Chapter 3
Homotopy and Result of Equivalence Approximate

Let C be a unital separable amenable simple C*-algebra with tracial rank no more than
one which also satisfies the UCT. Suppose that ¢:C — A is a unital monomorphism and
suppose that v € A is a unitary with [v] = 0 in K;(A) such that v almost commutes with ¢.
It is shown that there is a continuous path of nitaries {v(t):t € [0,1]} in A with v(0) = v and
v(1) = 1 such that the entire path v(t) almost commutes with ¢, provided that an induced
Bott map vanishes. Other versions of the so-called Basic Homotopy Lemma are also
presented.
Section (3.1) Homotopy of Unitaries in Simple €*-Algebras with Tracial Rank One
Fix a positive number € > 0. Can one find a positive number § such that, for any pair of
unitary matrices u and v (K;(M,,) = {0} for any integern > 1) with |luv — vu|| < &,
there exists a continuous path of unitary matrices {v(t):t € [0,1]}for which v(0) =
v,v(1) = 1 and |luv(t) — v(t)ull < € for all t € [0,1]? The answer is negative in
general. A Bott element associated with the pair of unitary matrices may appear. The hidden
topological obstruction can be detected in a limit process. This was first found by Dan
Voiculescu [29]. On the other hand, it has been proved that there is such a path of unitary
matrices if an additional condition, bottl(u,v) = 0, is provided (see, for example, [57] and
also in [70]).

It was recognized by Bratteli, Elliott, Evans and Kishimoto [57] that the presence of such
continuous path of unitaries in general simple C* —algebras played an important role in the
study of classification of simple C* —algebras and perhaps plays important roles in some
other areas such as the study of automorphism groups (see, for example, [12,24,21]). They
proved what they called the Basic Homotopy Lemma: For any € > 0, there exists § > 0
satisfying the following:

For any pair of unitaries u and v in A with sp(u) § —dense in T and [v] = 0 in K;(A) for
which
luv — vu|l < 6§ and bott;(u,v) = 0,

there exists a continuous path of unitaries {v(t): t € [0,1]} < A such that

v(0) = v, v(l) =1, and |lv@)u— w(t)| < €
for all t € [0, 1], where A is a unital purely infinite simple C* —algebra or a unital simple
C* —algebra with real rank zero and stable rank one. Define ¢ : C(T) - A by ¢(f) =
f (u) forall f € C(T). Instead of considering a pair of unitaries, one may consider a unital
homomorphism from C(T) into A and a unitary v € A for which v almost commutes with ¢.

In the study of asymptotic unitary equivalence of homomorphisms from an AH —algebra to
a unital simple C* —algebra, as well as the study of homotopy theory in simple C* —algebras,
one considers the following problem: Suppose that X is a compact metric space and ¢ is a
unital homomorphism from C(X) into a unital simple C* —algebra A. Suppose that there is a
unitary u € A with [u] = 0in K;(A4) and u almost commutes with ¢p. When can one find a
continuous path of unitaries {u(t):t € [0,1]} © A with u(0) = u and u(1) = 1 such
that u(t) almost commutes with ¢ forallt € [0, 1]?
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Let C be a unital AH —algebra and let A be a unital simple C* —algebra. Suppose that ¢,y :
C — A are two unital monomorphisms. Let us consider the question when ¢ and iy are
asymptotically unitarily equivalent, i.e., when there is a continuous path of unitaries
{w(t):t € [0,0)} c Asuch that

tll_)rglo w(t)" ¢(c)w(t) = Y(c) forall ¢ € C.

We study the case that A is no longer assumed to have real rank zero, or tracial rank
zero. The result of W. Winter in [30] provides the possible classification of simple finite
C* —algebras far beyond the cases of finite tracial rank. However, it requires to understand
much more about asymptotic unitary equivalence in those unital separable simple
C* —algebras which have been classified. An immediate problem is to give a classification of
monomorphisms (up
to asymptotic unitary equivalence) from a unital separable simple AH —algebra into a unital
separable simple C* —algebra with tracial rank one. For that goal, it is paramount to study the
Basic Homotopy Lemmas in a simple separable C* —algebras with tracial rank one. This is
the main purpose.

A number of problems occur when one replaces C* —algebras of tracial rank zero by those
of tracial rank one. First, one has to deal with contractive completely positive linear maps
from C(X) into a unital C* —algebra C with the form C([0,1], M,)) which are not
homomorphisms but almost multiplicative. Such problem is already difficult when ¢ = M,
but it has been proved that these above mentioned maps are close to homomorphisms if the
associated K-theoretical
data of these maps are consistent with those of homomorphisms. It is problematic when one
tries to replace M,, by C([0, 1], M,,). In addition to the usual K-theory and trace information,
one also has to handle the maps from U(C)/CU(C) to U(A)/CU(A), where CU(C) and
CU(A) are the closure of the subgroups of U(C) and U(A) generated by commutators,
respectively.

Other problems occur because of lack of projections in C* —algebras which are not of real
rank zero.

The main theorem is stated as follows: Let C be a unital separable simple amenable
C* —algebra with tracial rank one which satisfies the Universal Coefficient Theorem. For any
e > 0 and any finite subset F < C, there existd > 0, a finite subset G c C and a finite
subset P c K(C)
satisfying the following:

Suppose that A is a unital simple C* —algebra with tracial rank no more than one, suppose
that ¢ : C — A is aunital homomorphismand u € U(A) such that

I[$p(c),u]ll < § forall ¢ € G and Bott(p,u)|P = 0. (1)
Then there exists a continuous path of unitaries {u(t): t € [0,1]} < A such that
u(0) = w,u(1) =1 and ||[p(c),u(®)]ll <e forall c €eF (2)
and forall t € [0,1].
We also give the following Basic Homotopy Lemma in simple C* —algebras with tracial
rank one.
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Let e >0 and let A: (0,1) = (0,1) be a non-decreasing map.We show that there exist
d > 0andn > 0 (which does not depend on A) satisfying the following:

Given any pair of unitaries u and v in a unital simple C* —algebra A with tracial rank no
more than one such that [v] = 0in K;(4),

Iw, V]Il < 6, bott; (w,v) = 0 and p.0;(I;) = A(a)
for all open arcs 1, with length a > n, there exists a continuous path of unitaries {v(t):t €
[0,1]} < A such that
v(0) = v, v(1) = 1and ||[u,v(t)]|l <€ forall t € [0,1],

wheret: C(T) — A is the homomorphism defined by 1(f) = f (u) forall f € C(T) and
U.o; 1S the Borel probability measure induced by the state t o [. It should be noted that,
unlike the case that A has real rank zero, the length of {v(t)} cannot be controlled. In fact, it
could be as long as one wishes.

In a subsequent paper [23], we use the main homotopy result Theorem (3.1.34) and the
results in [22] to establish a K —theoretical necessary and sufficient condition for
homomorphisms from unital simple AH-algebras into a unital separable simple C* —algebra
with tracial rank no more than one to be asymptotically unitarily equivalent which, in turn,
combining with a result of W. Winter, provides a classification theorem for a class of unital
separable simple amenable C* —algebras which properly contains all unital separable simple
amenable C* —algebras with tracial rank no more than one which satisfy the UCT as well as
some projectionless C* —algebras such as the Jiang—Su algebra.

Let A be a unital C* —algebra. Denote by T(A) the tracial state space of A and denote by
Aff(T (A)) the set of affine continuous functions on T'(A).
Let C = C(X) for some compact metric space X and let L : C — A be a unital positive
linear map. Denote by u.o; the Borel probability measure induced by the state 7 © [, where
T € T(A).
Let a and b be two elements in a C* —algebra A and let e > 0 be a positive number. We write
a ~.b if|la —b|| < €. Let L;,L, : A — C be two maps from A to another C* —algebra
C and let F < A be a subset. We write
Ly =.L, on F,
if Ly(a) =, L,(a) foralla € F.
Suppose that B ¢ A. We write a €. B if there is an element b € B such that ||a — b|| <
€..
Let G c A be asubset. We say L is € — G —multiplicative if, forany a,b € G,
L(ab) = L(a)L(b)
Foralla,b € G.
Let A be a unital C* —algebra. Denote by U(A) the unitary group of A. Denote by U,(A) the
normal subgroup of U(A) consisting of those unitaries in the path connected component of
U (A)containing the identity. Let u € U,(A). Define
cel,(u) = inf{length ({u(t)}): u(t) € C([O, 1],U0(A)),
u(0) = uvandu(l) = 1,4}
We use cel(u) if the C* —algebra A is not in question.
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Denote by CU(A) the closure of the subgroup generated by the commutators of U(A). For
u € U(A), we will use. u for the image of u in U(A)/CU(A). If . u.v € U(A)/CU(A),
define
dist(,?) = inf{||x — y|l:x,y € U(A)suchthat x = u,y = v.
Ifu,v € U(A), then
dist(u,v) = inf {|luv* — x|: x € CU(A)}.
Let A and B be two unital C* —algebras and let ¢: A — B be a unital homomorphism.
It is easy to check that ¢ maps CU(A) to CU(B). Denote by ¢*the homomorphism from
U(A)/CU(A) into U(B)/CU(B) induced by ¢. We also use ¢* for the homomorphism from
U(M,(A))/CU(My(A)) into UM, (B))/CUM,(B)) (k = 1,2,...).
Let A and C be two unital C* —algebras and let F ¢ U(C) be a subgroup of U(C). Suppose
that L : F — U(A) is a homomorphism for which L(F n CU(C)) < CU(A). We will use
L¥: F/CU(C) » U(A)/CU(A) for the induced map.
Let Aand B beasin26,let1 >e > 0andlet G c A be asubset. Suppose that L isae —G
multiplicative unital completely positive linear map. Suppose that u,u* € G. Define
(LY(w) = L@)L(uw)~/2,
Definition (3.1.1)[84]:
Let A and B be two unital C* —algebras. Let h : A — B be a homomorphism and let v €
U(B) such that
h(g)v = vh(g) forallg € A.
Thus  we obtain a homomorphism. h: A ® C(SY) > Bbyh(f ® g) =
h(f)g()forf € Aand g € C(S1). From the following splitting exact sequence
00SA->AQRCESHSA-0 3)
and the isomorphisms K;(A) = K;_;(SA) (i = 0,1) given by Bott periodicity, one obtains
two injective homomorphisms
BO: Ky(A) » K1 (A® C (SH)) 4)
BM : K (A) » Ko (A® C (SY)) (5)
Note, in this way, one can write K;(4 ® C(SY)) = K;(4) @& B D (K,_;(4)). We use
BO: K,(A ® C(SH) » BA-D(K,_;(A)) for the projection to the summand
BA-D(K,_;(A))For each integer k > 2, one also obtains the following injective
homomorphisms
O K, (A, Z/kT) - Ki_; (A ® C(SY),Z/kZ), i= 0,1. (6)
Thus we write
Kii (A ® C(SY),Z/kL), = Ky_; (A, Z/kT) @ B’ (Ki(A Z/kL)),i = 0,1. (7)

