𝐿′1(𝑥)  ⊕ 𝐿′2(𝑥)‖< σ  and ‖𝐿′2(𝑥)  −  𝑃 𝑥𝑃‖< η + σ 

for all x ∈ ℱ1 . It follows that, with sufficiently small σ and η, 

‖𝐿′𝑖  (𝑥𝑦)  − 𝐿′𝑖  (𝑥)𝐿′𝑖  (𝑦)‖< ε 

for all x, y ∈ℱ𝑖. Write B =⨁𝑖=1
𝑘 𝐵𝑖 , where 𝐵𝑖  ≅  𝑀𝑙(𝑖)with l(i)≥N , and denote by C the  𝐶∗-

subalgebra  generated  by D and B. Note that C≅  ⨁𝑖=1
𝑘 𝐷0 ⨂ 𝐵𝑖, where𝐷0  ≅D. Let πi:C → 

𝐷0⊗𝐵𝑖 the projection. Denote ∅𝑖= 𝜋𝑖  ° 𝐿′2 . By (iii), we see that we may write ∅𝑖 = 

diag(ψ𝑖 , ψ𝑖 , . . . , ψ𝑖 ), where ψ𝑖 : A → e𝑖 (𝐷0⊗𝑀𝑙(𝑖))𝑒𝑖and 𝑒𝑖is a minimal rank-one 

projection of 𝑀𝑙(𝑖). Write l(i) = 𝑘𝑖 n + 𝑟𝑖 , where 𝑘𝑖 ≥n >𝑟𝑖  ≥0 are integers. We may rewrite 

∅𝑖= diag (∅′𝑖 , . . . , ∅′𝑖) ⊕ ψ′𝑖, 

where ∅′𝑖= diag(ψ𝑖 , . . . , ψ𝑖 ) : A → 𝐷0⊗𝑀𝑘𝑖
is repeated n times and ψ′𝑖 = diag(ψ𝑖 , . . . , 

ψ𝑖): A → 𝐷0⊗𝑀𝑟𝑖
 . 

Define𝐿2 = ⨁𝑖=1
𝑘 ∅′𝑖  and 𝐿1=𝐿′1⨁𝑖=1

𝑘 ψ′𝑖 . We estimate that  

τ  ((1 −  𝑃 )  + ⨁𝑖=1
𝑘 𝜓′𝑖(1𝐴) )< (1/5N )τ (P ) + (1/4nK)τ (P ) < (1/2n)τ (P ) 

≤min (σ, τ  𝐿2[(1𝐴)]))  , 

provided that 1/K < σ. By 4.7, the lemma follows.      

       The following corollary follows from Lemma 5.5 immediately.   

Corollary(4.1.25)[89]:     Let A be a unital separable simple 𝐶∗-algebra TR(A)≤ 1. Then for 

any ε > 0, any σ > 0, any integer n > 0, and any finite subset F⊂ A, there exists a 𝐶∗-

subalgebra C ∈ I such that 

‖𝑥 − (1 − 𝑝)𝑥 (1 −  𝑝)  ⊕  𝑑𝑖𝑎𝑔(𝑦, 𝑦, . . . , 𝑦) ‖< ε 

where y ∈ C and diag(y, y, . . . , y) ∈𝑀𝑛(C) and p = 1𝑀𝑛(𝐶) for all x, ∈F and τ ((1 − p)) < σ for 

all τ ∈ T (A). Moreover, we may require that ‖(1 −  𝑝)𝑥(1 −  𝑝) ‖ ⩾(1 − ε)‖ 𝑥 ‖for all x 

∈F. 

Proof. Perhaps the last part of the statement needs an explanation. In the proof of (4.1.24), we 

know that we may require that‖ 𝑦 ‖ ≥(1 − ε/2)‖ 𝑥 ‖for all x ∈F. Thus we may replace (1− 

p)x(1− p) by (1 − p)x(1 − p) ⊕ y and replace (1 − p) by 1 − p ⊕ diag(1𝐶 , 0, . . . , 0). 

Lemma (4.1.26)[89]:      Let B = ⨁𝑖=1
𝑘 𝐵𝑖 be a unital 𝐶∗-algebra in I (where 𝐵𝑖  is a single 

summand). 

For any ε > 0, any finite subset F ⊂ B and any integer L > 0, there exist a finite subset 𝒢 ⊂ B 

depending on ε and F but not on L, and δ = 1/4L such that the following holds. If A is a unital 

separable nuclear simple 𝐶∗- algebra with TR(A)⩽ 1 and ∅𝑖 : B → A are two 

homomorphisms satisfying the following: 
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(i) there are 𝑎𝑔,𝑖 , 𝑏𝑔,𝑗∈ A, i, j ⩽  L with       

‖∑ 𝑎 ∗𝑔,𝑖 ∅1 (𝑔)𝑎𝑔,𝑖  −  1𝐴𝑖 ‖< 1/16 and ‖∑ 𝑏 ∗𝑔,𝑖 ∅2 (𝑔)𝑏𝑔,𝑖  −  1𝐴𝑗 ‖< 1/16 

for all g ∈ G; 

(ii)(∅1)∗ =  (∅2)∗ 𝑜𝑛 𝐾0(𝐵); 𝑎𝑛𝑑, 

(iii) if ‖ 𝜏 °∅1(𝑔)  −  𝜏 °∅2 (𝑔) ‖< δ for all g ∈𝒢, then there exists a unitary u ∈ A such that 

‖∅1(𝑓 )–  𝑢 ∗ ∅2(𝑓 )𝑢‖< ε   for all f ∈F. 

Theorem(4.1.27)[89]:       Let A be a unital simple 𝐶∗- algebra with TR(A) ⩽1 and C be a C* 

-subalgebra of A in I. Then for any finite subset ℱ⊂ C and ε > 0, there exist δ > 0, σ > 0 and a 

finite subset 𝒢⊂ A satisfying the following: if 𝐿1, 𝐿2 : A → B are two unital 𝒢-δ-

multiplicative contractive completely positive linear maps, where B is a unital simple 𝐶∗- 

algebra with TR(B) ⩽1, with 

(𝐿1|C )∗ = (𝐿2|C )∗ on 𝐾0(C) and 

|𝜏( 𝐿1(𝑔))  −  𝜏°𝐿2(𝑔) |< σ 

for all g ∈𝒢 and for all τ ∈ T (B), then there is a unitary u ∈ A such that  

‖𝐿1(𝑓 )  −  𝑢 ∗ 𝐿2(𝑓 )𝑢‖ < ε for all f ∈F. 

Proof. Fix ε > 0 and a finite subset F⊂ A. Let 𝒢1⊂ C be the finite subset required by 5.7 (for 

a given ε> 0 and a given finite subset ℱ). Suppose that 𝑎𝑔,𝑖∈ A such that 

‖∑ 𝑎 ∗𝑔,𝑖  𝑔 𝑎𝑔,𝑖 − 1𝐴

𝑛(ℊ)

𝑖=1

‖ < 1/64 

for all g ∈𝒢1. Set L = max{n(g): g ∈ G}. Then, with sufficiently small δ > 0 and large 

𝒢⊃𝒢1 ∪{𝑎𝑔,𝑖 : g, i}, we have 𝑏𝑔,𝑖 ,j ∈ A such that   

‖∑ 𝑏 ∗𝑔,𝑖,𝑗 𝐿𝑗(𝑔) 𝑏𝑔,𝑖,𝑗 − 1𝐵

𝑛(ℊ)

𝑖=1

‖ < 1/32 

for all g ∈𝒢1 and j = 1, 2. Furthermore, for any η > 0, with sufficiently small δ, there is a 

homomorphism ∅𝑗 : C → B (j = 1, 2) such that 

‖∅𝑗  (𝑔)  − 𝐿𝑗  (𝑔)‖< η and ‖∑ 𝑏 ∗𝑔,𝑖,𝑗 ∅𝑗(𝑔) 𝑏𝑔,𝑖,𝑗 − 1𝐵
𝑛(ℊ)
𝑖=1 ‖ < 1/16 

for g ∈𝒢1. We also require that σ < 1/4L. Then we see the conclusions of the theorem follow 

from 5.7 (and its proof) immediately. 

Theorem(4.1.28)[89]:        Let A be a unital simple 𝐶∗- algebra with TR(A) ≤1 and B ∈I. Let 

∅𝑖 : B → A be two monomorphisms such that 

(∅1)∗ = (∅2)∗ : 𝐾0 (B) → 𝐾0 (A) and   τ ◦ ∅1 = τ ◦ ∅2 

for all τ ∈ T (A). Then there is a sequence of unitaries un ∈ A such that 

lim
𝑛 →∞

𝑢 ∗𝑛 ∅1(𝑥)𝑢𝑛 = ∅2(𝑥)for all x ∈ B. 
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Proof:As before, we reduce the general case to the case in which B = C([0, 1]). Let ε > 0 and 

F⊂ B be a finite subset. Let 𝒢⊂ B be the finite subset (it does not depend on L). Since A is 

simple, there exists an integer L > 0 and 𝑎𝑖,𝑔, 𝑏𝑖,𝑔∈ A, i = 1, 2, . . . , L (some of them could be 

zero) such that 

‖∑ 𝑎 ∗𝑖,𝑔 ∅1(𝑔)𝑎𝑖,𝑔

𝑖

− 1‖ < 1/16 𝑎𝑛𝑑 ‖∑ 𝑏 ∗𝑖,𝑔 ∅2(𝑔)𝑏𝑖,𝑔

𝑖

− 1‖ 1/16 

for all g ∈𝒢. Therefore the theorem follows from 5.7.    

     We start with the following observations. 

Let A be a unital 𝐶∗- algebra and p, a ∈ A. Suppose that p is a projection, ‖𝑎‖⩽1 and 

‖𝑎 ∗ 𝑎 −  𝑝 ‖< 1/16 and   ‖𝑎𝑎 ∗  − 𝑝 ‖< 1/16. 

A standard computation shows that  

‖𝑝𝑎𝑝 −  𝑎𝑝‖< 3/16 and   ‖𝑝𝑎 −  𝑝𝑎𝑝‖< 3/16. 

Also ‖ 𝑝𝑎 −  𝑎 ‖< 1/2. Set b = pap. Then  

‖𝑏 ∗ 𝑏 −  𝑝‖⩽‖ 𝑝𝑎 ∗ 𝑎𝑝 −  𝑝𝑎 ∗ 𝑎‖+ ‖𝑝𝑎 ∗ 𝑎 −  𝑝‖< 1/16 + 1/16 = 1/8. 

So 

‖(𝑏 ∗ 𝑏)−1 −  𝑝‖<
1/8

1−1/8
= 1/7 and ‖|𝑏|−1 − 𝑝‖< 2/7, 

where the inverse is taken in pAp. Set v = b|𝑏|−1. Then v*v = p = vv* and 

‖𝑣 −  𝑏‖ < 2/7. 

We denote v by 𝑎̃. Suppose that L : A → B is a 𝒢-δ-multiplicative contractive completely 

posi-tive linear map, u is a normal partial isometry and a projection p ∈ B is given so that 

‖𝐿(𝑢 ∗ 𝑢)  −  𝑝 ‖< 1/32. 

Note if 𝑣′ is another unitary in pApwith ‖𝑣′ − 𝑏‖< 1/3, then [𝑣'] = [𝑣 ] in U 

(pAp)/𝑈0(pAp).We define 𝐿̃ as follows. Let L(u) = a. With small δ and large 𝒢 we denote 

by 𝐿̃(u) the normal partial isometry (unitary in a corner) 𝑣 defined above. This notation will 

be used later. Note also, if u ∈𝑈0(A), then, with sufficiently large 𝒢 and sufficiently small δ, 

we may assume that 

𝐿̃(u) 𝜖𝑈0(B). 

Definition(4.1.29)[89]: Let A be a unital 𝐶∗- algebra. Let CU(A) be the closure of the 

commutator sub-group of U (A). Clearly that the commutator subgroup forms a normal 

subgroup of U (A). It follows that CU(A) is a normal subgroup of A. It should be noted that 

U (A)/CU(A) is commu-tative. It is an easy fact that if A = 𝑀𝑟 (C(X)), where X is a finite 

CW complex of dimension 1, then CU(A) ⊂𝑈0(A). If 𝐾1(A) = U (A)/𝑈0(A), it is known and 

easy to verify that every commutator is in 𝑈0(A). Therefore CU(A) ⊂𝑈0(A). If u ∈ U (A), we 

will use 𝑢̅ for the imageof u in U (A)/CU(A), and if F ⊂ U (A) is a subgroup of U (A), 

then𝐹̅is the image of F in U (A)/CU(A). 

      If 𝑢̅ , 𝑣̅∈ U (A)/CU(A) define       
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dist(𝑢 ̅,𝑣̅) = inf {‖ 𝑥 −  𝑦‖ : x, y ∈ U (A) such that 𝑥̅ = 𝑢̅, 𝑦̅ = 𝑣̅ }. 

If u, v ∈U (A) then dist (𝑢 ̅,𝑣̅) =inf {‖𝑢𝑣 ∗  − 𝑥 ‖: x ∈CU(A)}Let g=∏ 𝑎𝑖𝑏𝑖𝑎𝑖
−1𝑛

𝑖=1 𝑏𝑖
−1

, 

where𝑎𝑖𝑏𝑖  ∈ 𝑈 (𝐴). Let 𝒢 be a finite subset of A, δ > 0 and L : A → B be a 𝒢-δ-

multiplicative contractive completely positive linear map, where B is a unital 𝐶∗- algebra. 

From 6.1, for ε > 0, if 𝒢 is sufficiently large and δ is sufficiently small, 

‖𝐿(𝑔) − ∏ 𝑎′𝑖𝑏′𝑖(𝑎′𝑖)−1(𝑏′𝑖)−1

𝑛

𝑖=1

‖ < 𝜀/2, 

Where 𝑎′𝑖𝑏′𝑖U (B). Thus, for any g ∈ CU(A), with sufficiently large 𝒢and sufficiently small 

δ, 

‖𝐿(𝑔) − 𝑢‖ <  𝜀 

for some u ∈ CU(B). Moreover, for any finite subset 𝒰 ⊂U (B) and subgroup F⊂U (B) 

generated by 𝒰, and ε > 0, there exists a finite subset 𝒢 and δ > 0 such that, for any 𝒢-δ-

multiplicative contractive completely positive linear map L : A → B, L induces a homomor- 

phism L‡ :𝐹̅→U(B)/CU(B) such that dist (𝐿 ̃(𝑢)̅̅ ̅̅ ̅̅ ̅
, L‡(𝑢̅)) < ε for all 𝒰 Note we may also 

assume that 𝐹̅  ∩ 𝑈0(A)/CU(A) ⊂𝑈0(𝐵)/𝐶𝑈(𝐵)   

     If ∅: A → B is a homomorphism then ∅‡ : U (A)/CU(A) → U (B)/CU(B) is the induced 

homomorphism. It is continuous. 

Recall that, for a unitary u∈ 𝑈0(A) in a unital 𝐶∗- algebra A, we write cer(u)⩽ k, if u = 

∏ exp(ihj)𝑘
𝑗=1  for some self-adjoint elements ℎ𝑗∈ A. We write cer(u)⩽ k + ε if u is a norm 

limit of unitaries 𝑢𝑛 with cer(𝑢𝑛)⩽ k. 

Let u ∈𝑈0(A). Denote by cel(u) the infimum of the length of continuous paths of unitaries in 

A from u to 1𝐴. 

Lemma(4.1.30)[89]: (N.C. Phillips). Let A be a unital 𝐶∗- algebra and 2 > d > 0. Let 𝑢0, 𝑢1, . 

. . , 𝑢𝑛 be n + 1 unitaries in A such that 

𝑢𝑛 = 1𝐴 and  ‖𝑢𝑖  −  𝑢𝑖+1‖ ⩽d, i = 0, 1, . . . , n − 1. 

Then there exists a unitary v ∈𝑀2𝑛+1(A) with exponential length no more than 2π such that 

‖(𝑢0 ⊕ 1𝑀2𝑛
(𝐴))  −  𝑣‖ ⩽d. 

Moreover, v can be chosen in CU(𝑀2𝑛+1(A)). 

The following is another version of the above lemma. 

Lemma(4.1.31)[89]: Let A be a unital 𝐶∗- algebra and u ∈𝑈0(A). Then for each L > 0, if u = 

v ⊕ (1 − p) and v ∈𝑈0(pAp) with cel(v)⩽ L in pAp and there are N (> 2L) mutually 

orthogonal and mutually equivalent projections in (1 − p)A(1 − p) each of which is equivalent 

to p, then cel(u)⩽ 2π + (L/n)π. Furthermore, there is a unitary w ∈ CU(A) such that cel(uw) < 

(L/n)π. 

(See [111] and also [109]. It should be noted that a unitary in 𝑀2(A) with the form diag(u, u∗) 

is in CU(𝑀2(A)).) 
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Theorem(4.1.32)[89]: Let A be a unital simple 𝐶∗- algebra with TR(A)⩽ 1. Let u ∈𝑈0(A). 

Then, for any ε > 0, there are unitaries 𝑢1, 𝑢2∈ A such that u1 has exponential length no more 

than 2π, 𝑢2 is an exponential and 

‖𝑢 − 𝑢1𝑢2‖< ε. 

Moreover, cer(A)⩽3 + ε. 

Proof: Let ε be a positive number. Let 𝑣0, 𝑣1, . . . , 𝑣𝑛∈𝑈0(A) such that 

𝑣0 = u, 𝑣𝑛 = 1 and ‖𝑣𝑖  −  𝑣𝑖+1‖< ε/16, i = 0, 1, . . . , n − 1. 

Let δ > 0. Since TR(A) ⩽1, there exists a projection p ∈ A and a unital 𝐶∗- subalgebra B ⊂ A 

with B ∈I and with 1𝐵 = p such that: 

 (i)‖[𝑣𝑖  , 𝑝]‖< δ, i = 0, 1, . . . , n, 

 (ii)p𝑣𝑖 p ∈𝛿 B, 0, 1, . . . , n, and 

 (iii)2(n + 1)[1 − p] ⩽  p. 

There are unitaries 𝑤𝑖∈ (1 − p)A(1 − p) with 𝑤𝑛 = (1 − p) such that   

‖𝑤𝑖  −  (1 −  𝑝)𝑣𝑖  (1 −  𝑝) ‖< ε/16,   i = 0, 1, . . . , n 

for any given ε > 0,provided δ is sufficiently small. Furthermore, there is a unitary z ∈B such 

that 

‖𝑧 −  𝑝𝑢𝑝‖< ε/16. 

Therefore (with δ < ε/32) 

‖𝑢 − 𝑤1 ⊕  𝑧‖ < ε/8. 

Write 𝓏1 = 𝑤1⊕ p. Since 2(n + 1)[1 − p]⩽p, , there is a unitary 𝑢1 with exponential length no 

more than 2π such that 

‖𝑧1  −  𝑢1‖ < ε/4. 

Now since z ∈ B and it is well known that B has exponential rank 1 + ε, there is an 

exponential 𝑢2∈ A such that 

‖𝑢2  −  (1 −  𝑝)  −  𝑧‖ < ε/3. 

Therefore 

‖𝑢 − 𝑢1𝑢2‖< ε. 

Since cel(𝑢1)⩽ 2π, it follows from [121] that cer(𝑢1)⩽ 2 + ε. Therefore cer(u)⩽ 3 + ε. So 

cer(A) ⩽3 + ε. 

Lemma (4.1.33)[89]: Let A be a unital 𝐶∗- algebra. 

 (i)𝑈0(A)/CU(A) is divisible. 

 (ii)If u ∈ U (A) such that 𝑢𝑘∈𝑈0(A). Then there is v ∈𝑈0(A) such that 𝑣−𝑘  = 𝑢−𝑘inU 

(A)/CU(A). 

 (3)Suppose that 𝐾1(A) = U (A)/𝑈0(A) and G ⊂ U (A)/CU(A) is finitely generated 

subgroup. Then one has G = G ∩ (𝑈0(A)/CU(A)) ⊕ κ(G), where κ : U (A)/CU(A) → U 

(A)/𝑈0(A) is the quotient map. 

