Chapter 3

Homotopy and Result of Equivalence Approximate

Let C be a unital separable amenable simple C^* -algebra with tracial rank no more than one which also satisfies the UCT. Suppose that $\phi: C \to A$ is a unital monomorphism and suppose that $v \in A$ is a unitary with [v] = 0 in $K_1(A)$ such that v almost commutes with v. It is shown that there is a continuous path of nitaries v and v and v and v and v are also presented.

Section (3.1) Homotopy of Unitaries in Simple C*-Algebras with Tracial Rank One

Fix a positive number $\epsilon > 0$. Can one find a positive number δ such that, for any pair of unitary matrices u and $v(K_1(M_n) = \{0\})$ for any integer $n \geq 1$ with $||uv - vu|| < \delta$, there exists a continuous path of unitary matrices $\{v(t): t \in [0,1]\}$ for which v(0) = v, v(1) = 1 and $||uv(t) - v(t)u|| < \epsilon$ for all $t \in [0,1]$? The answer is negative in general. A Bott element associated with the pair of unitary matrices may appear. The hidden topological obstruction can be detected in a limit process. This was first found by Dan Voiculescu [29]. On the other hand, it has been proved that there is such a path of unitary matrices if an additional condition, bott1(u,v) = 0, is provided (see, for example, [57] and also in [70]).

It was recognized by Bratteli, Elliott, Evans and Kishimoto [57] that the presence of such continuous path of unitaries in general simple C^* –algebras played an important role in the study of classification of simple C^* –algebras and perhaps plays important roles in some other areas such as the study of automorphism groups (see, for example, [12,24,21]). They proved what they called the Basic Homotopy Lemma: For any $\epsilon > 0$, there exists $\delta > 0$ satisfying the following:

For any pair of unitaries u and v in A with $\operatorname{sp}(u)$ δ -dense in \mathbb{T} and [v] = 0 in $K_1(A)$ for which

$$||uv - vu|| < \delta$$
 and $bott_1(u, v) = 0$,

there exists a continuous path of unitaries $\{v(t): t \in [0,1]\} \subset A$ such that

$$v(0) = v$$
, $v(1) = 1_A$ and $||v(t)u - uv(t)|| < \epsilon$

for all $t \in [0,1]$, where A is a unital purely infinite simple C^* -algebra or a unital simple C^* -algebra with real rank zero and stable rank one. Define $\phi : C(\mathbb{T}) \to A$ by $\phi(f) = f(u)$ for all $f \in C(\mathbb{T})$. Instead of considering a pair of unitaries, one may consider a unital homomorphism from $C(\mathbb{T})$ into A and a unitary $v \in A$ for which v almost commutes with ϕ .

In the study of asymptotic unitary equivalence of homomorphisms from an AH -algebra to a unital simple C^* -algebra, as well as the study of homotopy theory in simple C^* -algebras, one considers the following problem: Suppose that X is a compact metric space and ϕ is a unital homomorphism from C(X) into a unital simple C^* -algebra A. Suppose that there is a unitary $u \in A$ with [u] = 0 in $K_1(A)$ and u almost commutes with ϕ . When can one find a continuous path of unitaries $\{u(t): t \in [0,1]\} \subset A$ with u(0) = u and u(1) = 1 such that u(t) almost commutes with ϕ for all $t \in [0,1]$?

Let C be a unital AH —algebra and let A be a unital simple C^* —algebra. Suppose that ϕ, ψ : $C \to A$ are two unital monomorphisms. Let us consider the question when ϕ and ψ are asymptotically unitarily equivalent, i.e., when there is a continuous path of unitaries $\{w(t): t \in [0,\infty)\} \subset A$ such that

$$\lim_{t\to\infty} w(t)^* \, \phi(c) w(t) \, = \, \psi(c) \quad \text{for all } c \, \in \, C.$$

We study the case that A is no longer assumed to have real rank zero, or tracial rank zero. The result of W. Winter in [30] provides the possible classification of simple finite C^* –algebras far beyond the cases of finite tracial rank. However, it requires to understand much more about asymptotic unitary equivalence in those unital separable simple C^* –algebras which have been classified. An immediate problem is to give a classification of monomorphisms (up

to asymptotic unitary equivalence) from a unital separable simple AH —algebra into a unital separable simple C^* —algebra with tracial rank one. For that goal, it is paramount to study the Basic Homotopy Lemmas in a simple separable C^* —algebras with tracial rank one. This is the main purpose.

A number of problems occur when one replaces C^* -algebras of tracial rank zero by those of tracial rank one. First, one has to deal with contractive completely positive linear maps from C(X) into a unital C^* -algebra C with the form $C([0,1],M_n)$ which are *not* homomorphisms but almost multiplicative. Such problem is already difficult when $C = M_n$ but it has been proved that these above mentioned maps are close to homomorphisms if the associated K-theoretical

data of these maps are consistent with those of homomorphisms. It is problematic when one tries to replace M_n by $C([0,1],M_n)$. In addition to the usual K-theory and trace information, one also has to handle the maps from U(C)/CU(C) to U(A)/CU(A), where CU(C) and CU(A) are the closure of the subgroups of U(C) and U(A) generated by commutators, respectively.

Other problems occur because of lack of projections in C^* -algebras which are not of real rank zero.

The main theorem is stated as follows: Let C be a unital separable simple amenable C^* -algebra with tracial rank one which satisfies the Universal Coefficient Theorem. For any $\epsilon > 0$ and any finite subset $\mathcal{F} \subset C$, there exist $\delta > 0$, a finite subset $\mathcal{G} \subset C$ and a finite subset $\mathcal{F} \subset K(C)$

satisfying the following:

Suppose that A is a unital simple C^* —algebra with tracial rank no more than one, suppose that $\phi: C \to A$ is a unital homomorphism and $u \in U(A)$ such that

$$\|[\phi(c), u]\| < \delta \text{ for all } c \in \mathcal{G} \text{ and } \mathrm{Bott}(\varphi, u)|P = 0.$$
 (1)

Then there exists a continuous path of unitaries $\{u(t): t \in [0,1]\} \subset A$ such that

$$u(0) = u, u(1) = 1$$
 and $\|[\varphi(c), u(t)]\| < \epsilon$ for all $c \in \mathcal{F}$ (2)

and for all $t \in [0, 1]$.

We also give the following Basic Homotopy Lemma in simple C^* -algebras with tracial rank one.

Let $\epsilon > 0$ and let Δ : $(0,1) \to (0,1)$ be a non-decreasing map. We show that there exist $\delta > 0$ and $\eta > 0$ (which does not depend on Δ) satisfying the following:

Given any pair of unitaries u and v in a unital simple C^* –algebra A with tracial rank no more than one such that [v] = 0 in $K_1(A)$,

$$||[u,v]|| < \delta$$
, bott₁ $(u,v) = 0$ and $\mu_{\tau \circ l}(I_a) \ge \Delta(a)$

for all open arcs I_a with length $a \ge \eta$, there exists a continuous path of unitaries $\{v(t): t \in [0,1]\} \subset A$ such that

$$v(0) = v$$
, $v(1) = 1$ and $||[u, v(t)]|| < \epsilon$ for all $t \in [0, 1]$,

where $\iota: C(T) \to A$ is the homomorphism defined by $\iota(f) = f(u)$ for all $f \in C(\mathbb{T})$ and $\mu_{\tau \circ l}$ is the Borel probability measure induced by the state $\tau \circ l$. It should be noted that, unlike the case that A has real rank zero, the length of $\{v(t)\}$ cannot be controlled. In fact, it could be as long as one wishes.

In a subsequent paper [23], we use the main homotopy result Theorem (3.1.34) and the results in [22] to establish a K -theoretical necessary and sufficient condition for homomorphisms from unital simple AH-algebras into a unital separable simple C^* -algebra with tracial rank no more than one to be asymptotically unitarily equivalent which, in turn, combining with a result of W. Winter, provides a classification theorem for a class of unital separable simple amenable C^* -algebras which properly contains all unital separable simple amenable C^* -algebras with tracial rank no more than one which satisfy the UCT as well as some projectionless C^* -algebras such as the Jiang-Su algebra.

Let A be a unital C^* -algebra. Denote by T(A) the tracial state space of A and denote by Aff(T(A)) the set of affine continuous functions on T(A).

Let C = C(X) for some compact metric space X and let $L : C \to A$ be a unital positive linear map. Denote by $\mu_{\tau \circ l}$ the Borel probability measure induced by the state $\tau \circ l$, where $\tau \in T(A)$.

Let a and b be two elements in a C^* -algebra A and let $\epsilon > 0$ be a positive number. We write $a \approx_{\epsilon} b$ if $||a - b|| < \epsilon$. Let $L_1, L_2 : A \to C$ be two maps from A to another C^* -algebra C and let $\mathcal{F} \subset A$ be a subset. We write

$$L_1 \approx_{\epsilon} L_2$$
 on \mathcal{F} ,

if $L_1(a) \approx_{\epsilon} L_2(a)$ for all $a \in \mathcal{F}$.

Suppose that $B \subset A$. We write $a \in_{\epsilon} B$ if there is an element $b \in B$ such that $||a - b|| < \epsilon$..

Let $\mathcal{G} \subset A$ be a subset. We say L is $\epsilon - \mathcal{G}$ -multiplicative if, for any $a, b \in \mathcal{G}$, $L(ab) \approx_{\epsilon} L(a)L(b)$

For all $a, b \in \mathcal{G}$.

Let A be a unital C^* -algebra. Denote by U(A) the unitary group of A. Denote by $U_0(A)$ the normal subgroup of U(A) consisting of those unitaries in the path connected component of U(A) containing the identity. Let $u \in U_0(A)$. Define

$$cel_A(u) = \inf\{ length (\{u(t)\}): u(t) \in C([0,1], U_0(A)), u(0) = u \text{ and } u(1) = 1_A \}$$

We use cel(u) if the C^* -algebra A is not in question.

Denote by CU(A) the *closure* of the subgroup generated by the commutators of U(A). For $u \in U(A)$, we will use. u for the image of u in U(A)/CU(A). If $\bar{u} \cdot \bar{v} \in U(A)/CU(A)$, define

$$\operatorname{dist}(\bar{u}, \bar{v}) = \inf\{\|x - y\| : x, y \in U(A) \text{ such that } \bar{x} = \bar{u}, \bar{y} = \bar{v}.$$

If $u, v \in U(A)$, then

$$\operatorname{dist}(\bar{u}, \bar{v}) = \inf \{ \|uv^* - x\| : x \in CU(A) \}.$$

Let A and B be two unital C^* -algebras and let $\phi: A \to B$ be a unital homomorphism.

It is easy to check that ϕ maps CU(A) to CU(B). Denote by ϕ^{\ddagger} the homomorphism from U(A)/CU(A) into U(B)/CU(B) induced by ϕ . We also use ϕ^{\ddagger} for the homomorphism from $U(M_k(A))/CU(M_k(A))$ into $U(M_k(B))/CU(M_k(B))$ (k = 1, 2, ...).

Let A and C be two unital C^* -algebras and let $F \subset U(C)$ be a subgroup of U(C). Suppose that $L: F \to U(A)$ is a homomorphism for which $L(F \cap CU(C)) \subset CU(A)$. We will use $L^{\ddagger}: F/CU(C) \to U(A)/CU(A)$ for the induced map.

Let A and B be as in 2.6, let $1 > \epsilon > 0$ and let $G \subset A$ be a subset. Suppose that L is a $\epsilon - G$ multiplicative unital completely positive linear map. Suppose that $u, u^* \in G$. Define $\langle L \rangle(u) = L(u)L(u^*u)^{-1/2}$.

Definition (3.1.1)[84]:

Let A and B be two unital C^* -algebras. Let $h: A \to B$ be a homomorphism and let $v \in U(B)$ such that

h(g)v = vh(g) for all $g \in A$.

Thus we obtain a homomorphism. $\bar{h}: A \otimes C(S^1) \to B$ by $\bar{h}(f \otimes g) = h(f)g(v)$ for $f \in A$ and $g \in C(S^1)$. From the following splitting exact sequence

$$0 \to SA \to A \otimes C(S^1) \leftrightarrows A \to 0 \tag{3}$$

and the isomorphisms $K_i(A) \to K_{1-i}(SA)$ (i = 0, 1) given by Bott periodicity, one obtains two injective homomorphisms

$$\beta^{(0)}: K_0(A) \to K_1(A \otimes C(S^1)) \tag{4}$$

$$\beta^{(1)}: K_1(A) \to K_0(A \otimes C(S^1))$$

$$\tag{5}$$

Note, in this way, one can write $K_i(A \otimes C(S^1)) = K_i(A) \oplus \beta^{(1-i)}(K_{1-i}(A))$. We use $\widehat{\beta^{(i)}}: K_i(A \otimes C(S^1)) \to \beta^{(1-i)}(K_{1-i}(A))$ for the projection to the summand $\beta^{(1-i)}(K_{1-i}(A))$ For each integer $k \geq 2$, one also obtains the following injective homomorphisms

$$\beta_k^{(i)}: K_i(A, \mathbb{Z}/k\mathbb{Z}) \to K_{1-i} (A \otimes C(S^1), \mathbb{Z}/k\mathbb{Z}), \quad i = 0, 1.$$
 (6)

Thus we write

$$K_{1-i} (A \otimes C(S^1), \mathbb{Z}/k\mathbb{Z}) = K_{1-i} (A, \mathbb{Z}/k\mathbb{Z}) \otimes \beta_k^{(i)} (K_i(A, \mathbb{Z}/k\mathbb{Z})), i = 0, 1.$$
 (7)

Denote by $\widehat{\beta_k^{(i)}}: K_i(A \otimes C(S^1)) \to \beta_k^{(1-i)} K_{1-i}(A, \mathbb{Z}/k\mathbb{Z})$ similarly to $\widehat{\beta^{(i)}}$, i = 1.2.. If $x \in \underline{K}(A)$, we use $\beta(x)$ for $\beta^{(i)}(x)$ if $x \in K_i(A)$ and for $\beta_k^{(i)}(x)$ if $x \in K_i(A, \mathbb{Z}/k\mathbb{Z})$. Thus we have a map $\beta: \underline{K}(A) \to \underline{K}(A \otimes C(S^1))$ as well as $\beta: \underline{K}(A \otimes C(S^1)) \to \beta(\underline{K}(A))$. Thus one may write $K(A \oplus C(S^1)) = K(A) \oplus \beta(K(A))$.