Denote by B : K;(A ® C(SY) — B VK,_; (A,Z/kZ)  similarly to B®, i = 1.2.. If

x € K(A), we use B(x) for SO (x) if x € K;(A) and for B” (x)if x € K;(A,Z/kT). Thus
we have a map B : K(A) » K(A ® C(SY)) as well as B: K(A ® C(SY)) - B(K(A)).
Thus one may write K(A@GC(S1)) = K(A) @L(K(A)).
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On the other hand .h induces homomorphisms .h,; : K;(A® C(SY),Z/kZ) -

K;(B,Z/kZ), k = 0,2,...,andi = 0,1. We use Bott(h, v) for all homomorphisms. h,;; ©

O We write

Bott(h,v) = 0,
if .k 0 BV =0 forallk = 1andi = 0,1.
We will use bott;(h,v) for the homomorphism .h;, o fD : K;(A) - Ky(B), and
bott, (h, w) for the homomorphism hy, © B : K,(A) - K, (B).

Since A is unital, if bott,(h,v) = 0,then [v] = 0in K;(B).

For a fixed finite subset P ¢ K(A), there exist § > 0 and a finite subset G c A such that,
if v € B isaunitary for which

|h(a)v — vh(a)|| < éforall a € G,
then Bott(h,v)|P is well defined. In what follows, whenever we write Bott(h,v)|P, we
mean that & is sufficiently small and g is sufficiently large so it is well defined.

Now suppose that K;(A) is finitely generated (i = 0,1). For example, A = C(X), where
X is a finite CW complex. When K;(A) is finitely generated, Bott(h, v)|P, defines Bott(h, v)
for some sufficiently large finite subset P,. In what follows such P, may be denoted by P,
Suppose that P < K(A) is a larger finite subset,and G o Goand 0 < § < §,.

Bott(h, v)|P defines the same map Bott(h,v) as Bott(h, v)|P, defines, if
|h(a)v — vh(a)|| < éforall a € G,

when K;(A) is finitely generated. In what follows, in the case that K;(A)is finitely generated,
whenever we write Bott(h, v), we always assume that § is smaller than §, and G is larger
than G, so that Bott(h, v) is well defined (see [70] for more details).

In the case that A = C(S1), there is a concrete way to visualize bott, (h, v). It is perhaps
helpful to describe it here. The map bott, (h, v) is determined by bott, (h, v)([z])where z is
the identity map on the unit circle.

Denote u = h(z) and define

omiey _ (1—2t,  if0<t<1/2,
f(e )_{—1+2t, if1/2<t<1,

g(e2nit) — { (f(QZnit) _ f(QZnit)Z)l/Z,  ifo<t<1/2,
0, if1/2<t<1,
and
0, ifo<t<1/2,

h(e?mt) = . - 21/2
(e ) { (f(Bth) _ f(Qant)Z) ,if 1/2 <t< 1’
These are non-negative continuous functions defined on the unit circle. Suppose that uv =
vu.
Define
f) g(v) + h(V)u*)
b(u,v) = ( ) 8
W)=\ +un@)  1- () ®
Then b(u,v) is a projection. There is §, > 0 (independent of unitaries u, v and A) such

that if ||[u,v] || < &, the spectrum of the positive element p(u,v) has a gap at 1/2. The
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Bott element of u and v is an element in K,(A) as defined in [9,8] which may be represented
by
1 0
bott, (u,v) = [x[1/2, ©)b(u, v)] - [(0 0)] 9)

Note that y[1/2, ) is a continuous function on sp(b(u, v)). Suppose that sp(b(u, v)) C
(—o,a] U [1—a,o) for some 0 < a < 1/2. Then x[1/2,) can be replaced by any other
positive continuous function F for which F(t) = 0ift < aand F(t) = 1ift = 1/2.
Definition (3.1.2)[84]:

Let A and C be two unital C* —algebras. Let N: €, \{0} - N and K: C,\ {0} —
R,\ {0} be two maps. Define T = N x K: C,\{0} - N x R_\{0}by T (c) =
(N(c),K(c)) forc € C, \{0}. Let L : C - A be a unital positive linear map. We say L is

T —fullif forany ¢ € C,\ {0}, there are x;, x,..., xy() € A With ||x;|[ < K(c) such that
N(c)

z X L(©)x; = I

i=1
LetH ¢ C+\ {0} WesaythatLisT — H —full if
N(c)

z X L(©)x; = I

i=1
forall c € H.
Definition (3.1.3)[84]:

Denote by I the class of unital C* —algebras with the form @2, C(Xl-,Mn(i)), where X; =
[0, 1] or X; is one point
Definition (3.1.4)[84]:

Let k > 0 be an integer. Denote by I, the class of all C* —algebras B with the form =
PM,,,(C(X))P, , where X is a finite CW complex with dimension no more than k, P is a
projection in M,,(C(X)).

Recall that a unital simple C* —algebra A is said to have tracial rank no more than k (write
TR(A) < k) if the following holds: For any e > 0, any positive elementa € A, \ {0} and
any finite subset F < A, there exist a non-zero projectionp € Aand aC* —subalgebra B €
I, with 1 = p such that
(i) |lxp —px|| < € forallx € F;

()pxp €. Bforallx € F; and

(iii) 1 — pis von Neumann equivalent to a projection in aAa.

If TR(A) < kandTR(A) # k— 1, we say A has tracial rank k and write TR(A) = k.t
has been shown that if TR(A) = 1, then, in the above definition, one can replace B by a
C* —algebra in I (see [91]). All unital simple AH-algebra with slow dimension growth and
real rank zero have tracial rank zero (see [31] and also [88]) and all unital simple AH-
algebras with no dimension growth have tracial rank no more than one (see [51], or, Theorem
2.5 of [89]). Note that all AH —algebras satisfy the Universal Coefficient Theorem. There is
unital separable simple C* —algebra A with TR(A) = 0 (and TR(A) = 1) which is not
amenable.
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The following is taken from an argument of N.C. Phillips [25].
Lemma (3.1.5)[84]:
Let H > 0 be a positive number and let N > 2 be an integer. Then, for any unital
C* —algebra A, any projectione € Aand any u € Uy(edAe) with cel,4.(u) < H,
dist(u + (1 — e),1) < H/N, (10)
if there are mutually orthogonal and mutually equivalent projections e;, e,,..., e,y € (1 —
e)A(1 — e) such that el is also equivalent to e.
Proof:
Since cel, 4. (1) < H, there are unitaries uy, u;...,u y € eAe such that

Uy = U, uy = land||lu; —u;_{|| <H/N, i =12,...,N. (11)

We will use the fact that

v 0y_( 0\/0 1y/v* 0\/(0 1
(o v*) B (0 1) (1 o)(o 1) (1 o)'
In particular, (g 1?) Is a commutator. Note that
(U uU Pu Bu; @ .. COuyBuy) ~UB U Bu Bur @ ... O uy_; G un)ll
< H/N. (12)
Sinccuy =1L, uu Qu, Qui P .. P uy_; P uy is acommutator
Now we write
ude D ..Oeyy
=uUuPuU Pu, Pu; PB.Quy Puy)ePu, Bui @ ...D uy_, D uy)
Weobtainz € CU((e + X, e;)A(e + X2, e;) such that
lu®@e @ ..0ew—zll <H/N.