Proof: Let u ∈𝑈0(A). Then there are 𝑎1, 𝑎2, . . . , 𝑎𝑛∈ Asa such that u =∏ exp(iaj )𝑛
𝑗=1 . For 
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any integer k > 0, let v =∏ exp(iaj /k)𝑛
𝑗=1 . Then 𝑣−𝑘= 𝑢̅. This proves (1). 

To see (2), put 𝑢𝑘 =∏ exp(iaj )𝑛
𝑗=1 , where 𝑎𝑗∈𝐴𝑠𝑎. Let v =∏ exp(iaj /k)𝑛

𝑗=1  

Thus(𝑢𝑣 ∗)𝑘 =̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 1̅. So 𝑣−𝑘= 𝑢−𝑘 .To see (3), we note that (1) implies 0→ 𝑈0 

(A)/CU(A)→G+𝑈0(A)/CU(A) → κ(G) → 0 splits. 

Lemma (4.1.34)[89]: Let A be a unital 𝐶∗- algebra and 𝒰⊂𝑈0(A) be a finite subset. Then, 

for any ε > 0, there is a finite subset 𝒢⊂ A and δ > 0 satisfying the following: for any 𝒢-δ-

multiplicative contractive linear map L : A → B (for any unital 𝐶∗- algebra B), there are 

unitaries v ∈ B such that 

   ‖𝐿(𝑢)  −  𝑣 ‖< ε/2 and  cel(v) < cel(u) + ε/2   

for all u ∈ 𝒰.           

Proof: Suppose that 𝑧0(u) = u, 𝑧𝑗 (u) ∈𝑈0(A), j = 1, 2, . . . , n(u) such that 
𝑐𝑒𝑙(𝑢)

𝑛(𝑢)
 ⩽1/4 and 

Cel(𝑧𝑗 (u)(𝑧𝑗−1(u)) ∗)<
𝑐𝑒𝑙(𝑢)

𝑛(𝑢)
,   j = 1, 2, . . . , n(u), 

for all u ∈𝒰. Let N = max{n(u): u ∈ U}. It follows that (for sufficiently large 𝒢 and 

sufficiently small δ) there are unitaries 𝑤𝑗 (u) ∈ U (B) such that 

    ‖𝐿 𝑧𝑗  (𝑢)   − 𝑤𝑗  (𝑢)‖< ε/8N π   

for all j and u∈𝒰 . Thus for all u ∈𝒰, 

‖𝐿(𝑢)  −  𝑤0(𝑢)‖< ε/2π   and cel (𝑤0(u))< n(u)[
cel(u)

n(u)
+ (ε/8N )2π]< cel(u) + ε/2. 

Lemma(4.1.35)[89]: Let A be a unital simple 𝐶∗- algebra with TR(A)⩽ 1 and let u ∈ CU(A). 

Then u ∈𝑈0(A) and cel(u) 8π. 

Proof: We may assume that u is actually in the commutator group. Write u = 𝑣1𝑣2 • • • 𝑣𝑘 , 

where each 𝑣𝑖 is a commutator. We write 𝑣𝑖=𝑎𝑖𝑏𝑖𝑎 ∗𝑖 𝑏 ∗𝑖, where 𝑎𝑖  and 𝑏𝑖  are in U (A). Fix 

integers N > 0 and K > 0. Since TR(A)⩽l, by Corollary 3.3, there is a projection p∈A and a 

𝐶∗- subalgebra B ∈ I with 1𝑝 = B and B=⊕𝑖=1
𝑙 𝑀𝑚𝑖

(C( 0, 1]))⊕𝑗=1
𝐿 𝑀𝑛𝑖

, where 𝑚𝑖 , 𝑛𝑖⩾K 

such that 

‖𝑎𝑖 − (𝑎′𝑖  ⊕ 𝑎′𝑖)‖ < 𝜀/4𝑘, ‖𝑏𝑖 − (𝑏′𝑖  ⊕ 𝑏′′𝑖)‖<ε/4k,   i = 1, 2, . . . , k, 

‖𝑢 − (∏ 𝑎′𝑖𝑏′𝑖(𝑎′𝑖)∗(𝑏′𝑖)∗ ⊕ 𝑎′′𝑖𝑏′′𝑖(𝑎′′𝑖)∗(𝑏′′𝑖)∗𝑘
𝑖=1 )‖< ε/8, 

𝑎′𝑖 , 𝑏′𝑖U ((1−p)A(1 −p)),𝑎′′𝑖 , 𝑏′′𝑖∈𝑈0(B) and N[ 1-p]⩽ [p] . Put w =∏ 𝑎′𝑖𝑏′𝑖(𝑎′𝑖)∗(𝑏′𝑖)∗𝑘
𝑖=1 and 

z =∏ 𝑎′′𝑖𝑏′′𝑖(𝑎′′𝑖)∗(𝑏′′𝑖)∗𝑘
𝑖=1 . Then Det(z) = 1. It follows from [43, 3.4](by choosing K 

large)we conclude that cel(z)⩽6π in pAp. It is standard to show that𝑎′𝑖𝑏′𝑖(𝑎′𝑖)∗(𝑏′𝑖)∗⊕(1 − 

p)⊕(1-p) is in 𝑈0(𝑀4((1 − p)A(1 − p))) and it has exponential length no more than 4(2π ) + 

ε/8k. This implies that (in U ((1 − p)A(1 − p))) cel(w ⊕ (1 − p)) 8kπ + ε/2. Note the length 

only depends on k. We can then choose N = N (8kπ + ε) as in 6.4. In this way, cel(w ⊕ p)⩽ 

2π + ε/2. It follows that 

Cel( (w ⊕ p) ((1 − p) ⊕ z)) ⩽8π + ε/2. 
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The fact that ‖𝑢 − (𝑤 ⨁ 𝑝)((1 − 𝑝) ⊕ 𝑧)‖< ε/8 implies that cel(u)⩽8π + ε. 

Theorem(4.1.36)[89]: Let A be a unital simple 𝐶∗- algebra with TR(A)⩽1. Let u, v ∈ U (A) 

such that [u] = [v] in 𝐾1(A) and 

𝑢𝑘 , 𝑣𝑘∈𝑈0(A) and cel (( 𝑢𝑘)∗𝑣𝑘)< L. 

Then  

cel (u∗v)⩽   8π + L/ k. 

Moreover, there is y ∈ U0(A) with cel(y)⩾L/ k such that u ∗ v̅̅ ̅̅ ̅̅ = y̅ in U (A)/CU(A). 

Theorem(4.1.37)[89]: Let A be a unital separable simple 𝐶∗- algebra with TR(A) ⩽1 and u 

∈𝑈0(A). Suppose that 𝑢𝑘∈ CU(A) for some integer k > 0, then u ∈ CU(A). In particular, 

𝑈0(A)/CU(A) is torsion free. 

Proof: Let ε > 0 and let 

𝑣 = ∏ 𝑎𝑖𝑏𝑖 (𝑎′𝑖)−1(𝑏′𝑖)−1

𝑟

𝑗=1

   𝑏𝑒 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ‖𝑢𝑘 − 𝑣‖ < 𝜀/64 

Put l= cel(𝑢𝑘). Let δ > 0 be such that 2(l+ε)δ < ε/64π. Fix a finite subset𝒢⊂A which contains 

u, 𝑢𝑘 , v, 𝑎𝑖 , 𝑏𝑖 , 𝑎𝑖
−1, 𝑏𝑖

−1
among other elements. 

Since TR(A)⩽1, there is a projection p ∈ A and a unital 𝐶∗- subalgebra F ∈I with 1𝐹 = p such 

that: 

 (i)pxp ∈ε/64 F for all x ∈𝒢, 

 (ii)‖𝑣 − 𝑣0 ⊕ 𝑣1‖< ε/32,  ‖𝑢 − 𝑢0 ⊕ 𝑢1‖< ε/32, and ‖𝑢𝑘 − 𝑢0
𝑘 ⊕ 𝑢1

𝑘‖< ε/32, 

 (iii)cel(𝑢0
𝑘) < l + ε/32 in U ((1 − p)A(1 − p)) and 

 (iv)τ (1 − p) < δ for all τ ∈ T (A). 

Here 𝑢0, 𝑣0∈ U ((1 − p)A(1 − p)) and 𝑢1, 𝑣1∈ U (F ). Moreover, we may assume that there 

are 𝑎′𝑖 , 𝑏′𝑖 ∈ U (F ) such that 

‖𝑢1
𝑘 − ∏ 𝑎′𝑖𝑏′𝑖 (𝑎′𝑖)−1(𝑏′𝑖)−1𝑟

𝑗=1 ‖< ε/32. 

Put w =∏ 𝑎′𝑖𝑏′𝑖 (𝑎′𝑖)−1(𝑏′𝑖)−1𝑟
𝑗=1 . Since U (F ) = 𝑈0(F ), we may write 

w=∏ exp(i𝑑𝑚) 𝐿
𝑚=1  for 

some 𝑑𝑚𝐹𝑠𝑎. Put 𝑤𝑘= ∏ exp(i𝑑𝑚/k) 𝐿
𝑚=1 Then 𝑤𝑘

𝑘 = 𝑤 𝑠𝑜     

  cel ((𝑢1)𝑘(𝑤𝑘
∗)𝑘)<

𝜀𝜋

32
. 

Write F =⊕𝑠=1
𝑁 𝐹𝑠where each 𝐹𝑠=𝑀𝑟(𝑠)C([0, 1] ) or 𝐹𝑠 =𝑀𝑟(𝑠), we may assume that each n(s) 

> max(16𝜋2/ε, K(1)), where K(1) is the number described in [113] (with d = 1). 

det(exp(if/K) exp(ia/ k)𝑢1𝑤𝑘
∗)= 1 

for some a, f ∈𝐹𝑠𝑎 with ‖𝑓‖ ⩽ 2π and ‖𝑎‖< επ/32 (with K > max(16𝜋 2/ε, K(1))). Exp(if/K) 

exp(ia/ k)𝑢1𝑤𝑘
∗∈ CU(F ). We also have 

‖𝑒𝑥𝑝(𝑖𝑓/𝐾) 𝑒𝑥𝑝(𝑖𝑎/ 𝑘)  − 1𝐹‖ < ε/8ε/32. 

Thus  
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Dist(𝑢1𝑤𝑘
∗̅̅ ̅̅ ̅̅ ̅, 1̅) <ε/8ε/32. 

Since det(w) = 1, as in the  proof  of  Theorem(4.1.36),  we also have 

det (exp(ig/K)𝑤𝑘
∗)  = 1 

for some g ∈𝐹𝑠𝑎with ‖𝑔‖ ⩽2π. Again, exp(ig/K)𝑤𝑘
∗∈ CU(F ). But 

‖(𝑒𝑥𝑝(𝑖𝑔/𝐾) 𝑤𝑘
 ) 𝑤𝑘

∗  −  1‖ ⩽ ‖𝑒𝑥𝑝(𝑖𝑔/𝐾) −  1‖< ε/4. 

So 

dist(𝑤𝑘̅̅ ̅̅  , 1̅) < ε/4. 

Therefore 

dist(𝑢1,̅̅ ̅̅ 1̅) ⩽dist(𝑢̅,𝑤𝑘̅̅ ̅̅ )+ dist(𝑤𝑘̅̅ ̅̅ , 1̅) < ε/8+ε/32+ε/4 < ε/2 

in U (F )/CU(F ). On the other hand, the choice of δ, 

cel ((𝑢0⊕ p)z )< ε/(8π ) 

for some z ∈ CU(A). Thus 

Inf {‖𝑢0 ⊕ 𝑢1  −  𝑥 ‖: x ∈ CU(A)}< ε/8 + ε/8 + ε/32 + ε/4 < 3ε/4. 

This implies that 

Inf {‖𝑢 −  𝑥‖ : x ∈ CU(A)}< ε. 

Therefore u ∈ CU(A). Consequently 𝑈0(A)/CU(A) is torsion free. 

Corollary (4.1.38)[89]: Let 𝐵𝑛  be a sequence of unital simple 𝐶∗- algebra with TR(𝐵𝑛) ⩽1. 

Let ∏ 𝐾1
𝑏
𝑛 (𝐵𝑛) be the set of sequences z = {𝑧𝑛}, where 𝑧𝑛 ∈𝐾1(𝐵𝑛) and 𝑧𝑛 can be represented 

by unitaries in 𝑀𝑘(𝑧)(𝐵𝑛) for some integer K(z) > 0. Then the kernel of the map 

𝐾1(∏ 𝐵𝑛𝑛 ) → ∏ 𝐾1
𝑏
𝑛 (𝐵𝑛) → 0 

is a divisible and torsion free subgroup of 𝐾1(∏ 𝐵𝑛𝑛 ). 

Proof: By 6.5, the exponential rank of each 𝐵𝑛 is bounded by 4. Therefore that the kernel is 

divisible follows from the fact that each 𝐵𝑛 has stable rank one (and has exponential rank 

bounded by 4) (see [45]). Suppose that {𝑢𝑛} ∈ U (𝑀𝐾 (∏ 𝐵𝑛𝑛 )) such that [{𝑢𝑛}] is in the ker-

nel and k [{𝑢𝑛}] = 0. By changing notation (with different {𝑢𝑛} and larger K), we may 

assume that {𝑢𝑛
𝑘}∈  𝑈0(𝑀𝐾(∏ 𝐵𝑛𝑛 )). Also each 𝑢𝑛∈𝑈0(𝐵𝑛). This implies that there is L > 0 

such that cel(𝑢𝑛
𝑘) ⩽ L for all n. It follows from 6.10 that 

cel(𝑢𝑛) ⩽ 8π + L + L/ k + π/4     for all n. 

This implies (see for example [45]) {𝑢𝑛}∈ 𝑈0(𝑀𝐿(∏ 𝐵𝑛𝑛 )). Therefore [{𝑢𝑛}]= 0 in 

𝐾1(∏ 𝐵𝑛𝑛 ). 

So the kernel is torsion free. 

Definition(4.1.39)[89]:   Let Y be a connected finite CW complex with dimension no more 

than three with torsion 𝐾1(C(Y )) and set C' = P 𝑀𝑟 (C(X))P , where X = 𝑆1∨ 𝑆1∨ • • • ∨𝑆1∨ 

Y and P ∈ 𝑀𝑟 (C(X)) is a projection and P has rank R ⩾ 6. We assume that  𝑆1is repeated s 

(⩾ 0) times.Note that the above includes the case that X= Y= [0,1]Then 𝐾1(𝐶′)=tor 

(𝐾1(𝐶′))⊕𝐺1where 𝐺1 is s copies of Z. Denote by ξ the point in X where each 𝑆1and Y meet. 
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Rename each 𝑆1 by 𝛺𝑖 , i=1, 2, . . . , s. Denote by 𝑧′𝑖the identity map on ith 𝑆1 (𝛺𝑖 ). Define 

𝑧′′𝑖 (ζ )=ζ on 𝛺𝑖(which is identified with 𝑆1) and 𝑧′′𝑖 (ζ )= ξ for all ζ / 𝛺𝑖. There is an obvious 

homomorphism∏ :  𝑃𝑀𝑟(𝐶(𝑋))𝑃 → 𝐷′ =⊕𝑖=1
𝐾 𝐸𝑖, where 𝐸𝑖  ≅  𝑀𝑅(𝐶(𝑆1)). Note that if s⩾  

2, then Π is not surjective. We have that 𝐺1 =𝐾1(D' ). We also use 𝛱𝑖: 𝑃𝑀𝑟(𝐶(𝑋))𝑃 →

𝐸𝑖which is the composition of Π with the projection from D' to 𝐸𝑖. Let z be the identity map 

on 𝑆1 .     

We may write 

P (t) =(
𝑃1 0
0 𝐼

) 

where 𝑃1 is a projection with rank 3 and I = diag(1, 1, . . . , 1) with 1 repeating rank(P ) − 3 

times. 

 Note that, since rank(P )⩾6, tsr(C(X)) = 2 and csr(C(X))⩽ 2 + 1 as in  [119]). It fol-lows that 

csr𝑀3(C')⩽ 2  in [120] .  It then follows [120] that U (C')/𝑈0(C') =𝐾1(C'). In particular, 

CU(C') ⊂𝑈0(C'). 

 Denote by 𝑢𝑖 = diag(𝑧′′𝑖 , 1, . . . , 1), where 1 is repeated r − 4 times. If we write 𝑧𝑖∈ U (C), 

we mean the unitary 

𝑧𝑖(𝑡) = (
𝑃1 0
0 𝑢𝑖

). 

If we write 𝑧𝑖∈𝐸𝑖 , we mean 𝛱𝑖 (𝑧′′𝑖 ). Note that in this case, 𝑧𝑖  has the form diag(1, . . . , 1, 

z,1, . . . , 1), where z is in the 4th position and there are R − 1 many 1’s. 

Now let C=⊕𝑗=1
𝑙+𝑙1 𝐶(𝑗), where 𝐶(𝑗)is either of the form 𝑃𝑗𝑀𝑟(𝑗) (𝐶(𝑋𝑗)) 𝑃𝑗for j ⩽l, where 𝑋𝑗 is 

ofthe form X described above, 𝐶(𝑗)=𝑀𝑟(𝑗), or 𝐶(𝑗) = 𝑃𝑗𝑀𝑟(𝑗) (𝐶(𝑌𝑗)) 𝑃𝑗,where  𝑌𝑗 is a finite 

CW complex with dimension no more than 3, rank of 𝑃𝑗 is R(j)⩾6 and 𝐾1(𝑌𝑗 ) is finite for 𝑙+1 

⩽j ⩽ 𝑙+𝑙1. Let 𝐷(𝑗) be as D' above for each ≤ 𝑙. Let 𝛱 (𝑗) be as Π above for 

𝐶(𝑗)=𝑃𝑗𝑀𝑟(𝑗) (𝐶(𝑋𝑗)) 𝑃𝑗 Put D=⊕𝑗=1
𝑙 𝐷(𝑗)and Π =⊕𝑔=𝐷

𝑙 ∏  
(𝑗)
𝑗 . Since 𝐾1(C) is finitely 

generated and 𝑈0(C)/CU(C ,we may write  

U (C)/CU(C) = 𝑈0(C)/CU(C) ⊕𝐾1(D) ⊕ tor 𝐾1(C) . 

Let 𝜋1 : U (C)/CU(C) → 𝐾1(D), 𝜋0 : U (C)/CU(C) → 𝑈0(C)/CU(C), 𝜋2 : U (C)/CU(C) → 

tor(𝐾1(C)) be fixed projection maps associated with the above decomposition. To avoid 

possible confusion, by 𝜋𝑖 (U (C)/CU(C)), we mean a subgroup of U (C)/CU(C), i = 0, 1, 2. 

We also assume that 𝜋1(𝑧𝑖̅) = 𝑧𝑖̅ (in U (C)/CU(C)). 

It is worth pointing out that one could have X = Y = [0, 1]. 

The notation established above will be used in the rest of this section. 

Lemma (4.1.40)[89]:  Let C =⊕𝑖=1
𝑙+𝑙1 𝐶𝑖be as above and𝒰⊂ U (C) be a finite subset and F be 

the group generated by 𝒰. Suppose that G is a subgroup of U (C)/CU(C) which contains 𝐹̅, 
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𝜋2(U (C)/CU(C) and𝜋1(U (C)/CU (C)).Suppose that the composition mapγ:𝐹̅→ U 

(D)/CU(D) → U (D)/𝑈0(D) is injective and γ (𝐹̅ ) is free. Let B be a unital 𝐶∗- algebra and Λ 

: G → U (B)/CU(B) be a homomorphism such that Λ(G∩ 𝑈0(C)/CU(C)) 

⊂𝑈0(B)/CU(B).Then there are homomorphisms β : U (D)/CU(D) → U (B)/CU(B) with 

β(𝑈0(D)/CU(D)) ⊂𝑈0(B)/CU(B), and θ : 𝜋2(U (C)/CU(C)) → U (B)/CU(B) such that 

  β ◦ 𝛱‡ ◦ 𝜋1(𝑤̅) = Λ(𝑤̅) θ ◦ 𝜋2(𝑤̅)   

for all w ∈ F and such that θ (g)=𝛬\𝜋2 (U (C)/CU(C))(𝑔
−1) for g∈ 𝜋2(U (C)/CU(C)). 

