Chapter 2
Exponential Rank and Approximate Unitary Equivalence in Simple
C*-Algebras

Let CU(A) be the closure of the commutator subgroup of the unitary group of A
and let u € CU(A). We prove that there exists aself-adjoint element h € A such that
lu — exp(ih)|| < € and ||h|| < 2m. Examples are given that the bound 2m for ||h]| is
optimal in general and let C be a unital AH-algebra and A be a unital separable simple C*-
algebra with tracial rank no more than one. Suppose that ¢,y:C — A, are two unital
monomorphisms. With some restriction on C.
Section (2.1): Exponential Rank and Exponential Length for Z-Stable Simple C*-
Algebras

Let A be a unital C*- algebra and let U,(A) be the connected component of unitary
group of Acontaining the identity. Itis well known that every u € U,(A).Is a finite
product of exponentials, that is u = [[;_, exp(ih;), where h;is a self-adjoint element
inA. One of the interesting questions that one can ask about U,(A) is “ are all its element
expressible as single exponentials? ”.Or moer interesting “are singl exponentials dense
inU,(A4) 7. If u € Uy(A) one may also ask “how long the length of the path connecting u
to the identity” the first questions concern the exponential rank of A and the last questions
Is related to the exponential lengthu and A.
Exponential rank and exponential length had been extensively studied see [121], [114],
[109], [113], [145], [143], [47], [111], [110], [79], [112] and [132].
Exponential length and rank have played, inevitably, important roles in the study of
structureof C*-algebras, in particular, in the Elliott program, the classification of amenable
C*-algebras by K-theoretic invariant. The renew interest and direct motivation of this
study is the recent research project to study the Jiang-Su algebra and its multiplier algebra.
It turns out that exponential length again plays an essential role.
Let us briefly summarize some facts about exponential rank and length for unital
(simpleand amenable)C* —algebras in the center of the Elliott program. It was shown by
N. C. Phillips([113]) that the exponential rank of a unital purely infinite simple
C* —algebra is 1 + € and itsexponential length ism. In fact, this holds for any unital
C* —algebras of real rank zero ([79]). Inother words, ifu € U,(A4), where Ais a unital
C* —algebra of real rank zero, then, for anye > 0, there exists a self-adjoint element h €
Awith||h|| < msuch that

lu — exp(ih)|| < €.

Here r is the smallest numbers that one can get. When Ais not of real rank zero, the
situationis very different. For example, if Ais a unital simple AH-algebra with slow
dimension growth,then cer(A) = 1+ €. Butn cel(A) = oo, whenever Adoes not have
real rank zero (see [112]). Recently it was shown ([94]) that cer(A) < 1+ € for any
unital simple C* —algebra Awith tracial rank at most one (without assuming the

amenability).
50



The classification of unital simple amenable C* —algebras now includes classes of
C* —algebra far beyond C* —algebras mentioned above. In fact unital separable simple
amenable Z —stable C* —algebras which are rationally tracial rank at most one and satisfy
the UCT can be classified by the Elliott invariant ([73]), we show that, if Ais Z —stable,
l.e., A® Z = A, has rational tracial rank at most one, i.e., A @ Uhas tracial rank at most
one for some infinite dimensional UHF algebraU, andu € U,(A), then, for anye > 0, there
exists a self-adjoint
elementh € Asuch that

lu — exp(ib)|| <. (1)
However, in general, there is no control of the norm of h. In fact,cel(A) = w«,l.e., the
exponential length of Ais infinite.