It follows that

dist(u + (1 — e),1) < H/N.
Definition (3.1.6)[84]:
Let = PM,(C(X))P , where X is a compact metric space and P € M, (C(X)) is a
projection. Letu € U(C). Recall (see [27]) that
D.(u) = inf{ ||a||: a € C, ,.such that det (exp(ia).u)(x) = 1forallx € X}.
If no self-a djoint elementa € Ag,. exists for which det(exp(ia).u)(x) = 1forall x €
X, define D.(u) = .
Lemma (3.1.7)[84]:
Let K > 1 be an integer. Let A be a unital simple C* —algebra with TR(A) < 1,lete €
A be a projection and let ue Uy(ede). Suppose thatw = u + (1 — e) and suppose
n > 0.Suppose also that
[1 —e] < K[e] in Ky(A) and dist(w,1) <. (13)
Then, ifn <2,
cely.(u) < (kz_n + 1/16)77 +8m and dist(u,e) < (k+1/8)n.
andifn = 2,
km
celgq.(u) < 7ce1(w) +1/16 + 8m.

Proof:
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We assume that (13) holds. Note thatn < 2. PutL = cel(w).
We first consider the case that n < 2. There is a projection e’ € M, (A) such that
[(1—e)+e'] =kle]
To simplify notation, by replacing A by (1, — e )M,(A)(14 —e") and w by w + e’, without
loss of generality, we may now assume that
(1—e) =k[e] and dist(w,1) <n. (14)
There is R; > 1 such that max {L/R;,2/R,n7/R,} < min{n/64,1/16m}.

‘)7 - - - - -
For any 2RI Dm > € >0 withe +n < 2, since TR(A) < 1, there exist a projection p €

AandaC* —subalgebra D € I with 1, = p such that
(i) ll[p,x]ll <€ forx € {u,w,e, (1 —e)};
(i) pwp, pup,pep,p(1 —e)p € D;
(ili) there is a projection ¢ € D and a unitary z; € gDq such that||g — pep|| <€,
|z —quqll <€ llzz @ (p—q) —pwpll <€ and ||zz B (p—q) —cll <e+n;
(iv) there is a projection g, € (1 —p)A(1 —p) and a unitary z, € qoAq, such that|[q, —
1-pe(l-pll<e llzg—A—-pul-plll<e llzo@ (1 —p—qo) —
A-pw@-p)ll<e llzg@ (1—p—qo) —cll <e+n;
(V) [p —ql = Klqlin Ky(D), [(1 = p) — qo] = K[qo] in Ko(A);
(vi)  2(K + 1Ri[1 - p] < [p]inKy(A);
(vii)  cleq—pyaa-p (Zo bA-p- CIO)) <L+te
where c; € CU(D)and ¢y € CU((1 — p)A(1 —p)).

Note that Dp(c;) = 0.Sincee+n <2, there ish € Dy,. with [k <
2arcsin (HT") such that (by (iii) above)

(21 @ (p-@))exp(ih) = cy. (15)
It follows that
Dp(z, @ (p - @))exp(ih) = 0. (16)
By (v) above and applying in [27], one obtains that
. (€17
|DqDDzl| < k2arcsin (T) (17)

If 2karcsin (HTW) > T, then

2k(€+n>ﬂ>
2 J2=T

It follows that

k(e+n) =2 =dist(z;,q). (18)
Since those unitaries in D with det(u) = 1 (for all points) are in CU(D) from (3.17), one

computes that, when 2karcsin (HT") <,

€+

dist(z;,q) < 2sin <karcsin ( 77)) < k(e + 7). (19)

By combining both (18) and (19), one obtains that

o — n
< < S
dist(z1,@) < k(e +n) <kn+ 320k + Dn (20)
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By (17), it follows in [27] that

. €Et7M
cequq < 2karcsin

0
+6n£k(e+n)5+6n

o 1
S(k5+—64(k+1)>n+61t 21)

By (v) and (vi) above,

(K +Dlq] = [p —q] + [q] = [p] > 2(K + DR4[1 —p].
Since K, (A) is weakly unperforated, one has

2R1[1 —p] <Iql. (22)
There is a unitary v € A such that
v'(1 =p = qov = q. (23)
Putv; = qo @ (1 —p —qy)v. Then
vi(Zg @D (1 —p —qo))v1 =2, B v'(1 —p — qo)v. (24)
Note that

(2o @ v*(1 —p = qo)VIvicgvs —qo D v (1 —p — qo)vll <e+n. (25)
Moreover, by (vii) above

cel(zo @ v'(1 —p — qo)v) <L +e. (26)
It follows from (22) and Lemma (4.1.8) of [89] that
celigo+algo+q) (Zo © @) < 21+ (L + €)/R;. (27)

Therefore, combining (21),
cel(gy+q)acqo+a) (Zo + 2)

<2 +L+€+ kT[-l- 1 + 6 28
—”R1<Em>” - (28)
By (26), (22), in Uy((q0 + 9)A(qo + 9))/CU((q0 + DA(go + ),
L+
dist(zo +q,q0 + q) < ( R E). (29)
1
Therefore, by (19) and (29),
dist(zo @ 21,90 + q) < (L+E)+k +— < (k+1/6)n. (30)
We note that
le — (qo + DIl <2€ and [[u—(z, + 2l < 2e. (31)
It follows that
dist(i,e) < 4¢ + (K +1/16)n < (K +1/8)n. (32)
T 1
celope(u) < 4em+2n+ (L+€)/Ry + (kz + m)n +6m (33)
< (k; +1/16)7 +8m (34)

This proves the case thatn < 2.
Now suppose that n = 2. Define R = [cel(w) + 1]. Note that
projection e’ € Mg, 1 (A) such that

cel(w)
R

< 1. There is a
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[(1 —e)+e'] = (K + RK)]e].
It follows that
_ cel(w)
disttw D e’, 1, +€') < TEER (35)
Put K; = K(R + 1). To simplify notation, without loss of generality, we may now assume
that

o cellw)
[1 —e] =K;[e] and dist(w, 1) < TR (36)
It follows from the first part of the lemma that
L) < (Kln N 1 >ce1(w) 37
CClenctll 2 16/ R+1 (37)
kmcel(w) 1
< +—+8n1 (38)

- 2 16

Theorem (3.1.8)[84]:

Let A be a unital simple C* —algebra with TR(A) <1 and let e € A be a non-zero
projection. Then the map u » u + (1 — e) induces an isomorphism j from U(eAe)/
CU(eAe) onto U(A)/CU(A).

Proof:

It was shown in in[89] that j is a surjective homomorphism. So it remains to show that it is
also injective. To do this, fix a unitary u € eAe so that. u € ker j . We will show that u €
CU(eAe).

There is an integer K > 1 such that

K[e] =[1— e]in K,(4).
Letl > €e>0.Putv=u+ (1 —e).Since.u € kerj,v € CU(A).In particular
dist(7,1) <e€/(Km/2 + 1).
It follows from Lemma (4.1.7)that

= km
dist(7,1) < (7 + 1/16) (e/(Km/2 +1)) <e.

It then follows that
u € CU(ede).

Corollary (3.1.9)[84]:
Let A be a unital simple C* —algebra with TR(A) < 1. Then the map j: a—

m

diag(a,1,1,...,1) from A to M, (A) induces an isomorphism from U(A)/CU(A) onto
U(M,,(A))/CU(M,(A)) for any integer n > 1
Lemma( 3.1.10)[84]:

Let X be a path connected finite CW complex, letC = C(X) and letA =
C([0,1], M,,) for some integer n = 1. For any unital homomorphism ¢: C — A, any finite
subset F c C and any € > 0, there exists a unital homomorphism i : C — B such that
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lp(c) —P(c)ll <€ forallc € F (39)

f(51(t))
Y )@) = W) w(t), (40)
f(s2(®)

where W € U(A),s; € C([0,1],X),j = 1,2,...,n,andt € [0,1].

Proof:

To simplify the notation, without loss of generality, we may assume that F is in the unit
ball of C. Since X is also locally path connected, choose §; > 0 such that, for any point x €
X,B(x,8,) is path connected. Putd = 2m/n. Let §; > 0 (in place of §) be as required [69]
fore/2.

We will also apply in [28], there exists a finite subset H of positive functions in
C(X)and &; > 0 satisfying the following: For any pair of points and {y;}i~,, if
{h(x))}=,and {h(y;)}., can be paired to within §; one by one, in increasing order,
counting multiplicity, for all h € #,then {x;}}-,and {y;}},,i=1 can be paired to within
&5 /2, one by one.