Moreover,β(𝑈0(D)/CU(D)) ⊂𝑈0(B)/CU(B). 

    If furthermore A is a simple 𝐶∗- algebra with TR(B)≤1 and Λ(U (C)/CU(C)) 

⊂𝑈0(B)/CU(B), then β ◦ 𝛱‡ ◦ (𝜋1)|𝐹̅  = 𝛬|𝐹̅ . 

Proof:Let 𝜅1 : U (D)/CU(D) → 𝐾1(D) be the quotient map. Let η : 𝜋1(U (C)/CU(C)) → 

𝐾1(D) be defined by η = 𝜅1 ◦ 𝛱 ‡  |𝜋1 (U (C)/CU(C)). Note that η is an isomorphism. Since γ is 

injective and γ (𝐹̅ ) is free, we conclude that 𝜅1 ◦ 𝛱‡  ◦ 𝜋1 is also injective on 𝐹̅From this fact 

and the fact that 𝑈0(C)/CU(C) is divisible (6.6), we obtain a homomorphism λ : 𝐾1(D) → 

𝑈0(C)/CU(C) such that 

𝜆\𝜅1°𝛱‡𝜋1(𝐹̅) = 𝜋0°((𝜅1°𝛱‡°𝜋1)\𝐹̅)−1 

Now define β = Λ((𝜂−1 °𝜅1) ⊕(λ°𝜅1)). Then for any 𝑤̅ ∈  𝐹̅, 

β(𝛱‡ ◦ 𝜋1(𝑤̅))= Λ[ η−1( 𝜅1 ◦ 𝛱‡𝜋1(𝑤̅))⊕ λ ◦ 𝜅1(𝛱‡(𝜋1(𝑤̅)))]= Λ 𝜋1(𝑤̅)⊕𝜋0(𝑤̅) . 

Now define θ : 𝜋2(U (C)/CU(C)) → U (B)/CU(B) by θ (x) = Λ(𝑥−1) for x ∈𝜋2(U 

(C)/CU(C)). Then 

β( 𝛱‡ (𝜋1 (𝑤̅))) = Λ(𝑤̅)θ𝜋2(𝑤̅) for w ∈ F . 

To see the last statement, we assume Λ(U (C)/CU(C)) ⊂𝑈0(B)/CU(B). Then Λ(𝜋2(U (C)/ 

CU(C))) is a torsion subgroup of 𝑈0(B)/CU(B). By 6.11, 𝑈0(B)/CU(B) is torsion free. There-

fore θ = 0. 

Lemma(4.1.41)[89]:   Let A be a unital separable simple 𝐶∗- algebra with TR(A)≤ 1 and C 

be as de-scribed in 7.1. Let 𝒰⊂ U (A) be a finite subset and F be the subgroup generated by 

𝒰 such that(𝜅1)\ 𝐹̅  is injective and 𝜅1(𝐹̅ ) is free, where 𝜅1: U (A)/CU(A)→ 𝐾1 (A) is the 

quotient map.Suppose that α : 𝐾1(C) → 𝐾1(A) is an injective homomorphism and L :  𝐹̅ →U 

(A)/CU(A)is an injective homomorphism with L(𝐹̅ ∩ 𝑈0(A)/CU(A)) ⊂𝑈0(C)/CU(C) such 

that 𝜋1◦ L is injective (see 7.1 for 𝜋1) and       

α ◦ 𝜅′1◦L(g)=𝜅1(g)      for all g ∈ 𝐹̅ 

where 𝜅′1 : U (C)/CU(C) → 𝐾1(C) is the quotient map. Then there exists a homomorphismβ : 

U (C)/CU(C) → U (A)/CU(A) with β(𝑈0(C)/CU(C)) ⊂𝑈0(A)/CU(A) such that 

β ◦ L(𝑤̅) = 𝑤̅ for w ∈ F . 

Proof:Let G be the preimage of α ◦ 𝜅′1(U (C)/CU(C)) under 𝜅1. So we have the following 

short exact sequence: 
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0 → 𝑈0(A)/CU(A) → G → α ◦ 𝜅′1 U (C)/CU(C)  → 0. 

Since 𝑈0(A)/CU(A) is divisible, there exists an injective homomorphism 

γ : α ◦ 𝜅′1 U (C)/CU(C)  → G 

such that 𝜅1◦𝛾(𝑔)= g for g ∈α ◦𝜅1(U (C)/CU(C)). Since α ◦𝜅′1°𝐿 (𝑓) = 𝜅1(f) for all𝑓 ∈

 𝐹̅,we have 𝐹̅  ⊂G. Moreover,(γ ∘ α ∘  𝜅′1°𝐿 (𝑓))
−1

 𝑓 ∈ 𝑈0(A)/CU(A) for all 𝑓 ∈  𝐹̅.  

Define ψ : L(𝐹̅)→𝑈0(A)/CU(A) by      

ψ (x) = γ ◦ α ◦ 𝜅′1 ◦ L([ (𝐿)−1(𝑥)]−1)  𝐿−1(x) 

for x ∈ L(𝐹̅). Since 𝑈0(A)/CU(A) is divisible, there is homomorphism 𝜓̃: U 

(C)/CU(C)→𝑈0(A)/CU(A)𝜓̃ |𝐿(𝐹̅)=ψ. Now define 

β(x)= γ ◦ α ◦𝜅′1(x)𝜓̃ (x). 

Hence β(L(𝑓 )) = 𝑓 for 𝑓∈𝐹̅ . 

Lemma(4.1.42)[89]:  Let B be a unital separable simple 𝐶∗- algebra with TR(B)⩽1 and C be 

as in 7.1. 

Let F be a group generated by a finite subset 𝒰⊂ U (C) such that (𝜋1)|𝐹̅ is injective. Let G be  

a subgroup containing 𝐹̅ , 𝜋0(𝐹̅ ), 𝜋1(U (C)/CU(C)) and 𝜋2(U (C)/CU(C)). Suppose that α:U 

(C)/CU(C) → U (B)/CU(B) is a homomorphism with α(𝑈0(C)/CU(C)) ⊂𝑈0(B)/CU(B). Then 

for any ε > 0 there is δ > 0 satisfying the following: if φ = 𝜑0⊕𝜑1 : C → B is a 𝒢-η-

multiplicative contractive completely positive linear map such that: 

(i)both 𝜑0 and 𝜑1 are 𝒢-η-multiplicative and 𝜑0 maps the identity of each summand of C into 

a projection, 

(ii)𝒢 is sufficiently large and η is sufficiently small which depend only on C and F (so that 𝜑‡ 

is well defined on a G), 

(iii)𝜑0  is homotopically trivial (see (vi) in Section 1), (𝜑0)∗0∗0  is a well-defined homomor-

phism and [∅]\𝑘1(𝐹̅)= 𝛼∗\𝑘1(𝐹̅), where𝛼∗ ∶ 𝐾1(C) →  𝐾1(B)induced by α and 𝜅1:U (C)/CU(C) 

→ 𝐾1(C) is the quotient map,  

               (iv) τ (∅0(1𝐶 )) < δ for all τ ∈ T (B),      

then there is a homomorphism Φ : C → 𝑒0B𝑒0 (𝑒0 = ∅0(1𝐶 )) such that:   

  

(i) Φ is homotopically trivial and 𝛷∗0 = (∅0)∗0 and  

(ii)  α(𝑤̅)−1(𝛷 ⊕ 𝜑1)‡(𝑤̅)=𝑔𝑤̅̅ ̅̅ ,       

     

where 𝑔𝑤∈𝑈0(B) and cel(𝑔𝑤 ) < ε for all w ∈𝒰. 

Proof: By Lemma (4.1.40), there are homomorphisms 𝛽1, 𝛽2 : U (D)/CU(D) → U (B)/CU(B) 

with 𝛽𝑖 (𝑈0(D)/CU(D)) ⊂𝑈0(B)/CU(B) (i = 1, 2) and homomorphisms 

𝜃1, 𝜃2𝜋2(U (C)/CU(C) → U (B)/CU(B) such that 

 𝛽1 ° 𝛱‡(𝜋1(𝑤̅)) = 𝛼 (𝑤̅)𝜃1(𝜋2(𝑤̅))and𝛽2 ° 𝛱‡(𝜋1(𝑤̅)) = ∅1
‡(𝑤̅ ∗)𝜃2(𝜋2(𝑤̅)) 
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for all 𝑤̅  ∈ 𝐹̅   . Moreover 𝜃1(g)= 𝛼(g−1) 𝑎𝑛𝑑  𝜃2(g)= ∅1
‡
 (g) if g ∈ 𝜋2(𝐹̅). Since ∅0 is 

homotopi-cally trivial,            

𝜃1(g)𝜃2(g)∈ 𝑈0(B)/CU(B)for all g ∈𝜋2(𝐹̅). 

Since 𝜋2(U (C)/CU(C) is torsion and 𝑈0(B)/CU(B) is torsion free, we conclude that  

𝜃1(g)𝜃2(g)= 1̅  for all g∈  𝜋2(𝐹̅). 

To simplify notation, without loss of generality, we may assume that C=⊕𝑗=1
𝑙+𝑙1 𝐶(𝑗)  (with 𝑙 = 

1) such that 𝐶(1)= P 𝑀𝑟 (C(X))P as described in Definition(4.1.39)and 𝐶(𝑗)is also as 

described in  Definition(4.1.39)  for 2 = 𝑙 + 1 ⩽ j ⩽𝑙1 + 1. Let D be as described in 7.1.For 

each w ∈ U (C), we may write w = (𝑤1, 𝑤2, . . . , 𝑤1+𝑙1
 ) according to the direct sum 

C=⊕𝑗=1
𝑙+𝑙1 𝐶(𝑗). Note that 𝜋1(𝑤)=𝜋1(𝑤1). Let π (𝑤̅)= (𝑧1̅

𝑘(1,𝑤)
, 𝑧2̅

𝑘(2,𝑤)
, . . .,𝑧𝑠̅

𝑘(𝑠,𝑤)
), 

where𝑘(𝑖, 𝑤)is an integer (here 𝑧𝑖 is described in Definition(4.1.39)). Then ∏ (𝜋1(𝑤1̅̅̅̅ )) =‡
𝑖

𝑧𝑖̅
𝑘(𝑖,𝑤)

 .On the other hand, we may also write ∏ (𝑤1̅̅̅̅ ) =‡
𝑖 𝑧𝑖̅

𝑘(𝑖,𝑤)̅̅ ̅̅ ̅̅ ̅̅
𝑔i,w for some 𝑔i,w∈𝑈0(C(𝑆1, 

𝑀𝑟 )).Let l = max{cel(𝑔i,w ): w ∈𝒰, 1⩽i ⩽s}. Choose δ so that (2 + l)δ < ε/4π. Let 𝑒0 = 

∅0(1𝐶 ) and 𝑒1 = ∅1(1𝐶 ). Write 𝑒0 = 𝐸1⊕𝐸2⊕ • • • ⊕𝐸1+𝑙1
 , where 𝐸𝑗 = ∅0(1𝐶(𝑗) ), j = 1, 2, . 

. . , 1 + 𝑙1. 

Recall that P has rank R. Since ∅0 is homotopically trivial ,we may also write 𝐸1 = 𝑒01⊕ • • • 

⊕𝑒0𝑅 , where {𝑒0𝑖 : 1⩽ i⩽ R} is a set of mutually orthogonal and mutually equivalent 

projections. Since 𝑒0B𝑒0 is simple and has the property (SP), 𝑒01 can be written as a sum of s 

mutually orthogonal projections. Thus 𝐸1 = 𝑝1⊕𝑝2⊕ • • • ⊕𝑝𝑠 , where each 𝑝𝑖 can be 

written as a direct sum of R mutually orthogonal and mutually equivalent 

projections{𝑞𝑖,1, . . . . . . , 𝑞𝑖,𝑅}. For each 𝑞𝑖1, we write𝑞𝑖1 = 𝑞𝑖1,1  ⊕ 𝑞𝑖1,2,where both 𝑞𝑖1,1 and 

𝑞𝑖1,2 are notzero. Let q =∑ 𝑞𝑖1,1
𝑠
𝑖=1  We may view 𝐸1B𝐸1 =⊕𝑖=1

𝑠 𝑀𝑅(𝑞𝑖1𝐵𝑞𝑖1) = 𝑀𝑅(𝑞𝐵𝑞) 

     Let 𝑧𝑖 be as in 7.1. Put 𝑥′𝑖∈ U (𝑞𝑖1,1B𝑞𝑖1,1) such that 𝑥′𝑖
̅̅ ̅ = 𝛽1 (𝑧𝑖̅), and 𝑦′𝑖∈U (𝑞𝑖1,2B𝑞𝑖1,2) 

such that𝑦′𝑖
̅̅̅̅ =𝛽2(𝑧𝑖̅),i = 1, 2, . . . , s. This is possible because of 6.7. Put 𝑥𝑖 = 𝑥′𝑖⊕𝑞𝑖1,2, 𝑦𝑖  = 

𝑦′𝑖⊕𝑞𝑖1,1,  i = 1, 2, . . . , s.  Note that 𝑥𝑖𝑦𝑖   = 𝑦𝑖𝑥𝑖 .  Define ∅1 : D → 

𝑀𝑅(𝑞𝐵𝑞)=⊕𝑖=1
𝑠 𝑀𝑅(𝑞𝑖1𝐵𝑞𝑖1) by∅1(𝑓) = ∑ 𝑓𝑖(𝑥𝑖𝑦𝑖)𝑠

𝑖=1 , where 𝑓 = (𝑓1, 𝑓2,   , 𝑓𝑠), 𝑓𝑖  ∈

𝐶(𝑆1, 𝑀𝑅) 

Define h(g)= ∅1 (Π (g)) ⊕∅1 (g) for g ∈C. We compute that     

ℎ(𝑤)̅̅ ̅̅ ̅̅ ̅=∏ 𝑥𝑖
𝑘(𝑖,𝑤)

𝑔𝑖,𝑤(𝑥𝑖𝑦𝑖)𝑦𝑖
𝑘(𝑖,𝑤)

∅1
‡(𝑤̅)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑠
𝑖=1  

=𝛽1(𝛱‡(𝜋1(𝑤̅)))∅1
‡ (

𝑠
⊕

𝑖 = 1

̅̅ ̅̅ ̅̅ ̅
𝑔𝑖,𝑤) 𝛽2(𝛱‡(𝜋1(𝑤̅)))∅1

‡(𝑤̅) 

=𝛼 (𝑤̅)𝜃1(𝜋2(𝑤̅)) 𝜃2(𝜋2(𝑤̅))∅1
‡ (

𝑠
⊕

𝑖 = 1

̅̅ ̅̅ ̅̅ ̅
𝑔𝑖,𝑤) = 𝛼 (𝑤̅)∅1

‡ (
𝑠

⊕
𝑖 = 1

̅̅ ̅̅ ̅̅ ̅
𝑔𝑖,𝑤) 
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for all w ∈𝒰. Put 𝑔′𝑤 = ∅1
‡
 (⊕𝑖=1

𝑠 𝑔𝑖,𝑤) ⊕ (1 − 𝜑0(1𝐶 )). Since τ (𝜑0(1𝐶 )) < δ, by the choice 

of δ, we conclude from Lemma (4.1.33) that there exists  𝑤′ ∈ CU(B) such that 

cel (w' 𝑔′𝑤 )< ε/2  for all w ∈𝒰. 

Note that ∅1 ◦ Π factors through D and (∅1)∗1 = 0. In particular, ∅1 ◦ Π is 

homotopicallytrivial. Since ∅0is homotopically trivial, it is easy to see that there is a point-

evaluation map∅1:⊕𝑖=2
𝑙+𝑙1 𝐶(𝑗)→(⊕𝑖=2

𝑙+𝑙1 𝐸𝑗)B(⊕𝑖=2
𝑙+𝑙1 𝐸𝑗). Now define Φ= 𝛷1 ◦ Π ⊕𝛷2. We see 

that we can make (by a right choice of 𝛷2) 𝛷|∗0. It is clear that Φ is homotopically trivial. Let 

𝑔′′𝑤=𝛷2(w) ⊕(1− (𝑒0−𝐸1)). Since 𝛷2(∑𝑖=2
𝑙+𝑙1𝐶(𝑗)) is finite-dimensional, cel(𝛷2(w))⩽2π (in 

𝑈0((𝑒0−𝐸1)B(𝑒0−𝐸1)) for all w ∈𝒰).By the choice of δ, we conclude that there is w'' ∈ 

CU(B) such that cel(w'' 𝑔′′𝑤) < ε/2 (see 6.4). Put 𝑔𝑤=w g𝑤 w g𝑤 . We have, for all w∈𝒰, 

α(𝑤̅)−1(𝛷 ⊕ ∅1)‡(𝑤̅) =g𝑤̅̅ ̅̅ withg𝑤 ∈ 𝑈0 (B) and cel(g𝑤) < ε. 

Lemma (4.1.43)[89]: Let B be a unital separable simple 𝐶∗- algebra with TR(B) ⩽1 and C be 

as described in 7.1. Let 𝒰⊂ U (B) be a finite subset and F be the subgroup generated by 𝒰 

such that 𝜅1 (𝐹̅ ) is free, where 𝜅1 :U (B)/CU(B) →𝐾1 (B) is the quotient map. Let∅ → 𝐵 𝑏𝑒 

a homomorphism such that ∅∗1is injective. Suppose that j, L :  𝐹̅ →U (C)/CU(C) are 

twoinjective homomorphisms with j(𝐹̅ ∩ 𝑈0 (B)/CU(B)) , L(𝐹̅ ∩ 𝑈0 (B)/CU(B))⊂

(𝑈0 (C)/CU(C))such that 𝜅1 ∘  ∅‡ ° 𝐿 =  𝜅1 ∘  ∅‡ ° 𝑗 = 𝜅1\𝐹̅ and all three are injective. 

  

Then, for any ε > 0, there exists δ > 0 such that if ∅ = ∅0⊕∅1 : C → B, where ∅0 and ∅1 are 

homomorphisms satisfying the following: 

 (i)τ (∅0(1𝐶 )) < δ for all τ ∈ T (B) and 

 (ii)∅0 is homotopically trivial, 

then there is a homomorphism ψ : C → 𝑒0B𝑒0 (𝑒0 = ∅0(1𝐶 )) such that: 

 (i)[ψ ] = [∅0] in KL(C, B) and 

 (ii)( ∅‡ ° 𝑗 (𝑤̅))−1(𝜓 ⊕ ∅1)‡(L(𝑤̅)) = g𝑤 , where g𝑤∈𝑈0(B) and cel(g𝑤 ) < ε for all w 

∈𝒰. 

Proof: The first part of the proof is essentially the same as that of Lemma (4.1.40). Let 𝜅′1 : 

U (C)/CU(C) → 𝐾1(C) be the quotient map and let G be the preimage of ∅∗1 ◦ 𝜅′1(U 

(C)/CU(C)) un-der 𝜅1. Since 𝑈0(B)/CU(B) is divisible, there exists an injective 

homomorphism γ : ∅∗1 ◦𝜅′1 (U (C)/CU(C))→ 𝐺 such that𝜅1◦γ (g)= g for g ∈∅∗1 °𝜅′1(U 

(C)/CU(C)). Since∅∗1 °𝜅1 ° 𝐿(𝑓) =  𝜅1 (𝑓) =  𝜅1 (∅‡ ° 𝑗(𝑓)) for all 𝑓 ∈  𝐹̅, we have𝐹̅ ⊂

G Moreover,  

[γ ∘ ∅∗1  ∘  𝜅′1  ∘  L(f )]−1∅‡ ◦ j (𝑓 )∈𝑈0(B)/CU(B) 

for all 𝑓 ∈ℱ. Define ψ : L(𝐹 ̅) → 𝑈0(B)/CU(B) by 

ψ (x) = [ γ ° ∅∗1 ° 𝜅′1  (x)]−1[∅‡ ◦ j ◦ 𝐿−1(x)] 

for all x ∈ L(𝐹̅). Since 𝑈0(B)/CU(B) is divisible, there is a homomorphism  
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𝜓̅ :U (C)/CU(C) →𝑈0 (B)/CU(B) such that 𝜓̅|𝐿(𝐹̅)=𝜓̅. 