On the other hand h induces homomorphisms $\bar{h}_{*i,k}: K_i(A \otimes C(S^1), \mathbb{Z}/k\mathbb{Z}) \to K_i(B, \mathbb{Z}/k\mathbb{Z}), k = 0, 2, ..., \text{ and } i = 0, 1.$ We use Bott(h, v) for all homomorphisms. $\bar{h}_{*i,k} \circ \beta_k^{(i)}$. We write

$$Bott(h, v) = 0$$

if . $\bar{h}_{*i,k} \circ \beta_k^{(i)} = 0$ for all $k \geq 1$ and i = 0, 1.

We will use $\operatorname{bott}_1(h,v)$ for the homomorphism $.\bar{h}_{1,0} \circ \beta^{(1)} : K_1(A) \to K_0(B)$, and $\operatorname{bott}_0(h,u)$ for the homomorphism $\bar{h}_{0,0} \circ \beta^{(0)} : K_0(A) \to K_1(B)$.

Since A is unital, if $bott_0(h, v) = 0$, then [v] = 0 in $K_1(B)$.

For a fixed finite subset $\mathcal{P} \subset K(A)$, there exist $\delta > 0$ and a finite subset $\mathcal{G} \subset A$ such that, if $v \in B$ is a unitary for which

$$||h(a)v - vh(a)|| < \delta$$
 for all $a \in \mathcal{G}$,

then Bott(h, v)|P is well defined. In what follows, whenever we write Bott(h, v)|P, we mean that δ is sufficiently small and G is sufficiently large so it is well defined.

Now suppose that $K_i(A)$ is finitely generated (i = 0, 1). For example, A = C(X), where X is a finite CW complex. When $K_i(A)$ is finitely generated, $Bott(h, v)|P_0$ defines Bott(h, v) for some sufficiently large finite subset P_0 . In what follows such P_0 may be denoted by P_a Suppose that $P \subset K(A)$ is a larger finite subset, and $\mathcal{G} \supset \mathcal{G}_0$ and $0 < \delta < \delta_0$.

Bott(h, v)|P defines the same map Bott(h, v) as $Bott(h, v)|P_0$ defines, if

$$||h(a)v - vh(a)|| < \delta$$
 for all $a \in \mathcal{G}$,

when $K_i(A)$ is finitely generated. In what follows, in the case that $K_i(A)$ is finitely generated, whenever we write Bott(h, v), we always assume that δ is smaller than δ_0 and \mathcal{G} is larger than \mathcal{G}_0 so that Bott(h, v) is well defined (see [70] for more details).

In the case that $A = C(S^1)$, there is a concrete way to visualize $bott_1(h, v)$. It is perhaps helpful to describe it here. The map $bott_1(h, v)$ is determined by $bott_1(h, v)([z])$ where z is the identity map on the unit circle.

Denote u = h(z) and define

$$f(e^{2\pi it}) = \begin{cases} 1 - 2t, & \text{if } 0 \le t \le 1/2, \\ -1 + 2t, & \text{if } 1/2 \le t \le 1, \end{cases}$$

$$g(e^{2\pi it}) = \begin{cases} \left(f(e^{2\pi it}) - f(e^{2\pi it})^2\right)^{1/2}, & \text{if } 0 \le t \le 1/2, \\ 0, & \text{if } 1/2 < t \le 1, \end{cases}$$

and

$$\mathbf{h}\!\left(e^{2\pi i t}\right) = \begin{cases} 0, & \text{if } 0 \le t \le 1/2, \\ \left(f\!\left(e^{2\pi i t}\right) - f\!\left(e^{2\pi i t}\right)^2\right)^{1/2}, & \text{if } 1/2 < t \le 1, \end{cases}$$

These are non-negative continuous functions defined on the unit circle. Suppose that uv = vu.

Define

$$b(u,v) = \begin{pmatrix} f(v) & g(v) + h(v)u^* \\ g(v) + uh(v) & 1 - f(v) \end{pmatrix}.$$
 (8)

Then b(u,v) is a projection. There is $\delta_0 > 0$ (independent of unitaries u,v and A) such that if $\|[u,v]\| < \delta_0$, the spectrum of the positive element p(u,v) has a gap at 1/2. The

Bott element of u and v is an element in $K_0(A)$ as defined in [9,8] which may be represented by

$$bott_1(u, v) = \left[\chi[1/2, \infty)b(u, v)\right] - \left[\begin{pmatrix} 1 & 0\\ 0 & 0 \end{pmatrix}\right]. \tag{9}$$

Note that $\chi[1/2,\infty)$ is a continuous function on $\operatorname{sp}(b(u,v))$. Suppose that $\operatorname{sp}(b(u,v)) \subset (-\infty,a] \cup [1-a,\infty)$ for some 0 < a < 1/2. Then $\chi[1/2,\infty)$ can be replaced by any other positive continuous function F for which F(t) = 0 if $t \le a$ and F(t) = 1 if $t \ge 1/2$. **Definition** (3.1.2)[84]:

Let A and C be two unital C^* -algebras. Let $N: C_+ \setminus \{0\} \to N$ and $K: C_+ \setminus \{0\} \to \mathbb{R}_+ \setminus \{0\}$ be two maps. Define $T = N \times K: C_+ \setminus \{0\} \to N \times \mathbb{R}_+ \setminus \{0\}$ by T(c) = (N(c), K(c)) for $c \in C_+ \setminus \{0\}$. Let $L: C \to A$ be a unital positive linear map. We say L is T -full if for any $c \in C_+ \setminus \{0\}$, there are $x_1, x_2, \ldots, x_{N(c)} \in A$ with $||x_i|| \leq K(c)$ such that

$$\sum_{i=1}^{N(c)} x_i^* L(c) x_i = I_A.$$

Let $H \subset C + \setminus \{0\}$. We say that L is T - H -full if

$$\sum_{i=1}^{N(c)} x_i^* L(c) x_i = I_A.$$

for all $c \in H$.

Definition (3.1.3)[84]:

Denote by *I* the class of unital C^* -algebras with the form $\bigotimes_{i=1}^m C(X_i, M_{n(i)})$, where $X_i = [0, 1]$ or X_i is one point

Definition (3.1.4)[84]:

Let $k \ge 0$ be an integer. Denote by I_k the class of all C^* -algebras B with the form $= PM_m(C(X))P$, where X is a finite CW complex with dimension no more than k, P is a projection in $M_m(C(X))$.

Recall that a unital simple C^* -algebra A is said to have tracial rank no more than k (write $TR(A) \leq k$) if the following holds: For any $\epsilon > 0$, any positive element $a \in A_+ \setminus \{0\}$ and any finite subset $\mathcal{F} \subset A$, there exist a non-zero projection $p \in A$ and a C^* -subalgebra $B \in I_k$ with $1_B = p$ such that

- (i) $||xp px|| < \epsilon$ for all $x \in \mathcal{F}$;
- (i) $pxp \in_{\epsilon} B$ for all $x \in \mathcal{F}$; and
- (iii) 1 p is von Neumann equivalent to a projection in \overline{aAa} .

If $TR(A) \le k$ and $TR(A) \ne k-1$, we say A has tracial rank k and write TR(A) = k. It has been shown that if TR(A) = 1, then, in the above definition, one can replace B by a C^* -algebra in I (see [91]). All unital simple AH-algebra with slow dimension growth and real rank zero have tracial rank zero (see [31] and also [88]) and all unital simple AH-algebras with no dimension growth have tracial rank no more than one (see [51], or, Theorem 2.5 of [89]). Note that all AH -algebras satisfy the Universal Coefficient Theorem. There is unital separable simple C^* -algebra A with TR(A) = 0 (and TR(A) = 1) which is not amenable.

The following is taken from an argument of N.C. Phillips [25].

Lemma (3.1.5)[84]:

Let H > 0 be a positive number and $let N \ge 2$ be an integer. Then, for any unital C^* -algebra A, any projection $e \in A$ and any $u \in U_0(eAe)$ with $cel_{eAe}(u) < H$,

$$\operatorname{dist}(\overline{u + (1 - e)}, \overline{1}) < H/N, \tag{10}$$

if there are mutually orthogonal and mutually equivalent projections $e_1, e_2, ..., e_{2N} \in (1 - e)A(1 - e)$ such that e1 is also equivalent to e.

Proof:

Since $\operatorname{cel}_{eAe}(u) < H$, there are unitaries $u_0, u_1, \dots, u_N \in eAe$ such that

$$u_0 = u$$
, $u_N = 1$ and $||u_i - u_{i-1}|| < H/N$, $i = 1, 2, ..., N$. (11)

We will use the fact that

$$\begin{pmatrix} v & 0 \\ 0 & v^* \end{pmatrix} = \begin{pmatrix} v & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} v^* & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

In particular, $\begin{pmatrix} v & 0 \\ 0 & v^* \end{pmatrix}$ is a commutator. Note that

$$\|(u \oplus u_1^* \oplus u_1 \oplus u_2^* \oplus ... \oplus u_N^* \oplus u_N) - (u \oplus u^* \oplus u_1 \oplus u_1^* \oplus ... \oplus u_{N-1}^* \oplus u_N)\|$$

$$< H/N.$$
(12)

Since $u_N = 1$, $u \oplus u^* \oplus u_1 \oplus u_1^* \oplus ... \oplus u_{N-1}^* \oplus u_N$ is a commutator Now we write

$$u \oplus e_1 \oplus ... \oplus e_{2N}$$

$$=(u\oplus u_1^*\oplus u_1\oplus u_2^*\oplus ...\oplus u_N^*\oplus u_N)(e\oplus u_1\oplus u_1^*\oplus ...\oplus u_{N-1}^*\oplus u_N)$$

We obtain $z \in CU((e + \sum_{i=1}^{2N} e_i)A(e + \sum_{i=1}^{2N} e_i)$ such that

$$||u \oplus e_1 \oplus ... \oplus e_{2N} - z|| < H/N.$$

It follows that

$$\operatorname{dist}(\overline{u + (1 - e)}, \overline{1}) < H/N.$$

Definition (3.1.6)[84]:

Let $= PM_k(C(X))P$, where X is a compact metric space and $P \in M_k(C(X))$ is a projection. Let $u \in U(C)$. Recall (see [27]) that

 $D_c(u) = \inf\{ \|a\| : a \in C_{s.a}. \text{ such that det } (\exp(ia).u)(x) = 1 \text{ for all } x \in X \}.$ If no self-a djoint element $a \in A_{s.a}.$ exists for which $\det(\exp(ia).u)(x) = 1$ for all $x \in X$, define $D_c(u) = \infty$.

Lemma (3.1.7)[84]:

Let $K \ge 1$ be an integer. Let A be a unital simple C^* -algebra with $TR(A) \le 1$, let $e \in A$ be a projection and let $u \in U_0(eAe)$. Suppose that w = u + (1 - e) and suppose $\eta > 0$. Suppose also that

$$[1 - e] \le K[e] \text{ in } K_0(A) \text{ and } \operatorname{dist}(\overline{w}, \overline{1}) < \eta. \tag{13}$$

Then, if $\eta < 2$,

$$\text{cel}_{eAe}(u) < \left(\frac{k\pi}{2} + 1/16\right)\eta + 8\pi \text{ and } \text{dist}(\bar{u}, \bar{e}) < (k + 1/8)\eta.$$

and if $\eta = 2$,

$$cel_{eAe}(u) < \frac{k\pi}{2}cel(w) + 1/16 + 8\pi$$
.

Proof:

We assume that (13) holds. Note that $\eta \leq 2$. Put L = cel(w).

We first consider the case that $\eta < 2$. There is a projection $e' \in M_2(A)$ such that

$$[(1-e)+e']=k[e].$$

To simplify notation, by replacing A by $(1_A - e')M_2(A)(1_A - e')$ and w by w + e', without loss of generality, we may now assume that

$$(1 - e) = k[e] \text{ and } \operatorname{dist}(\overline{w}, \overline{1}) < \eta. \tag{14}$$

There is $R_1 > 1$ such that $\max \{L/R_1, 2/R_1, \eta \pi/R_1\} < \min \{\eta/64, 1/16\pi\}$.

For any $\frac{\eta}{32K(K+1)\pi} > \epsilon > 0$ with $\epsilon + \eta < 2$, since $TR(A) \le 1$, there exist a projection $p \in$

A and a C^* – subalgebra $D \in I$ with $1_D = p$ such that

- (i) $||[p,x]|| < \epsilon \text{ for } x \in \{u, w, e, (1-e)\};$
- (ii) $pwp, pup, pep, p(1-e)p \in_{\epsilon} D$;
- (iii) there is a projection $q \in D$ and a unitary $z_1 \in qDq$ such that $||q pep|| < \epsilon$, $||z_1 quq|| < \epsilon$, $||z_1 \oplus (p q) pwp|| < \epsilon$ and $||z_1 \oplus (p q) c_1|| < \epsilon + \eta$;
- (iv) there is a projection $q_0 \in (1-p)A(1-p)$ and a unitary $z_0 \in q_0A_{q_0}$ such that $||q_0 q_0|| = q_0A_{q_0}$

$$(1-p)e(1-p)\| < \epsilon$$
, $\|z_0 - (1-p)u(1-p)\| < \epsilon$, $\|z_0 \oplus (1-p-q_0) - q_0\| < \epsilon$

- $(1-p)w(1-p)\| < \epsilon$, $\|z_0 \oplus (1-p-q_0) c_0\| < \epsilon + \eta$;
- (v) $[p-q] = K[q] \text{ in } K_0(D), [(1-p)-q_0] = K[q_0] \text{ in } K_0(A);$
- (vi) $2(K+1)R_1[1-p] < [p] \text{ in } K_0(A);$
- (vii) $cle_{(1-p)A(1-p)}(z_0 \oplus (1-p-q_0)) \le L + \epsilon$,

where $c_1 \in CU(D)$ and $c_0 \in CU((1-p)A(1-p))$.