In the study of classification of simple amenable C* —algebras, one relies on a fact that
exponential length for unitaries in CU(A), the closure of the commutator subgroup of
Uy(A) isoften bounded. It seems to suggest that, for exponential length of a
unitalC* —algebra, it is theexponential length of unitaries in CU(A) that needs to be
computed. So the question is what isthe norm bound for the above hwhen uis in CU(A).
We show that, if Ais a unital separablesimple C* —algebra with tracial rank at most one,
and u € CU(A),then (1) holds and hcan be chosen so that||h|| < 2 m. Furthermore, we also
prove this holds for any unital separablesimple Z —stable C* —algebra Asuch that A @
Uhastracial rank at most one. We struggled at first to reduce this bound to 7 but eventually
realized that we were not facing technical difficulty in the proof but that 2m is indeed

We show in general, for a unital simple AH-algebra (or even Al-algebra) A, for any o >
0,there are unitaries u € Uy(A) such that ||h|| < 2 m — o holds for some sufficiently small
€. What is more surprising at the first was the answer to the question how long the
exponential length of unitaries in U,(Z) is, where Zis the Jiang-Su algebra, the
projectionless simple ASH-algebra with k,(Z) = Z and k,(Z) = {0}.It seems that,
among experts, one expects the exponential length of Zto be infinite since Zdoes not have
real rank zero. However, we find that cel(Z) < 3m. In fact, we prove that for any unitary
u € Uy(z), there exists —m < t < msatisfying the following: for any € > 0, there exists a
self-adjoint element h € Zwith ||h|| < 2 wsuch that

|le®u — exp(ih)|| < e.
Definition (2.1.1)[80]: Let A be a unital C* —algebra. We denote by U(A) the unitary
group ofA.We denote by U,(A) the connected component of U(A) containing the identity
and CU(A) the closure of the commutator subgroup of U,(A4). If u € U(A),we use the
notation ufor its image in U(A)/CU(A).
Let u € Uy(A).Denote by cel(u) the exponential length of uin A. In fact,

cel(u) = inf {lehkll U = Hexp(ihk): h, € As’a}.
k=1

k=1
Define
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cel(A) = sup{cel(u) : u € Uy(4)}.
Define
celcy(A) = supf{cel(u) : ue CU(A)}.
If u=lim,_,u, where u, =[], exp(ih,;)for some self-adjoint elements h,; €
A.then we write
cer(u) <k +e.
If u = [15_; exp(ih;) for some hy, hy, ..., hy € A4, We write
cer(u) < k.
If cer(u) < k + ebutcer(u) £ k, we write cer(u) = k + elf cer(u) < kbut cer(u) %
(k —1) + €, we writecer(u) = k.

By T(A), we mean the tracial state space of Aand by Aff(T(A)) the space of all real
affinecontinuous functions on T(A). Lett € T(A). We also use tfor the trace 7 ®
T,.onA @ M,,, where T,is the standard trace onM,,.

Denote by p,: Ky(A) — Aff(T(A)) the positive homomorphisms defined by p,([p]) =
t(p)for all projectionsp € M,,(A),n= 1,2,....

Definition(2.1.2)[80]: Let Abe a unitalC*-algebra with T(A) # @.Let u € Uy(A).Suppose
that{u(t) : t € [0, 1]}is a continuous path of unitaries which is also piece-wisely smooth
such thatu(0) = uand u(1) = 1.Define de la Harp-Skandalis determinant as follows:
du(t)
Det(u): = Det(u(t)) = j r( 7 W(t)*> dt forallt e T(4A)  (2)
[0,1]
Note that, if u, (t) is another continuous path which is piece-wisely smooth with u;(0) =
uandu, (1) = 1, ThenDet((u(t)) — Det(u,(t)) € ps (Ky(A)).Suppose that u,v €
U(A) anduv* € UO(A).Let {w(t): t €[0,1]} € U(A) be a piece-wisely smooth and
continuous path suchthat w(0) = uandw(1) = v.Define
du(t)
Ry»(®) = Det(w(®))(7) = j T( R W(t)*) dt forallt € T(A)
[0,1]

Note thatR, ,is well-defined (independent of the choices of the path) up to elements
inp4 (Ko (A4)).
Definition (2.1.3)[80]: Denote by Qthe group of rational numbers. Let r be a supernatural
number. Denote by M, the UHF-algebra associated with r. Denote by @Q, the group
K,(M,.) with orderas a subgroup ofQ.