Define 𝛼:U (C)/CU(C)→ U(B)/CU(B)  by α(x) = γ ° ∅∗1  ∘  𝜅′1 (x)𝜓̅ (x) for all X 𝜖U 

(C)/CU(B). Note that   

α( L(f ) ) = ∅‡◦ j(𝑓) for all 𝑓 ∈𝐹̅ . 

Definition (4.1.44)[89]:  Let A and B be 𝐶∗- algebras. Two homomorphisms ∅, ψ : A → B 

are said to be stably unitarily equivalent if for any monomorphism h : A → B, ε > 0 and finite 

subset F⊂ A,there exists an integer n > 0 and a unitaryU ∈𝑀𝑛+1(𝐵̃) (or in 𝑀𝑛+1(𝐵),if B is 

unital) such 

that          

‖𝑈∗ 𝑑𝑖𝑎𝑔 (∅ (𝑎), ℎ(𝑎), ℎ(𝑎), . . . , ℎ(𝑎))𝑈 −   𝑑𝑖𝑎𝑔 (𝜓 (𝑎), ℎ(𝑎), ℎ(𝑎), . . . , ℎ(𝑎))‖< ε 

for all a ∈F, where h(a) is repeated n times on both diagonals. 

Let A and B be 𝐶∗- algebras and ∅, ψ : A → B be (linear) maps. Let F⊂ A and ε > 0. We 

write 

φ ∼ε ψ on F, 

if there exists a unitary 𝑢∈ B such that 

‖𝑎𝑑(𝑢)° ∅ (𝑎)  −  𝜓 (𝑎)‖ < ε for all a ∈F. 

We write      

φ ≈ε ψ   on F, if  ‖∅ (𝑎)  −  𝜓 (𝑎)‖ < ε for all a ∈F. 

Definition(4.1.45)[89]:   Let A be a 𝐶∗- algebra. 

(i) Denote by P(A) the set of all projections and unitaries in 𝑀∞(𝐴 ⨶ 𝐶𝑛 )̃ , n 1, 2, . . . , 

where 𝐶𝑛 is an abelian 𝐶∗- algebra so that 

𝐾𝑖 (A ⊗𝐶𝑛) = 𝐾∗(A; Z/nZ). 

 (see [126]). As in [25], we use the notation       

𝐾(A) = 
⊕

i = 0,1, n ∈ 𝑍+
 𝐾𝑖 (A; Z/nZ). 

By 𝐻𝑜𝑚Λ(𝐾(A), 𝐾(B)) we mean all homomorphisms from 𝐾(A) to 𝐾(B) which respect to the 

direct sum decomposition and the so-called Bockstein operations (see [25]). Denote by 

𝐻𝑜𝑚Λ(𝐾 (𝐴), 𝐾 (𝐵))++ those α ∈𝐻𝑜𝑚Λ(𝐾(A), 𝐾(B)) with the property that α(𝐾0(𝐴)+ \ {0}) 

⊂𝐾0(𝐵)+ \{0}. It follows from [25] that if A satisfies the Universal Coefficient Theorem,then 

𝐻𝑜𝑚Λ(𝐾 (𝐴), 𝐾 (𝐵)) ≅ KL(A, B). Moreover, one has the following short exact sequence, 

0 → Pext (𝐾∗(A), 𝐾∗(B))  → KK(A, B) → KL(A, B) → 0. 

A separable 𝐶∗- algebra A is said to satisfy Approximate Universal Coefficient Theorem 

(AUCT) if 

KL(A, B) = 𝐻𝑜𝑚Λ (𝐾 (A), 𝐾(B)) 
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for any σ -unital 𝐶∗- algebra B (see [76]). A separable 𝐶∗- algebra A which satisfies the UCT 

must satisfy the AUCT. If A satisfies the AUCT, for convenience, we will use KL(𝐴, 𝐵)++ 

for𝐻𝑜𝑚Λ(𝐾 (𝐴), 𝐾 (𝐵))++. 

(ii) Let L : A → B, be a contractive completely positive linear map. We also use L for the 

extension from A ⊗Κ → B ⊗Κ as well as maps from𝐴 ⊗ 𝐶𝑛
̃  → 𝐵 ⊗ 𝐶𝑛

̃  for all n. Given a 

pro-jection p ∈P(A), if L : A → B is an F-δ-multiplicative contractive completely positive 

linear map with sufficiently large F and sufficiently small δ, ‖𝐿(𝑝)  −  𝑞′ ‖< 1/4 for some 

projection q' . Define [L](p) = [q'] in 𝐾(B). It is easy to see this is well defined (see [67]). 

Suppose that q is also in P(A) with [q ] = k[p] for some integer k. By adding sufficiently 

many elements (partial isometries) inF, we can assume that [L](q) = k[L](p). Let 𝒫⊂P(A) be 

a finite subset. We say [𝐿]|𝒫 is well defined if [L](p) is well de-fined for every p ∈𝒫 and if 

[p'] = [p] and p' ∈𝒫, then [L](p') = [L](p). This always occurs if F is sufficiently large and δ is 

sufficiently small. In what follows we write [𝐿]|𝒫 when [L] is well defined on 𝒫. 

 (iii)Let A =  ⊕𝑖=1
𝑛 𝐴𝑖, where each 𝐴𝑖 is a unital 𝐶∗- algebra. Suppose that L : A → B is 

a 𝒢-ε-multiplicative contractive completely positive linear map. For any η > 0, if 𝒢 is large 

enough and ε is small enough, we may assume that 

‖𝐿(1𝐴𝑖
 )  −  𝑝𝑖‖< η, ‖ 𝑝𝑗  𝐿(1𝐴𝑖

 )‖< η  and ‖𝐿(1𝐴𝑖
 ) 𝑝𝑗‖< η 

for some projection  𝑝𝑖∈ B and i ≠ j. Let b =  𝑝1L(1𝐴1
 ) 𝑝1. Then, with sufficiently small η, 

we may assume that b is invertible in  𝑝1B 𝑝1. Define 𝐿1(a) = 𝑏−1/2 𝑝1L(a) 𝑝1𝑏−1/2. Then 

 𝐿1(1𝐴1
 ) =  𝑝1. Consider (1 −  𝑝1)L(1 −  𝑝1). It is clear that, for any δ > 0, by induction and 

choosing a sufficiently large 𝒢 and sufficiently small η and ε, 

‖𝐿 −  𝛹 ‖< δ, 

where Ψ (a)=⊕𝑖=1
𝑛 𝐿𝑖  (1𝐴𝑖

 a1𝐴𝑖
 ) for  a ∈A. So, to save notation in what follows, we may as-

sume that L =⊕𝑖=1
𝑛 𝐿𝑖 , where each 𝐿𝑖 : 𝐴𝑖 → B is a completely positive contraction which 

maps 1𝐴𝑖
 to a projection in B and {𝐿1(1𝐴1

), 𝐿2(1𝐴2
), . . . , 𝐿𝑛(1𝐴𝑛

) are mutually orthogonal. 

Throughout the rest of this section, A denotes the class of separable nuclear 𝐶∗- algebras 

satisfying the Approximate Universal Coefficient Theorem. 

Lemma(4.1.46)[89]:    Let B be a unital 𝐶∗- algebra and let A be a unital 𝐶∗- algebra in A 

which is a unital 𝐶∗- subalgebra of B. Let α : A → B and β : A → B be two homomorphisms. 

Then α and β are stably approximately unitarily equivalent if [α] = [β] in KK(A, B) and if A 

is simple or B is simple. 

The following is a modification in[90]. A proof was given in the earlier version of this 

section. Since then a more general version of the following appeared in [76]. We will omit 

the original proof and view the following as a special case. 



011 
 

Theorem (4.1.47)[89]:    (Cf. [35, Theorem 4.8].) Let B be a 𝐶∗- algebra with stable rank one 

and cel(𝑀𝑀(B))⩽ k for some k ⩾π and for all m, and let A be a unital simple 𝐶∗- algebra in A 

which is a 𝐶∗- subalgebra of B. Let α : A → B and β : A → B be two homomorphisms. Then 

and β are stably approximately unitarily equivalent if [α] = [β] in KL(A, B). 

The following uniqueness theorem is a modification of [35, Theorem 5.3]. 

Theorem (4.1.48)[89]:    (See [90].) Let A be a unital simple 𝐶∗- algebra in A and L : U 

(𝑀∞(A)) → 𝑹+ be a map. For any ε > 0 and any finite subset F⊂ A there exist a positive 

number δ > 0, a finite subset 𝒢⊂ A, a finite subset 𝒫⊂𝑷(A) and an integer n > 0 satisfying 

the following: for any unital simple 𝐶∗- algebra B with TR(B)⩽ 1, if ∅, ψ, σ : A → C are 

three 𝒢-δ-multiplicative contractive completely positive linear maps with 

[∅]|𝒫 = [𝜓 ]|𝒫, 

cel (∅̃(u)*𝜓̃ (u)) ⩽L(u) 

for all u ∈ U (A) ∩ 𝒫 and σ is unital, then there is a unitary u ∈𝑀𝑛+1(B) such that 

‖𝑢 ∗  𝑑𝑖𝑎𝑔( ∅ (𝑎), 𝜎 (𝑎), . . . , 𝜎 (𝑎)) 𝑢 −  𝑑𝑖𝑎𝑔 (𝜓 (𝑎), 𝜎 (𝑎), . . . , 𝜎 (𝑎))‖< ε 

  for all a ∈F, where σ (a) is repeated n times. 

Proof. Suppose that the theorem is false. Then there are 𝜀0> 0 and a finite subset F⊂ A such 

that there are a sequence of positive numbers {𝛿𝑛} with 𝛿𝑛 ↓ 0, an increasing sequence of 

finite subsets {𝒢𝑛} whose union is dense in the unit ball of A, a sequence of finite subsets 

{𝒫𝑛} of P(A) with ⋃ 𝒫𝑛
∞
𝑛=1

̅̅ ̅̅ ̅̅ ̅̅ ̅̅  = P(A) and with 𝑈𝑛 = U (A) ∩ 𝒫𝑛, a sequence {k(n)} of integers 

(k(n)↗ ∞) 

and sequences {∅𝑛}, {𝜓𝑛} and {𝜎𝑛} of 𝒢𝑛-𝛿𝑛-multiplicative positive linear maps from A to 

𝐵𝑛 with [∅𝑛]|𝒫𝑛
 = [𝜓 ]|𝒫𝑛

 and 

cel (∅𝑛̃ (u)*𝜓𝑛̃ (u)) ⩽L(u) 

 

for all u ∈𝑈𝑛 satisfying the following: 

   

inf{sup{‖𝑢∗ 𝑑𝑖𝑎𝑔 (∅𝑛(𝑎), 𝜎𝑛(𝑎), . . . , 𝜎𝑛(𝑎))𝑢 − 𝑑𝑖𝑎𝑔 (𝜓𝑛(𝑎), 𝜎𝑛(𝑎), . . . , 𝜎𝑛(𝑎))‖: a∈F}}⩾

𝜀0 

 

where 𝜎𝑛 (a) is repeated k(n) times and the infimum is taken over all unitaries in 

𝑀𝑘(𝑛)+1(𝐵𝑛). 

Set 𝐷0 =⊕𝑛=1
∞ 𝐵𝑛 and D = ∏ 𝐵𝑛

∞
𝑛=1  . Define Φ, Ψ, Σ : A→ D by Φ (a) ={∅𝑛(𝑎)} ,  

Ψ (a) = {𝜓𝑛(a)} and Σ (a) = {𝜎𝑛(a)} for a ∈ A. Let π : D → D/𝐷0 be the quotient map and set 

Φ̅ = π °Φ, Ψ̅ = π ◦Ψ and ∑̅ =  𝜋 ° Σ. Note thatΦ̅, Ψ̅, and 𝛴̅ are monomorphisms. For any  

u ∈𝑈𝐾 , , 

cel (∅𝑛̃ (u)*𝜓𝑛̃ (u)) ⩽L(u) 
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for all sufficiently large n (> k). This implies that there is an equi-continuous path {𝑣𝑛(t )} (t 

∈ [0, 1]) such that 

   𝑣𝑛(0) = ∅𝑛̃(u)    and 𝑣𝑛(1) = 𝜓𝑛̃(u) 

 (see, for example, [45]). Therefore, we conclude that   

[𝛷̅ ]|𝐾1
 (A) = [Ψ̅ ]|𝐾1

 (A) . 

Given an element p ∈𝒫𝑘 \ 𝑈𝑘 (for some k), we claim that                     

 [𝛷̅(p)] =[Ψ̅ (p)] .       

We have (see [45])  

𝐾0(∏ 𝐵𝑛) =
𝑏
∏

𝐾0(𝐵𝑛) and 𝐾0(D/𝐷0) =𝐾0(𝐵𝑛)/𝐾0(𝐵𝑛), 

Where
𝑏
∏

𝐾0(𝐵𝑛) is the sequences of elements {[𝑝𝑛] − [𝑞𝑛]}, where 𝑝𝑛 and 𝑞𝑛 can be repr  

by projections in 𝑀𝐿(𝐵𝑛) for some integer L. Since each TR(𝐵𝑛 ) ⩽1,𝐵𝑛 has stable sented  

rank one and 𝐾0(𝐵𝑛) is weakly unperforated. As  in [45] each 𝐵𝑛 has 𝐾𝑖–divisible  rank T 

withT (n, k) = 1., cer(𝑀𝑘(𝐵𝑛))⩽4 for all k and n, and the kernel of the map𝐾0(∏𝑛𝐵𝑛) 

to∏𝑛
𝑏𝐾1(𝐵𝑛)is divisible and torsion free.  

We also have            

  𝐾𝑖 (
∏
𝑛

𝐵𝑛, 𝐙/m𝐙)⊂
∏
𝑛

𝐾𝑖 ( 𝐵𝑛, 𝐙/m𝐙),   m = 2, 3, . . . .  

(In fact, by 6.10, each 𝐵𝑛 has  exponential  length  divisible  rank  E  with E(L, k) = 8/π + L/ k 

+ 1 so that [45] can be applied directly.  

Since [∅𝑛(p)] = [𝜓𝑛(𝑝)] in 𝐾0(𝐵𝑛) or in 𝐾𝑖  ( 𝐵𝑛, 𝐙/m𝐙) (i = 0, 1, m = 2, 3, . . .) for large n, 

[𝛷̅(p)] =[Ψ̅ (p)] . 

Then𝛷̅∗= Ψ̅∗. Therefore[𝛷̅] =[Ψ̅] in KL(A,∏𝑛𝐵𝑛/⊕𝑛 𝐵𝑛). 

By applying 8.4, we obtain an integer N anda unitary  u ∈𝑀𝑁+1(D/𝐷0 ) such that 

‖𝑢∗ 𝑑𝑖𝑎𝑔 (𝛷̅(𝑎), Σ̅(𝑎), . . . , Σ̅(𝑎))𝑢 − 𝑑𝑖𝑎𝑔 (Ψ̅(𝑎), Σ̅(𝑎), . . . , Σ̅(𝑎))‖ < 𝜀0/3 

for all a ∈ℱ, where Σ̅ (a) is repeated N times. It is easy to (see [67] for example) there 

is a unitary U ∈𝑀𝑁+1(D) such that π(U ) = u and for each a ∈ℱ there exists 𝑐𝑎∈𝑀𝑁+1(𝐷0) 

such that 

‖𝑈∗ 𝑑𝑖𝑎𝑔 (𝛷(𝑎), Σ(𝑎), . . . , Σ(𝑎))𝑈 − 𝑑𝑖𝑎𝑔 (Ψ (𝑎), Σ(𝑎), . . . , Σ(𝑎)) + 𝑐𝑎‖ < 𝜀0/3 

where Σ (a) is repeated N times. Write U = {𝑢𝑛}, where 𝑢𝑛∈𝑀𝑁+1(𝐵𝑛) are unitaries. Since 

𝑐𝑎∈𝑀𝑁+1(𝐷0) and ℱ is finite, there is 𝑁0> 0 such that for n ⩾ 𝑁0. 

‖𝑢𝑛
∗ 𝑑𝑖𝑎𝑔 (∅𝑛(𝑎), 𝜎𝑛(𝑎), . . . , 𝜎𝑛(𝑎))𝑢𝑛 − 𝑑𝑖𝑎𝑔 (𝜓𝑛(𝑎), 𝜎𝑛(𝑎), . . . , 𝜎𝑛(𝑎))‖ < 𝜀0/2 

for all a ∈ℱ, where 𝜎𝑛 is repeated N times. This contradicts the assumption that the theorem 

is false. 

Theorem(4.1.49)[89]:     Let A be a separable unital nuclear simple 𝐶∗-algebra with TR(A)⩽

 1 satisfying the AUCT and let L : U (A) → 𝑹+. Then for any ε > 0 and any finite subset ℱ⊂ 
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A, there exist 𝛿1> 0, an integer n > 0, a finite subset 𝒫⊂P(A), a finite subset S ⊂ A satisfying 

the following: 

(i) there exist mutually orthogonal projections q, 𝑝1, . . . , 𝑝𝑛 with q≼ 𝑝1 and 𝑝1, . . . , 

𝑝𝑛 mu-tually unitarily equivalent, and there exists a 𝐶∗-subalgebra C ∈I with 1𝐶 = 

𝑝1 and  unital S-𝛿1/2-multiplicative  contractive  completely positive linear maps ∅0 

: A → qAq and ∅1 : A → C such tha 

‖𝑥 −  (∅0(𝑥)  ⊕ ∅1(𝑥), ∅1(𝑥), . . . , ∅1(𝑥)‖<𝛿1/2 

for all x ∈ S, where ∅1(x) is repeated n times; moreover, there exist a finite subset 𝒢0⊂ A,  

a finite subset 𝒫0 of projections in 𝑀∞(C), a finite subset ℋ⊂𝐴𝑠𝑎, 𝛿0> 0 and σ > 0  

(which depend on the choices of C); 

for any unital simple 𝐶∗-algebra B with TR(B)⩽ 1 and any two 𝒮∪𝒢0-δ-multiplicative 

completely positive linear contractions 𝐿1, 𝐿2 : A → B for which the following hold (with 

δ = min{𝛿1, 𝛿0}):    

 (ii) [𝐿1]|𝒫∪𝒫0
 = [𝐿2]|𝒫∪𝒫0

 ;        

(iii) |τ ◦ 𝐿1(g) − τ ◦ 𝐿2(g)| < σ for all g ∈ℋ and τ ∈ T (A);     

(iv) e = 𝐿1◦ ∅0(1𝐴) = 𝐿2 ◦ ∅0(1𝐴) is a projection;   

(v) cel(𝐿1̃(∅0(u))*𝐿2̃((∅0(u))))⩽L(u) (in U (eBe)) for all u∈U (A)∩ 𝒫, 

there exists a unitary U ∈ B such that     

ad(U ) ◦ 𝐿1 ≈ε 𝐿2   on ℱ. 

Note that (i) holds as long as TR(A)⩽1 and does not depend on L, ε and ℱ. 

Theorem(4.1.50)[89]:      Let A be a unital separable simple 𝐶∗- algebra with TR(A) ⩽1 and 

with torsion 𝐾1(A). For any ε > 0 and any finite subset ℱ⊂ A there exist δ > 0, σ > 0, a finite 

subset 𝒫⊂P(A) and a finite subset 𝒢⊂ A satisfying the following: for any unital simple 𝐶∗-

algebra B with TR(B)⩽ 1, any two 𝒢-δ-multiplicative completely positive linear contractions 

𝐿1, 𝐿2 : A → B with 

[𝐿1]|𝒫 = [𝐿2]|𝒫 

and      

 𝛕∈T(B)
𝒔𝒖𝒑

{|τ ° 𝐿1 (g)   −  τ ° 𝐿2 (g)|} < σ 

for all g ∈𝒢, there exists a unitary U ∈ B such that 

ad(U ) ◦ 𝐿1 ≈ε 𝐿2on ℱ. 