Note that $D_D(c_1) = 0$. Since $\epsilon + \eta < 2$, there is $h \in D_{s.a}$. with $||h|| \le 2\arcsin\left(\frac{\epsilon + \eta}{2}\right)$ such that (by (iii) above)

$$(z_1 \oplus (p-q))\exp(ih) = c_1. \tag{15}$$

It follows that

$$D_D(z_1 \oplus (p-q))\exp(ih) = 0. \tag{16}$$

By (v) above and applying in [27], one obtains that

$$\left|D_{qD_D}z_1\right| \le k2\arcsin\left(\frac{\epsilon+\eta}{2}\right).$$
 (17)

If $2k\arcsin\left(\frac{\epsilon+\eta}{2}\right) \geq \pi$, then

$$2k\left(\frac{\epsilon+\eta}{2}\right)\frac{\pi}{2} \ge \pi.$$

It follows that

$$k(\epsilon + \eta) \ge 2 \ge \operatorname{dist}(\overline{z_1}, \overline{q}).$$
 (18)

Since those unitaries in D with det(u) = 1 (for all points) are in CU(D) from (3.17), one computes that, when $2k \arcsin\left(\frac{\epsilon + \eta}{2}\right) < \pi$,

$$\operatorname{dist}(\overline{z_1}, \overline{q}) < 2\sin\left(k\arcsin\left(\frac{\epsilon + \eta}{2}\right)\right) \le k(\epsilon + \eta). \tag{19}$$

By combining both (18) and (19), one obtains that

$$\operatorname{dist}(\overline{z_1}, \overline{q}) \le k(\epsilon + \eta) \le k \eta + \frac{\eta}{32(k+1)\pi}.$$
 (20)

By (17), it follows in [27] that

$$\operatorname{cel}_{q} D_{q} \leq 2k \arcsin \frac{\epsilon + \eta}{2} + 6\pi \leq k(\epsilon + \eta) \frac{\pi}{2} + 6\pi$$

$$\leq \left(k \frac{\pi}{2} + \frac{1}{64(k+1)}\right) \eta + 6\pi \tag{21}$$

By (v) and (vi) above,

$$(K+1)[q] = [p-q] + [q] = [p] > 2(K+1)R_1[1-p].$$

Since $K_0(A)$ is weakly unperforated, one has

$$2R_1[1-p] < [q]. (22)$$

There is a unitary $v \in A$ such that

$$v^*(1 - p - q_0)v \le q. (23)$$

Put $v_1 = q_0 \oplus (1 - p - q_0)v$. Then

$$v_1^*(z_0 \oplus (1 - p - q_0))v_1 = z_0 \oplus v^*(1 - p - q_0)v. \tag{24}$$

Note that

$$||(z_0 \oplus v^*(1-p-q_0)v)v_1^*c_0^*v_1 - q_0 \oplus v^*(1-p-q_0)v|| < \epsilon + \eta. \quad (25)$$

Moreover, by (vii) above

$$cel(z_0 \oplus v^*(1 - p - q_0)v) \le L + \epsilon. \tag{26}$$

It follows from (22) and Lemma (4.1.8) of [89] that

$$cel_{(q_0+q)A(q_0+q)}(z_0 \oplus q) \le 2\pi + (L+\epsilon)/R_1.$$
 (27)

Therefore, combining (21),

$$\operatorname{cel}_{(q_0+q)A(q_0+q)}(z_0+z) \\
\leq 2\pi + \frac{L+\epsilon}{R_1} + \left(k\frac{\pi}{2} + \frac{1}{64(k+1)}\right)\eta + 6\pi.$$
(28)

By (26), (22), in $U_0((q_0 + q)A(q_0 + q))/CU((q_0 + q)A(q_0 + q))$,

$$\operatorname{dist}(\overline{z_0 + q}, \overline{q_0 + q}) < \frac{(L + \epsilon)}{R_1}.$$
 (29)

Therefore, by (19) and (29),

$$\operatorname{dist}(\overline{z_0 \oplus z_1}, \overline{q_0 + q}) < \frac{(L + \epsilon)}{R_1} + k \, \eta + \frac{\eta}{32(k+1)\pi} < (k+1/6)\eta. \quad (30)$$

We note that

$$||e - (q_0 + q)|| < 2\epsilon$$
 and $||u - (z_0 + z_1)|| < 2\epsilon$. (31)

It follows that

$$dist(\bar{u}, \bar{e}) < 4\epsilon + (K + 1/16) \eta < (K + 1/8) \eta.$$
 (32)

$$\operatorname{cel}_{eAe}(u) \le 4\epsilon\pi + 2\pi + (L + \epsilon)/R_1 + \left(k\frac{\pi}{2} + \frac{1}{64(k+1)}\right)\eta + 6\pi$$
 (33)

$$<\left(k\frac{\pi}{2} + 1/16\right)\eta + 8\pi.$$
 (34)

This proves the case that $\eta < 2$.

Now suppose that $\eta = 2$. Define $R = [\operatorname{cel}(w) + 1]$. Note that $\frac{\operatorname{cel}(w)}{R} < 1$. There is a projection $e' \in M_{R+1}(A)$ such that

$$[(1 - e) + e'] = (K + RK)[e].$$

It follows that

$$\operatorname{dist}(\overline{\mathbf{w} \oplus \mathbf{e}'}, \overline{\mathbf{1}_A + \mathbf{e}'}) < \frac{\operatorname{cel}(w)}{R+1}. \tag{35}$$

Put $K_1 = K(R + 1)$. To simplify notation, without loss of generality, we may now assume that

$$[1 - e] = K_1[e] \text{ and } \operatorname{dist}(\overline{w}, \overline{1}) < \frac{\operatorname{cel}(w)}{R + 1}. \tag{36}$$

It follows from the first part of the lemma that

$$\operatorname{cel}_{eAe}(u) < \left(\frac{K_1\pi}{2} + \frac{1}{16}\right) \frac{\operatorname{cel}(w)}{R+1} + 8\pi$$
 (37)

$$\leq \frac{k\pi \text{cel}(w)}{2} + \frac{1}{16} + 8\pi \tag{38}$$

Theorem (3.1.8)[84]:

Let A be a unital simple C^* -algebra with $TR(A) \le 1$ and let $e \in A$ be a non-zero projection. Then the map $u \mapsto u + (1 - e)$ induces an isomorphism j from U(eAe)/CU(eAe) onto U(A)/CU(A).

Proof:

It was shown in in [89] that j is a surjective homomorphism. So it remains to show that it is also injective. To do this, fix a unitary $u \in eAe$ so that $u \in ker j$. We will show that $u \in CU(eAe)$.

There is an integer $K \ge 1$ such that

$$K[e] \ge [1 - e] \text{ in } K_0(A).$$

Let $1 > \epsilon > 0$. Put v = u + (1 - e). Since $u \in \ker j$, $v \in CU(A)$. In particular $\operatorname{dist}(\bar{v}, \bar{1}) < \epsilon/(K\pi/2 + 1)$.

It follows from Lemma (4.1.7)that

$$\operatorname{dist}(\bar{v}, \bar{1}) < \left(\frac{k\pi}{2} + 1/16\right) (\epsilon/(K\pi/2 + 1)) < \epsilon.$$

It then follows that

$$u \in CU(eAe)$$
.

Corollary (3.1.9)[84]:

Let A be a unital simple C^* -algebra with $TR(A) \leq 1$. Then the map $j: a \to \text{diag}(a, \overline{1, 1, ..., 1})$ from A to $M_n(A)$ induces an isomorphism from U(A)/CU(A) onto $U(M_n(A))/CU(M_n(A))$ for any integer $n \geq 1$

Lemma(3.1.10)[84]:

Let X be a path connected finite CW complex, let C = C(X) and let $A = C([0,1], M_n)$ for some integer $n \ge 1$. For any unital homomorphism $\phi: C \to A$, any finite subset $\mathcal{F} \subset C$ and any $\epsilon > 0$, there exists a unital homomorphism $\psi: C \to B$ such that

$$\|\phi(c) - \psi(c)\| < \epsilon \text{ for all } c \in \mathcal{F}$$
 (39)

$$\psi(f)(t) = W(t)^* \begin{pmatrix} f(s_1(t)) \\ \ddots \\ f(s_n(t)) \end{pmatrix} w(t), \tag{40}$$
 where $W \in U(A), s_i \in C([0,1], X), j = 1, 2, \dots, n, \text{ and } t \in [0,1].$

Proof: To simplify the notation with

To simplify the notation, without loss of generality, we may assume that \mathcal{F} is in the unit ball of \mathcal{C} . Since X is also locally path connected, choose $\delta_1 > 0$ such that, for any point $x \in X$, $B(x, \delta_1)$ is path connected. Put $d = 2\pi/n$. Let $\delta_1 > 0$ (in place of δ) be as required [69] for $\epsilon/2$.

We will also apply in [28], there exists a finite subset \mathcal{H} of positive functions in C(X) and $\delta_3 > 0$ satisfying the following: For any pair of points and $\{y_i\}_{i=1}^n$, if $\{h(x_i)\}_{i=1}^n$ and $\{h(y_i)\}_{i=1}^n$ can be paired to within δ_3 one by one, in increasing order, counting multiplicity, for all $h \in \mathcal{H}$, then $\{x_i\}_{i=1}^n$ and $\{y_i\}_{i=1}^n$, i=1 can be paired to within $\delta_3/2$, one by one.

Put $\epsilon_1 = min\{\epsilon/16, \delta_1/16, \delta_2/4, \delta_3/4\}$. There exists $\eta > 0$ such that $|f(t) - f(t')| < \epsilon_1/2$ for all $f \in \phi(\mathcal{F} \cup \mathcal{H})$. (41)

provided that $|t - t'| < \eta$. $C\{x_i\}_{i=1}^n$ hoose a partition of the interval: $0 = t_0 < t_1 < \dots < t_N = 1$.

Such that $|t_i - t_{i-1}| < \eta$, i = 1, 2, ..., N. Then $\|\phi(f)(t_i) - \phi(f)(t_{i-1})\| < \epsilon_1$ for all $f \in \mathcal{F} \cup \mathcal{H}$. (42)

 $i=1,2,\ldots,N$. There are unitaries $U_i\in M_n$ and $\left\{x_{i,j}\right\}_{j=1}^n, i=1,2,\ldots,N$, such that

$$\phi(f)(t_i) = U_i^* \begin{pmatrix} f(x_{i,1}) & & \\ & \ddots & \\ & & f(x_{i,n}) \end{pmatrix} U_i$$
(43)

By the Weyl spectral variation inequality (see [69]), the eigenvalues of $\{h(x_{i,j})\}_{i=1}^n$ and $\{h(x_{i-1,j})\}_{i=1}^n j=1$ can be paired to within δ_3 , one by one, counting multiplicity, in decreasing order. It follows in [28] that $\{x_{i,j}\}_{i=1}^n j=1$ and $\{x_{i-1,j}\}_{i=1}^n$ can be paired within $\delta_3/2$. We may assume that

$$\operatorname{dist}(x_{i,\sigma_i(j)}, x_{i-1,j}) < \delta_3/2, \tag{44}$$

where σ_i : $\{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$ is a permutation. By the choice of δ_3 , there is a continuous path $\{x_{i-1}, j(t): t \in [t_i - 1, (t_i + t_{i-1})/2]\} \subset B(x_{i-1}, \delta_3/2)$ such that

$$x_{i-1,j}(t_{i-1}) = x_{i-1,j}$$
 and $x_{i-1,j}((t_{i-1} + t_i)/2) = x_{i,\sigma_i(j)}$ (45)

j = 1, 2, ..., n. Put

$$\psi(f)(t) = U_{i-1}^* \begin{pmatrix} f(x_{i,1}(t)) & & \\ & \ddots & \\ & & f(x_{i,n}(t)) \end{pmatrix} U_{i-1}$$
 (46)

for $t \in [t_{i-1}, (t_{i-1} + t_i)/2]$ and for $f \in C(X)$. In particular,

$$\psi(f)\left(\frac{t_{i-1}+t_{i}}{2}\right) = U_{i-1}^{*}\begin{pmatrix} f(x_{i,1}(t)) & & \\ & \ddots & \\ & & f(x_{i,n}(t)) \end{pmatrix} U_{i-1}$$
(47)

for $f \in C(X)$. Note that

$$\|\phi(f)(t_{i-1}) - \psi(f)(t)\| < \delta_2/4 \text{ and } \|\psi(f)(t) - \phi(f)(t_i)\| < \delta_2/4 + \epsilon_1/2$$

$$< \delta_2/2$$
(48)

for all $f \in \mathcal{F}$ and $t \in [t_{i-1}, \frac{t_{i-1}+t_i}{2}]$. There exists a unitary $W_i \in M_n$ such that

$$w_i^* \psi(f) = \left(\frac{t_{i-1} + t_i}{2}\right) w_i = \phi(f)(t_i)$$
 (49)

for all $f \in C(X)$. It follows from (48) and (49) that

$$\left\| w_i \psi(f) \left(\frac{t_{i-1} + t_i}{2} \right) - \psi(f) \left(\frac{t_{i-1} + t_i}{2} \right) w_i \right\| < \delta_2 \tag{50}$$

for all $f \in \mathcal{F}$. By the choice of δ_2 and by applying in [69], we obtain $h_i \in M_n$ such that $W_i = \exp(\sqrt{-1}h_i)$ and

$$\left\| h_i \psi(f) \left(\frac{t_{i-1} + t_i}{2} \right) - \psi(f) \left(\frac{t_{i-1} + t_i}{2} \right) h_i \right\| < \epsilon/4 \tag{51}$$

and

$$\left\| \exp(\sqrt{-1}th_i)\psi(f) \left(\frac{t_{i-1} + t_i}{2} \right) - \psi(f) \left(\frac{t_{i-1} + t_i}{2} \right) \exp(\sqrt{-1}th_i) \right\| < \epsilon/4 \quad (52)$$

for all $f \in \mathcal{F}$. and $t \in [0,1]$. From this we obtain a continuous path of unitaries $\{W_i(t): t \in [\frac{t_{i-1}+t_i}{2}, t_i]\} \subset M_n$ such that

$$W_i\left(\frac{t_{i-1} + t_i}{2}\right) = 1, \quad W_i(t_i) = W_i$$
 (53)

and

$$\left\| w_{i}\psi(f)\left(\frac{t_{i-1}+t_{i}}{2}\right)-\psi(f)\left(\frac{t_{i-1}+t_{i}}{2}\right)w_{i}\right\|<\epsilon/4 \qquad (54)$$
 for all $f\in\mathcal{F}$ and $t\in\left[\frac{t_{i-1}+t_{i}}{2},t_{i}\right]$. Define $\psi(f)(t)=w_{i}^{*}(t)\psi\left(\frac{t_{i-1}+t_{i}}{2}\right)w_{i}(t)$ for $t\in\left[\frac{t_{i-1}+t_{i}}{2},t_{i}\right]$, $i=1,2,\ldots,N$. Note that $\psi:C(X)\to A$. We conclude that

$$\|\phi(f) - \psi(f)\| < \epsilon \text{ for all } \mathcal{F}$$
 (55)

Define

$$U(t) = U_0 \text{ for } t \in \left[0, \frac{t_1}{2}\right), \ U(t) = U_0 W_1(t) \text{ for } t \in \left[\frac{t_1}{2}, t_2\right),$$
 (56)

$$U(t) = U(t_i) \quad \text{for } t \in \left[t_i, \frac{t_i + t_{i-1}}{2}\right),$$

$$U(t) = U(t_i)W_{i+1}(t) \quad \text{for } t \in \left[\frac{t_i + t_{i-1}}{2}, t_{i+1}\right],$$
(57)

 $i = 1, 2, \dots, N - 1$ and define

$$s_j = x_{0,j}(t) \text{ for } t \in \left[0, \frac{t_1}{2}\right), \quad s_j(t) = s_j\left(\frac{t_1}{2}\right) \text{ for } t \in \left[\frac{t_1}{2}, t_2\right),$$
 (58)

$$s_j = x_{i,\sigma_i(j)}(t)$$
 for $t \in \left[t_i, \frac{t_i + t_{i+1}}{2}\right]$,

$$s_j(t) = s_j\left(\frac{t_i + t_{i+1}}{2}\right) \quad \text{for } t \in \left[\frac{t_i + t_{i+1}}{2}, t_{i+1}\right],$$
 (59)

i = 1, 2, ..., N - 1. Thus $U(t) \in A$ and, by (45), $s_i(t) \in C([0, 1], X)$.