Put e; = min{e/16,8,/16,5,/4,55/4}. There exists n > 0 such that

If ) —f(t)| <e /2 forall fep(FuUR). (41)
provided that |t - t'| < n. C{x;}}=; hoose a partition of the interval:
0 =t < t;<--- <ty = L

Such that |t; — t;_;| <n, i = 1,2,...,N. Then
Ie(f ) — ¢(f )(ti-)ll < e forall f € FUH. (42)

i = 1,2,...,N. There are unitaries U; € M,, and {xi,j};lzlri = 1,2,...,N, such that
f(xi,1)
¢(f)t:) =U; U; (43)
f(xi,n)

By the Weyl spectral variation inequality (see [69]), the eigenvalues of {h(xl-,]-)}:l:1 and
{h(xi_l,j)}?=1j=1 can be paired to within &5, one by one, counting multiplicity, in decreasing
order. It follows in [28] that {xilj}?zljzl and {xi_l,j}:lzlcan be paired within &5/2. We may
assume that

dist(xi,ai(j),xi_l’j) < 63/2, (4‘4)
where o¢;:{1,2,...,n} = {1,2,...,n} is a permutation. By the choice of &5, there is a
continuous path {x;_1j (t):t € [t; = 1,(t; +t;—1)/2]} © B(x;_1,63/2) such that
Xi—1,j(tic1) = X1 and Xi—1,;((ti1 +8)/2) = xi6,)  (45)
j =12,...,n.Put
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f(xi1 (D)
YO =Ui,

> Ui (46)
f(xin(®)
fort € [t;_q, (ti—1 +t;)/2] and for f € C(X). In particular,

v () = v,

(f(xm(t)) >
Ui—1 (47)
f(xi,n(t))
for f € C(X). Note that

lp(f )(tim1) =P (F IO < 62/4and [[P(f)(E)-d(f &) < 62/4 + €1/2

< 6,/2 (48)
forall f € Fandt € [t;_q, ﬁ] There exists a unitary W; € M,, such that
wi() = (5w = o)) (49)
forall f € C(X). It follows from (48) and (49) that
Jwarr) () —w) () w <8 o)

for all f € F. By the choice of §, and by applying in [69], we obtain h; € M,, such that
Wi = exp(v—lhi) and

exp(V=T th)l/)(f)( Y= () () expV=Teh)|| < /4 (52)

forall f € F.andt € [0,1]. From thls we obtain a contmuous path of unitaries

{(W; (t): t e [% t; ]} < M,, such that

ti—1 T+ ¢

(11+t

)= (| <ers 6D

and

tiog+ 1 tioa+ Y

w () =1, wie) = w, (53)
and
vy () —p) () wi| <ers

for all f € F and t€ [ ,ti]. Define ¥ (f )(t) = w; (t)l[)(tl 1”) w;(t) for te
[%,ti] =12,...,N. Note that ¥ : C(X) — A. We conclude that

le(f) =)l < eforall F (55)

Define
2]

Ut = U, for te [0,5), Ut = U,W,(t) for t € [%,tz), (56)
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t; +t;_
Ut) = U(;) for t € [ti, L 1),

2
t; +t;_4
U(E) = UGWena(® for ¢ €[22 1), (57)
i=1,2,..., N — 1 and define
i1 i1 b1
Sj = Xoj(t) for te€ [0,;), si(t) = s; (5) for t € [f'tZ)' (58)
t; +t;
Sj = xi,di(j)(t) for t € [ti, 2 * ’
t; +t; t; +t;
S](t) = S]< > +1) for t € [ 5 +1,ti+1], (59)
i =12,..., N — 1. Thus U(t) € A and, by (45), s;(t) € C([0, 1], X).
One then checks that i has the form
f(51(t))
Y(f)=U0@) u(t) (60)
f(sn(@®)

for f € C(X). In fact, for t € [0, t,], it is clear that (60) holds. Suppose that (60) holds for t €
[0,¢;]. Then, by (49), for f € C(X),

f(ioi0)
Y(f)E) =U(t)" U(t;)
f(Xioymy)
<f(xi,1) >
= U} U;, (61)
f(xi,n)
Therefore, fort € [tlm]
f(x:1(0)
Y )@) =U; U; (62)
f(xin(®)
(f (%i,0,(1) (1)) )
= U(ty)" u(e) (63)
f(xi,ai(n) (t))
(f(51(t)) )
=U(t)" U(t) (64)
f(sa(®)
For t € [@ t; ]
2 » Vi1
b +tivq
O = Wea (O (52 Wi () (65)
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ti +tiy1

( Flsi ) \
= Wi ()" U(E)" U(t)Wi1(8) (66)
b+ tivq
f(sn( ))/

2
(f(51(t)) )
=U(t)" U(t) (67)
f(sa(®)
This verifies (60).
Lemma (3.1.11)[84]:

Let X be a finite CW complex and let A €. Suppose that ¢p: C(X) ® C(T) — A is a unital
homomorphism. Then, for any € > 0 and any finite subset F c C(X), there exists a
continuous path of unitaries {u(t): t € [0, 1]} in A such that

u0)=¢(1Q®z), u@)=1 and |[¢(f D, u@®]ll<e (68)
for fe Fandt € [0,1].
Proof:

It is clear that the general case can be reduced to the case that A = C([0, 1], M,,). Let
q1, 9>, ---,q, be projections of C(X) corresponding to each path connected component of X.
Since ¢(q;)A¢(q;) = C([0,1], M) forsome 1 <n; <n, { = 1,2,..., we may reduce the
general case to the case that X is path connected and A = C(][0, 1], M,,).

Note that we use z for the identity function on the unit circle.

For anye > 0 and any finite subset F < C(X), obtains a unital homomorphism 1 :
C(X) ® C(T) — A such that

lp(g) —y(@)ll <e forall ge{f ®1: fe F}U{l® z} (69)

<f(51 (t)) )
U(t), (70)
f(sa(®))

forall f € C(X xT), where U(t) € U(C([0,1],My)),s;: [0,1] » X X T is a continuous
map, j = 1,2,...,n, and for all ¢ € [0,1]. There are continuous paths of unitaries
{uj (r):r € [0,1]} < C([0,1]) such that

w(0)() = (1Q 2) (sj(1)), w() =1, j = 1,2,...,n, (71)

) U(t). (72)
Uy (r)(t)

uMYP(FR1) = Y(f @ Du(r) forall r € [0, 1].

Y(Ht=U)

Define
w;(r) ()
u(r)t = U(t)*(

Then

It follows that

o (f @ 1), u(r)]l| <e forall r€[0,1] and forall f € F.
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Definition (3.1.12)[84]:

Let X be a compact metric space. We say that X satisfies property (H) if the following
holds:

For any e > 0, any finite subsets ¥ c C(X) and any non-decreasing map A: (0,1) —
(0,1), there exists n > 0 (which depends on € and F but not A), § > 0, a finite subset G c
C(X) and a finite subset P < K(C(X)) satisfying the following:

Suppose that ¢: C(X) —» C([0,1],M,,) is a unital § — G —multiplicative contractive
completely positive linear map for which

Hrop(0g) = Ala) (73)
for any open ball 0, with radius a > n and for all tracial states z of C([0, 1], M,,), and
[@]lP = [®]IP, (74)
where @ is a point-evaluation.
Then there exists a unital homomorphism h: C(X) — C(][0, 1], M,,) such that

forall f € F.

It is a restricted version of some relatively weakly semi-projectivity property. It has been
shown in [22] that any k —dimensional torus has the property (H). So do those finite CW
complexes X with torsion free K,(C(X)) and torsion K;(C(X)), any finite CW complexes
with form Y x T where Y is contractive and all one-dimensional finite CW complexes.
Corollary( 3.1.13)[84]:

LetC = C(X,M,)whereX = [0,1]or X = T and A:(0,1) — (0,1) be a nondecreasing
map. Forany e > 0 and any finite subsetF c C, there existsé > 0,17 > 0and there
exists a finite subset G c C satisfying the following:

Suppose that A is a unital simple C* —algebra with TR(4) <1,¢: C — A is a unital
monomorphism and u € A is aunitary and suppose that

I[¢(c),u]ll <6 forall ce€g, (75)
bott,(¢p,u) = {0} and bott;(¢,u) = {0} (76)
Suppose also that there exists a unital contractive completely positive linear map L: C &
C(T) — A such that (with z the identity function on the unit circle)
IL®1D) -l <éb, L(c®2z) —¢p(c)ull <Sforallceg
and
for all open balls 0, of [0,1] x T with radius 1 > a > n, where .., is the Borel
probability measure defined by restricting L on the center of € @ C(T). Then there exists a
continuous path of unitaries {u(t): t € [0, 1]} such that
u(=u u(@)=1 and [[[¢pCc)u®]ll<e (78)
forallc € Fandforallt € [0,1].
Corollary (3.1.14)[84]:

Let C = C([0,1],M,) andletT = N x K: (C ® C(T)), \ {0} > N x R, \ {0} be a
map. For any € > 0 and any finite subset F c C, there exist § > 0, a finite subset H
c(C ® C(T)), \ {0} and there exists a finite subset G c C satisfying the following:

Suppose that A is a unital simple C* —algebra with TR(A) <1,¢:C — A is a unital
monomorphism and u € A is aunitary and suppose that
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I[p(c),u]ll] <& forall ceg, (79)
and

bott, (¢, u) = {0}. (80)

Suppose also that there exists a unital contractive completely positive linear map L: C &
C(T) - Awhichis T — H —full such that (with z the identity function on the unit circle)
ILc®1) -l <s, lL(c®z) —p(cJull <sforallceg  (81)
Then there exists a continuous path of unitaries {u(t): t € [0,1]}in A such that
u(@=u u()=1 and |[[¢Cc),u®lll<e (82)
forallc € Fandforallt € [0,1].

Proof:

Fix T = N xK: NxR, \{0}Let A: (0,1) » (0,1) be the non-decreasing map
associated with T as in [22]. LetGc C,6 > 0and > 0, for e and F given and the
above A.

It follows in [22] that there exists a finite subset H ¢ (C @ C(T)).\ {0} such that for any
unital contractive completely positive linear map L : € @ C(T) - A which is T — H —full,
one has that

Hror(0g) = Aa) (83)

For all open balls 0, of X X T with radiusa > n.