Theorem. (4.1.51)[89]: Let A be a unital nuclear simple 𝐶∗- algebra with TR(A) ⩽1 and with 

torsion 𝐾1(A) which satisfies the AUCT. Then an automorphism α : A → A is approximately 

inner if and only if [α] = [𝑖𝑑𝐴] in KL(A, A) and τ ◦ α(x) = τ (x) for all x ∈ A and τ ∈ T (A). 

Proof: If α is approximately inner, then it is clear that 

τ ◦ α(x) = τ (x) 

for all x ∈ A and τ ∈ T (A). The “only if” part follows from [35]. It is also clear that the “if 

part”. 
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Section (4.2) Existance  and  Classfication Theorms   

Definition(4.2.1)[89]: Let A and B be two unital stably finite 𝐶∗- algebras and let α : 𝐾0(A) 

→ 𝐾0(B) be a positive homomorphism and Λ : T (B) → T (A) be a continuous affine map. 

We say Λ is compatible with α if Λ(τ )(x) = τ (α(x)) for all x ∈𝐾0(A), where we view τ as a 

state on 𝐾0(A). Let S be a compact convex set. Denote by A𝑓𝑓 (S) the set of all (real) 

continuous affine functions on S. Let Λ : S → T be a continuous affine map from S to another 

compact convex set T . We denote by Λ : A𝑓𝑓 (T ) → A𝑓𝑓 (S) the unital positive linear 

continuous map defined by Λ (𝑓 )(s) = 𝑓 (Λ(s)) for 𝑓∈ A𝑓𝑓 (T ). A positive linear map ξ : 

A𝑓𝑓 T (A) → A𝑓𝑓 T (B) is said to be compatible with α if ξ (𝑝̂)(τ ) = τ (α(p)) for all τ ∈ T 

(B) and any projection p ∈𝑀∞(A). Let A be a unital 𝐶∗- algebra (with at least one normalized 

trace). Define 𝒬 : 𝐴𝑠𝑎 → A𝑓𝑓 T (A) by 𝒬(a)(τ ) = τ (a) for a ∈ A. Then 𝒬 is a unital positive 

linear map. 

A 𝐶∗- algebra A is said to be KK-attainable for a class of stably finite 𝐶∗- algebras C, if for 

any 𝐶∗- algebra B ∈ C, any α ∈𝐻𝑜𝑚Λ(𝐾(𝐴), 𝐾(𝐵))++ (see 8.2) and any finite subset 

𝒫⊂P(A) with [1𝐴] ⊂𝒫, there exists a sequence of completely positive linear contractions 𝐿𝑛 : 

A →B ⊗Ksuch that 

‖𝐿𝑛(𝑎)𝐿𝑛(𝑏)  − 𝐿𝑛(𝑎𝑏) ‖ → 0  and[𝐿𝑛]|𝒫 = 𝛼|𝒫 for all a, b ∈ A. 

For the rest of the section, when we say a 𝐶∗- algebra A is KK-attainable, we mean that A is 

KK-attainable for unital separable simple 𝐶∗- algebras with tracial rank no more than 1. 

As in [77], if for any ε > 0 and any finite subset ℱ⊂ A, there exists a 𝐶∗- subalgebra 𝐴1 of A 

which is KK-attainable such that F ⊂ε 𝐴1, then A is KK-attainable. 

A unital nuclear separable simple 𝐶∗- algebra A with TR(A) ⩽1 is said to be pre-classifiable 

if it satisfies the Universal Coefficient Theorem and is KK-attainable, and, in addition to the 

above, for any unital separable nuclear simple 𝐶∗- algebra with TR(A)⩽1 and any continuous 

affine map Λ : T (B) → T (A) compatible with α, 

 𝛕∈T(B)
𝒔𝒖𝒑

{|𝛬(𝜏 )(𝑎) − 𝜏 ° 𝐿𝑛(𝑎)|}→0 for all a ∈ A 

Or, equivalently, for any contractive positive linear map ξ :A𝑓𝑓 T(A) →A𝑓𝑓 T(B)compatible 

with α, 

 𝛕∈T(B)
𝒔𝒖𝒑

{|ξ(𝒬(𝑎))(𝜏 ) − 𝜏 ° 𝐿𝑛(𝑎)|}→ 0 for all a ∈𝐴𝑠𝑎 

If h : A → B is a unital homomorphism, then h induces a unital positive affine map h : A𝑓𝑓 T 

(A) → A𝑓𝑓 T (B). The map ℎ# is contractive. Suppose that Y is a compact metric space and 

P ∈𝑀1 (C(Y )) is a non-zero projection with constant rank. It is known and easy to see that 

A𝑓𝑓 T  (P 𝑀1( C(Y )) P) = A𝑓𝑓(T (𝑀1( C(Y)) = 𝐶𝑹(Y). 

Theorem(4.2.2)[89]:  Let A be a simple unital 𝐶∗- algebra with at least one tracial state. 

Then for any affine function 𝑓∈ A𝑓𝑓 (T (A)) with ‖𝑓𝐸‖⩽1 and any ε > 0, there exists an 
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element a ∈𝐴𝑠𝑎 with ‖𝑎‖<‖𝑓‖ + ε such that τ (a) = 𝑓 (τ ) for all τ ∈ T (A). Furthermore, if 𝑓> 

0, we can choose a 0. 

Proof:We prove this using the results in [19]. We may identify T (A) with the real part of the 

unit sphere of (𝐴𝑞 ) ∗ (see [19] for the notation). By [8, 2.8], it suffices to consider 

those 𝑓∈A𝑓𝑓 (T (A)) with 𝑓 (τ ) > 0 for all τ ∈T (A). There is an element b ∈(𝐴𝑞 ) ∗∗∗such 

that b(τ ) = 𝑓 (τ ) for all τ ∈ T (A). Since f is (weak-∗) continuous, b ∈𝐴𝑞 . Since b(τ ) > 0 for 

all τ ∈ T (A), by  [19] there is c ∈𝐴+ and z ∈𝐴𝑠𝑎 with τ (z) = 0 for all τ ∈ T (A) (i.e., z ∈𝐴0 

using the notation in [19]) such that b = c + z. Now the theorem follows from [19]. 

Lemma(4.2.3)[89]:  Let A be a separable unital 𝐶∗- algebra. Let ε > 0 and ℱ⊂ A be a finite 

subset. Then there exists δ > 0 and a finite subset 𝒢⊂ A satisfying the following: for any 

unital separable 𝐶∗- algebra C with at least one tracial state and any unital contractive 

positive linear maps L : A → C which is 𝒢-δ-multiplicative, then, for any t ∈ T (C) there is a 

trace τ ∈ T (A) such that 

|𝜏 (𝑎)  −  𝑡(𝐿(𝑎))|< ε   for all a ∈ℱ. 

Proof. Otherwise, there would be an ε0 > 0 and a finite subset ℱ⊂ A, a sequence of unital 

separable 𝐶∗- algebra 𝐶𝑛, a sequence of unital contractive positive linear map 𝐿𝑛 : A → 𝐶𝑛 

such that 

lim
𝑛→∞

‖𝐿𝑛(𝑎)𝐿𝑛(𝑏)  −  𝐿𝑛(𝑎𝑏)‖=0    for all a, b∈A, 

and a sequence 𝑡𝑛∈ T (𝐶𝑛) such that 

inf{ max {| 𝑡 (𝑎)  − 𝑡𝑛( 𝐿𝑛(𝑎))|: a ∈ℱ} : t ∈ T (A)}  ⩾ 𝜀0 

for all n. Let 𝑠𝑛 be a state of A which extends 𝑡𝑛° 𝐿𝑛. Let τ be a weak limit of {𝑠𝑛}. So there 

is a subsequence {𝑛𝑘 } such that τ (a) = 𝑙𝑖𝑚m→∞ 𝑠𝑛𝑘
 (a) for all a ∈ A. It is a routine to check 

that τ ∈ T (A). Therefore, there exists K > 0, such that 

|𝜏 (𝑎)  − 𝑡𝑛𝑘
 ( 𝐿𝑛𝑘

(𝑎)) |<𝜀0/2 

for all k ⩾K. We obtain a contradiction.   

Lemma(4.2.4)[89]:   Let A = C(X), where X is a path connected finite CW-complex. Let B 

be a unital separable nuclear non-elementary simple 𝐶∗- algebra with TR(B)⩽ 1 and Λ : T 

(B) → T (A) be a continuous affine map. Then, for any σ > 0 and any finite subset ℋ⊂ A𝑓𝑓 

T (A), there exists a unital monomorphism h : A → B such that the image of h is in a 𝐶∗- 

subalgebra 𝐵0∈I and 

‖ℎ (𝑓 )  −  𝛬 (𝑓 ) ‖< ε 

for all f ∈ℋ , where h , Λ :A𝑓𝑓 T (A) → A𝑓𝑓 T (B) are the maps induced by h and Λ, 

respec-tively. 

Moreover, if there is positive homomorphism α : 𝐾0(A) → 𝐾0(B) with α([1𝐴]) = [1𝐵 ] and Λ 

is compatible with α, then the above is also true for A = P 𝑀1 (C(X))P , where P ∈𝑀1 (C(X)) 

is a projection in𝑀1 (C(X)). Furthermore, if X is contractible, we can also require that ℎ∗0 =α. 
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Corollary(4.2.5)[89]:   Let A ∈I, B be a unital separable nuclear simple 𝐶∗- algebra with 

TR(B) ⩽1, γ : 𝐾0(A) → 𝐾0(B) be a positive homomorphism and Λ : T (B) → T (A) be an 

affine contin-uous map which is compatible with γ . Then, for any σ > 0 and any finite subset 

𝒢⊂ A, there exists a unital monomorphism ∅ : A → B such that 

 τ∈T(B)
𝒔𝒖𝒑

{|𝜏 ° ∅(𝑔) − Λ(𝜏)(𝑔)|}< σ 

for all g ∈𝒢 and ∅∗ = γ . 

Proof: Note that 9.5 holds for A = 𝑀𝑛. It is then clear that, by considering each summand of 

A, the corollary follows from 9.5. 

Proposition (4.2.6)[89]:    Every KK-attainable, unital separable nuclear simple 𝐶∗-algebra A 

with TR(A) ⩽1 which satisfies the AUCT is pre-classifiable. 

Proof. Let A be a KK-attainable separable nuclear simple 𝐶∗-algebra with TR(A)⩽ 1 

satisfying the AUCT and B be a unital nuclear separable simple 𝐶∗-algebra with TR(B) ⩽1. 

Let α ∈𝐻𝑜𝑚Λ(𝐾(𝐴), 𝐾(𝐵))++, 𝒫⊂P(A) be a finite subset containing [1𝐴], and Λ : T (B) → 

T (A) be a continuous map which is comparable to 𝛼|𝐾0
(A). Suppose that e ∈B is a projection 

such that α(1𝐴) = e. To save notation, without loss of generality, we may assume that B = e(B 

⊗𝛫)e. Let {𝛿𝑛} be a decreasing sequence of positive numbers with 𝑙𝑖𝑚n→∞𝛿𝑛 = 0. For each 

n, since A is a unital simple 𝐶∗-algebra with TR(A) ⩽1, there are nonzero projections 𝑝𝑛∈ A 

and a 𝐶∗-subalgebra 𝐶𝑛∈𝐼 with 1𝐶𝑛
 = 𝑝𝑛, and a sequence of unital completely positive linear 

contractions 𝛷𝑛 : A → 𝐶𝑛 such that: 

(i)‖[𝑥, 𝑝𝑛]‖<𝛿𝑛, 

(ii)‖𝑝𝑛𝑥𝑝𝑛  −  𝛷𝑛(𝑥)  ‖<𝛿𝑛 

(iii)‖𝑥 − (𝑝𝑛𝑥𝑝𝑛 ⊕ 𝛷𝑛(𝑥))‖<𝛿𝑛 for all x ∈ A with  ‖𝑥‖ ⩽1 and 

(iv)τ (1 − 𝑝𝑛) < 1/2n for all τ ∈ T (A). 

Denote by Ψ𝑛(x) = (1 − 𝑝𝑛)x(1 − 𝑝𝑛) + 𝛷𝑛(x) (for x ∈ A). Note that 

‖Ψ𝑛(𝑎𝑏)  − Ψ𝑛(𝑎)Ψ𝑛(𝑏)‖  → 0  and ‖𝛷𝑛(𝑎𝑏)  − 𝛷𝑛(𝑎)𝛷𝑛(𝑏)‖  → 0 

for all a, b ∈A as n→ ∞.    

Since A is KK-attainable, for each n, there exists a sequence of completely positive linear 

contractions 𝐿𝑛 : A → B ⊗ K such that 

[𝛹𝑛]|𝒫 = [𝑖𝑑]|𝒫, [𝐿𝑛]|𝒫 = 𝛼|𝒫,   [𝐿𝑛°𝛹𝑛]|𝒫 = 𝛼|𝒫, 

‖𝐿𝑛° Ψ𝑛(𝑎𝑏) − 𝐿𝑛° Ψ𝑛(𝑎)𝐿𝑛 ° Ψ𝑛 (𝑏)‖ → 0 and 

‖𝐿𝑛° 𝛷𝑛(𝑎𝑏) −  𝐿𝑛 °  𝛷𝑛(𝑎)𝐿𝑛° 𝛷𝑛(𝑏)‖  → 0 

as n→ ∞for all a, b ∈ A. Suppose that𝐶𝑛=⊕𝑖=1
𝑡(𝑛)

𝐷𝑛,𝑖 , where 𝐷𝑛,𝑖 ≅ 𝑀(n,i) or 𝐷𝑛,𝑖 ≅ 𝑀(n,i) 

(C( 0, 1])). Let 𝑑𝑛,𝑖= 𝑖𝑑𝐷n,i
 . We may also assume that, for each n, 𝐿𝑛(𝑑n,i) is a projection     

and [𝐿𝑛] ([𝑑n,i])  = α ([𝑑n,i ])   for all n, i. 

Let 𝛾𝑛 : T (A) → T (𝐶𝑛) be defined by 𝛾𝑛(τ ) = (1/τ (𝑝𝑛))𝜏 |𝐶𝑛
 . Let 𝒢𝑛 be a finite subset 

(containing generators) of 𝐶𝑛 and let {𝑑𝑛} be a decreasing sequence of positive numbers with 
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𝑙𝑖𝑚n→∞𝑑𝑛 = 0. For large n,  we obtain  a homomorphism ℎ𝑛 : 𝐶𝑛 → 𝑞𝑛B𝑞𝑛, where [𝑑n,i ] = 

α([𝑑n,i ]), such that 

|τ °h𝑛(g) − γ𝑛°Λ(τ )(g)|< dn for all τ ∈ T (B) and 

for all g ∈𝒢𝑛. Put ∅𝑛(x) = 𝐿𝑛 ◦ ((1 − 𝑝𝑛)x(1 − 𝑝𝑛)) + ℎ𝑛 ◦ Φ𝑛(x) for x ∈ A. It is easy to see, 

by choosing a large n, ∅𝑛 : A → B meets the requirements of Definition (4.2.1) 

Lemma(4.2.7)[89]:    Let A be a unital 𝐶∗-algebra, B be a unital separable simple 𝐶∗-algebra 

with TR(B) ⩽1 and F ∈I be a 𝐶∗-subalgebra of B. Let G be a subgroup generated by a finite 

subset of P(A). Suppose that there is an ℱ-δ -multiplicative contractive completely positive 

linear map ψ : A → F ⊂ B such that [𝜓 ]|𝐺 is well defined. Then for any ε > 0, there exists a 

finite-dimensional 𝐶∗-subalgebra C ⊂ B and an ℱ-δ–multiplicative contractive completely 

positive linear map L : A → C ⊂ B such that 

[𝐿]|G∩𝐾0(A,𝐙/ k𝐙) = [𝜓 ]|G∩𝐾0(A,𝐙/ k𝐙),   and τ (1𝐶) < ε 

for all tracial states τ in T (B) and for all k⩾ 1 so that G∩𝐾0(A,Z/ kZ) =≠{0}, where L and ψ 

are viewed as maps to B. Furthermore, if [𝜓]G∩𝐾0(A) is positive, so is [𝐿]|G∩𝐾0(A). 

Proof: Let 0 < ε < 1. Without loss of gen-erality, we may assume that F = C([0, 1]) ⊗𝑀𝑛. 

Let 𝑞1∈ F be a minimal  projection.  Suppose  that 

G∩𝐾0(A,Z/ kZ) = {0} for k > K. 

with m = 2𝑙K! + 1 and 1/ 𝑙< ε/n, we may write 𝑞1 = q +∑ 𝑝𝑖
𝑚
𝑖=1  , where [q] ⩽  [𝑝1], 

q, 𝑝1, . . . , 𝑝𝑚  are mutually orthogonal projections, [𝑝1] = [𝑝𝑖], i = 1, 2, . . ., m and τ (𝑝1) 

<1/2𝑙< ε/2n. Set 𝑒1 =q +𝑝1and 𝑞0 =∑ 𝑝𝑗
2𝑙+1
𝑗=2 . Then [𝑒1] +K![𝑞0] = [𝑞1] in 𝐾0 (B) and 

τ(𝑒1) < ε/n for all tracial states τ on B.From this we obtain a 𝐶∗-subalgebra C of B such  

that C ≅ 𝑀𝑛 and its minimal projection is equivalent to 𝑒1.In particular, τ (1𝐶 ) < ε. Let ∅: 

F → 𝑀𝑛 → C be a unital homomorphism, where the map F → 𝑀𝑛is a point-evaluation. Let L 

= ∅ ◦ ψ, 𝑗1 : F → B and 𝑗2 : C → B be embeddings. By the choice of 𝑞1, [𝑒1] and [𝑞1] have 

the same image in 𝐾0(B)/ k𝐾0(B) for k = 1, 2, . . . , K. Therefore (𝑗1)∗ = (𝑗2 ° ∅)∗ on 𝐾0(F , Z/ 

kZ) for all k⩽ K. Since 𝐾1(F ) = 𝐾1(C) = 0, by the six-term exact sequence in 8.2 (see [32, 

1.6]), both [L] and [ψ ] map 𝐾0(A, Z/ kZ) to 𝐾0(B)/ k𝐾0(B) and factor through 𝐾0(F , Z/ kZ). 

Therefore 

[𝐿]|G∩𝐾0(A,𝐙/ k𝐙) = [𝜓 ]|G∩𝐾0(A,𝐙/ k𝐙),   k = 1, 2, . . . , K. 

The general case in which F is a direct sum of 𝑀1 (C([0, 1])) follows immediately.  

Lemma (4.2.8)[89]: Let C =⊕𝑗=1
𝑛 𝐶𝑗, where each 𝐶𝑗 = 𝑃𝑗𝑀s(j )(C(𝑋𝑗 ))𝑃𝑗 , 𝑃𝑗is a projection in 

𝑀s(j )(C(𝑋𝑗 ))and 𝑋𝑗is a path connected compact metric space with finitely generated 𝐾1 (𝐶𝑗) 

𝐾0(C(𝑋𝑗 )) = Z⊕ tor(𝐾0(𝐶𝑗 )), 𝐾1(C(𝑋𝑗 )) and 𝐾0(𝐶𝑗 )) ⊂ {( 𝓏, x): 𝓏∈N, or (z, x) = (0, 0)}. 

Then C is KK-attainable. 

Proposition(4.2.9)[89]: Let A be a separable unital simple 𝐶∗-algebra with TR(A) ⩽1. If A is 

locally AH, then A is pre-classifiable. 
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Proof: It follows from [76] that A satisfies the AUCT. We may assume that A = ⋃ 𝐴𝑛
∞
𝑛=1

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 

where each 𝐴𝑛 is a finite direct sums of 𝑃n,i𝑀r(n,i)C(𝑋n,i )𝑃n,i  and 𝑋n,i  is a path connected 

finite CW complex. One may assume that 1𝐴𝑛
 = 1𝐴. Put 𝑗𝑛 : 𝐴𝑛 → A the embedding. 