One then checks that ψ has the form

$$\psi(f) = U(t)^* \begin{pmatrix} f(s_1(t)) & & \\ & \ddots & \\ & & f(s_n(t)) \end{pmatrix} U(t)$$
 (60)

for $f \in C(X)$. In fact, for $t \in [0, t_1]$, it is clear that (60) holds. Suppose that (60) holds for $t \in$ $[0, t_i]$. Then, by (49), for $f \in C(X)$,

$$\psi(f)(t_i) = U(t_i)^* \begin{pmatrix} f(x_{i,\sigma_i(1)}) & & \\ & \ddots & \\ & & f(x_{i,\sigma_i(n)}) \end{pmatrix} U(t_i)$$

$$= U_I^* \begin{pmatrix} f(x_{i,1}) & & \\ & \ddots & \\ & & f(x_{i,n}) \end{pmatrix} U_i, \tag{61}$$

Therefore, for $t \in \left[t_i, \frac{t_i + t_{i+1}}{2}\right]$,

$$\psi(f)(t) = U_I^* \begin{pmatrix} f(x_{i,1}(t)) & & \\ & \ddots & \\ & & f(x_{i,n}(t)) \end{pmatrix} U_i$$

$$(62)$$

$$= U(t_i)^* \begin{pmatrix} f(x_{i,\sigma_i(1)}(t)) & & & \\ & \ddots & & \\ & & f(x_{i,\sigma_i(n)}(t)) \end{pmatrix} U(t_i) \quad (63)$$

$$= U(t)^* \begin{pmatrix} f(s_1(t)) & & \\ & \ddots & \\ & & f(s_n(t)) \end{pmatrix} U(t) \quad (64)$$

$$= U(t)^* \begin{pmatrix} f(s_1(t)) & & \\ & \ddots & \\ & & f(s_n(t)) \end{pmatrix} U(t)$$
 (64)

For $t \in \left[\frac{t_i + t_{i+1}}{2}, t_{i+1}\right]$,

$$\psi(f)(t) = W_{i+1}(t)^* \psi\left(\frac{t_i + t_{i+1}}{2}\right) W_{i+1}(t)$$
(65)

$$= W_{i+1}(t)^* U(t_i)^* \begin{pmatrix} f(s_1(\frac{t_i + t_{i+1}}{2})) & & \\ & \ddots & \\ & f(s_n(\frac{t_i + t_{i+1}}{2})) \end{pmatrix} U(t_i) W_{i+1}(t)$$
 (66)
$$= U(t)^* \begin{pmatrix} f(s_1(t)) & & \\ & \ddots & \\ & f(s_n(t)) \end{pmatrix} U(t)$$
 (67)

This verifies (60).

Lemma (3.1.11)[84]:

Let X be a finite CW complex and let $A \in$. Suppose that $\phi: C(X) \otimes C(T) \to A$ is a unital homomorphism. Then, for any $\epsilon > 0$ and any finite subset $\mathcal{F} \subset C(X)$, there exists a continuous path of unitaries $\{u(t): t \in [0,1]\}$ in A such that

$$u(0) = \phi(1 \otimes z), \qquad u(1) = 1 \quad and \quad \|[\phi(f \otimes 1), u(t)]\| < \epsilon \quad (68)$$
 for $f \in \mathcal{F}$ and $t \in [0, 1]$.

Proof:

It is clear that the general case can be reduced to the case that $A = C([0,1], M_n)$. Let q_1, q_2, \ldots, q_n be projections of C(X) corresponding to each path connected component of X. Since $\phi(q_i)A\phi(q_i) \cong C([0,1], M_{n_i})$ for some $1 \leq n_i \leq n$, $i = 1, 2, \ldots$, we may reduce the general case to the case that X is path connected and $A = C([0,1], M_n)$.

Note that we use z for the identity function on the unit circle.

For any $\epsilon > 0$ and any finite subset $\mathcal{F} \subset \mathcal{C}(X)$, obtains a unital homomorphism $\psi : \mathcal{C}(X) \otimes \mathcal{C}(T) \to A$ such that

$$\|\phi(g) - \psi(g)\| < \epsilon \text{ for all } g \in \{f \otimes 1 : f \in \mathcal{F}\} \cup \{1 \otimes z\}$$
 (69)

$$\psi(f)t = U(t)^* \begin{pmatrix} f(s_1(t)) \\ \vdots \\ f(s_n(t)) \end{pmatrix} U(t), \tag{70}$$

for all $f \in C(X \times \mathbb{T})$, where $U(t) \in U(C([0,1], M_n)), s_j : [0,1] \to X \times \mathbb{T}$ is a continuous map, j = 1, 2, ..., n, and for all $t \in [0,1]$. There are continuous paths of unitaries $\{u_j(r): r \in [0,1]\} \subset C([0,1])$ such that

$$u_j(0)(t) = (1 \otimes z)(s_j(1)), \quad u_j(1) = 1, \quad j = 1, 2, \dots, n, \quad (71)$$

Define

$$u(r)t = U(t)^* \begin{pmatrix} u_j(r)(t) & & \\ & \ddots & \\ & & u_n(r)(t) \end{pmatrix} U(t).$$
 (72)

Then

$$u(r)\psi(f \otimes 1) = \psi(f \otimes 1)u(r)$$
 for all $r \in [0,1]$.

It follows that

 $\|[\phi(f \otimes 1), u(r)]\| < \epsilon$ for all $r \in [0, 1]$ and for all $f \in \mathcal{F}$.

Definition (3.1.12)[84]:

Let X be a compact metric space. We say that X satisfies property (H) if the following holds:

For any $\epsilon > 0$, any finite subsets $\mathcal{F} \subset C(X)$ and any non-decreasing map $\Delta: (0,1) \to (0,1)$, there exists $\eta > 0$ (which depends on ϵ and F but not Δ), $\delta > 0$, a finite subset $\mathcal{G} \subset C(X)$ and a finite subset $\mathcal{P} \subset \underline{K}(C(X))$ satisfying the following:

Suppose that $\phi: C(X) \to C([0,1], M_n)$ is a unital $\delta - G$ -multiplicative contractive completely positive linear map for which

$$\mu_{\tau \circ \phi}(O_a) \ge \Delta(a) \tag{73}$$

for any open ball O_a with radius $a \ge \eta$ and for all tracial states τ of $C([0,1], M_n)$, and

$$[\phi]|P = [\Phi]|P, \tag{74}$$

where Φ is a point-evaluation.

Then there exists a unital homomorphism $h: C(X) \to C([0,1], M_n)$ such that for all $f \in \mathcal{F}$.

It is a restricted version of some relatively weakly semi-projectivity property. It has been shown in [22] that any k -dimensional torus has the property (H). So do those finite CW complexes X with torsion free $K_0(C(X))$ and torsion $K_1(C(X))$, any finite CW complexes with form $Y \times \mathbb{T}$ where Y is contractive and all one-dimensional finite CW complexes.

Corollary(3.1.13)[84]:

Let $C = C(X, M_n)$ where X = [0,1] or $X = \mathbb{T}$ and $\Delta: (0,1) \to (0,1)$ be a nondecreasing map. For any $\epsilon > 0$ and any finite subset $\mathcal{F} \subset C$, there exists $\delta > 0$, $\eta > 0$ and there exists a finite subset $\mathcal{G} \subset C$ satisfying the following:

Suppose that A is a unital simple C^* –algebra with $TR(A) \le 1, \phi : C \to A$ is a unital monomorphism and $u \in A$ is a unitary and suppose that

$$\|[\phi(c), u]\| < \delta \quad \text{for all} \quad c \in \mathcal{G},$$
 (75)

$$bott_0(\phi, u) = \{0\} \quad and \quad bott_1(\phi, u) = \{0\}$$
 (76)

Suppose also that there exists a unital contractive completely positive linear map $L: C \otimes C(T) \to A$ such that (with z the identity function on the unit circle)

$$||L(c \otimes 1) - \phi(c)|| < \delta$$
, $||L(c \otimes z) - \phi(c)u|| < \delta$ for all $c \in \mathcal{G}$

and

for all open balls O_a of $[0,1] \times \mathbb{T}$ with radius $1 > a \ge \eta$, where $\mu_{\tau \circ L}$ is the Borel probability measure defined by restricting L on the center of $C \otimes C(\mathbb{T})$. Then there exists a continuous path of unitaries $\{u(t): t \in [0,1]\}$ such that

$$u(0) = u$$
, $u(1) = 1$ and $\|[\phi(c), u(t)]\| < \epsilon$ (78)

for all $c \in \mathcal{F}$ and for all $t \in [0, 1]$.

Corollary (3.1.14)[84]:

Let $C = C([0,1], M_n)$ and let $T = N \times K : (C \otimes C(\mathbb{T}))_+ \setminus \{0\} \to N \times \mathbb{R}_+ \setminus \{0\}$ be a map. For any $\epsilon > 0$ and any finite subset $\mathcal{F} \subset C$, there exist $\delta > 0$, a finite subset $\mathcal{H} \subset (C \otimes C(T))_+ \setminus \{0\}$ and there exists a finite subset $\mathcal{G} \subset C$ satisfying the following:

Suppose that A is a unital simple C^* –algebra with $TR(A) \le 1, \phi: C \to A$ is a unital monomorphism and $u \in A$ is a unitary and suppose that

$$\|[\phi(c), u]\| < \delta \quad \text{for all} \quad c \in \mathcal{G},$$
 (79)

and

$$bott_0(\phi, u) = \{0\}. \tag{80}$$

Suppose also that there exists a unital contractive completely positive linear map $L: C \otimes C(T) \to A$ which is T - H -full such that (with z the identity function on the unit circle)

$$||L(c \otimes 1) - \phi(c)|| < \delta$$
, $||L(c \otimes z) - \phi(c)u|| < \delta$ for all $c \in \mathcal{G}$ (81)

Then there exists a continuous path of unitaries $\{u(t): t \in [0,1]\}$ in A such that

$$u(0) = u$$
, $u(1) = 1$ and $\|[\phi(c), u(t)]\| < \epsilon$ (82)

for all $c \in \mathcal{F}$ and for all $t \in [0, 1]$.

Proof:

Fix $T = N \times K : N \times \mathbb{R}_+ \setminus \{0\}$. Let $\Delta: (0,1) \to (0,1)$ be the non-decreasing map associated with T as in [22]. Let $G \subset C$, $\delta > 0$ and $\delta > 0$, for ϵ and $\delta = 0$ given and the above $\delta = 0$.

It follows in [22] that there exists a finite subset $H \subset (C \otimes C(T))_+ \setminus \{0\}$ such that for any unital contractive completely positive linear map $L: C \otimes C(T) \to A$ which is T - H -full, one has that

$$\mu_{\tau \circ L}(O_a) \ge \Delta(a) \tag{83}$$

For all open balls O_a of $X \times \mathbb{T}$ with radius $a \geq \eta$.

Lemma (3.1.15)[84]:

Let $C = M_n$. Then, for any $\epsilon > 0$ and any finite subset \mathcal{F} , there exist $\delta > 0$ and a finite subset $\mathcal{G} \subset C$ satisfying the following: For any unital C^* -algebra A with $K_1(A) = U(A)/U_0(A)$ and any unital homomorphism $\varphi : C \to A$ and any unitary $u \in A$ if

$$\|[\phi(c), u]\| < \delta \quad and \quad bott_0(\phi, u) = \{0\},$$
 (84)

then there exists a continuous path of unitaries $\{u(t): t \in [0,1]\} \subset A$ such that

$$u(0) = u, \ u(1) = 1 \quad and \ \|[\phi(c), u]\| < \epsilon$$
 (85)

for all $c \in \mathcal{F}$ and $t \in [0, 1]$.

Proof:

First consider the case that $\phi(c)$ commutes with u for all $c \in C$. Then one has a unital homomorphism $\Phi: M_n \otimes C(\mathbb{T}) \to A$ defined by $\Phi(c \otimes g) = \phi(c)g(u)$ for all $c \in C$ and $g \in C(\mathbb{T})$. Let $\{e_{i,j}\}$ be a matrix unit for M_n . Let $u_j = e_j, j \otimes z, j = 1, 2, ..., n$. The assumption $bott_0(\varphi, u) = \{0\}$ implies that $\Phi_{*1} = \{0\}$. It follows that $u_j \in U_0(A), j = 1, 2, ..., n$. One then obtains a continuous path of unitaries $\{u(t): t \in [0, 1]\} \subset A$ such that

$$u(0) = u$$
, $u(1) = 1$ and $\|[\phi(c), u(t)]\| = 0$

for all $c \in C(\mathbb{T})$ and $t \in [0,1]$.

The general case follows from the fact that $C \otimes C(\mathbb{T})$ is weakly semi-projective.

Lemma (3.1.16)[84]:

Let n < 64 be an integer. Let $\epsilon > 0$ and $1/2 > \epsilon_1 > 0$. There exist $\frac{\pi}{2n} > \delta > 0$ and a finite subset $G \subset D \sim = M_n$ satisfying the following: Suppose that A is a unital C^* -algebra with $T(A) \neq \emptyset$, $D \subset A$ is a C^* -subalgebra with $1_D = 1_A$, suppose that $T \subset A$ is a finite subset and suppose that $T \subset A$ is a finite subset and suppose that $T \subset A$ is a finite

$$||[f,x]|| < \delta \quad \text{for all } f \in \mathcal{F} \text{ and } x \in \mathcal{G},$$
 (86)

and

$$||[u, x]|| < \delta \quad for \ all \ \ x \in \mathcal{G}, \tag{87}$$

Then, there exist a unitary $v \in D$ and a continuous path of unitaries $\{w(t): t \in [0,1]\} \subset D$ such that

$$||u, w(t)|| < n\delta < \epsilon, \quad ||u, w(t)|| < n\delta < \frac{\epsilon}{2}$$
(88)

for all
$$f \in \mathcal{F}$$
 and for all $t \in [0,1]$, (89)

$$w(0) = 1, w(1) = v and \mu_{\tau \circ \phi}(I_a) = \frac{2}{3n^2}$$
 (90)

for all open arcs I_a of \mathbb{T} with length a $4\pi/n$ and for all $\tau \in T(A)$, where $\iota: C(\mathbb{T}) \to A$ is defined by $\iota(f) = f$ (vu) for all $f \in C(T)$.