Lemma (3.1.15)[84]:

Let C = M,,. Then, for any € > 0 and any finite subset F, there exist § > 0 and a finite
subset G c C satisfying the following: For any unital C*-algebra A with K;(A) =
U(A)/U,(A) and any unital homomorphism ¢ : € — A and any unitaryu € A if

Il¢Cc)ulll <& and  botty(¢p,u) = {0}, (84)
then there exists a continuous path of unitaries {u(t): t € [0, 1]} < A such that

u(0)=u, u(l)=1 and ||[¢p(c),u]l| <€ (85)
forallc e Fandt € [0,1].

Proof:

First consider the case that ¢(c) commutes with u for all ¢ € C. Then one has a unital
homomorphism ®: M, @ C(T) — A defined by ®(c ® g) = ¢(c)g(u) forall c € C and
g € C(T). Let {e;;} be a matrix unit for M,,. Let u;=¢e;,j ®zj=12,...,n. The
assumption botty(p,u) = {0} implies that ®,; = {0}. It follows that u; € Uy(A4),j =
1,2,...,n. One then obtains a continuous path of unitaries {u(t):t € [0,1]} < A such that

u@=u u@)=1 and |[[¢p(c)u(®]ll=0
forallc € C(T)andt € [0,1].
The general case follows from the fact that C @ C(T) is weakly semi-projective.
Lemma (3.1.16)[84]:

Let n < 64 be an integer. Let e > 0 and 1/2 > €; > 0. There exist% >§>0 and a
finite subset G ¢ D ~= M,, satisfying the following: Suppose that A is a unital C*-algebra

with T(A) # ®,D < A is a C*-subalgebra with 1, = 1,, suppose that F c A is a finite
subset and suppose that u € U(A) such that
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I[f,x]ll <& forall f €Fandx € g, (86)
and
l[w,x]l| <6 forall x€g, (87)
Then, there exist a unitary v € D and a continuous path of unitaries {w(t):t € [0,1]} € D
such that

e Wl <nb < e, luw@)| <nd < % (88)
forall f € Fand forallt € [0,1], (89)

2
w(0) =1, w(1) =v and pr.Uy) = 32 (90)

for all open arcs I, of T with length a 4m/n and for all T € T(A), where 1:C(T) = A is
defined byu(f) =f (vw) for all f e C(T).
Moreover,
length ({w(t)}) < . (91)
If, in addition, = > b; > b, >-->b, >0 and 1=dy,>d, >d, > ->d,, > 0 are
given so that

,ufol(lbi) >d; forallteT(A), i=12,..,m, (92)
where 1y: C(T) — Aisdefined by 1,(f ) = f (u) for all f € C(T), then one also has that
teoi(Ie,) = (1 — €)d; forallt € T(A), (93)

where [, and I, are any open arcs with length bi and ¢;, respectively, and where ¢; = b; +
€, = 1,2,...,m.
Proof:

Let

0<6, < '{Eldi-1<'< }
o <minyr=5:l<i<my.

Let {e; ;} be a matrix unit for D and let G = {e; ;}. Define
n

v = z e?V-ln/ng, . (94)

j=1
Let f, € C(T) with f;(t) = 1for|t — e2V"1/"| < m/nand f,(t) = 0 if |t — e2V"17/7| >
2m/nand 1> f;(t) = 0. Define fi,,(t) = fi(e?V"U™/t),j = 1,2,...,n — 1. Note that
fi(eFUmM) = f,(6)  forallt €T (95)
where i,j € Z/nlZ.

Fix a finite subset F, c C(T), which contains f;,i = 1,2,...,n.
Choose 6 so small that the following hold:

(i) there exists a unitary u; € e;;4.,, such that ||92‘/__1i”/”€i,iuei,i—ui” < 82/
16n%,i = 1,2,...,n.

(i) ;

(iii) |ewif ) = eyif @ mu)|| < 63/16n2 for all f € Fy; and
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(iv) |er fWe; — e f (u)ej,j” < 82/16n2forall f € F,,.
Fix k. Foreach t € T(A), by (i), (iii) and (iv) above, there is at least one i such that
1 82
T(ej’jfi (u)) = ﬁ - 16712. (96)
Choose jsothatk + j = imod (n). Then,
t(fi (vw) = (e ;fic (vu)) (97)
i 85
> (e fi (e”_lzl”/”u)) “Tom 9
= P —_ > — .
(/i) ~ 12 272 ~ Tgn2 99
It follows that
2T/ 125
Urol (B(e ,n/n)) > 7 Ten2 forallt € T(A) (100)
and for k=1,2,..n
It is then easy to compute that
2
Ui (Ig) = 32 forallt € T(A) (101)

and for any open arc with Ilength azz(%”):%”.
Note that if ||[x, e;;]|| < &, then

n
X, z Aiei’i

=1

<nd <e/2

€
<n5<§ and

n
[U» z Aiei;
i=1

for any A; € T. Thus, one obtains a continuous path {w(t):t € [0,1]} c D with
length(fw(t)}) <m and with w(0) =1 and (H=v

Let {x1,x,,...,xx} be an €, /64-dense set of T. Let I; ; be an open arc with center x; and
length b;,j = 1,2,...,Kandi = 1,2,...,m. For each j and i, there is a positive function
di +6/64,j=1,2,...,K,i=12,...,m. Put g, (t) =g;;(e?V"1"/m.¢) for all te
T,k =1,2,...,n. Suppose that F, contains all g;; and g; ; .. We have, by (ii), (iii) and (iv)
above,
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2

d:
T(gj,i(u)i el,l);T(gj,i,k(u); el,l) = Xl - 16712 fOT' all T € T(A); (102)
1=1,2,...,nj=12,...,Kandi = 1,2,...,m. Thus
i 8¢
T (ek k9], l(vu’) =T (ek kYj,i Zﬁln/nu)) —n 1612 (103)
d; &2
> ; - B—I‘I’Z for all T € T(A), (104)
k=12,..nj=12..Kandi = 1,2,...,m. Therefore
52

T (ek,kgj,i(vu)) d; — gz = > (1—¢,)d; forallt € T(A), (105)

j=12,....,Kandi = 1,2,...,m
It follows that
wea(li;)) = (1—€)d;  forallt € T(A), (106)

j=12,...,Kandi = 1,2,...,m. Since {x;,x,,...,Xxg} IS €;/64-dense in T, it follows
that
weoit(le,) =2 (1 —€)d;  forallteT(A),i=12,..,m (107)
Lemma (3.1.17)[84]:
Let n > 64 be an integer. Lete > 0 and 1/2 > ¢€; > 0. There exist % >§>0and a

finite subset GcD=M, satisfying the following:
Suppose that X is a compact metric space, F < C(X) is a finite subset and 1 > b > 0. Then
there  exists a  finite  subset F; c C(X) satisfying  the  following:
Suppose that A is a unital C*-algebra with T(A) # @,D < A is a C*-subalgebra with 1, =
14, ¢: C(X) = A is a unital homomorphism and suppose that u € U(A) such that

I[x,ulll <6 and ||[x,¢(f)]ll < forallx € Gandf € F;. (108)
Suppose also that, for some ¢ > 0,

(p(f))o  forallt € T(A) and (109)

for all f € C(X) with 0 < f < 1 whose support contains an open ball of X with radius b.
Then, there exist a unitary v € D and a continuous path of unitaries {v(t):t € [0,1]} € D
such that

e, v(O)ll <16 <&, () vl <nb < e (110)
forallf €F and t € [0,,1], (111)
v(0)=1, v(l)=vw (112)

and
(p(Hg(vu)) = % forallt € T(A) (113)

for any pair of f € C(X) with 0 < f < 1 whose support contains an open ball with radius 2b
and g € C(T) with 0 < g < 1 whose support contains an open arc of T with length at least
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81

n
Moreover,

length(v(t)) < m. (114)
If, in addition, 1>b;, >b,>:->b,>0,1>d;=>d, > d;, >0 are given
and
(d(fHg'(w)) =d; forallteT(A) (115)
for any functions ' € C(X) with 0 < f' < 1 whose support contains an open ball of X with
radius b;/2 and g' € C(T) with 0 < g’ < 1 whose support contains an arc with length b;,
then one also has that
(p(f")g" (vu)) = (1 — €)d,; forall T € T(A), (116)
where " € C(X) with 0 < f”" <1 whose support contains an open ball of radius ¢; and
g'' € C(T) with 0 < g" < 1 whose support contains an arc with length 2¢; with ¢; = ¢; +
1,i=1,2,...,k.