Consider 𝑗𝑛 × α. If 𝐴𝑛 has only one summand, then 𝐾0(𝐴𝑛) = ℤ⊕ ker 𝜌𝐴𝑛
 . Since α 

∈ 𝐾𝐿(𝐴, 𝐵)++, 

(𝑗𝑛 × α) ∈𝐾𝐿(𝐴𝑛, 𝐵)++. By considering each summand separately, we may assume An has 

only one summand.  Since A is  simple  it suffices to  show  that, A = C(X) is 

KK-attainable for every path connected finite CW complex X. 

Let α ∈ 𝐾𝐾(𝐴, 𝐵)++. Suppose that α(1𝐴) = [p] (≠ 0), where p ∈𝑀𝑙 (B) is a projection. Fix a 

unital nuclear simple 𝐶∗-algebra B with TR(B) ⩽1. By [134], there is a unital simple 𝐶∗-

algebra  C which  is  direct limit of 𝐶∗-algebras  such that 

(𝐾0(C), 𝐾0(𝐶)+, [1𝐶 ], 𝐾1(C))  =  (𝐾0(B), 𝐾0(𝐵)+, [1𝐴], 𝐾1(B)) . 

By [125], there exists β ∈ KK(C, B) which gives the above isomorphism. 

Let α ∈𝐾𝐿(𝐴, 𝐵)++ and γ = α × 𝛽−1∈𝐾𝐿(𝐴, 𝐶)++. Since 𝐾𝑖 (C(X)) is finitely generated, 

KL(A, C) = KK(A, C). In particular, γ (𝐾0(𝐴)+ \ {0}) ⊂𝐾0(C)+ \ {0}. By [58], there is a ho-

momorphism h : A → p𝑀𝑙 (C)p such that [h] = γ . But by 9.9, since each  𝐶∗-algebra 

described in Lemma (4.2.8)is KK-attainable, C is KK-attainable (see 9.1). Let ε > 0 and fix 

finite subsets ℱ⊂ A and 𝒫⊂P(A). Let 𝒢 = h(ℱ) ⊂ C and 𝒬 = [h](𝒫) ⊂P(C). Let Λ : C → B 

be a 𝒢-ε-multiplicative contractive completely positive linear map such that 
 

[𝛬]|𝒬 = 𝛽|𝒬. 

Define L = Λ ◦ ℎ. Then L : A → B is a ℱ-ε–multiplicative contractive completely positive 

linear map such that 

[𝐿]|𝒫 = 𝛼|𝒫. 

So A is KK-attainable. 

Lemma(4.2.10)[89]:      Let A be a unital separable 𝐶∗-algebra, {ℱ𝑘 } be an increasing 

sequence of finitesubsets of the unit ball of A such that ⋃ 𝑘 ℱ𝑘is dense in the unit ball of A, 

and let 𝛷𝑛 : A → A be a sequence of unital contractive completely positive linear maps such 

that 𝑙𝑖𝑚n→∞‖𝛷𝑛(a)‖ = ‖𝑎‖ for all a ∈ A and 

∑‖𝛷𝑘(ab) −  𝛷𝑘(𝑎)𝛷𝑘(𝑏)‖ <

∞

𝑘=𝑛

∑ 𝛿𝑛

∞

𝑘=𝑛

 , 

for all a, b ∈𝒢𝑛, and for anynfinite subset 𝒫⊂P(A), [𝛷𝑛]|𝒫= [𝑖𝑑]|𝒫 for all sufficiently large n, 

where𝒢1= ℱ1, 𝒢𝑛+1⊃⋃ 𝛷𝑘(ℱ𝑛) ∪ ℱ𝑛 ∪ 𝛷𝑛(𝒢𝑛)𝑛
𝑘=1 , n = 1, 2, . . . , and where∑ 𝛿𝑛

∞
𝑛=1 <

∞ 

. Let B 𝑙𝑖𝑚𝑛 →∞ (A, 𝛷𝑛) be the generalized inductive limit in the sense of [7]). Then {𝛷𝑛} 

induces an isomorphism          

(𝐾0(B), 𝐾0(𝐵)+, [1𝐵 ], 𝐾1(B))  =  (𝐾0(A), 𝐾0(𝐴)+, [1𝐴], 𝐾1(A)) . 
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Proof: The proof is standard. We sketch here. Write 𝐾𝑖 (A) =⋃ 𝐺𝑛
(𝑖)∞

𝑛=1 , where each𝐺𝑛
(𝑖)

is a 

finitely generated subgroup of 𝐾0(A). Let 𝛷𝑛,𝑛+𝑚 = 𝛷𝑛+𝑚−1 °. . . . . °𝛷𝑛and  𝛹𝑛: A →B 

be the map induced by the inductive system which maps the nth A to B. For each 𝐺𝑛
(𝑖)

, we 

may assume that [𝛹𝑛]|
𝐺𝑛

(𝑖)  is well defined for all m ⩾  n. The assumption that [𝛷𝑛]|𝒫 = 

[𝑖𝑑𝐴]|𝒫 

for all sufficiently large n implies that [𝛹𝑚]|
𝐺𝑛

(𝑖)  = [𝛹𝑚]|
𝐺𝑛

(𝑖)  for all m, m⩾  n. This gives a 

homomorphism 𝛽𝑖 : 𝐾𝑖 (A) → 𝐾𝑖 (B) (i = 0, 1).      

Suppose that 𝑝1,𝑝2, 𝑣∈𝑀𝑙 (B) such that 𝑣∗𝑣 = 𝑝1  and vv*  = 𝑝2. There is a sequence {𝛹𝑛(𝑎𝑘 

)} , where 𝑎𝑘∈𝑀𝑙 (A), such that it converges to 𝑣. Since 𝑣∗𝑣= 𝑝1, we have 𝛹𝑛𝑘
(𝑎𝑘

∗ 𝑎𝑘)→𝑝1 

and 𝛹𝑛𝑘
(𝑎𝑘𝑎𝑘

∗) → 𝑝2. Therefore we may assume that    

‖𝛹𝑛𝑘
(𝑎𝑘

∗ 𝑎𝑘 − (𝑎𝑘
∗ 𝑎𝑘))2‖< 1/2𝑘+1and ‖𝛹𝑛𝑘

(𝑎𝑘
∗ 𝑎𝑘) − 𝑝1‖< 1/2𝑘+1.    

Since ‖𝛹𝑚(𝑥)‖ = lim sup ‖𝛷𝑚,𝑛(𝑥)‖ for all x ∈ A and m⩾1, by passing to a subsequence 

and possibly replacing ak by 𝛷𝑚𝑘,𝑛𝑘
(𝑎𝑘 ), 𝛹𝑛𝑘

 by 𝛹𝑚𝑘
 , if necessary, we may assume that 

‖𝑎𝑘
∗ 𝑎𝑘 − (𝑎𝑘

∗ 𝑎𝑘)2‖< 1/22 ,   k = 1, 2, . . . . 

It is standard that there is a partial  isometry 𝑣𝑘 and  a projection  𝑞𝑘∈ A such that 

𝑣𝑘
∗𝑣𝑘=𝑞𝑘   and    ‖𝑣𝑘 − 𝑎𝑘‖< 1/2𝑘−1 

for all large k. Let 𝑞𝑘 = 𝑣𝑘𝑣𝑘
∗ . Note also, for any ε > 0, we have  

‖𝛹𝑛𝑘
 (𝑞𝑘)  − 𝑝1‖< ε and    ‖𝛹𝑛𝑘

 (𝑞𝑘)  −  𝑝2‖< ε 

for all large k. Hence  [𝛹𝑛𝑘
] (𝑞𝑘) =  [𝑝1]and [𝛹𝑛𝑘

] (𝑞𝑘) =  [𝑝2]This, in particular, implies 

that[𝑝1] is in the image of 𝛽0. It follows that 𝛽0 is surjective. Note also that [𝑞𝑘 ] = [𝑞𝑘 ] in 

𝐾0(A). It follows that 𝛽0 is also injective. It is also easy to check from the definition that 𝛽0 

preserves the order. 

In the above, if we let w∗w = 𝑝1 and ww∗⩽𝑝2, then exactly the same argument shows that 

there are partial isometries 𝑣𝑘∈ A such that 𝑣𝑘𝑣𝑘
∗  = 𝑞𝑘 , 𝑣𝑘𝑣𝑘

∗ ⩽ 𝑞𝑘 and 𝛹𝑛𝑘
 (𝑣𝑘 )→ v, 

𝛹𝑛𝑘
(𝑞𝑘) → 𝑝1 and 𝛹𝑛𝑘

 (𝑞𝑘 ) → vv*⩽𝑝2. These imply that 𝛽0 is an order isomorphism. 

     A similar argument shows that 𝛽1 is an isomorphism and 𝐾1(A) = 𝐾1(B). 

Theorem(4.2.11)[89]: Let A be a unital separable nuclear simple 𝐶∗-algebra with TR(A)⩽1 

satisfy-ing the AUCT. Then there exists a unital separable nuclear simple 𝐶∗-algebra B with 

TR(B) = 0 satisfying AUCT and the following: 

(i) (𝐾0(A), 𝐾0(A)+, [1A ], 𝐾1(A))  =  (𝐾0(B), 𝐾0(B)+, [1B], 𝐾1(B)), 

(ii)there exists a sequence of contractive completely positive linear maps 𝛷𝑛 : A → B such 

that: 

 (i)𝑙𝑖𝑚n→∞‖𝛷𝑛 (ab) − 𝛷𝑛 (a)𝛷𝑛 (b) ‖ = 0 for a, b ∈ A, 

 (ii)For each finite subset 𝒫⊂P(A) there exists an integer N > 0 such that 

[𝛷𝑛]|𝒫 = [𝛼]|𝒫 
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for all n⩾N , where α ∈ KL(A, B) which gives an identification in (i) above. 

Theorem(4.2.12)[89]:  (C𝑓. [134].) Suppose that G is a countable, partially ordered abelian 

group which is simple, weakly unperforated with the Riesz interpolation property, that 

G/tor(G) is non-cyclic, 

u ∈𝐺+, H is a countable abelian group, Δ is a metrizable Choquet simplex and λ :Δ → 

S(G, u) is a continuous affine map with λ(𝜕𝑒Δ) = 𝜕𝑒S(G, u). Then there is a simple AH-

algebra A = 𝑙𝑖𝑚n→∞(𝐴𝑛, ℎ𝑛) with TR(A)⩽1 and with 𝐴𝑛 = 𝐶1⊕𝐶2⊕ • • • ⊕𝐶𝑚(𝑛), where 𝐶1 

is of the form as described in 7.1 (a single summand) and 𝐶𝑗 is of the form C([0, 1]) ⊗𝑀𝑚(𝑗) 

( for 

j> 1), such that: 

(1) ℎ𝑛 = ℎ𝑛
(0)

⊕ℎ𝑛
(1)

⊕ℎ𝑛
(2)

, where ℎ𝑛
(0)

, ℎ𝑛
(1)

 factor  through  a 𝐶∗-algebra in I, 

and ℎ𝑛 is injective, in particular, ℎ𝑛
(0)

 is homotopically trivial, 

(i)τ ◦ ℎn+1,∞ ◦ ℎ𝑛
(0)

(1𝐴𝑛
 ) → 0 uniformly on T (A), 

(ii)  τ ◦ ℎn+1,∞ ◦ ℎ𝑛
(2)

(1𝐴𝑛
 ) → 0 uniformly on T (A), 

(𝑖𝑖𝑖)  (ℎ𝑛)∗1 is injective and 

(iv) (𝐾0(A), 𝐾0(𝐴)+, [1𝐴 ], 𝐾1 (A), T (A), 𝑟𝐴) = (G, 𝐺+, u, H, Δ, λ). 

Proof: The proof of this is a combination of Villadsen’s proof of the main theorem in [134]. 

Let A = 𝑙𝑖𝑚n→∞(𝐴𝑛, ℎ𝑛) be as in [75]. This algebra A satisfies (iii), 

(iv) and (𝐾0(A), 𝐾0(𝐴)+, [1𝐴 ], 𝐾1 (A)) = (G, 𝐺+, u, H ). Moreover each An can be chosen so 

it has the form as required. Here one needs one modification and one explanation. We use 

𝐶𝑗  =  𝑀𝑚(𝑗) for j > 1. But we can map C([0, 1], 𝑀𝑚(𝑗)) into 𝑀𝑚(𝑗) by a one point-evaluation 

and then map 𝑀𝑚(𝑗) into C([0, 1], 𝑀𝑚(𝑗)) (as constant functions). So we can assume that 𝐴𝑛 

has the required form. Note also that the new 𝐴𝑛 has the same K-theory as the old one. If 

𝐾1(A) = F = 𝑙𝑖𝑚n→∞(𝐹𝑛, 𝛾𝑛), 𝐾1(𝐴𝑛) = 𝐹𝑛 and the map 𝛷n,n+1 has the property (𝛷n,n+1)∗1 = 

𝛾𝑛. However, since F is a countable abelian  group, one can always  assume  that  Fn is 

finitely generated and 𝛾𝑛 is injective (by choosing 𝐹𝑛 as subgroups and 𝛾𝑛 as embeddings) so 

that (iv) holds. 

We will revise the map hn to meet the other requirements. Villadsen’s proof in [134] is to 

replace ℎ𝑛 by ∅𝑛 without changing its K-theory in such a way that one gets Δ as tracial space 

and λ as pairing. We will follow his proof with a minor modification. Each ℎ𝑛 may be written 

as ℎ𝑛⊕ℎ𝑛, where hn is a point-evaluation, as in [75]. that holds when 𝑋𝑞
𝑖  is a compact 

connected CW complex with dimension at least one but no more than three. Following 

Villadsen’s proof, as in [134]  and  its proof, one can replace ℎ𝑛 to achieve exactly what 

[134]achieved. It should be noted that Villadsen’s proof of the main theorem in [134] works 

when 𝑋𝑞
𝑗
 has lower dimension (but at least one), since the required maps 𝑖𝑞

𝑗
 : [0, 1] → 𝑋𝑞

𝑗
 and 
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𝑘𝑞
𝑗
 : 𝑋𝑞

𝑗
 → [0, 1] still exist. The new map obtained from Villadsen’s proof has the formψ̃𝑛 =

ℎ𝑛 ⊕ ℎ̃𝑛, where ℎ̃𝑛  is homotopically trivial. Furthermore, it can be chosen so that it factors 

through a 𝐶∗-algebra in I. The construction of Villadsen then gives a simple AH-algebra B 

with TR(B)⩽1 and satisfies (5). Moreover, one hasτ° ψ̃𝑛+1°ℎ𝑛(1𝐴𝑛
) → 0 uniformly on T (B). 

The construction does not change (3) and (4). It is also easy to get (1) and (2). For example, 

considerℎ𝑛+1°ℎ𝑛 ⊕ ℎ𝑛+1°ℎ̃𝑛 ⊕ ℎ̃𝑛+1°ψ̃𝑛. Note that ℎ𝑛+1°ℎ̃𝑛and ℎ̃𝑛+1°ψ̃𝑛 are homotopically 

trivial andτ° ψ̃𝑛,∞°ℎ𝑛+1°ℎ̃𝑛(1𝐴𝑛
) → 0 uniformly on T (B).    

Definition(4.2.13)[89]:   Let C be a unital 𝐶∗-algebra. We denote by 𝑆𝑢(𝐾0(C)) the set of 

states on 𝐾0(C), i.e., the set of order and unit preserving homomorphisms from 𝐾0(C) to (the 

additive group) ℝ. There is an affine map λ : T (C) → 𝑆𝑢(𝐾0(C)) such that λ(t )([p]) = t (p) 

for all projections p ∈𝑀∞(C) and t ∈ T (C). Suppose that C is stably finite. It was proved in 

[123] (for the simple case) that each state in 𝑆𝑢(𝐾0(C)) is induced 

by a quasitrace t ∈𝒬T (C). If C is exact, or if it is both simple and of tracial rank at most one, 

then all quasitraces on C are traces. 

Let A and B be two unital 𝐶∗-algebras. We say 

γ : (𝐾0(A), 𝐾0(A)+, [1A ], 𝐾1(A), T(A))→(𝐾0(B), 𝐾0(B)+, [1B], 𝐾1(B), T(B)) 

is an order isomorphism if there is an order isomorphism 

𝛾0 :  (𝐾0(A), 𝐾0(A)+)  =  (𝐾0(B), 𝐾0(B)+) 

which maps [1A ] to [1B ], there is an isomorphism 𝛾1 : 𝐾1(A) → 𝐾1(B) and an affine homeo-

morphism 𝛾2 : T (A) → T (B) such that 𝛾2
−1(τ )(x) = τ (𝛾0(x)) for all τ ∈ T (B) and x ∈𝐾0(A), 

where we view τ as a state on 𝐾0(A). 

Theorem(4.1.14)[89]:   Let A and B be two unital separable nuclear simple 𝐶∗-algebras with 

TR(A)⩽1 and TR(B) ⩽1 satisfying AUCT such that 

(𝐾0(B), 𝐾0(𝐵)+, [1B ], 𝐾1(B), T(B))=(𝐾0(A), 𝐾0(𝐴)+, [1A], 𝐾1(A), T(A)) 

in the sense of 10.2. Then there is a sequence of contractive completely positive linear maps 

{𝛹𝑛} from A to B such that: 

(i) 𝑙𝑖𝑚n→∞𝛹𝑛(ab) − 𝛹𝑛(a)𝛹𝑛(b)  = 0 for all 𝑎, b ∈ A, 

(ii) for any finite subset set 𝒫⊂P(A), 

[𝛹𝑛]|𝒫 = 𝛼|𝒫, 

for all sufficiently large n, where α ∈ 𝐾𝐿(𝐴, 𝐵)++gives  the  above  identification on K-theory 

and 

(iii)  
𝑙𝑖𝑚

n → ∞

𝑠𝑢𝑝
τ ∈ T (B){|τ °𝛹𝑛(𝑎) −  ξ(𝒬(a)) (τ )|} 

           

𝑓or all a ∈𝐴𝑠𝑎, where ξ : A𝑓𝑓 T (A) → A𝑓𝑓 T (B) is the affine isometry given above. 
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Proof. It follows from Theorem 9.12 that there is a unital separable simple nuclear 𝐶∗- -

algebra C with TR(C) = 0 satisfying the AUCT such that 

(𝐾0(A), 𝐾0(𝐴), [1A], 𝐾1(A))  =  (𝐾0(C), 𝐾0(𝐶)+, [1C], 𝐾1(C)) 

and a sequence of contractive completely positive linear maps 𝐿𝑛 : A → C satisfying 

condition 

(ii) of theorem(4.1.63) In particular, [𝐿𝑛]|𝒫 = 𝛽|𝒫, for any finite subset 𝒫 and all sufficiently 

large 𝑛, where β ∈ 𝐾𝐿(𝐴, 𝐶)++ gives the above identification on K-theory. It follows from 

[93] that there is a unital separable simple AH-algebra 𝐶1 such that 𝐶1 ≅ C. To simplify 

notation, we may assume that 𝐶1 = C. 

It follows from 9.10 that there exists a sequence of contractive completely positive linear 

maps 𝛷𝑛 : C → B such that: 

(i ) 𝑙𝑖𝑚n→∞|𝛷𝑛(𝑎𝑏)  − 𝛷𝑛(𝑎)𝛷𝑛(𝑏)|  = 0 for all a, b ∈ C, 

(ii ) for any finite subset 𝒬⊂P(C), 

[𝛷𝑛]|𝒬 = (𝛽−1 × 𝛼)|𝒬, for all sufficiently large 𝑛. 

Thus by choosing a subsequence {k(n)} and defining 𝛹𝑛 = 𝛷𝑘(𝑛) ◦ 𝐿𝑛 : A → B we see that 𝛹𝑛 

satisfies (i) and (ii). (In fact one can show that A is KK-attainable.) We then apply the proof 

of 9.7, to obtain a (new) sequence {𝛷𝑛} which also satisfies (iii). 