Moreover,

$$length (\{w(t)\}) \le \pi. \tag{91}$$

If, in addition, $\pi > b_1 > b_2 > \dots > b_m > 0$ and $1 = d_0 > d_1 > d_2 > \dots > d_m > 0$ are given so that

$$\mu_{\tau \circ l}(I_{b_i}) \ge d_i \quad \text{for all } \tau \in T(A), \quad i = 1, 2, \dots, m, \tag{92}$$

where $\iota_0: \mathcal{C}(\mathbb{T}) \to A$ is defined by $\iota_0(f) = f(u)$ for all $f \in \mathcal{C}(\mathbb{T})$, then one also has that

$$\mu_{\tau \circ l}(I_{c_i}) \ge (1 - \epsilon_1) d_i \quad \text{for all } \tau \in T(A), \tag{93}$$

where I_{b_i} and I_{c_i} are any open arcs with length bi and c_i , respectively, and where $c_i = b_i + \epsilon_1$, i = 1, 2, ..., m.

Proof:

Let

$$0 < \delta_0 < \min \left\{ \frac{\epsilon_1 d_i}{16n^2} : 1 \le i \le m \right\}.$$

Let $\{e_{i,j}\}$ be a matrix unit for D and let $\mathcal{G} = \{e_{i,j}\}$. Define

$$v = \sum_{j=1}^{n} e^{2\sqrt{-1}j\pi/n} e_{i,j}.$$
 (94)

Let $f_1 \in C(\mathbb{T})$ with $f_1(t) = 1$ for $|t - e^{2\sqrt{-1}\pi/n}| < \pi/n$ and $f_1(t) = 0$ if $|t - e^{2\sqrt{-1}\pi/n}| \ge 2\pi/n$ and $1 \ge f_1(t) \ge 0$. Define $f_{j+1}(t) = f_1(e^{2\sqrt{-1}j\pi/n}t)$, j = 1, 2, ..., n-1. Note that

$$f_i\left(e^{2\sqrt{-1}j\pi/n}\right) = f_{i+j}(t) \quad \text{for all } t \in \mathbb{T}$$
 (95)

where $i, j \in \mathbb{Z}/n\mathbb{Z}$.

Fix a finite subset $\mathcal{F}_0 \subset C(\mathbb{T})_+$ which contains $f_i, i = 1, 2, ..., n$. Choose δ so small that the following hold:

- (i) there exists a unitary $u_i \in e_{i,i} A_{e_{i,i}}$ such that $\|e^{2\sqrt{-1}i\pi/n} e_{i,i} u e_{i,i} u_i\| < \delta_0^2 / 16n^2, i = 1, 2, ..., n$.
- (ii) ;

(iii)
$$\|e_{i,i}f(vu) - e_{i,i}f(e^{2\sqrt{-1}i\pi/n}u)\| < \delta_0^2/16n^2 \text{ for all } f \in \mathcal{F}_0; \text{ and } f \in \mathcal{F}_0$$

(iv)
$$\|e_{i,j}^* f(u)e_{i,j} - e_{j,j}f(u)e_{j,j}\| < \delta_0^2/16n^2 \text{ for all } f \in \mathcal{F}_0.$$

Fix k. For each $\tau \in T(A)$, by (i), (iii) and (iv) above, there is at least one i such that

$$\tau(e_{j,j}f_i(u)) \ge \frac{1}{n^2} - \frac{\delta_0^2}{16n^2}.$$
 (96)

Choose j so that k + j = imod(n). Then,

$$\tau(f_k(vu)) \ge \tau(e_{j,j}f_k(vu)) \tag{97}$$

$$\geq \tau \Big(e_{j,j} f_k(e^{2\sqrt{-1}i\pi/n} u) \Big) - \frac{\delta_0^2}{16n^2} \tag{98}$$

$$= \tau \left(e_{j,j} f_i(u) \right) - \frac{\delta_0^2}{16n^2} \ge \frac{1}{n^2} - \frac{2\delta_0^2}{16n^2}. \tag{99}$$

It follows that

$$\mu_{\tau \circ l}\left(B\left(e^{2\sqrt{-1}i\pi/n}, \pi/n\right)\right) \ge \frac{1}{n^2} - \frac{2\delta_0^2}{16n^2} \quad \text{for all } \tau \in T(A)$$
 (100)

and for k = 1, 2, ..., n.

It is then easy to compute that

$$\mu_{\tau \circ l}(I_a) \ge \frac{2}{3n^2} \qquad \text{for all } \tau \in T(A) \tag{101}$$

and for any open arc with length $a \ge 2\left(\frac{2\pi}{n}\right) = \frac{4\pi}{n}$. Note that if $\|[x, e_{i,i}]\| < \delta$, then

$$\left\| \left[x, \sum_{i=1}^{n} \lambda_{i} e_{i,i} \right] \right\| < n\delta < \frac{\epsilon}{2} \quad and \quad \left\| \left[u, \sum_{i=1}^{n} \lambda_{i} e_{i,i} \right] \right\| < n\delta < \epsilon/2$$

for any $\lambda_i \in \mathbb{T}$. Thus, one obtains a continuous path $\{w(t): t \in [0,1]\} \subset D$ with $length(\{w(t)\}) \leq \pi$ and with w(0) = 1 and (1) = v. Let $\{x_1, x_2, \ldots, x_K\}$ be an $\epsilon_1/64$ -dense set of \mathbb{T} . Let $I_{i,j}$ be an open arc with center x_j and $length \ b_i, j = 1, 2, \ldots, K$ and $i = 1, 2, \ldots, m$. For each j and i, there is a positive function $g_{j,i} \in C(\mathbb{T})_+$ with $0 \leq g_{j,i} \leq 1$ and $g_{j,i}(t) = 1$ if $|t - x_j| < d_i$ and $g_{j,i}(t) = 0$ if $|t - x_j| \geq d_i + \epsilon_1/64, j = 1, 2, \ldots, K, i = 1, 2, \ldots, m$. Put $g_{i,j,k}(t) = g_{j,i}(e^{2\sqrt{-1}i\pi/n} \cdot t)$ for all $t \in \mathbb{T}$, $k = 1, 2, \ldots, n$. Suppose that \mathcal{F}_0 contains all $g_{j,i}$ and $g_{i,j,k}$. We have, by (ii), (iii) and (iv) above,

$$\tau(g_{j,i}(u), e_{l,l}), \tau(g_{j,i,k}(u), e_{l,l}) \ge \frac{d_i}{n} - \frac{\delta^2}{16n^2} \quad \text{for all } \tau \in T(A), \tag{102}$$

l = 1, 2, ..., n, j = 1, 2, ..., K and i = 1, 2, ..., m. Thus

$$\tau\left(e_{k,k}g_{j,i}(vu)\right) \ge \tau\left(e_{k,k}g_{j,i}\left(e^{2\sqrt{-1}i\pi/n}u\right)\right) - n\frac{\delta_0^2}{16n^2}$$
 (103)

$$\geq \frac{d_i}{n} - \frac{\delta_0^2}{8n^2} \quad \text{for all } \tau \in T(A), \tag{104}$$

k = 1, 2, ..., n, j = 1, 2, ..., K and i = 1, 2, ..., m. Therefore

$$\tau\left(e_{k,k}g_{j,i}(vu)\right) \ge d_i - \frac{\delta_0^2}{8n^2} \ge (1 - \epsilon_1)d_i \quad \text{for all } \tau \in T(A), \quad (105)$$

j = 1, 2, ..., K and i = 1, 2, ..., m.

It follows that

$$\mu_{\tau \circ l}(I_{i,j}) \ge (1 - \epsilon_1)d_i \quad \text{for all } \tau \in T(A),$$
 (106)

 $j=1,2,\ldots,K$ and $i=1,2,\ldots,m$. Since $\{x_1,x_2,\ldots,x_K\}$ is $\epsilon_1/64$ -dense in \mathbb{T} , it follows that

$$\mu_{\tau \circ l}(I_{c_i}) \ge (1 - \epsilon_1)d_i \quad \text{for all } \tau \in T(A), i = 1, 2, \dots, m.$$
 (107)

Lemma (3.1.17)[84]:

Let $n \ge 64$ be an integer. Let $\epsilon > 0$ and $1/2 > \epsilon_1 > 0$. There exist $\frac{\epsilon}{2n} > \delta > 0$ and a finite subset $G \subset D \cong M_n$ satisfying the following:

Suppose that X is a compact metric space, $\mathcal{F} \subset C(X)$ is a finite subset and 1 > b > 0. Then there exists a finite subset $\mathcal{F}_1 \subset C(X)$ satisfying the following: Suppose that A is a unital C^* -algebra with $T(A) \neq \emptyset$, $D \subset A$ is a C^* -subalgebra with $1_D = 1_A$, $\phi: C(X) \to A$ is a unital homomorphism and suppose that $u \in U(A)$ such that

$$||[x,u]|| < \delta \quad and \quad ||[x,\phi(f)]|| < \delta \quad for \ all \ x \in \mathcal{G} \ and \ f \in \mathcal{F}_1.$$
 (108)

Suppose also that, for some $\sigma > 0$,

$$\tau(\phi(f))\sigma$$
 for all $\tau \in T(A)$ and (109)

for all $f \in C(X)$ with $0 \le f \le 1$ whose support contains an open ball of X with radius b. Then, there exist a unitary $v \in D$ and a continuous path of unitaries $\{v(t): t \in [0,1]\} \subset D$ such that

$$||u, v(t)|| < n\delta < \epsilon, \quad ||\phi(f), v(t)|| < n\delta < \epsilon \tag{110}$$

for all
$$f \in \mathcal{F}$$
 and $t \in [0, 1]$, (111)

$$v(0) = 1, \quad v(1) = v$$
 (112)

and

$$\tau(\phi(f)g(vu)) \ge \frac{2\sigma}{3n^2} \quad \text{for all } \tau \in T(A)$$
(113)

for any pair of $f \in C(X)$ with $0 \le f \le 1$ whose support contains an open ball with radius 2b and $g \in C(\mathbb{T})$ with $0 \le g \le 1$ whose support contains an open arc of \mathbb{T} with length at least

 $\frac{8\pi}{n}$.

Moreover,

$$length(v(t)) \le \pi. \tag{114}$$

If, in addition, $1>b_1>b_2>\cdots>b_k>0$, $1>d_1\geq d_2\geq\cdots d_k>0$ are given and

$$\tau(\phi(f')g'(u)) \ge d_i \quad \text{for all } \tau \in T(A)$$
 (115)

for any functions $f' \in C(X)$ with $0 \le f' \le 1$ whose support contains an open ball of X with radius $b_i/2$ and $g' \in C(\mathbb{T})$ with $0 \le g' \le 1$ whose support contains an arc with length b_i , then one also has that

$$\tau(\phi(f'')g''(vu)) \ge (1 - \epsilon_1)d_i \quad \text{for all } \tau \in T(A), \tag{116}$$

where $f'' \in C(X)$ with $0 \le f'' \le 1$ whose support contains an open ball of radius c_i and $g'' \in C(T)$ with $0 \le g'' \le 1$ whose support contains an arc with $length\ 2c_i$ with $c_i = c_i + 1, i = 1, 2, ..., k$.

Proof:

Let $0 < \delta_0 = min \left\{ \frac{\epsilon_1 d_i}{16n^2} : i = 1, 2, ..., k \right\}.$

Let $\{e_{i,j}\}$ be a matrix unit for D and let $G = \{e_{i,j}\}$. Define

$$v = \sum_{j=1}^{n} e^{2\sqrt{-1}j\pi/n} e_{j,j}.$$
 (117)

Let $g_j \in C(\mathbb{T})$ with $g_j(t) = 1$ for $|t - e^{2\sqrt{-1}j\pi/n}| < \pi/n$ and $g_j(t) = 0$ if $|t - e^{2\sqrt{-1}j\pi/n}| \ge 2\pi/n$ and $1 \ge g_j(t) \ge 0, j = 1, 2, ..., n$. As in the proof of 5.1, we may also assume that

$$g_i\left(e^{2\sqrt{-1}j\pi/n}t\right) = g_{i+1}(t) \quad \text{for all } t \in \mathbb{T}$$
 (118)

where $i, j \in \mathbb{Z}/n\mathbb{Z}$.

Let $\{x_1, x_2, ..., x_m\}$ be a b/2-dense subset of X. Define $f_i \in C(X)$ with $f_i(x) = 1$ for $x \in B(x_i, b)$ and $f_i(x) = 0$ if $x \notin B(x_i, 2b)$ and $0 \le f_i \le 1, i = 1, 2, ..., m$. Note that

$$\tau(\phi(f_i)) \ge \sigma \quad \text{for all } \tau \in T(A), \qquad i = 1, 2, ..., m.$$
 (119)

Fix a finite subset $\mathcal{F}_0 \subset \mathcal{C}(\mathbb{T})$ which at least contains $\{g_1, g_2, \dots, g_n\}$ and a finite subset $\mathcal{F}_1 \subset \mathcal{C}(X)$ which at least contains \mathcal{F} and $\{f_1, f_2, \dots, f_m\}$.