Denote by Zthe Jiang-Su algebra ([55]) which is a unital separable simple ASH-algebra
withK,(Z) = Zand K;(Z) = {0}.Let p, q be two relatively prime supernatural numbers
of infinitetype. Denote by

Zyq ={f € C([0,1], M,,): £(0) € Myand f(1) € M,}.
Here we identify M,with M, ® 1 as a subalgebra of M,,,. One may write Zas a
stationaryinductive limit of Z,, , (see [124]).
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Definition (2.1.4)[80]: Let Abe a unital simple C* —algebra. We write TR(A) = 0 if
tracial rank of Ais zero. We write TR(A) < 1,if the tracial rank of Ais either zero or one
(see [91]).
Denote by A, the class of unital separable simple C* —algebras Asuch that TR(A Q U) =
Ofor some infinite dimensional UHF-algebralU. Note that Z € A,.
Denote by A; the class of unital simple separable C* —algebras Asuch that TR(A ® U) <
1, see ([141]), ([86]), ([99]), ([200]), ([85]), ([73]) and ([95]) for some further discussion
of these C* —algebras.
Definition (2.1.5)[80]: Let A be a unital C* —algebra and C = C(]0,1],A). Denote by
m,: C — Athepoint-evaluation: ,(f) = f(t) forall f € C.
Definition (2.1.6)[80]: Let Xbe a compact metric space and let y: C(X) — C be a state.
Denoteby  u,, the probability —Borel measure induced by .
The following could be easily proved directly.
Lemma(2.1.7)[80]: Lete > 0. There exists § > 0 satisfying the following: Suppose that
Ais a unital separable simple C* —algebra with TR(A) < 1 and suppose that u € U(A)
with sp(u) = T. Then,for any x € K,(A) with||p,(x)|| < &, there exists a unitary v €
Asuch that

I[U,V]l| <€ and bott;(u,v) = x. (3)
The following is also known and we state here for the convenience.
Lemma (2.1.8)[80]: Let Abe a unital C* —algebra with T(4A) # @.Let uand vbe two
unitaries in Awith [u] = [v] inK; (4).Suppose that there is a unitary w € Asuch that

luw*v w*|| < 2. (4)

Then,

1
Ry (D) = 5—1(log(uw’v w*)) € pa(Ko(A)). (5)
proof: It suffices to show that there is one piece-wisely smooth and continuous
path{U(t): t € [0,1]} € M,(A) such that U(0) = diag(u,1),U(1) = diag(v,1) and
1

1 ! * _ 1 * *
— j T (U U())dt = o—t(log(uw’v w")).

To see this, let h = %r(log(uw*vw*)). Define U(t) = diag(uexp(i4nht), 1) fort €
[0,1/2]. Define U,(t) = U(2t) fort € [0,1].Let = diag(w,w*).Then W =
%_1 exp(i2mh; )for some self- adjoint elements hl,hz,...,hm € M,(A).Define W(0) =
1 and

k-1
wWi() = Hexp(iZnhj) exp(i2mmhyt) forallt € (k—1/m,k/m], (6)

j=1
k =1,2,...,m. Let Z(t) = W(t)"diag(v, )W (t) for t € [0,1].Then Z(t) is a piece-
wisely smooth and continuous path with Z(0) = diag(v,1) and Z(1) =
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W*diag(v, )W. It is straightforward to compute that the de la Harpe-Skandalis
determinant

Det(W(t)) = 0.
Define U(t) = Z(1 —2t) for t € (1/2,1] and define U,(t) = Z(1 —t) for te€
[0, 1].NowU (t) is a continuous and piece-wisely continuous path with U(0) = diag(u, 1)
and U(1) = diag(v, 1).We then compute that

1 2 dUu
ﬁj r( dit) U(t)*) dt = Det(U(t)) (7)
0
= Det(U,(t)) + Det(U,(1)) (8)
= Det(Uy(t)) + 0 (9)
= ﬁr(log(uw*v w")) (10)

for allt € T(A).
Lemma (2.1.9)[80]: Let Abe a unital separable C* —algebra of stable rank one. Suppose
that u, v € U(A)with uv* € CU(A).Then, for any § > 0,there exists a € A, ,.with ||a|| <
dsuch that

a-— Ru,v € P4 (KO(A))-
Proof: This follows from the fact that R, ,, € ps (Ko (A)).
Lemma (2.1.10)[80]: Let e > 0 and let A: (0,1) — (0,1) be a non-decreasingfunction.