Proof:
Let 0< 8= min{8:i = 1,2,....k}
Let {e; ;} be a matrix unit for D and let ¢ = {el]} Define
v = Zez\/‘_ﬂf/” e - (117)
j=1

Let g; € C(T) with g;j(t)=1 for |t — e?V"U™/"| <m/n and g;(t) =0 if |t —
e?V=Ur/m| > 2m/nand 1> g;(t) 2 0,j = 1,2,...,n. As in the proof of 5.1, we may also
assume that
gi(ez\/‘—ljn/"t) =g;s1(t) forallteT (118)
where i,j € Z/nZ.
Let {x;,x,,..., X%y} be a b/2-dense subset of X. Define f; € C(X) with f;(x) =1 for x €
B(x;,b)and f;(x) =0ifx € B(x;,2b)and 0 < f; < 1,i = 1,2,...,m
Note that
(p(f;))) =0 forallt € T(A), i=12,..,m. (119)
Fix a finite subset ¥, ¢ C(T) which at least contains {g;, g,,...,9,} and a finite subset
F, € C(X) which at least contains F and {f1, f2,---, fm}-
Choose § so small that the following hold:
(i) there exists a unitary u; € e;;Ae;; such that ||92\/__1in/nei,iuei,i — uL” < 82/
16n%i =1,2,.
(")Ilel,g(u) g(u)eull < 85/16n% |l ;0(f) = ¢(f)eU|| < é&5/16n*, for f € F
andg € Fy,j,k = 1,2,...,nands = 1,2,...,m;

(iii) ”ei,ig(vu) - ei,ig(ez‘/_‘”/"u)” < 60/1671 forall g € F,; and
(iv) e jgwe;; — e jg(we; ;|| < 6¢/16n* ||lef;d(f de; — e ;d(f Dej || <
5¢/16n*forall f € F,and g € Fy, j,k = 1,2,...,nands = 1,2,...,m
It follows from (iv) that, for any k, € {1,2,...,m},
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o 62

W(®(fin)e) 2 -~ o (120)
Fix k, and k. For each T € T(A), there is at least one i such that
o 62
T (¢(fk0)ej,j9i(u)) = ~ T Tent" (121)
Choose j so that k + j = i mod (n). Then,
: 8¢
(6 (i )9 ) = (@i Jey 91 (€27Tm) ) = 225 (122)
86
=< (qb(fk(,)e,-z,,-gi(u)) - (123)
o o
> — — :
Z T Tens forallt € T(A) (124)
It is then easy to compute that
2
(p(Hgvw)) = 3—7?2 for allt € T(A) (125)

and for any pair of f € C(X) with 0 < f <1 whose support contains an open ball with
radius 2b and g € C(T) with 0 < g < 1 whose support contains an open arc of length at
least 8t /n.

Note that if ||[¢(f ), e;;]|| < &, then

[fl’(f), i Aie;

for any 4; € T and f € F,. We then also require that § < ¢/2n. Thus, one obtains a
continuous path {v(t):t € [0,1]} € D with length({v(t)}) < m and with v(0) =1 and
1) =v.

Now we consider the last part of the lemma. Note also that, if f € F; and g € F, with 0 <
frg=1,

<nd<e

n 52
($(Ngw) 2 ) 7(B(Ne;9(m)) - 7o (126)
j=1
- . 52
> )T (gb(f)ej,jg(”(vu)) ~Tent forall T € T(A), (127)
j=1

where g0 () = g(e?V=1m/n. t) for t € T. If the support of f contains an open ball with
radius b; /2 and that of g contains open arcs with length at least b;, so does that of g So, if
F, and F, are sufficiently large, by the assumptions of the last part of the lemma, we have

>d 65
T(d)(f)g(UU)) = Ui 16n4

forallT € T(A) (128)

forall T € T(A). As in the proof of (3.1.16), this lemma follows when we choose F, and F;
large enough to begin with.
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Lemma (3.1.18)[84]:

Let C be a unital separable simple C*-algebra with TR(C) < 1 and let n > 1 be an integer.
For any € > 0,17 > 0, any finite subset F c C, there exist § > 0, a projection p € A and a
C*-subalgebra D = M,, with 1, = p such that

I[x,p]ll <€ forallx €F; (129)
I[pxp,ylll <€ forallx € Fandy € D with||y|| <1 (130)
and
(1—-p)<n for allt € T(C). (131)
Proof:

Choose an integer N > 1 such that 1/N < n/2n and N = 2n. It follows from (the proof
of) Theorem (3.1.18) of [89] that there is a projection g € C and there exists a C*-subalgebra
B of C with 13 = q and B =@, My, with K; = N such that

l[x,p]ll <n/4 forallx € F; (132)
I[pxp,ylll < €/4 forallx € Fandy € Bwith|y| <1 (133)

and
(1—p) <n/2n for allt € T(C). (134)
Write K; = kin 4+ r; with k; > 1 and 0 < r; < n for some integers k; and r;,i = 1,2,...,L.
Let p € B be a projection such that the rank of p is k; in each summand MK; of B. Take D, =

pBp.
We have
€
1T, p]II <§ forall x € F; (135)
l[pxp,ylll <€ forallx € Fandy € D, with|y| <1 (136)
and
n n n n

T(1l-p<—+=-<-—+-<7 for allt € T(C). (137)

_ _ 2zn N 2n 2
Note that there is a unital C*-subalgebra D < D, such that D = M,,.

Lemma (3.1.19)[84]:

Let n > 1 be an integer with n > 64. Let ¢ > 0 and 1/2 > ¢; > 0. Suppose that A4 is a
unital simple C*-algebra with TR(A) < 1, suppose that F c A is a finite subset and suppose
that u € U(A). Then, for any € > 0, there exist a unitary v € A and a continuous path of
unitaries {w(t): t € [0,1]} < A such that

I[x,w(®)]ll <€ forall f € Fand forallt e [0,1], (138)
w =1 wl)=v (139)
and
1) > 15 14
.u‘rol( a) = 2412 ( 0)

for all open arcs I, of T with length a = 4m/n and for all T € T(A), where [: C(T) - A is
defined by I(f ) = f (vu). Moreover,
length ({w(t)}) < m. (141)
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If, in addition, ® >b; > b, >-->b,, > 0 and 1=dy,>d; >d, >> d,, >0 are
given so that

teo,(In) = d; forallteT(4), [1=12,...m, (142)
where [y: C(T) — A is defined by [, (f) = f(u) for all f € C(T), then one also has that
teoi(le,) = (1 —€)d; forallt € T(4), (143)

where I,,, and I, are any open arcs with length b; and c;, respectively, and where ¢; = b; + 1,
i=1,2,...,m.
Proof:

Let € > 0, and let n > 64 be an integer. Put €, = min{e;/16,1/64n?}. Let F c A be a
finite subset and let u € U(A). Let §; > 0 (in place of §) for , €,€, (in place of €;) and let
G={e;}cD=M,.

Put § = 6,/16, there is a projection p € A and a C*-subalgebra D = M,, with 1, = p such
that

I[x,p]ll <& forallx € F; (144)
I[pxp, v]Il <& forallx € Fandy € D with||y|| < 1; (145)

and
T(1—p)<e, forallteT(C). (146)

There is a unitary uy € (1 — p)A(1 — p) and a unitary u; € pAp. Put A; = pAp and F; =
{pxp:x € F}. The A;,F, and u,.
Lemma (3.1.20)[84]:
Let n > 64 be an integer. Lete > 0 and 1/2 > €; > 0. Suppose that A is a unital simple C*-
algebra with TR(A) < 1,X is a compact metric space, ¢:C(X)—> A is a unital
homomorphism, F c C(X) is a finite subset and suppose that u € U(A). Suppose also that,
forsomeo >0and1 > b > 0,
t(p(f)) €Ec forallteT(A) and (147)

forall f € C(T) with 0 < f < 1 whose supports contain an open ball with radius at least b.
Then, there exist a unitary v € A and a continuous path of unitaries {v(t):t € [0,1]} c A
such that v(0) = 1,v(1) = v,

Io(), vO]ll <€ and ||[[u,v(t)]ll| <€ forall f € Fandt € [0,1] (148)

15
(p(fHg(vu)) = 24:2 forallt € T(A) (149)

for any f € C(X) with 0 < f < 1 whose support contains an open ball of radius at least 2b
and any g € C(T) with 0 < g < 1 whose support contains an open arc of T with length a >

8m/n.
Moreover,
length({v(t)) < m. (150)
If, in addition, 1 > b; > b, >--> b, > 0,1 >d; > d, >--->d; > 0are given and
(dp(fHg'(w)) =d; forallt€T(A) (151)

for any functions f' € C(X) with 0 < f’ < 1 whose support contains an open ball with radius
b;/2 and any function g’ € C(T) with 0 < g’ <1 whose support contains an arc with
length b;, then one also has that
(¢(fg" (W) = (1 —e)d; forallteT(A) (152)
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where f"" € C(X) with 0 < f"" < 1 whose support contains an open ball with radius c; and
g' € C(T) with 0 < g"" whose support contains an arc with length 2c;, where ¢; = b; +
1,i = 1,2,...,k.

Define

Ago(r) = o<t LM BT AT e
008 = ot + 1)2 Y n+1 272+ 1) D T n | 2ntin (153)

forn > 64 and
Do () = fre ol T 154
00lr) =5gsyz YT Zg1 T 2660 (154)

Let A:(0,1) — (0,1) be a non-decreasing map. Define

0 < 4 N 41 < <8T[+ 4 {55
i n+1 2"2(n+1) "= T oy (155)

forn > 64 and

) 8m 4m

Do (A)(r) = Dy(A)(4m/64) ifr > (156)

64 | 265(64)
Lemma (3.1.21)[84]:

Suppose that A is a unital separable simple C*-algebra with TR(A) <1, suppose
that F < A is a finite subset and suppose that u € U(A). For any € > 0 and any n > 0,
there exist a unitary v € Uy(A) and a continuous path of unitaries {w(t):t € [0,1]} c
U, (A) such that

w® =1, w=v, |l[,w®]ll<e forallf € Fandte[0,1], (157)
and
Ui (Ig) = Ago(a) forallT € T(A) (158)
for any open arc I, with length a = n, where l: C(T) — A is defined by I(g) = g(vu) for all
g € C(T) and Agp.
Corollary (3.1.22)[84]: Let C be a unital separable simple amenable C*-algebra with
TR(C) < 1 which satisfies the UCT. Let € > 0, F c C be a finite subset and let 1 > n > 0.
Suppose that A is a unital simple C*-algebra with TR(A) <1, ¢:C — A is a unital
homomorphism and u € U(A) is a unitary with

lp(c),ull <e forallc €F. (159)
Then there exist a continuous path of unitaries {u(t): t € [0,1]} € U(A) such that
u(0)=u, u(l)=w and |[¢(f),u®)|| < 2e (160)
forall f e Fandt € [0, 1]. Moreover, for any open arc I, with length a,
Uroi(I) = Dgo(r)  foralla =n, (161)
where [: C(T) - Ais defined by I[(f) = f(w) forall f € C(T).