Choose δ so small that the following hold:

- (i) there exists a unitary $u_i \in e_{i,i} A e_{i,i}$ such that $\left\| e^{2\sqrt{-1}i\pi/n} e_{i,i} u e_{i,i} u_i \right\| < \delta_0^2 / 16n^4, i = 1, 2, ..., n;$
- (ii) $\|e_{i,j}g(u) g(u)e_{i,j}\| < \delta_0^2/16n^4$, $\|e_{i,j}\phi(f) \phi(f)e_{i,j}\| < \delta_0^2/16n^4$, for $f \in \mathcal{F}_1$ and $g \in \mathcal{F}_0$, j,k = 1,2,...,n and s = 1,2,...,m;
- (iii) $\|e_{i,i}g(vu) e_{i,i}g(e^{2\sqrt{-1}i\pi/n}u)\| < \delta_0^2/16n^4 \text{ for all } g \in \mathcal{F}_0; \text{ and }$
- (iv) $\|e_{i,j}^*g(u)e_{i,j} e_{i,j}g(u)e_{i,j}\| < \delta_0^2/16n^4, \|e_{i,j}^*\phi(f)e_{i,j} e_{j,j}\phi(f)e_{j,j}\| < \delta_0^2/16n^4 \text{ for all } f \in \mathcal{F}_1 \text{ and } g \in \mathcal{F}_0, j, k = 1, 2, ..., n \text{ and } s = 1, 2, ..., m.$

It follows from (iv) that, for any $k_0 \in \{1, 2, ..., m\}$,

$$\tau(\phi(f_{k_0})e_{j,j}) \ge \frac{\sigma}{n} - \frac{\delta_0^2}{16n^4}.$$
(120)

Fix k_0 and k. For each $\tau \in T(A)$, there is at least one i such that

$$\tau\left(\phi(f_{k_0})e_{j,j}g_i(u)\right) \ge \frac{\sigma}{n} - \frac{\delta_0^2}{16n^4}.\tag{121}$$

Choose j so that $k + j = i \mod (n)$. Then,

$$\tau(\phi(f_{k_0})g_k(vu)) \ge \tau(\phi(f_{k_0})e_{j,j}g_k(e^{2\sqrt{-1}i\pi/n}u)) - \frac{\delta_0^2}{16n^4}$$
 (122)

$$= \tau \left(\phi(f_{k_0}) e_{j,j} g_i(u) \right) - \frac{\delta_0^2}{16n^4}$$
 (123)

$$\geq \frac{\sigma}{n^2} - \frac{\delta_0^2}{16n^4} \quad \text{for all } \tau \in T(A). \tag{124}$$

It is then easy to compute that

$$\tau(\phi(f)g(vu)) \ge \frac{2\sigma}{3n^2}$$
 for all $\tau \in T(A)$ (125)

and for any pair of $f \in C(X)$ with $0 \le f \le 1$ whose support contains an open ball with radius 2b and $g \in C(\mathbb{T})$ with $0 \le g \le 1$ whose support contains an open arc of length at least $8\pi/n$.

Note that if $\|[\phi(f), e_{i,i}]\| < \delta$, then

$$\left\| \left[\phi(f), \sum_{i=1}^{n} \lambda_{i} e_{i,i} \right] \right\| < n\delta < \epsilon$$

for any $\lambda_i \in \mathbb{T}$ and $f \in \mathcal{F}_1$. We then also require that $\delta < \epsilon/2n$. Thus, one obtains a continuous path $\{v(t): t \in [0,1]\} \subset D$ with $length(\{v(t)\}) \leq \pi$ and with v(0) = 1 and (1) = v.

Now we consider the last part of the lemma. Note also that, if $f \in \mathcal{F}_1$ and $g \in \mathcal{F}_0$ with $0 \le f, g \le 1$,

$$\tau(\phi(f)g(vu)) \ge \sum_{j=1}^{n} \tau(\phi(f)e_{j,j}g(vu)) - \frac{\delta_0^2}{16n^4}$$
(126)

$$\geq \sum_{j=1}^{n} \tau \left(\phi(f) e_{j,j} g^{(j)}(vu) \right) - \frac{\delta_0^2}{16n^4} \quad \text{for all } \tau \in T(A), \tag{127}$$

where $g^{(j)}(t) = g(e^{2\sqrt{-1}j\pi/n} \cdot t)$ for $t \in \mathbb{T}$. If the support of f contains an open ball with radius $b_i/2$ and that of g contains open arcs with length at least b_i , so does that of $g^{(j)}$. So, if \mathcal{F}_0 and \mathcal{F}_1 are sufficiently large, by the assumptions of the last part of the lemma, we have

$$\tau(\phi(f)g(vu)) \ge d_i - \frac{\delta_0^2}{16n^4} \quad \text{for all } \tau \in T(A)$$
 (128)

for all $\tau \in T(A)$. As in the proof of (3.1.16), this lemma follows when we choose \mathcal{F}_0 and \mathcal{F}_1 large enough to begin with.

Lemma (3.1.18)[84]:

Let C be a unital separable simple C^* -algebra with $TR(C) \le 1$ and let $n \ge 1$ be an integer. For any $\epsilon > 0$, $\eta > 0$, any finite subset $\mathcal{F} \subset C$, there exist $\delta > 0$, a projection $p \in A$ and a C^* -subalgebra $D \cong M_n$ with $1_D = p$ such that

$$||[x,p]|| < \epsilon \quad for all \ x \in \mathcal{F};$$
 (129)

$$||[pxp, y]|| < \epsilon \quad \text{for all } x \in \mathcal{F} \text{ and } y \in D \text{ with } ||y|| \le 1$$
 (130)

and

$$\tau(1-p) < \eta \qquad for \ all \tau \in T(C). \tag{131}$$

Proof:

Choose an integer $N \ge 1$ such that $1/N < \eta/2n$ and $N \ge 2n$. It follows from (the proof of) Theorem (3.1.18) of [89] that there is a projection $q \in C$ and there exists a C^* -subalgebra B of C with $1_B = q$ and $B \cong \bigoplus_{i=1}^L M_{K_i}$ with $K_i \ge N$ such that

$$||[x,p]|| < \eta/4 \quad \text{for all } x \in \mathcal{F}; \tag{132}$$

$$||[pxp, y]|| < \epsilon/4 \quad \text{for all } x \in \mathcal{F} \text{ and } y \in B \text{ with } ||y|| \le 1$$
 (133)

and

$$\tau(1-p) < \eta/2n \qquad for \ all \ \tau \in T(\mathcal{C}). \tag{134}$$

Write $K_i = k_i n + r_i$ with $k_i \ge 1$ and $0 \le r_i < n$ for some integers k_i and $r_i, i = 1, 2, ..., L$. Let $p \in B$ be a projection such that the rank of p is k_i in each summand MK_i of B. Take $D_1 = pBp$.

We have

$$||[x,p]|| < \frac{\epsilon}{2} \quad for \ all \ x \in \mathcal{F};$$
 (135)

$$||[pxp, y]|| < \epsilon \quad \text{for all } x \in \mathcal{F} \text{ and } y \in D_1 \text{ with } ||y|| \le 1$$
 (136)

and

$$\tau(1-p) < \frac{\eta}{2n} + \frac{n}{N} < \frac{\eta}{2n} + \frac{\eta}{2} < \eta \qquad for \ all \tau \in T(C). \tag{137}$$

Note that there is a unital C^* -subalgebra $D \subset D_1$ such that $D \cong M_n$.

Lemma (3.1.19)[84]:

Let $n \ge 1$ be an integer with $n \ge 64$. Let $\epsilon > 0$ and $1/2 > \epsilon_1 > 0$. Suppose that A is a unital simple C^* -algebra with $TR(A) \le 1$, suppose that $\mathcal{F} \subset A$ is a finite subset and suppose that $u \in U(A)$. Then, for any $\epsilon > 0$, there exist a unitary $v \in A$ and a continuous path of unitaries $\{w(t): t \in [0,1]\} \subset A$ such that

$$||[x, w(t)]|| < \epsilon \quad \text{for all } f \in \mathcal{F} \text{ and for all } t \in [0,1],$$
 (138)

$$w(0) = 1, \quad w(1) = v$$
 (139)

and

$$\mu_{\tau \circ l}(I_a) \ge \frac{15}{24n^2} \tag{140}$$

for all open arcs I_a of $\mathbb T$ with $length \ a \ge 4\pi/n$ and for all $\tau \in T(A)$, where $l: \mathcal C(\mathbb T) \to A$ is defined by l(f) = f(vu). Moreover,

$$length (\{w(t)\}) \le \pi. \tag{141}$$

If, in addition, $\pi > b_1 > b_2 > \dots > b_m > 0$ and $1 = d_0 > d_1 > d_2 > \dots > d_m > 0$ are given so that

$$\mu_{\tau \circ l_0}(I_{b_i}) \ge d_i \quad \text{for all } \tau \in T(A), \qquad I = 1, 2, \dots, m,$$
 (142)

where $l_0: \mathcal{C}(\mathbb{T}) \to A$ is defined by $l_0(f) = f(u)$ for all $f \in \mathcal{C}(\mathbb{T})$, then one also has that

$$\mu_{\tau \circ l}(I_{c_i}) \ge (1 - \epsilon_1)d_i \quad \text{for all } \tau \in T(A),$$
 (143)

where I_{b_i} and I_{c_i} are any open arcs with length b_i and c_i , respectively, and where $c_i = b_i + 1$, i = 1, 2, ..., m.

Proof:

Let $\epsilon > 0$, and let $n \ge 64$ be an integer. Put $\epsilon_2 = min\{\epsilon_1/16, 1/64n^2\}$. Let $\mathcal{F} \subset A$ be a finite subset and let $u \in U(A)$. Let $\delta_1 > 0$ (in place of δ) for , ϵ , ϵ_2 (in place of ϵ_1) and let $G = \{e_{i,j}\} \subset D \cong M_n$.

Put $\delta = \delta_1/16$, there is a projection $p \in A$ and a C^* -subalgebra $D \cong M_n$ with $1_D = p$ such that

$$||[x,p]|| < \delta \quad for \ all \ x \in \mathcal{F}; \tag{144}$$

$$||[pxp, y]|| < \delta \text{ for all } x \in \mathcal{F} \text{ and } y \in D \text{ with } ||y|| \le 1;$$
 (145)

and

$$\tau(1-p) < \epsilon_2 \quad for \ all \ \tau \in T(\mathcal{C}). \tag{146}$$

There is a unitary $u_0 \in (1-p)A(1-p)$ and a unitary $u_1 \in pAp$. Put $A_1 = pAp$ and $\mathcal{F}_1 = \{pxp: x \in \mathcal{F}\}$. The A_1, \mathcal{F}_1 and u_1 .

Lemma (3.1.20)[84]:

Let $n \ge 64$ be an integer. Let $\epsilon > 0$ and $1/2 > \epsilon_1 > 0$. Suppose that A is a unital simple C^* -algebra with $TR(A) \le 1$, X is a compact metric space, $\phi: C(X) \to A$ is a unital homomorphism, $\mathcal{F} \subset C(X)$ is a finite subset and suppose that $u \in U(A)$. Suppose also that, for some $\sigma > 0$ and 1 > b > 0,

$$\tau(\phi(f)) \in \sigma \quad for \ all \ \tau \in T(A) \quad and$$
 (147)

for all $f \in C(\mathbb{T})$ with $0 \le f \le 1$ whose supports contain an open ball with radius at least b. Then, there exist a unitary $v \in A$ and a continuous path of unitaries $\{v(t): t \in [0,1]\} \subset A$ such that v(0) = 1, v(1) = v,

$$\|[\phi(f), v(t)]\| < \epsilon \quad and \quad \|[u, v(t)]\| < \epsilon \quad for \ all \ f \in \mathcal{F} \ and \ t \in [0,1] \quad (148)$$

$$\tau(\phi(f)g(vu)) \ge \frac{15\sigma}{24n^2} \quad \text{for all } \tau \in T(A)$$
 (149)

for any $f \in C(X)$ with $0 \le f \le 1$ whose support contains an open ball of radius at least 2b and any $g \in C(\mathbb{T})$ with $0 \le g \le 1$ whose support contains an open arc of \mathbb{T} with length $a \ge 8\pi/n$.

Moreover,

$$length(\{v(t)\} \le \pi. \tag{150}$$

If, in addition,
$$1 > b_1 > b_2 > \dots > b_k > 0$$
, $1 > d_1 > d_2 > \dots > d_k > 0$ are given and $\tau(\phi(f')g'(u)) \ge d_i$ for all $\tau \in T(A)$ (151)

for any functions $f' \in C(X)$ with $0 \le f' \le 1$ whose support contains an open ball with radius $b_i/2$ and any function $g' \in C(\mathbb{T})$ with $0 \le g' \le 1$ whose support contains an arc with $length\ b_i$, then one also has that

$$\tau(\phi(f'')g''(u)) \ge (1 - \epsilon_1)d_i \quad \text{for all } \tau \in T(A)$$
 (152)

where $f'' \in C(X)$ with $0 \le f'' \le 1$ whose support contains an open ball with radius c_i and $g'' \in \mathcal{C}(\mathbb{T})$ with $0 \leq g''$ whose support contains an arc with length $2c_i$, where $c_i = b_i + c_i$ 1, i = 1, 2, ..., k.

Define

$$\Delta_{00}(r) = \frac{1}{2(n+1)^2} \quad \text{if } 0 < \frac{8\pi}{n+1} + \frac{4\pi}{2^{n+2}(n+1)} < r \le \frac{8\pi}{n} + \frac{4\pi}{2^{n+1}n} \quad (153)$$

for $n \ge 64$ and

$$\Delta_{00}(r) = \frac{1}{2(65)^2} \quad if \ r \ge \frac{8\pi}{64} + \frac{4\pi}{2^{65}(64)}. \tag{154}$$

Let $\Delta: (0,1) \to (0,1)$ be a non-decreasing map. Define

$$if \ 0 < \frac{8\pi}{n+1} + \frac{4\pi}{2^{n+2}(n+1)} < r \le \frac{8\pi}{n} + \frac{4\pi}{2^{n+1}n} \tag{155}$$

for $n \ge 64$ and

$$D_0(\Delta)(r) = D_0(\Delta)(4\pi/64) \text{ if } r \ge \frac{8\pi}{64} + \frac{4\pi}{2^{65}(64)}.$$
 (156)

Lemma (3.1.21)[84]:

Suppose that A is a unital separable simple C^* -algebra with $TR(A) \leq 1$, suppose that $\mathcal{F} \subset A$ is a finite subset and suppose that $u \in U(A)$. For any $\epsilon > 0$ and any $\eta > 0$, there exist a unitary $v \in U_0(A)$ and a continuous path of unitaries $\{w(t): t \in [0,1]\} \subset$ $U_0(A)$ such that

$$w(0) = 1$$
, $w(1) = v$, $||[f, w(t)]|| < \epsilon$ for all $f \in \mathcal{F}$ and $t \in [0,1]$, (157)

and

$$\mu_{\tau \circ l}(I_a) \ge \Delta_{00}(a) \quad for \ all \ \tau \in T(A) \tag{158}$$

 $\mu_{\tau \circ l}(I_a) \geq \Delta_{00}(a) \quad \text{for all } \tau \in T(A) \tag{158}$ for any open arc I_a with length $a \geq \eta$, where $l: \mathcal{C}(\mathbb{T}) \to A$ is defined by l(g) = g(vu) for all $g \in \mathcal{C}(\mathbb{T})$ and Δ_{00} .