Using the argument of [93], Zhuang Niu gives a different proof of the above theorem. 

Theorem(4.2.15)[89]:    Let A and B be two unital separable nuclear simple 𝐶∗-algebras with 

TR(A)⩽1 and TR(B)⩽1 satisfying the AUCT. Suppose that λ(𝜕𝑒(T (A))) = 𝜕𝑒(𝑆𝑢(𝐾0(A))) 

and λ(𝜕𝑒(T (B))) = 𝜕𝑒(𝑆𝑢(𝐾0(B))). Then A is isomorphic to B if and only if there exists an 

order isomorphism 

  γ = (𝛾0 , 𝛾1, 𝛾2) :(𝐾0(A), 𝐾0(𝐴)+, [1A], 𝐾1(A), T(A))→  

(𝐾0(B), 𝐾0(𝐵)+, [1B ], 𝐾1(B), T(B)), 

where 𝛾 2
−1(τ )(x) =τ (𝛾0(x)) for all  τ ∈ T (B) and x ∈𝐾0 (𝐴)(see 10.2).  

Theorem(4.2.16)[89]:  Let A and B be two unital simple AH-algebras with very slow 

dimension growth and with torsion 𝐾1(A). Then A is isomorphic to B if and only if 

 (𝐾0(𝐴), 𝐾0(𝐴)+, [1𝐴], 𝐾1(𝐴), 𝑇 (𝐴)) ≅ (𝐾0(𝐵), 𝐾0(𝐵)+, [1𝐵], 𝐾1(𝐵), 𝑇 (𝐵)) 

Let C be a stably finite non-unital 𝐶∗-algebra with an approximate identity consisting of 

projections {𝑒𝑛}. Let T (C) denotes the set of traces τ on C such that 𝑠𝑢𝑝𝑛 𝜏 (𝑒𝑛)  =  1. We 

refer to these traces as tracial states on C, and to T (C) the tracial state space of C. Note that 

each tracial state extends to a tracial state on 𝐶̃. Therefore 𝑇 (𝐶̃) is the set of convex 

combinations of τ ∈ T (C) and the tracial state which vanishes on C. We also denote by 

𝑆𝑢 (𝐾0(𝐶)) the set of those order preserving homomorphisms from 𝐾0(𝐶) to ℝsuch that 

𝑠𝑢𝑝𝑛𝑠 ([𝑒𝑛])  =  1. Then eachelement in  𝑆𝑢 (𝐾0(𝐶̃)) is the convex combination of s 

∈𝑆𝑢 (𝐾0(𝐶))and the state which vanishes  on 𝑗∗(𝐾0(𝐶)), where j : C →𝐶̃is the embedding. 
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Lemma(4.2.17)[89]:Let A be a unital separable simple 𝐶∗-algebra with TR(A)⩽ 1. Then 

there is a 𝐶∗-algebra 𝐶 =  𝑙𝑖𝑚𝑛→∞(𝐶𝑛, 𝜑𝑛), where 𝐶𝑛∈I, satisfying the following: 

 (i) each 𝐶𝑛 is a 𝐶∗-subalgebra of A and {𝜑𝑛,∞(1𝐶𝑛
)} forms an approximate identity for 

C; 

 (ii)there is a sequence of contractive completely positive linear maps 𝐿𝑛 : A → C such 

that 

lim
𝑛→∞

‖𝐿𝑛(𝑎𝑏) − 𝐿𝑛(𝑎)𝐿𝑛(𝑏)‖ = 0,     𝑎, 𝑏 ∈ 𝐴; 

(iii) there is an affine continuous (face-preserving) isomorphism r :T (A) → T (C) such that 

r (τ ) (𝜑𝑛,∞(b))= lim
𝑘→∞

τ (𝜑𝑛,𝑘(𝑏)) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑏 ∈ 𝐶𝑛 𝑎𝑛𝑑 τ ∈ 𝑇(𝐴); 

 (iv) there is an affine continuous ( face-preserving) isomorphism r : 𝑆𝑢 (𝐾0(𝐶)) → 

𝑆𝑢 (𝐾0(𝐴)) such that 

𝑟 (𝑠 )([𝑝]) =  𝑙𝑖𝑚
𝑛→∞

𝜏𝑠(𝐿𝑛(𝑝))𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ∈ 𝑆𝑢(𝐾0(𝐶))𝑎𝑛𝑑 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑝 ∈ 𝐴, 

  where 𝜏𝑠 is the trace which induces s.      

Proof: Let ℱ1 ⊂ ℱ2 ⊂ • • • ⊂ ℱ𝑛 ⊂ • • •be a sequence of finite subsets of A such that 

⋃ 𝑛 ℱ𝑛is 

dense in A. Since TR(A)⩽1, there is  a 𝐶∗-subalgebra      𝐶1⊂ A with 𝐶1∈I and 1𝐶1
 = 𝑝1 such 

that: 

 (i ) ‖𝑎𝑝1  −  𝑝1𝑎 ‖< 1/2 for all a ∈ℱ1,      

(ii ) dist(𝑝1a𝑝1, 𝐶1) < 1/2 for all a ∈ℱ1,      

(iii ) τ (1 − 𝑝1) < 1/4 for all τ ∈ T (A).       

    Let 1 >𝜂1> 0, there is a projection  𝑒(1,1) ⩽ 𝑝1 such that 𝑒(1,1) is equivalent to 1 −𝑝1. Since 

τ (𝑝1 − 𝑒(1,1)) > 1/2 > τ (1 − 𝑝1) for all τ ∈ T (A), by 4.7 again, we obtain mutually orthogonal 

projections 𝑒(1,1),𝑒(1,2) such that 𝑒(1,𝑖) ⩽ 𝑝1, [𝑒(1,1)] = [𝑒(1,2)]⩾ [1 − 𝑝1 ]. There 

are 𝑥(1,1), 𝑥(1,2)∈ A such that 𝑥∗
(1,𝑖) 𝑥(1,𝑖)⩾1 − 𝑝1 and  𝑥(1,𝑖)𝑥∗

(1,𝑖) = 𝑒(1,𝑖). Let𝒢1 be a 

finite set of generators of 𝐶1 𝑎𝑛𝑑 𝒢2 = ℱ2 ∪ 𝒢1 ∪  { 𝑥(1,𝑖), 𝑥∗
(1,𝑖), 𝑒(1,𝑖): 1 ⩽  𝑖 ⩽  2}. There is 

a 𝐶∗-subalgebra 𝐶2⊂ A with𝐶2∈I and 1𝐶2
 =  𝑝2 such that: 

(i ) ‖𝑎 𝑝2  −   𝑝2𝑎‖ < 𝜂1/4 for all a ∈𝒢2, 

(ii ) dist( 𝑝2a 𝑝2, 𝐶2) <𝜂1/4 for all a ∈𝒢2, and 

(iii ) τ (1 −  𝑝2) < 1/8 for all τ ∈ T (A). 

With sufficiently small𝜂1, there is a homomorphism 𝜑1 ∶  𝐶1  →  𝐶2 such that 

‖∅1(𝑏)  −  𝑝2𝑏 𝑝2‖< 1/4  for all b ∈ℱ1 ∪ 𝒢1. 

Put 𝑞2  = ∅1(1𝐶1
). With sufficiently small 𝜂1, since  𝑥(1,𝑖)∈𝒢2, we may also assume that 2[ 𝑝2 

− 𝑞2]⩽ [𝑞2] in 𝐾0(𝐶2). Note that 𝑞2 ⩽ 𝑝2. 
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We continue in this fashion. Suppose that 𝐶𝑛⊂ A is a unital 𝐶∗-subalgebra which is in I has 

been constructed. If τ (1 − 𝑝𝑛) < 1/2𝑛+1 for all τ ∈ T (A), there are partial isometries x(n,i) ∈ 

A 

such that 𝑝𝑛 = 1𝐶1
 , 𝑥∗

(1,𝑖) 𝑥(1,𝑖) ⩾ 1 − 𝑝𝑛,  𝑥(1,𝑖)𝑥∗
(1,𝑖) = 𝑒(𝑛,𝑖) ⩽ 𝑝𝑛, 𝑒(𝑛,𝑖)𝑒(𝑛,𝑗) = 0 if 𝑖 ≠

𝑗and 

[𝑒(𝑛,𝑖)] = [𝑒(𝑛,1)]⩾[1 − 𝑝𝑛], 1⩽i⩽ 2𝑛. Let 𝒢𝑛 be a finite set which contains a set of generators 

of 𝐶𝑛, ∅𝑖,𝑛(𝒢𝑖  ) and∅𝑖,𝑛(𝑝𝑖  ), i = 1, 2, . . . , n − 1, where ∅𝑖,𝑛 = ∅𝑛−1◦ ∅𝑛−2 ◦ • • • ◦ ∅𝑖 . (Note 

that 𝐶𝑖⊂ A.) Let 𝒢𝑛+1 = ℱ𝑛+1 ∪ 𝒢𝑛∪ {𝑒(𝑛,𝑖),  𝑥(1,𝑖), 𝑥∗
(1,𝑖): 1⩽ i⩽ 2𝑛}. Let 1 >𝜂𝑛+1> 0 be a 

positive number to be determined (but it depends only on 𝐶𝑛 and ℱ𝑛 ∪ 𝒢𝑛). Since A has 

tracial topological rank one, there exist a 𝐶∗-subalgebra 𝐶𝑛+1⊂ A with 𝐶𝑛+1∈I and a 

projection 𝑝𝑛+1 with 1𝐶𝑛+1
 =  𝑝𝑛+1such that: 

 (i )‖𝑎 𝑝𝑛+1  −   𝑝𝑛+1𝑎‖ < 𝜂𝑛+1/2𝑛+1for all 𝑎 ∈ 𝒢𝑛+1, 

(ii ) dist( 𝑝𝑛+1a 𝑝𝑛+1, 𝐶𝑛+1) <𝜂1/2𝑛+1 for all 𝑎 ∈ 𝒢𝑛+1, and 

(iii ) τ (1 −  𝑝𝑛+1) < 1/2𝑛+2 for all τ ∈ T (A). 

We choose 𝜂𝑛+1 so small that there exist a homomorphisms ∅𝑛 ∶  𝐶𝑛  →  𝐶𝑛+1 such that 

‖∅𝑛(𝑏)  −  𝑝𝑛+1𝑏 𝑝𝑛+1‖< 1/2𝑛+1  for all b ∈ℱ𝑛 ∪ 𝒢𝑛. (e1) 

Put𝑞𝑛+1 =  ∅𝑛(𝑝𝑛). It is useful to note that 𝑞𝑛+1 ⩽  𝑝𝑛+1. Since 𝑥(𝑛,𝑖) ∈  𝒢𝑛+1, we may 

further assume that 

 (4)2𝑛[𝑝𝑛+1 − 𝑞𝑛+1] ⩽ [𝑞𝑛+1] 𝑖𝑛 𝐾0(𝐶𝑛+1). 

Set 𝐶 =  𝑙𝑖𝑚𝑛→∞(𝐶𝑛, ∅𝑛). Since each 𝐶𝑛 is nuclear 𝐶∗-subalgebra of A, there is a contractive 

completely positive linear map 𝐿𝑛 ∶  𝐴 →  𝐶𝑛 (see, for example, [69]) such that 

lim
𝑛→∞

‖𝐿𝑛(𝑎) − 𝑝𝑛𝑎𝑝𝑛‖ = 0                                       (1) 

for all a ∈ A. Note that, by (1),    

lim
𝑛→∞

‖𝐿𝑛(𝑎𝑏) − 𝐿𝑛(𝑎)𝐿𝑛(𝑏)‖ = 0 for all a,b ∈A 

Define  𝐿𝑛 = ∅𝑛,∞° 𝐿𝑛 .It is clear that𝐿𝑛 satisfies (ii). Put∅𝑛,𝑛+1 = ∅𝑛and for k> n+1, 

∅𝑛,𝑘 = ∅𝑘−1 ◦ • • • ◦ ∅𝑛. Define r: T (A) → T (C) as follows. For each b ∈𝐶𝑛, define  

r (τ ) (𝜑𝑛,∞(b))= lim
𝑘→∞

τ (∅𝑛,𝑘(𝑏)) 𝑓𝑜𝑟  τ ∈ 𝑇(𝐴) 

Note that ∅𝑛,𝑘(𝑏)∈𝐶𝑘⊂ A. We will show that the right-hand side above converges. Since we 

may replace b by ∅𝑛,𝑘(𝑏) (replacing n by a larger integer if necessary), without loss of 

generality, we may also assume that b ∈ℱ𝑛. From (1), one obtains that 

‖∅𝑛,𝑘+𝑗+1(𝑏) − 𝑝𝑘+𝑗+2∅𝑛,𝑘+𝑗(𝑏)𝑝𝑘+𝑗+2‖ < 1/2𝑘+𝑗+2                  (2) 

On the other hand, for any integer k  ⩾0,      

 |τ(𝑝𝑘+𝑗+2∅𝑛,𝑘+𝑗(𝑏)𝑝𝑘+𝑗+2) − τ(∅𝑛,𝑘+𝑗(𝑏))| 

⩽ |τ((1 − 𝑝𝑘+𝑗+2)∅𝑛,𝑘+𝑗(𝑏))(1 − 𝑝𝑘+𝑗+2)| + |τ(𝑝𝑘+𝑗+2∅𝑛,𝑘+𝑗(𝑏))(1 − 𝑝𝑘+𝑗+2)| 
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+|τ((1 − 𝑝𝑘+𝑗+2)∅𝑛,𝑘+𝑗(𝑏)𝑝𝑘+𝑗+2)| 

< 3‖𝑏‖τ(1 − 𝑝𝑘+𝑗+2) ⩽ 3‖𝑏‖/2𝑘+𝑗+2                                          (3) 

It follows from (2) and (3) that 

|τ (∅𝑛,𝑘+𝑗+1(𝑏)) − τ(∅𝑛,𝑘+𝑗(𝑏))| < 1/2𝑘+𝑗+2 + 3‖𝑏‖/2𝑘+𝑗+2. 

Therefore, for any m⩾1, 

|τ (∅𝑛,𝑘(𝑏)) − τ(∅𝑛,𝑘+𝑚(𝑏))| < ∑ 1/2𝑘+𝑗+2 + 3‖𝑏‖

𝑚

𝑗=0

∑ 1/2𝑘+𝑗+2

𝑚

𝑗=0

→ 0 

as k → ∞. We conclude that lim
𝑘→∞

τ (∅𝑛,𝑘(𝑏))converges. To see r is well defined, we let c 

∈𝐶𝑚 so that ∅𝑚,∞(𝑐) = ∅𝑛,∞(𝑏). Then, for any ε > 0, there exists N > max{n, m} such that 

‖∅𝑛,𝑘(𝑏) − ∅𝑚,𝑘(𝑐)‖ < ε  (in𝐶𝑘) 

for all k⩾ N . It follows that (𝐶𝑘⊂ A) 

|τ(∅𝑛,𝑘(𝑏)) − τ(∅𝑚,𝑘(𝑐)) | <ε 

for all τ ∈T (A) and 𝑘 ⩾N . It follows thatr  is well defined on⋃ ∅𝑛,∞(𝐶𝑛)∞
𝑛=1 . Since 

|τ(∅𝑛,𝑘(𝑏))| ⩽ ‖(∅𝑛,𝑘(𝑏)‖, 𝑟 (τ ) is bounded linear functional on ⋃ ∅𝑛,∞(𝐶𝑛)∞
𝑛=1 . It defines 

(uniquely) a bounded linear functional on C. One then easily sees that r(τ ) is a state.More-

over, one checks that it is a tracial state. Thus ris well defined. It is then easy to see that r is 

an affine continuous map. Define r −1 : T (C) → T (A) by 

 

𝑟−1(𝑡)(𝑎) = lim
𝑛→∞

𝑡(𝐿𝑛(𝑎)) = lim
𝑛→∞

𝑡(∅𝑛,∞(𝐿𝑛(𝑎))) for all t∈ T(C) and 𝑎 ∈ 𝐴 

To justify the definition, we first need to show that lim
𝑛→∞

𝑡(∅𝑛,∞(𝐿𝑛(𝑎)))exists. Let 𝑎 ∈ ℱ𝑛 

and k > 0. Define 

𝑏𝑛,𝑘,1(𝑎) = (𝑝𝑛+𝑘+2 − 𝑞𝑛+𝑘+2)𝐿𝑛+𝑘+2(𝑎)(𝑝𝑛+𝑘+2 − 𝑞𝑛+𝑘+2), 

𝑏𝑛,𝑘,2(𝑎) = (𝑝𝑛+𝑘+2 − 𝑞𝑛+𝑘+2)𝐿𝑛+𝑘+2(𝑎)𝑞𝑛+𝑘+2              𝑎𝑛𝑑 

𝑏𝑛,𝑘,3(𝑎) = 𝑞𝑛+𝑘+2𝐿𝑛+𝑘+2(𝑎)(𝑝𝑛+𝑘+2 − 𝑞𝑛+𝑘+2) 

and define 

𝑏𝑛,𝑘,1(𝑎) = 𝑝𝑛+𝑘+2(1 − 𝑞𝑛+𝑘+1)𝐿𝑛+𝑘+2(𝑎)(1 − 𝑝𝑛+𝑘+1)𝑝𝑛+𝑘+2, 

𝑏𝑛,𝑘,2(𝑎) = 𝑝𝑛+𝑘+2(1 − 𝑞𝑛+𝑘+2)𝐿𝑛+𝑘+2(𝑎)𝑝𝑛+𝑘+1𝑝𝑛+𝑘+2    𝑎𝑛𝑑 

𝑏𝑛,𝑘,3(𝑎) = 𝑝𝑛+𝑘+2𝑝𝑛+𝑘+1𝐿𝑛+𝑘+1(𝑎)(1 − 𝑝𝑛+𝑘+1)𝑝𝑛+𝑘+2 

Note that 𝑏𝑛,𝑘,𝑖(𝑎)  ∈ 𝐶𝑛+𝑘+2, i = 1, 2, 3. By (2) and (1) above, in A, 

 ‖[∅𝑛+1°𝐿𝑛+𝑘+1(𝑎) − 𝐿𝑛+𝑘+2(𝑎)] − [𝑏𝑛,𝑘,1(𝑎)𝑏𝑛,𝑘,2(𝑎)𝑏𝑛,𝑘,3(𝑎)]‖ < 5/2𝑛+𝑘+2 +

5𝜂𝑛+𝑘+2/2𝑛+𝑘+2                                                                 (4) 

We also estimate: 

 ‖(𝑏𝑛,𝑘,1(𝑎)𝑏𝑛,𝑘,2(𝑎)𝑏𝑛,𝑘,3(𝑎)) − (𝑏𝑛,𝑘,1(𝑎)𝑏𝑛,𝑘,2(𝑎)𝑏𝑛,𝑘,3(𝑎))‖ < 3/2𝑛+𝑘+2 



101 
 

It follows that (in 𝐶𝑛+𝑘+2)        

 ‖(∅𝑛+1°𝐿𝑛+𝑘+1(𝑎) − 𝐿𝑛+𝑘+2(𝑎)) − (𝑏𝑛,𝑘,1(𝑎)𝑏𝑛,𝑘,2(𝑎)𝑏𝑛,𝑘,3(𝑎))‖ 

< 8/2𝑛+𝑘+2 + 5𝜂𝑛+𝑘+2/2𝑛+𝑘+2                     (5) 

By (5),  

 

‖(𝐿𝑛+𝑘+1(𝑎) − 𝐿𝑛+𝑘+2(𝑎)) − ∅𝑛+𝑘+2,∞ (𝑏𝑛,𝑘,1(𝑎)𝑏𝑛,𝑘,2(𝑎)𝑏𝑛,𝑘,3(𝑎))‖ 

< 1/2𝑛+𝑘−1 + 5𝜂𝑛+𝑘+2/2𝑛+𝑘+2  (6) 

By (iv), in 𝐾0(C), 

2𝑛+𝑘+1[∅𝑛+𝑘+2,∞(𝑝𝑛+𝑘+2 − 𝑞𝑛+𝑘+2)] ⩽ [∅𝑛+𝑘+2,∞(𝑞𝑛+𝑘+2)] 

It follows that, for any t ∈ T (C), 

t (∅𝑛+𝑘+2,∞(𝑝𝑛+𝑘+2 − 𝑞𝑛+𝑘+2))< 1/2𝑛+𝑘+1. 