Proof:

Let € > 0 and F c C be as described. Put F; = ¢(F). The corollary follows by taking
u(t) = w(tu.
Lemma (3.1.23)[84]: Let A:(0,1) — (0,1) be a non-decreasing map, let n > 0, let X be a
compact metric space and let F < C(X) be a finite subset. Suppose that A is a unital simple
C*-algebra with TR(A) < 1, suppose that ¢:C(X) = A is a unital homomorphism and
suppose that u € U(A) such that
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Hrop(0q) = A(r)  for all T € T(A) (162)
for any open ball with radius a < n. For any € > 0, there exist a unitary v € U,(A) and a
continuous path of unitaries {v(t):t € [0,1]} € U,y(A) such that
v(0) =1, v(l) =, (163)
(), vl <e, |luv®)l|l<e forallfeFandte[0,1] (164)
and
T(¢(fg(vu)) = Dy(A)(a) forallt € T(A) (165)
for any f € C(X) with 0 < f < 1 whose support contains an open ball with radius a > 4n
and any g € C(T) with 0 < g < 1 whose support contains an open arc with length a > 4n,
where D, (A)

We will prove Theorem (3.1.25) below. We will apply the results of the previous
section to produce the map L which was required by using a continuous path of unitaries.
Lemma (3.1.24)[84]: Let X be a compact metric space, let A:(0,1) = (0,1) be a non-
decreasing map, lete > 0, letn > 0 and let F c C(X) be a finite subset. There exist § > 0
and a finite subset G < C(X) satisfying the following:

Suppose that A is a unital simple C*-algebra with TR(A) < 1, suppose that ¢: C(X) = A
and suppose that u € U(A) such that

(), ull <8 forallf €g (166)

Uro(Op) = A(a) forallT€T) (167)
for any open balls 0, with radius b >n/2. There exist a unitary v € U,(4), a unital
completely positive linear map L: C(X X T) — A and a continuous path of unitaries {v(t):t €
[0,1]} € Uy(A) such that

v(0) =u, v(1)=v, |llp(f),vt)|| <€ forallf €eFandt e [0,1], (168)
IL(f @ z) —p(fivl<e ILFRD) —p(Nll<e forallf €F (169)

and

and

1o (03) = (2/3) Dy (%) forallT€T) (170)
for any open balls 0, of X x T with radius a = 573
Proof:

Fix e > 0,n > 0 and a finite subset F c C(X). Let F; < C(X) be a finite subset containing
F. Let 0 = min{e/2,Dy(A)(n)/4}. Let G < C(X) be a finite subset containing F, 1., and
z. There is §, > 0 such that there is a unital completely positive linear map L": C(X X T) —
B (for unital C*-algebra B) satisfying the following:

IL'(f ®2) - ' (HUll <€ forallfeF (171)
for any unital homomorphism ¢': C(X) — B and any unitary u’ € B whenever
I[¢'(g), ulll <8y forallgeg. (172)
Let 0 < 6§ < min{d,/2,€/2,€,/2} and suppose that
Il¢(g),ulll <6 forallge€g. (173)
It follows that there is a continuous path of unitaries {z(t): t € [0,1]} < U,y(A) such that
z(0) =1, z(1) = vy, (174)
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) )
(N zOIl <5 Mwz®Il <5 forallt €[0,1] (175)
and
(¢ (f)g(viu)) = Dy(8)(a) (176)
for any f € C(X) with 0 < f < 1 whose support contains an open ball with radius 4n and
g € C(T) with 0 < g < 1 whose support contains open arcs with length a > 4n.
Put v = v;u. Then we obtain a unital completely positive linear map L:C(X X T) - A
such that
IL(f ® z) — d(fHvll <€ and IL(f ® 1) — p(H)Il <€ forall f € Fy. (177)
If F, is sufficiently large (depending on n only), we may also assume that

Heor (Bg X Jg) = (g) DoA (g) (178)

for any open ball B, with radius a and open arcs with length a, where a = 57.
Theorem (3.1.25)[84]:
Let X be a finite CW complex so that X XT has the property (H). Let
C = PC(X,M,)P for some projection P € C(X,M,) and let A:(0,1) — (0,1) be a non-
decreasing map. For any € > 0 and any finite subset F c C, there exist § > 0,17 > 0 and
there exists a finite subset G c C satisfying the following:
Suppose that A is a unital simple C*-algebra with TR(A) <1, ¢:C — A is a unital
homomorphism and u € A is a unitary and suppose that
I[p(c),ulll <6 forallc € G and Bott(¢p,u) = {0}. (179)
Suppose also that
Hrop(0g) = A(a) (180)
for all open balls 0, of X with radius 1 > a = 7, where u..4 is the Borel probability measure
defined by restricting ¢ on the center of C. Then there exists a continuous path of unitaries
{fu(t):t € [0,1]}in A such that
u(0) =u, u(1)=1 and |[[¢(c),u@®]ll <e (181)
Forall c € F and forall t € [0,1].
Proof:
First it is easy to see that the general case can be reduced to the case that C = C(X, M,,). Itis
then easy to see that this case can be further reduced to the case that C = C(X).
Corollary (3.1.26)[84]:
Let k > 1 be an integer, let € >,0 and let A: (0,1) — (0,1) be any nondecreasing map.
There exist § > 0 and n > 0 (n does not depend on A) satisfying the following:
For any k mutually commutative unitaries u,u,,...,u, and a unitary v € U(A) in a unital
separable simple C*-algebra A with tracial rank no more than one for which
I[u;, v]ll <6, bottj(u;,v) =0, j=0,1, i=12,..,k
and
Hrogp(0g) = A(a) forall T € T(A),
for any open ball 0, with radius a > n, where ¢ : C(T*) > A is the homomorphism
defined by ¢(f) = f (ug, uy,...,u) for all f € C(T*), there exists a continuous path of
unitaries {v(t): t € [0,1]} c A such that v(0) = v,v(1) = 1and
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lu;, v()]ll <€ forallte[0,1], i=12..,k.

Section (3.2) Result of Equivalence Approximate Unitary with Tracial Rank One

Theorem (3.2.1)[84]:

Let C be a unital separable amenable C*-algebra satisfying the UCT. Let b > 1, let
T:N? > N,L:U(M(C)) > R,,E:R, X N>R, and T; = N X K:C,\{0} » N x R, \{0}
be four maps. For any € > 0 and any finite subset F < C, there exist § > 0, a finite subset
G c C, a finite subset H < C,\{0}, a finite subset P c K(C), a finite subset U c
U(M(C)), aninteger I > 0 and an integer k > 0 satisfying the following:

For any unital C*-algebra A with stable rank one, K,-divisible rank T, exponential length
divisible rank E and cer(M,,(A)) b (for all m), if ¢,y:C - A are two unital &-
Gmultiplicative contractive completely positive linear maps with

[#1l> = [Yllp and cel({p)W)* )W) < L(w) (182)
for all u € U, then for any unital § — G-multiplicative contractive completely positive linear
map 6: C - M;(A) which isalso T — H -full, there exists a unitary u € M, (A) such that

k k
u*diag (qb(a), 6(a),0(a), ..., 9(a)> u —diag (w(a), 6(a),0(a), ..., 9(a)> ‘

<€ foralla€et. (183)
Theorem (3.2.2)[84]:  Let C be a unital separable simple amenable C*-algebra with
TR(C) < 1 satisfying the UCT and letD = C ® C(T). Let T =N X K:D,\{0} - N, X
R4 \{0}.