Corollary (3.1.22)[84]: Let C be a unital separable simple amenable C^* -algebra with $TR(C) \le 1$ which satisfies the *UCT*. Let $\epsilon > 0$, $\mathcal{F} \subset C$ be a finite subset and let $1 > \eta > 0$.

Suppose that A is a unital simple C^* -algebra with $TR(A) \leq 1$, $\phi: C \to A$ is a unital homomorphism and $u \in U(A)$ is a unitary with

$$\|\phi(c), u\| < \epsilon \quad for \ all \ c \in \mathcal{F}.$$
 (159)

Then there exist a continuous path of unitaries $\{u(t): t \in [0,1]\} \subset U(A)$ such that

$$u(0) = u$$
, $u(1) = w$ and $||\phi(f), u(t)|| < 2\epsilon$ (160)

for all $f \in \mathcal{F}$ and $t \in [0,1]$. Moreover, for any open arc I_a with length a,

$$\mu_{\tau \circ l}(I_a) \ge \Delta_{00}(r) \quad \text{for all } a \ge \eta,$$
 (161)

where $l: C(\mathbb{T}) \to A$ is defined by l(f) = f(w) for all $f \in C(\mathbb{T})$.

Proof:

Let $\epsilon > 0$ and $\mathcal{F} \subset \mathcal{C}$ be as described. Put $\mathcal{F}_1 = \phi(\mathcal{F})$. The corollary follows by taking u(t) = w(t)u.

Lemma (3.1.23)[84]: Let Δ : (0, 1) \rightarrow (0, 1) be a non-decreasing map, let $\eta > 0$, let X be a compact metric space and let $\mathcal{F} \subset \mathcal{C}(X)$ be a finite subset. Suppose that A is a unital simple C^* -algebra with $TR(A) \leq 1$, suppose that $\phi: C(X) \to A$ is a unital homomorphism and suppose that $u \in U(A)$ such that

$$\mu_{\tau \circ \phi}(O_a) \ge \Delta(r) \quad \text{for all } \tau \in T(A)$$
 (162)

for any open ball with radius $a \le \eta$. For any $\epsilon > 0$, there exist a unitary $v \in U_0(A)$ and a continuous path of unitaries $\{v(t): t \in [0,1]\} \subset U_0(A)$ such that

$$v(0) = 1, v(1) = v,$$
 (163)

$$\|\phi(f), v(t)\| < \epsilon$$
, $\|u, v(t)\| < \epsilon$, for all $f \in \mathcal{F}$ and $t \in [0,1]$ (164)

and

$$\tau(\phi(f)g(vu)) \ge D_0(\Delta)(a) \quad \text{for all } \tau \in T(A)$$
 (165)

for any $f \in C(X)$ with $0 \le f \le 1$ whose support contains an open ball with radius $a \ge 4\eta$ and any $g \in C(\mathbb{T})$ with $0 \le g \le 1$ whose support contains an open arc with length $a \ge 4\eta$, where $D_0(\Delta)$.

We will prove Theorem (3.1.25) below. We will apply the results of the previous section to produce the map L which was required by using a continuous path of unitaries.

Lemma (3.1.24)[84]: Let X be a compact metric space, let $\Delta: (0,1) \to (0,1)$ be a non-decreasing map, let $\epsilon > 0$, let $\eta > 0$ and let $\mathcal{F} \subset C(X)$ be a finite subset. There exist $\delta > 0$ and a finite subset $G \subset C(X)$ satisfying the following:

Suppose that A is a unital simple C^* -algebra with $TR(A) \le 1$, suppose that $\phi: C(X) \to A$ and suppose that $u \in U(A)$ such that

$$\|\phi(f), u\| < \delta \quad for \ all \ f \in \mathcal{G} \tag{166}$$

and

$$\mu_{\tau \circ \phi}(O_b) \ge \Delta(a) \quad for \ all \ \tau \in T)$$
 (167)

for any open balls O_b with radius $b \ge \eta/2$. There exist a unitary $v \in U_0(A)$, a unital completely positive linear map $L: C(X \times \mathbb{T}) \to A$ and a continuous path of unitaries $\{v(t): t \in [0,1]\} \subset U_0(A)$ such that

$$v(0) = u$$
, $v(1) = v$, $||\phi(f), v(t)|| < \epsilon$, for all $f \in \mathcal{F}$ and $t \in [0,1]$, (168)

$$||L(f \otimes z) - \phi(f)v|| < \epsilon$$
, $||L(f \otimes 1) - \phi(f)|| < \epsilon$ for all $f \in \mathcal{F}$ (169)

and

$$\mu_{\tau \circ L}(O_a) \ge (2/3)D_0 \Delta\left(\frac{a}{2}\right) \quad for \ all \ \tau \in T)$$
 (170)

for any open balls O_a of $X \times \mathbb{T}$ with radius $a \ge 5\eta$.

Proof:

Fix $\epsilon > 0$, $\eta > 0$ and a finite subset $\mathcal{F} \subset \mathcal{C}(X)$. Let $\mathcal{F}_1 \subset \mathcal{C}(X)$ be a finite subset containing \mathcal{F} . Let $0 = min\{\epsilon/2, D_0(\Delta)(\eta)/4\}$. Let $\mathcal{G} \subset \mathcal{C}(X)$ be a finite subset containing \mathcal{F} , $1_{\mathcal{C}(X)}$ and \mathcal{Z} . There is $\delta_0 > 0$ such that there is a unital completely positive linear map $L': \mathcal{C}(X \times \mathbb{T}) \to \mathcal{B}$ (for unital C^* -algebra \mathcal{B}) satisfying the following:

$$||L'(f \otimes z) - \phi'(f)u'|| < \epsilon_0 \quad for \ all \ f \in \mathcal{F}_1$$
 (171)

for any unital homomorphism ϕ' : $C(X) \to B$ and any unitary $u' \in B$ whenever

$$\|[\phi'(g), u']\| < \delta_0 \quad \text{for all } g \in \mathcal{G}. \tag{172}$$

Let $0 < \delta < min\{\delta_0/2, \epsilon/2, \epsilon_0/2\}$ and suppose that

$$\|[\phi(g), u]\| < \delta \quad \text{for all } g \in \mathcal{G}. \tag{173}$$

It follows that there is a continuous path of unitaries $\{z(t): t \in [0,1]\} \subset U_0(A)$ such that

$$z(0) = 1, \ z(1) = v_1,$$
 (174)

$$\|[\phi(f), z(t)]\| < \frac{\delta}{2} \qquad \|[u, z(t)]\| < \frac{\delta}{2} \quad \text{for all } t \in [0, 1]$$
 (175)

and

$$\tau(\phi(f)g(v_1u)) \ge D_0(\Delta)(a) \tag{176}$$

for any $f \in C(X)$ with $0 \le f \le 1$ whose support contains an open ball with radius 4η and $g \in C(\mathbb{T})$ with $0 \le g \le 1$ whose support contains open arcs with length $a \ge 4\eta$.

Put $v = v_1 u$. Then we obtain a unital completely positive linear map $L: C(X \times \mathbb{T}) \to A$ such that

 $||L(f \otimes z) - \phi(f)v|| < \epsilon_0$ and $||L(f \otimes 1) - \phi(f)|| < \epsilon_0$ for all $f \in \mathcal{F}_1$. (177) If \mathcal{F}_1 is sufficiently large (depending on η only), we may also assume that

$$\mu_{\tau \circ L}(B_a \times J_a) \ge \left(\frac{2}{3}\right) D_0 \Delta\left(\frac{a}{2}\right) \tag{178}$$

for any open ball B_a with radius a and open arcs with length a, where $a \ge 5\eta$.

Theorem (3.1.25)[84]:

Let X be a finite CW complex so that $X \times \mathbb{T}$ has the property (H). Let $C = PC(X, M_n)P$ for some projection $P \in C(X, M_n)$ and let $\Delta: (0,1) \to (0,1)$ be a non-decreasing map. For any $\epsilon > 0$ and any finite subset $\mathcal{F} \subset C$, there exist $\delta > 0, \eta > 0$ and there exists a finite subset $\mathcal{G} \subset C$ satisfying the following:

Suppose that A is a unital simple C^* -algebra with $TR(A) \le 1$, $\phi: C \to A$ is a unital homomorphism and $u \in A$ is a unitary and suppose that

$$\|[\phi(c), u]\| < \delta \text{ for all } c \in \mathcal{G} \text{ and } Bott(\phi, u) = \{0\}.$$
 (179)

Suppose also that

$$\mu_{\tau \circ \phi}(O_a) \ge \Delta(a) \tag{180}$$

for all open balls O_a of X with radius $1 > a \ge \eta$, where $\mu_{\tau \circ \phi}$ is the Borel probability measure defined by restricting ϕ on the center of C. Then there exists a continuous path of unitaries $\{u(t): t \in [0,1]\}$ in A such that

$$u(0) = u, \quad u(1) = 1 \quad and \quad ||[\phi(c), u(t)]|| < \epsilon$$
 (181)

For all $c \in \mathcal{F}$ and for all $t \in [0,1]$.

Proof:

First it is easy to see that the general case can be reduced to the case that $C = C(X, M_n)$. It is then easy to see that this case can be further reduced to the case that C = C(X).

Corollary (3.1.26)[84]:

Let $k \ge 1$ be an integer, let $\epsilon > 0$ and let $\Delta: (0,1) \to (0,1)$ be any nondecreasing map. There exist $\delta > 0$ and $\eta > 0$ (η does not depend on Δ) satisfying the following:

For any k mutually commutative unitaries $u_1u_2,...,u_k$ and a unitary $v \in U(A)$ in a unital separable simple C^* -algebra A with tracial rank no more than one for which

$$||[u_i, v]|| < \delta$$
, $bott_i(u_i, v) = 0$, $j = 0,1$, $i = 1,2,...,k$,

and

$$\mu_{\tau \circ \phi}(O_a) \ge \Delta(a)$$
 for all $\tau \in T(A)$,

for any open ball O_a with radius $a \ge \eta$, where $\phi : C(\mathbb{T}^k) \to A$ is the homomorphism defined by $\phi(f) = f(u_1, u_2, ..., u_k)$ for all $f \in C(\mathbb{T}^k)$, there exists a continuous path of unitaries $\{v(t): t \in [0, 1]\} \subset A$ such that v(0) = v, v(1) = 1 and

Section (3.2) Result of Equivalence Approximate Unitary with Tracial Rank One

Theorem (3.2.1)[84]:

Let C be a unital separable amenable C^* -algebra satisfying the UCT. Let $b \ge 1$, let $T: \mathbb{N}^2 \to \mathbb{N}$, $L: U(M_{\infty}(C)) \to \mathbb{R}_+$, $E: \mathbb{R}_+ \times \mathbb{N} \to \mathbb{R}_+$ and $T_1 = N \times K: C_+ \setminus \{0\} \to \mathbb{N} \times \mathbb{R}_+ \setminus \{0\}$ be four maps. For any $\epsilon > 0$ and any finite subset $\mathcal{F} \subset C$, there exist $\delta > 0$, a finite subset $\mathcal{G} \subset C$, a finite subset $\mathcal{H} \subset C_+ \setminus \{0\}$, a finite subset $\mathcal{P} \subset \underline{K}(C)$, a finite subset $\mathcal{U} \subset U(M_{\infty}(C))$, an integer l > 0 and an integer k > 0 satisfying the following:

For any unital C^* -algebra A with stable rank one, K_0 -divisible rank T, exponential length divisible $rank\ E$ and $cer(M_m(A))$ b (for all m), if $\phi, \psi: C \to A$ are two unital δ -Gmultiplicative contractive completely positive linear maps with

$$[\phi]|_{\mathcal{P}} = [\psi]|_{\mathcal{P}} \quad and \quad cel(\langle \phi \rangle \langle u \rangle^* \langle \psi \rangle \langle u \rangle) \le L(u)$$
 (182)

for all $u \in U$, then for any unital $\delta - \mathcal{G}$ -multiplicative contractive completely positive linear map $\theta: \mathcal{C} \to M_l(A)$ which is also $T - \mathcal{H}$ -full, there exists a unitary $u \in M_{lk+1}(A)$ such that

Theorem (3.2.2)[84]: Let C be a unital separable simple amenable C^* -algebra with $TR(C) \le 1$ satisfying the UCT and let $D = C \otimes C(\mathbb{T})$. Let $T = N \times K : D_+ \setminus \{0\} \to \mathbb{N}_+ \times \mathbb{R}_+ \setminus \{0\}$.