From this, we estimate that 

t (∅𝑛+𝑘+2,∞(𝑏𝑛,𝑘,𝑖(𝑎))) ⩽  ‖𝑎‖2𝑛+𝑘+1, i = 1, 2, 3 

for all t ∈ T (C). Combing this with (e6), we have 

|t ((𝐿𝑛+𝑘+1(𝑎)) − t ((𝐿𝑛+𝑘+2(𝑎))| <  1/2𝑛+𝑘−1 + 5𝜂𝑛+𝑘+2/2𝑛+𝑘+2 + 3‖𝑎‖/2𝑛+𝑘+1. 

Hence 

|t ((𝐿𝑛+1(𝑎)) − t ((𝐿𝑛+𝑚(𝑎))| < ∑(1/2𝑛+𝑘−1 + 5𝜂𝑛+𝑘+2/2𝑛+𝑘+2 + 3‖𝑎‖/2𝑛+𝑘+1)

𝑚

𝑘=0

 → 0 

as n → ∞. This proves that lim
𝑛→∞

(∅𝑛,∞(𝐿𝑛(𝑎))exists. Then one shows that 𝑟 −1(t ) is well 

defined. By (ii), which we have shown, 𝑟 −1(t ) is a trace on A. It is then clear that𝑟 −1 is an 

affine continuous map. It should be noted that even if 𝑎 ∈ 𝐶𝑚 (for 𝑚 <  𝑛), 𝐿𝑛(𝑎)  ∈ 𝐶𝑛. 

Now let τ ∈T (A) and 𝑎∈ A. To show that (𝑟 −1 ◦ r )(τ )(a) = τ (a), we note that 

(𝑟 −1 ◦ r )(τ )(a) = lim
𝑛→∞

r(τ )(∅𝑛,∞(𝐿𝑛(𝑎)) = lim
𝑛→∞

( lim
𝑘→∞

τ (∅𝑛,𝑘(𝐿𝑛(𝑎)) 

for all a ∈ A and τ ∈ T (A). Let ε > 0. Without loss of generality, we may assume that 𝑎 ∈ ℱ𝑛 

for some integer 𝑛 > 0. Moreover, with sufficiently large 𝑛, we may assume that 1/2𝑛< ε/8 

and  

‖𝐿𝑛(𝑎)  −  𝑝𝑛𝑎𝑝𝑛‖< ε/4. 

One estimates, by (e1) (with k > n), 

‖∅𝑛,𝑘(𝐿𝑛(𝑎)) − 𝑝𝑘𝑝𝑘−1. . . 𝑝𝑛+1𝑝𝑛𝑎𝑝𝑛𝑝𝑛+1. . . 𝑝𝑘−1𝑝𝑘‖ < ∑ 1/2𝑛+𝑗 +

𝑘−𝑛

𝑗=1

ε/4 < 𝜀/2 

By (iii) and as in (3), one has         

|τ (𝑝𝑘𝑝𝑘−1 … 𝑝𝑛+1𝑝𝑛𝑎𝑝𝑛𝑝𝑛+1 … 𝑝𝑘−1𝑝𝑘) − τ(a)| 

< 3‖𝑎‖ ∑ 1/2𝑛+2𝑘−𝑛
𝑗=1 < 3‖𝑎‖ε/8     for all τ ∈ T (A) 

It follows that 
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|τ (∅𝑛,𝑘(𝐿𝑛(𝑎))) − τ(a)| < 3‖𝑎‖ε/8 +  ε/2    for all τ ∈ T (A) 

if k > n. Therefore           

(5) τ (a) = lim
𝑛→∞

( lim
𝑘→∞

τ (∅𝑛,𝑘(𝐿𝑛(𝑎))))for all a ∈ A and τ ∈T (A).  

This also proves 𝑟 −1 ◦ r (τ )(a) = τ (a) for all a ∈ A and τ ∈ T (A). Therefore 𝑟 −1 ◦ r  = 

𝑖𝑑T (A). 

Suppose that t ∈ T (C) and 𝑏 ∈ 𝐶𝑛. Then 

𝑟◦𝑟 −1(τ)(∅𝑛,∞(𝑏))= lim
𝑘→∞

𝑟 −1 (τ) (∅𝑛,𝑘(𝑏))= lim
𝑘→∞

( lim
𝑚→∞

τ (∅𝑚,∞ (𝐿𝑚 (∅𝑛,𝑘(𝑏))))).  

 

Fix ε > 0. Choose k > n such that 1/2𝑘< ε/32. We may assume that ‖𝑏‖ ⩽1. For any m > k, 

put 𝑟𝑗  =  ∅𝑗,𝑚(𝑝𝑗), 𝑗 =  𝑘, . . . , 𝑚 −  1. Since ∅𝑗  (𝑝𝑗) ⩽ 𝑝𝑗+1, 𝑟𝑗 ⩽ 𝑟𝑗+1. By choosing a larger 

k, applying (1) and (2) above, we may assume that there is 𝑐1∈ A such that (we view 

∅𝑛,𝑘(𝑏)∈𝐶𝑘⊂ A) 

𝑟𝑗𝑐1  =  𝑐1𝑟𝑗  , 𝑘 +  1 ⩽   𝑗 ⩽  𝑚 −  1, 𝑎𝑛𝑑 ‖𝑐1  −  ∅𝑛,𝑘(𝑏)‖ <  𝜀/8. 

We also have 

‖∅𝑛,𝑚(𝑏) − 𝑝𝑚𝑟𝑚−1. . . 𝑟𝑘∅𝑛,𝑘(𝑏)𝑟𝑘. . . 𝑟𝑚−1𝑝𝑚‖ < ∑ 2𝑘+𝑗

𝑚−𝑘

𝑗=1

< 𝜀/8 

Put𝑐2  =  𝑝𝑚𝑟𝑚−1. . . 𝑟𝑘𝑐1. It then follows that      

𝑐3 = 𝐿𝑚(𝑐1) − 𝑐2 ⩽ 2(𝑝𝑚 − 𝑟𝑘) 

Since each 𝐶𝑗has stable rank one, by (4), there are 𝑦𝑖 ∈ 𝐶𝑚such that𝑦𝑖
∗𝑦𝑖 = 𝑝𝑚 −

𝑟𝑘and𝑦𝑖𝑦𝑖
∗(1 ⩽ 𝑖 ⩽ 2𝑚)are mutually orthogonal. Let 𝓏𝑖 = ∅𝑚,∞(𝑦𝑖),𝑖=1, 2, . . . , 2𝑚. Then 

𝓏𝑖
∗𝓏𝑖 = ∅𝑚,∞(𝑝𝑚 − 𝑟𝑘)and𝓏𝑖𝓏𝑖

∗(1 ⩽ 𝑖 ⩽ 2𝑚) are mutually orthogonal. It follows that 

       

𝑡(∅𝑚,∞ (𝑐3) ⩽ 2(1/2𝑚) <  𝜀/8 

for all t ∈T (C). On the other hand, from the above estimates,    

‖[∅𝑚,∞ (𝐿𝑚 (∅𝑛,𝑘(𝑏))) − ∅𝑛,∞(𝑏)] − ∅𝑚,∞(𝑐3)‖ 

⩽ ‖[𝐿𝑚 (∅𝑛,𝑘(𝑏)) − ∅𝑛,𝑚(𝑏)] − 𝑐3‖ 

⩽ ‖𝐿𝑚 (∅𝑛,𝑘(𝑏)) − 𝐿𝑚(𝑐1)‖ + ‖∅𝑛,𝑚(𝑏) − 𝑐2‖ + ‖(𝐿𝑚(𝑐1) − 𝑐2) − 𝑐3‖ 

⩽ 𝜀/8 + (𝜀/8 +  𝜀/8)  +  0 =  3𝜀/8. 

It follows that 

 

|𝑡(∅𝑚,∞ (𝐿𝑚 (∅𝑛,𝑘(𝑏)))) −  𝑡(∅𝑛,𝑚(𝑏))| < 3𝜀/8 + 𝑡(∅𝑛,𝑚(𝑐3)) < 3𝜀/8 + 𝜀/8 < 𝜀 

for all t ∈T (C) if m > k. Thus        
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(6) 𝑡 (∅𝑛,∞(𝑏)) = lim
𝑘→∞

( lim
𝑚→∞

𝑡(∅𝑚,∞(𝐿𝑚(∅𝑛,𝑘(𝑏))))) for all 𝑏 ∈ 𝐶𝑛and  τ ∈ 𝑇 (𝐶) 

    It follows that r ◦ 𝑟 −1 = id𝑇(𝐶). Thus we have shown that r is an affine continuous sur-

jective map with an affine continuous inverse 𝑟 −1. To see r is face-preserving, let τ ∈ T (A), 

𝑡1, 𝑡2∈ T (C) and 0 ⩽  𝑎 ⩽  1 for which 

𝑟 (𝜏 )  =  𝑎𝑡1  +  (1 −  𝑎)𝑡2. 

Let 𝜏1, 𝜏2∈ T (A) such that 𝑟 (𝜏𝑖)  =  𝑡𝑖  , i = 1, 2. Then, since r −1 is the inverse of r , we see 

that 

𝜏 =  𝑎𝜏1  +  (1 −  𝑎)𝜏2. 

Fix a projection p ∈ A and s ∈𝑆𝑢 (𝐾0(𝐶)). One obtains a sequence of projections 𝑒𝑛 ∈ 𝐶𝑛 

such that 

lim
𝑛→∞

‖𝑝𝑛𝑝𝑝𝑛 − 𝑒𝑛‖ = 0 

or equivalently 

lim
𝑛→∞

‖𝐿𝑛(𝑝) − 𝑒𝑛‖ = 0 

We have shown that, for each t ∈ T (C), lim
𝑛→∞

𝑡(∅𝑛,∞(𝐿𝑛(𝑝)))exists. So lim
𝑛→∞

𝑡(∅𝑛,∞(𝐿𝑛(𝑒𝑛))) 

exists. If p ∈𝑀𝐾(A) for some integer K > 0, by replacing C by 𝑀𝐾 (C) 𝑝𝑛diag(𝑝𝑛, . . . , 𝑝𝑛), 

we also obtain a projection 𝑒𝑛 ∈ 𝐶𝑛 such that 

lim
𝑛→∞

𝑡(∅𝑛,∞(𝐿𝑛(𝑝))) = lim
𝑛→∞

𝑡 (∅𝑛,∞(𝐿𝑛(𝑒𝑛)))                             (7) 

Since C is an inductive limit of 𝐶∗-algebras  in  I, there exists 𝜎𝑠∈ T (C) such that s([e]) = 𝜎𝑠 

(e) for any projection e ∈𝑀𝐾 (C) and for any integer K⩾1 (recall that we use 𝜎𝑠 for 𝜎𝑠⊗ T r 

). Suppose that 𝜎𝑠 , 𝜏𝑠 ∈  𝑇 (𝐶) such that 𝜎𝑠 (𝑒)  =  𝜏𝑠 (𝑒) for all projections 𝑒 ∈ 𝑀𝐾 (C) (for 

all integer K⩾1). For any projection 𝑝 ∈ 𝑀𝐾  (𝐶), let 𝑒𝑛 be a projection in 𝐶𝑛 for which (7) 

holds. Then 

lim
𝑛→∞

𝜎𝑠(∅𝑛,∞°𝐿𝑛(𝑝)) = lim
𝑛→∞

𝜎𝑠(∅𝑛,∞(𝑒𝑛)) = lim
𝑛→∞

𝜏𝑠(∅𝑛,∞(𝑒𝑛)) = lim
𝑛→∞

𝜏𝑠(∅𝑛,∞°𝐿𝑛(𝑝)) 

It follows that the map         

𝑟(𝑠)([𝑝]) = 𝑟−1(𝜎𝑠)(𝑝) = lim
𝑛→∞

𝜎𝑠(∅𝑛,∞(𝐿𝑛(𝑝))) = lim
𝑛→∞

𝑠([∅𝑛,∞(𝑒𝑛)])         (8) 

is independent of the choices of 𝜏𝑠 and is well defined from 𝑆𝑢 (𝐾0(𝐶)) to 𝑆𝑢 (𝐾0(A)). (Here 

we extend 𝐿𝑛 and ∅𝑛,∞ to 𝑀𝐾 (A) and 𝑀𝐾 (C) in the obvious way.) It is clear that r is affine. 

Let t ∈𝑆𝑢 (𝐾0(A)). Since A is a simple 𝐶∗-algebra with TR(A)⩽1, there exists 𝜏𝑡∈T(A) such 

that 𝜏𝑡 induces 𝑡. Suppose that 𝜎𝑡∈T(A) such that 𝜏𝑡 (p) = 𝜎𝑡 (p) for all projections p ∈𝑀𝐾 

(A) (for all integer K⩾1). Let e ∈𝑀𝐾  (𝐶𝑛) be a projection. Then (note that 𝐶𝐾⊂ A) 

lim
𝑘→∞

𝜏𝑡(∅𝑛,𝑘(𝑒)) = lim
𝑘→∞

𝜎𝑡(∅𝑛,𝑘(𝑒)) 

𝑟 
 (𝑡)([∅𝑛,∞(𝑒)]) = 𝑟 (𝑡)(∅𝑛,∞(𝑒)) = lim

𝑘→∞
𝜏𝑡(∅𝑛,𝑘(𝑒))= lim

𝑘→∞
𝑡([∅𝑛,𝑘(𝑒)]) 

is independent of the choice of 𝜏𝑡and it is well-defined affine map (where we view 𝐶𝑛as a  
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𝐶∗-subalgebra of A).        

Now let p∈ A be a projection and t∈𝑆𝑢 (𝐾0(A)). By 10.2, t is induced by a trace 𝜏𝑡∈ T (A). 

One has, by (5) and (e8), 

𝑟 (𝑟 
 (𝑡))([𝑝])

= lim
𝑛→∞

𝑟 
 (𝑡)([∅𝑛,∞(𝐿𝑛(𝑝))]) = lim

𝑛→∞
( lim

𝑘→∞
𝜏𝑡(∅𝑛,𝑘(𝐿𝑛(𝑝)))) = 𝜏𝑡(𝑝) = 𝑡([𝑝]) 

It follows that r  ◦ r= id𝑆𝑢 (𝐾0 (A)). On the other hand, let 𝑒 ∈ 𝑀𝐾  (𝐶𝑛) be a projection and  

s ∈𝑆𝑢 (𝐾0(C)). Let 𝜎𝑠∈ T (C) which induces s. Then, by (6),  

𝑟 
 (𝑟 (𝑠))([∅𝑛,∞(𝑒)])

= lim
𝑘→∞

𝑟 (𝑠)([∅𝑛,𝑘(𝑒)])

= lim
𝑘→∞

( lim
𝑚→∞

𝜎𝑠(∅𝑚,∞(𝐿𝑚(∅𝑛,𝑘(𝑒))))) = 𝜎𝑠 (∅𝑛,∞(𝑒)) = 𝑠([∅𝑛,∞(𝑒)]) 

Thus r ◦ r  = id𝑆𝑢 (𝐾0 (A)).         

Lemma(4.2.18)[89]:  Let A be a unital separable simple nuclear 𝐶∗-algebra with TR(A)⩽1. 

Then the map λ : T (A) → 𝑆𝑢 (𝐾0 (A)) maps 𝜕𝑒(T (A)) onto 𝜕𝑒(𝑆𝑢 (𝐾0 (A))). Moreover, if A 

is infinite-dimensional,𝐾0(𝐴)/𝑡𝑜𝑟(𝐾0(𝐴)) ≇ 𝕫. In particular, there is a unital simple AH-

algebra B with no dimension growth described in 10.1 such that 

(𝐾0(𝐴), 𝐾0(𝐴)+, [1𝐴], 𝐾1(𝐴), 𝑇 (𝐴)) = (𝐾0(𝐵), 𝐾0(𝐵)+, [1𝐵], 𝐾1(𝐵), 𝑇 (𝐵)) 

Proof. We will apply Lemma (4.2.17). Let C be the inductive limit of 𝐶∗-algebras in I as 

describedin Lemma (4.2.17). the map from T (𝐶̃) to 𝑆𝑢 (𝐾0 (𝐶̃)) maps extremal points onto 

extremal points. Let 𝑡0∈T (𝐶̃) be the trace such that 𝑡0(C)= 0 for all c ∈C and let 𝑠0 ∈

𝑆𝑢 (𝐾0 (𝐶̃) such that 𝑠0(x) =0 for all 𝑥 ∈ 𝑗∗(𝐾0 (𝐶)), where j : C → 𝐶̃ is the embedding. Note 

thatT(𝐶̃)is the set of convex combinations of τ∈T (C) and𝑡0and 𝑆𝑢 (𝐾0 (𝐶̃)) is the set of con- 

vex combinations of s ∈𝑆𝑢 (𝐾0 (C)) and 𝑠0. Suppose that τ∈𝜕𝑒(T (A)). Then, by 10.8, 𝑟  (𝜏)∈ 

𝜕𝑒(T (C)) ⊂ 𝜕𝑒(T (𝐶̃)). It follows that𝑟 (𝜏)gives an extremal state𝑠𝜏in𝑆𝑢 (𝐾0 (𝐶̃)). It fol- 

lows that 𝑠𝜏∈𝜕𝑒(𝑆𝑢 (𝐾0(𝐶))). Note that λ(τ ) = 𝑟  (𝑠𝜏 ). This shows that λ(𝜕𝑒(T (A))) 

⊂𝜕𝑒(𝑆𝑢 (𝐾0(𝐴))). To see that λ(𝜕𝑒(T (A))) = 𝜕𝑒(𝑆𝑢 (𝐾0(𝐴))), let s ∈𝜕𝑒(𝑆𝑢 (𝐾0(𝐶))). Set 

F ={τ ∈ T (A): λ(τ ) = s}. 

It is clear that F is a closed and convex subset of T (A). Furthermore it is a face. By the 

Krein–Milman theorem, it contains an extremal point t. Since F is a face, 𝑡 ∈ 𝜕𝑒(𝑇 (𝐴)).  

To see 𝐾0(𝐴)/𝑡𝑜𝑟(𝐾0(𝐴)) ≇ ℤ when A is infinite-dimensional, we note that A has (SP). 

Since A is simple, we obtain, for any integer n > 0, n + 1 mutually orthogonalnonzero  

projections  𝑝1, 𝑝2, . . . , 𝑝𝑛and q in A for which 1 = 𝑞 + ∑ 𝑝𝑖
𝑛
𝑖=1 , [𝑝1]  =  [𝑝𝑖] (𝑖 =

1, 2, . . . , 𝑛) and [𝑞] ⩽  [𝑝1]. This implies that 𝐾0(𝐴)/𝑡𝑜𝑟(𝐾0(𝐴)) ≇ ℤ.  

Theorem(4.2.19)[89]:  Let A and B  be two unital separable nuclear simple 𝐶∗-algebras with 

TR(A) ⩽ 1 and TR(B) ⩽1 which satisfy the AUCT. Then A ≅ B if and only if 

(𝐾0(𝐴), 𝐾0(𝐴)+, [1𝐴], 𝐾1(𝐴), 𝑇 (𝐴)) ≅ (𝐾0(𝐵), 𝐾0(𝐵)+, [1𝐵], 𝐾1(𝐵), 𝑇 (𝐵)) 
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List of Symbols 

 

Symbol  page 

⊕        :   orthogonal sum        1 

 Aut     :   Automorphism    1 

dim      : dimension 2 

 min     : minimum 6 

max     : maximum 6 

Lim      :  limit     8 

⊗         : tensor product    19 

det       : determinanl 21 

Hom     : homomorphism 22 

log        : logarithm 25 

exp       : exponent 27 

diag      : diagonal 27 

TR        : trace   28 

dist       : distance 33 

Ker       : kernel 38 

inf         : infimum 51 

sup       : supremum 52 
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