Then, for any > 0 and any finite subset F c D, there exist § > 0, a finite subset G c D, a
finite subset H < D,\{0}, a finite subset P c K(C) and a finite subset U c U (D) satisfying
the following: Suppose that A is a unital simple C*-algebra with TR(A) < 1and ¢,y:D — A
are two unital §- G-multiplicative contractive completely positive linear maps such that ¢, ¥
are T - H-full,

[Tedp(g) —Top(g)l <6 forallgeg (184)
forallt € T(A),
(@]l = [P]lp (185)
and
dist (¢*w), Y*(w)) < 6 (186)
for all w € U. Then there exists a unitary u € U(A) such that
anduoyp =, ¢ ontF. (187)

Corollary (3.2.3)[84]:

Let C be a unital separable amenable simple C*-algebra with TR(C) <1 which
satisfies the UCT, let D = C @ C(T) and let A be a unital simple C*-algebra with TR(A) <
1. Suppose that ¢,y:D - A are two unital monomorphisms. Then ¢ and Y are
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approximately unitarily equivalent, i.e., there exists a sequence of unitaries {u,} € A such
that

lim ad u,, o Y(d) = ¢(d) foralld €D,

n—>0oo

if and only if
[¢] =[] inKL(D,A),
To¢p =10y forallt €T(A) and P = ¢*.
Lemma (3.2.4)[84]:
Let C be a unital separable simple C*-algebra with TR(C) < 1 and let A: (0,1) = (0,1) be
a non-decreasing map. There existsamap T = N X K: D,\ {0} — N, X R,\ {0}, where
D = C ® C(T), satisfying the following:
For any € > 0, any finite subset F c C and any finite subset % c D,\{0}, there exist
6 > 0,n > 0 and a finite subset G c C satisfying the following: for any unital separable
unital simple C*-algebra A, any unital homomorphism ¢: C — A and any unitary u € A such
that
I[p(c),ulll <6 forallceg (188)
and
Uro1(0,) = A(a) forallt € T(A) (189)
and for all open balls O, with radius a = n, where l: C(T) — A is defined by I(f ) = f (w),
there is a unital completely positive linear map L: D — A such that
ILc®1)—¢p)|| <€llL(c®z) —p(ull <e forallceF (190)
and LisT — H-full.
Proof:
We identify D with C(T,C). Let f € D,\{0}. There is positive number b > 1, g € D,
with0 < g<b-1andf; € D,\{0}with 0 < f; < 1 such that

_ _ 9f9f = fi- (191)
There is a point t, € T such that f;(t;) # 0. There isr > 0 such that

T(f1(0)) = 1(f1(t0))/2
forall t € T (C) and for all t with dist(t, ty) <.
Define Ay (f) = inf{t(f1(ty))/4:Tt € T (C)}- (r). Thereis an integer n > 1 such that
n.Ao(f) > 1. (192)
Define T(f) = (n, b). Put
n =inf{A,(f): f € H}/2 and €; = min{e, n}.
We claim that there exists an €; — F U H-multiplicative contractive completely positive
linear map L : D — A such that
ILc®1)—¢p(c)|]| <€ forallceF ||[LARQz)—ull <e (193)
and

o L(fy) - f WS ()) dieu(S)| <7 forallteT(A)  (194)

T
and for all f € H. Otherwise, there exists a sequence of unitaries {u,} € U(A) for which

tro1, (Og) = A(a) for all T € T(A) and for any open balls 0, with radius a — a,, with a,, -
0, and for which
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lim [1[(c), unlll = 0 (195)
for all ¢ € C and suppose for any sequence of contractive completely positive linear maps
L,:D — A with

Ai_)rgolan(ab) —Ly(@)L,(b)|I[=0 foralla,b €D, (196)

lim 1L (e ® ) = $()f )l = 0, (197)

forallc € C,f € C(T)and
lim igf{max{ TolL,(f;) — f T(¢(f1(5))) d,uroln(s) f € }[H >n (198)
T
for some © € T(A), where L,: C(T) = D is defined by L,(f) = f(u,) for f € C(T) (or no
contractive completely positive linear maps L,, exists so that (196), (197) and (197)).

Put A, =4, n =1,2,.., and Q(4) =1[1,,4,,/D, A,. Let m:[[,A4,, - Q(A) be the
quotient map. Define a linear map L:D - [[, A, by L(c ® 1) = {¢(c)} and L'(1 ® 2) =
{u,}. Then o L": D - Q(A) is a unital homomorphism. It follows from a theorem of Effros
and Choi [69] that there exists a contractive completely positive linear map L:D - [[,, 4,
such that mo L =mo L'. Write L= {L,}, where L,:D — A, is a contractive completely
positive linear map. Note that

7]Li_>1r()10||Ln(a)Ln(b) —L,(ab)|| =0 forallab € D.
Fix T € T(A4), define t,:[[,4, = C by t,({d,,}) = ©(d,,). Let t be a limit point of {t,}.
Then t gives a state on [],, A,,. Note that if {d,,} €D,, 4,,, then t,,({d,}) = 0. It follows that
t gives a state t on Q(A). Note that (by (267))
t(meL(c ® 1)) =1(d(c))

forall ¢ € C. It follows that

Fr o L(f)) = j EGr o L(F(S) ® 1)) dittumotipgern

T
= [ +(¢((2)) dhermticoucs (199)
forall f € C(’]I‘?TC). Therefore, for a subsequence {n(k)},
n
to L(f) = [ 1 ($(F9))) dbtmasigen| < 3 (200)
T

for all f € #. This contradicts with (268). Moreover, from this, it is easy to compute that

HEOTEOth@C(T) (Oa) 2 A(a)
for all open balls O, of t with radius 1 > a. This proves the claim.
Note that

[ vo 05 ) diten = (6 10)/2))) . 00)
T
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forall t € T(A). It follows that

4
t(L(f1)) = inf{t(f1(to))/2:t € T(C)} - g > (5) Ao () (201)
forall f € .
In [22], there exists a projection e € L(f;)AL(f;) such that
7(e) = Ay(f) forallt € T(A). (202)

It follows from (262) that there exists a partial isometry w € M,,(A) such that

n

wrdiag (e, e, ...,e) w =1,
Thus there x4, x5,...,x, € A with ||x;|| < 1 such that
n

zx;‘ ex; > 1. (203)
i=1
Hence

n

Zx{‘ gfgx; = 1. (204)

i=1

It then follows that there are y,, y,, ..., y,, € A with ||y;|| < b such that

n
D vify=1 (205)
i=1

Therefore L is T - H -full.
Lemma (3.2.5)[84]:

Let C be a unital separable amenable simple C*-algebra with TR(C) < 1 satisfying the
UCT. For 1/2 > o > 0, any finite subset G, and any projections p,,p,,...,pm € C. There is
do, > 0, a finite subset G c € and a finite subset of projections P, c C satisfying the
following: Suppose that A is a unital simple C*-algebra with TR(A) < 1, ¢: C — A is a unital
homomorphism and u € U,(A4) is a unitary such that

lp(c),ull <6 <& forallc € GU G, and botty(p,u)|p, = {0}. (206)
where P, is the image of P, in K,(C). Then there exists a continuous path of unitaries
{fu(t):t € [0,1]}in Awith u(0) = uand u(1) = w such that

lp(c),ull <36 forallce GuUgG, (207)
and

w; @ (1-o(p;)) € CUA), (208)
|w; — o()we (p))| < o, (209)

j=12,...,m.

Moreover,
1

cel (Wj b (1 — (],’)(pj))) < 8w+ 7 j=12,..,m (210)

Lemma (3.2.6)[84]:
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Let C be a unital separable simple amenable C*-algebra with TR(C) < 1 satisfying the
UCT. Let A:(0,1) — (0,1) be a non-decreasing map. Then, for any € > 0 and any finite
subset F c C, there exist § > 0,n > 0, a finite subset G c C and a finite subset P c K(C)
satisfying the following:

For any unital simpleC*-algebra A with TR(A) < 1, any unital homomorphism ¢: C - A
and any unitary u € U(A) with

l$(f),ull <8, Bott(p,u)|p = {0} (211)

U1 (0,) = A(a) foralla =n, (212)
where [: C(T) — A is defined by I(f) = f(u) forall f € C(T), there exists a continuous path
of unitaries {u(t): t € [0,1]} < A such that

u(0) =u, u(1)=1 and [[p(f),u®)ll<e (213)
forall f e Fandt € [0,1].
Theorem (3.2.7)[84]:

Let C be a unital separable amenable simple C* —algebra with TR(C) < 1 which
satisfies the UCT. For any € > 0 and any finite subset F c C, there exist § > 0, a finite
subset G c C and a finite subset 7 ¢ K(C) satisfying the following:

Suppose that A is a unital simple C* —algebra with TR(C) < 1, suppose that ¢: C — A is
a unital homomorphismand u € U(A) such that
l[p(c),u]ll <6 forallc € Gand Bott(¢p,u)|p = 0. (214)
Then there exists a continuous and piece-wise smooth path of unitaries {u(t):t € [0, 1]}
such that

and

u(0)=u, u(1) =1 and ||[¢p(c),u(t)]|| <€ forallc €F (215)
and forall te[0,1]
Proof:
Fix € > 0and a finite subset F < C.Leté; > 0 (in place of §),n > 0,G, < C (in place
of G be a finite subset and P < K(C) be finite subset ,for €, F and A= A,.
We may assume that §; < e.
Let § = /2. Suppose that ¢ and u satisfy the conditions in the theorem for the above
§,G and P. It follows that there is a continuous path of unitaries {v(t):t € [§,0,1]} c
U(A) such that

v(0)=u, v(1) =y, and |[[¢p(c),v(DIll < (216)
forall c € G, and forall t € [0, 1], and
Uz0,(0,) = A(a) forall T € T(A) (217)

and for all open balls of radius a > 7.
There is a continuous path of unitaries {w(t): t € [0,1]} < A such that
w0) =wu, v(1) =1 and [[¢(c)w®]ll <€ (218)
forallc e Fandt € [0, 1]. Put
u(t) =v(2t)forallt € [0,1/2) and u(t) = w(2t —1/2)forallt € [1/2,1].
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