Then, for any > 0 and any finite subset $\mathcal{F} \subset D$, there exist $\delta > 0$, a finite subset $\mathcal{G} \subset D$, a finite subset $\mathcal{H} \subset D_+ \setminus \{0\}$, a finite subset $\mathcal{F} \subset \underline{K}(C)$ and a finite subset $U \subset U(D)$ satisfying the following: Suppose that A is a unital simple C^* -algebra with $TR(A) \leq 1$ and $\phi, \psi: D \to A$ are two unital δ - \mathcal{G} -multiplicative contractive completely positive linear maps such that ϕ, ψ are $T - \mathcal{H}$ -full,

$$|\tau \circ \phi(g) - \tau \circ \psi(g)| < \delta \text{ for all } g \in \mathcal{G}$$
 (184)

for all $\tau \in T(A)$,

$$[\phi]|_{\mathcal{P}} = [\psi]|_{\mathcal{P}} \tag{185}$$

and

$$dist\left(\phi^{\ddagger}(\overline{w}), \psi^{\ddagger}(\overline{w})\right) < \delta \tag{186}$$

for all $w \in \mathcal{U}$. Then there exists a unitary $u \in U(A)$ such that

and
$$u \circ \psi \approx_{\epsilon} \phi$$
 on \mathcal{F} . (187)

Corollary (3.2.3)[84]:

Let C be a unital separable amenable simple C^* -algebra with $TR(C) \le 1$ which satisfies the UCT, let $D = C \otimes C(\mathbb{T})$ and let A be a unital simple C^* -algebra with $TR(A) \le 1$. Suppose that $\phi, \psi: D \to A$ are two unital monomorphisms. Then ϕ and ψ are

approximately unitarily equivalent, i.e., there exists a sequence of unitaries $\{u_n\} \subset A$ such that

$$\lim_{n\to\infty} ad\,u_n\circ\psi(d) = \phi(d) \quad for \ all \ d\in D,$$

if and only if

$$[\phi] = [\psi] \quad in \ KL(D, A),$$

$$\tau \circ \phi = \tau \circ \psi \quad for \ all \ \tau \in T(A) \ and \ \psi^{\ddagger} = \phi^{\ddagger}.$$

Lemma (3.2.4)[84]:

Let C be a unital separable simple C^* -algebra with $TR(C) \le 1$ and let $\Delta: (0,1) \to (0,1)$ be a non-decreasing map. There exists a map $T = N \times K : D_+ \setminus \{0\} \to \mathbb{N}_+ \times \mathbb{R}_+ \setminus \{0\}$, where $D = C \otimes C(\mathbb{T})$, satisfying the following:

For any $\epsilon > 0$, any finite subset $\mathcal{F} \subset C$ and any finite subset $\mathcal{H} \subset D_+ \setminus \{0\}$, there exist $\delta > 0$, $\eta > 0$ and a finite subset $\mathcal{G} \subset C$ satisfying the following: for any unital separable unital simple C^* -algebra A, any unital homomorphism $\phi: C \to A$ and any unitary $u \in A$ such that

$$\|[\phi(c), u]\| < \delta \quad for \ all \ c \in \mathcal{G} \tag{188}$$

and

$$\mu_{\tau \circ l}(O_a) \ge \Delta(a) \quad for \ all \ \tau \in T(A)$$
 (189)

and for all open balls O_a with radius $a \ge \eta$, where $l: C(\mathbb{T}) \to A$ is defined by l(f) = f(u), there is a unital completely positive linear map $L: D \to A$ such that

$$||L(c \otimes 1) - \phi(c)|| < \epsilon ||L(c \otimes z) - \phi(c)u|| < \epsilon \quad for \ all \ c \in \mathcal{F}$$
 and L is $T - \mathcal{H}$ -full. (190)

Proof:

We identify D with $C(\mathbb{T}, C)$. Let $f \in D_+ \setminus \{0\}$. There is positive number $b \ge 1$, $g \in D_+$ with $0 \le g \le b \cdot 1$ and $f_1 \in D_+ \setminus \{0\}$ with $0 \le f_1 \le 1$ such that

$$gfgf_1 = f_1. (191)$$

There is a point $t_0 \in \mathbb{T}$ such that $f_1(t_1) \neq 0$. There is r > 0 such that

$$\tau(f_1(t)) \ge \tau(f_1(t_0))/2$$

for all $\tau \in T(C)$ and for all t with $dist(t, t_0) < r$.

Define $\Delta_0(f) = \inf\{\tau(f_1(t_0))/4: \tau \in T(C)\} \cdot (r)$. There is an integer $n \ge 1$ such that $n \cdot \Delta_0(f) > 1$. (192)

Define T(f) = (n, b). Put

$$\eta = \inf\{\Delta_0(f): f \in \mathcal{H}\}/2 \text{ and } \epsilon_1 = \min\{\epsilon, \eta\}.$$

We claim that there exists an $\epsilon_1 - \mathcal{F} \cup \mathcal{H}$ -multiplicative contractive completely positive linear map $L: D \to A$ such that

$$||L(c \otimes 1) - \phi(c)|| < \epsilon \quad for \ all \ c \in \mathcal{F} \quad ||L(1 \otimes z) - u|| < \epsilon \tag{193}$$

and

$$\left| \tau \circ L(f_1) - \int_{\mathbb{T}} \tau(\phi(f_1(s))) d\mu_{\tau \circ l}(s) \right| < \eta \text{ for all } \tau \in T(A)$$
 (194)

and for all $f \in \mathcal{H}$. Otherwise, there exists a sequence of unitaries $\{u_n\} \subset U(A)$ for which $\mu_{\tau \circ l_n}(O_a) \geq \Delta(a)$ for all $\tau \in T(A)$ and for any open balls O_a with radius $a \to a_n$ with $a_n \to 0$, and for which

$$\lim_{n \to \infty} \| [\phi(c), u_n] \| = 0 \tag{195}$$

for all $c \in C$ and suppose for any sequence of contractive completely positive linear maps $L_n: D \to A$ with

$$\lim_{n \to \infty} ||L_n(ab) - L_n(a)L_n(b)|| = 0 \quad for \ all \ a, b \in D,$$
 (196)

$$\lim_{n\to\infty} ||L_n(c\otimes f) - \phi(c)f(u_n)|| = 0, \tag{197}$$

for all $c \in C, f \in C(\mathbb{T})$ and

$$\lim\inf_{n} \left\{ \max \left\{ \left| \tau \circ L_{n}(f_{1}) - \int_{\mathbb{T}} \tau(\phi(f_{1}(s))) d\mu_{\tau \circ l_{n}}(s) \right| : f \in \mathcal{H} \right\} \right\} \ge \eta \qquad (198)$$

for some $\tau \in T(A)$, where $l_n: C(\mathbb{T}) \to D$ is defined by $l_n(f) = f(u_n)$ for $f \in C(T)$ (or no contractive completely positive linear maps L_n exists so that (196), (197) and (197)).

Put $A_n = A$, n = 1, 2, ..., and $Q(A) = \prod_n A_n / \bigoplus_n A_n$. Let $\pi: \prod_n A_n \to Q(A)$ be the quotient map. Define a linear map $L': D \to \prod_n A_n$ by $L(c \otimes 1) = \{\phi(c)\}$ and $L'(1 \otimes z) = \{u_n\}$. Then $\pi \circ L': D \to Q(A)$ is a unital homomorphism. It follows from a theorem of Effros and Choi [69] that there exists a contractive completely positive linear map $L: D \to \prod_n A_n$ such that $\pi \circ L = \pi \circ L'$. Write $L = \{L_n\}$, where $L_n: D \to A_n$ is a contractive completely positive linear map. Note that

$$\lim_{n\to\infty} ||L_n(a)L_n(b) - L_n(ab)|| = 0 \quad for \ all \ ab \in D.$$

Fix $\tau \in T(A)$, define $t_n: \prod_n A_n \to \mathbb{C}$ by $t_n(\{d_n\}) = \tau(d_n)$. Let t be a limit point of $\{t_n\}$. Then t gives a state on $\prod_n A_n$. Note that if $\{d_n\} \in \bigoplus_n A_n$, then $t_m(\{d_n\}) \to 0$. It follows that t gives a state \bar{t} on Q(A). Note that (by (267))

$$\bar{t}(\pi \circ L(c \otimes 1)) = \tau(\phi(c))$$

for all $c \in C$. It follows that

$$\bar{t}(\pi \circ L(f)) = \int_{\mathbb{T}} \bar{t}(\pi \circ L(f(s) \otimes 1)) d\mu_{\bar{t} \circ \pi \circ L|_{t \otimes C(\mathbb{T})}}$$

$$= \int_{\mathbb{T}} \tau \left(\phi(f(s))\right) d\mu_{\bar{t} \circ \pi \circ L|_{t \otimes C(\mathbb{T})}} \tag{199}$$

for all $f \in C(\mathbb{T}, C)$. Therefore, for a subsequence $\{n(k)\}\$,

$$\left| \tau \circ L_n(f_1) - \int_{\mathbb{T}} \tau \left(\phi(f(s)) \right) d\mu_{\bar{t} \circ \pi \circ L|_{t \otimes C(\mathbb{T})}} \right| < \frac{\eta}{2}$$
 (200)

for all $f \in \mathcal{H}$. This contradicts with (268). Moreover, from this, it is easy to compute that $\mu_{\bar{t} \circ \pi \circ L|_{t \otimes C(\mathbb{T})}}(O_a) \geq \Delta(a)$

for all open balls O_a of t with radius 1 > a. This proves the claim. Note that

$$\int_{\mathbb{T}} \tau \circ \phi \big(f_1(s) \big) d\mu_{\tau \circ l} \ge \Big(\tau \big(\phi \big(f_1(t_0)/2 \big) \big) \Big) . \Delta(r)$$

for all $\tau \in T(A)$. It follows that

$$\tau(L(f_1)) \ge \inf\{t(f_1(t_0))/2 : t \in T(C)\} - \frac{\eta}{2} \ge \left(\frac{4}{3}\right)\Delta_0(f)$$
 (201)

for all $f \in \mathcal{H}$.

In [22], there exists a projection $e \in \overline{L(f_1)AL(f_1)}$ such that

$$\tau(e) \ge \Delta_0(f) \quad \text{for all } \tau \in T(A).$$
 (202)

It follows from (262) that there exists a partial isometry $w \in M_n(A)$ such that

$$w^*diag\left(\overbrace{e,e,...,e}^n\right)w \ge 1_A.$$

Thus there $x_1, x_2, ..., x_n \in A$ with $||x_i|| \le 1$ such that

$$\sum_{i=1}^{n} x_i^* e x_i \ge 1. \tag{203}$$

Hence

$$\sum_{i=1}^{n} x_i^* \, gfgx_i \ge 1. \tag{204}$$

It then follows that there are $y_1, y_2, \dots, y_n \in A$ with $||y_i|| \le b$ such that

$$\sum_{i=1}^{n} y_i^* f y_i = 1. {(205)}$$

Therefore L is T - \mathcal{H} -full.

Lemma (3.2.5)[84]:

Let C be a unital separable amenable simple C^* -algebra with $TR(C) \le 1$ satisfying the UCT. For $1/2 > \sigma > 0$, any finite subset G_0 and any projections $p_1, p_2, \ldots, p_m \in C$. There is $\delta_0 > 0$, a finite subset $G \subset C$ and a finite subset of projections $P_0 \subset C$ satisfying the following: Suppose that A is a unital simple C^* -algebra with $TR(A) \le 1$, $\phi: C \to A$ is a unital homomorphism and $u \in U_0(A)$ is a unitary such that

$$\|\phi(c), u\| < \delta < \delta_0 \text{ for all } c \in \mathcal{G} \cup \mathcal{G}_0 \text{ and } bott_0(\phi, u)|_{\mathcal{P}_0} = \{0\}.$$
 (206)

where \mathcal{P}_0 is the image of \mathcal{P}_0 in $K_0(C)$. Then there exists a continuous path of unitaries $\{u(t): t \in [0,1]\}$ in A with u(0) = u and u(1) = w such that

$$\|\phi(c), u\| < 3\delta \quad \text{for all } c \in \mathcal{G} \cup \mathcal{G}_0 \tag{207}$$

and

$$w_j \oplus (1 - \phi(p_j)) \in CU(A),$$
 (208)

where $w_j \in U_0(\phi(p_j)A\phi(p_j))$ and

$$||w_j - \phi(p_j)w\phi(p_j)|| < \sigma, \tag{209}$$

 $j = 1, 2, \ldots, m.$

Moreover,

$$cel\left(w_j \oplus \left(1 - \phi(p_j)\right)\right) \le 8\pi + \frac{1}{4}, \quad j = 1, 2, ..., m.$$
 (210)

Lemma (3.2.6)[84]:

Let C be a unital separable simple amenable C^* -algebra with $TR(C) \le 1$ satisfying the UCT. Let $\Delta: (0,1) \to (0,1)$ be a non-decreasing map. Then, for any $\epsilon > 0$ and any finite subset $\mathcal{F} \subset C$, there exist $\delta > 0$, $\eta > 0$, a finite subset $\mathcal{G} \subset C$ and a finite subset $\mathcal{F} \subset K(C)$ satisfying the following:

For any unital simple C^* -algebra A with $TR(A) \le 1$, any unital homomorphism $\phi: C \to A$ and any unitary $u \in U(A)$ with

$$\|\phi(f), u\| < \delta, \quad Bott(\phi, u)|_{\mathcal{P}} = \{0\}$$
 (211)

and

$$\mu_{\tau \circ l}(O_a) \ge \Delta(a) \quad \text{for all } a \ge \eta,$$
 (212)

where $l: C(\mathbb{T}) \to A$ is defined by l(f) = f(u) for all $f \in C(\mathbb{T})$, there exists a continuous path of unitaries $\{u(t): t \in [0,1]\} \subset A$ such that

$$u(0) = u, \ u(1) = 1 \ and \ \|\phi(f), u(t)\| < \epsilon$$
 (213)

for all $f \in \mathcal{F}$ and $t \in [0, 1]$.

Theorem (3.2.7)[84]:

Let C be a unital separable amenable simple C^* –algebra with $TR(C) \leq 1$ which satisfies the UCT. For any $\epsilon > 0$ and any finite subset $\mathcal{F} \subset C$, there exist $\delta > 0$, a finite subset $\mathcal{G} \subset C$ and a finite subset $\mathcal{P} \subset K(C)$ satisfying the following:

Suppose that A is a unital simple C^* -algebra with $TR(C) \leq 1$, suppose that $\phi: C \to A$ is a unital homomorphism and $u \in U(A)$ such that

$$\|[\phi(c), u]\| < \delta \text{ for all } c \in \mathcal{G} \text{ and } \mathrm{Bott}(\phi, u)|_{\mathcal{P}} = 0.$$
 (214)

Then there exists a continuous and piece-wise smooth path of unitaries $\{u(t): t \in [0,1]\}$ such that

$$u(0) = u$$
, $u(1) = 1$ and $\|[\phi(c), u(t)]\| < \epsilon$ for all $c \in \mathcal{F}$ (215) and for all $t \in [0, 1]$

Proof:

Fix $\epsilon > 0$ and a finite subset $\mathcal{F} \subset \mathcal{C}$. Let $\delta_1 > 0$ (in place of δ), $\eta > 0$, $\mathcal{G}_1 \subset \mathcal{C}$ (in place of \mathcal{G} be a finite subset and $\mathcal{P} \subset \underline{K}(\mathcal{C})$ be finite subset, for ϵ , \mathcal{F} and $\Delta = \Delta_{00}$.

We may assume that $\delta_1 < \epsilon$.

Let $\delta = /2$. Suppose that ϕ and u satisfy the conditions in the theorem for the above δ , G and P. It follows that there is a continuous path of unitaries $\{v(t): t \in [\delta_1 0, 1]\} \subset U(A)$ such that

$$v(0) = u, \ v(1) = u_1 \ and \ \|[\phi(c), v(t)]\| < \delta_1$$
 (216)

for all $c \in \mathcal{G}_1$ and for all $t \in [0, 1]$, and

$$\mu_{\tau \circ \iota}(O_a) \ge \Delta(a) \text{ for all } \tau \in T(A)$$
 (217)

and for all open balls of radius $a \ge \eta$.

There is a continuous path of unitaries $\{w(t): t \in [0,1]\} \subset A$ such that

$$w(0) = u_1, \ v(1) = 1 \ and \ \|[\phi(c), w(t)]\| < \epsilon$$
 (218)

for all $c \in \mathcal{F}$ and $t \in [0, 1]$. Put

$$u(t) = v(2t)$$
 for all $t \in [0, 1/2)$ and $u(t) = w(2t - 1/2)$ for all $t \in [1/2, 1]$.