There exists 6§ >0 and o > 0 satisfying the following: For any unital separable
simple C* —algebra A with TR(A) < 1and u,v € U(A) such that
Hrop(Ig) = A(a)for allt € T(A) (11D
and for all arc I,with length at least a > o, where ¢: C(T) — Ais the homomorphism
defined by ¢(f) = f(u) forall f € C(T),
l[u,v]l| <6 [v]=0 in k;(A) and bott;(u,v) =0, (12)
there exists a continuous path of unitaries{v(t) : t € [0,1]} < U,(A) such that
I[v(t), u]ll <e forall t €[0,1], v(0) =v and v(1) = 1. (13)
The following is a variation of a special case of 5.1 of [98].
Lemma (2.1.11)[80]: Let € > 0 and let A: (0,1) — (0,1) be a non-decreasing function.
There is 6§ >0,n>0,0 >0 and there is a finite subsetG c C(T),,. satisfying the
following: For any unital separable simple C* —algebra Awith TR(A) < 1, any pair of
unitary su,v € Asp(u) = Tand [u] = [v] inK;(4),
Hrop(Ig) = A(a)for allt € T(A)
for all intervals I,with length at least n, where ¢: C(T) — Ais the homomorphism defined
byp(f) = f(u) forallf € C(T),
|t(g(w) —t(g())| < & forallr € T(A) (14)
andforallg € G,
uv* € CU(A). (15)
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and for any a € Aff(T(A)) with a— Ry, € ps(Ko(4))and |la|]| <o and any y €
K, (A),there is a unitary w € Asuch that[w] = y,
lu —wvw*|| <e and (16)
= a(t)for allt € T(A) (17)
proof: Let ¢ >0 and A be given. Choose € > 6 > 0such that log(u,),log(u,)
andlog(u,u,) are well defined and

¢ (5 tog(u'w vw)logusuy) ) = tllog(un)) + 7llog(uz)) (1)
for allt € T(A)and for any unitaries u,, u, such that
lwi—1|| <6, j=12
Let 5 > 0 (in place of8) be required by Lemma(2.1.7)for 8/2 (in place ofe). Put ¢ =
5'/2.Lets > 0 and nbe required by 4.3 for min{o, 8, 1}(in place ofe) andA. Suppose that
Ais a unitalseparable simple C* —algebra with TR(A) <1 and u,v € U(A) satisfy the
assumption for theaboveé ,nanda.Then, there exists a unitary z € U(A) such that
||lu — z*vz|| < min{o, 0, 1} (19)
Let b =——7(log(u'z"'vz))Then||b|| < min{c,0,1}. b — Ry, € pp(Ko(A))Jet a€
Aff(T(A)) be such that |lall < cand a — R, € p4(K,(4)) as given by the lemma. It
follows that a — b € p,(K,(A)). Moreover, ||la —b|| < 20 < &1t follows that there
exists a unitary z; € A such that
[z,] = =y = [z], ll[w,z1]ll <6/2 andbott,(u, z,)(7) = a(r) + (b) (20)
for allt € T(C).
Definew = zz{Then

[w] =y and|lu —w'vw| <6 <€ (21)
We compute that
1 1

%T(log(u wivw)) = ﬁr(log(u AVAR72D)) (22)
= %T(log( u*zyuu*z*vzzy)) (23)
= Z—nir(log(zf u*zuu*z*vz)) (24)

1
=5 (t(log(z;u*ziw)) + t(log(u*z*vz))) (25)
= bott, (u, z,) (1) + ©(b) (26)
= a(t)for allt € T(A), (27)

where we use the Exel’s formula for bott element in the second lastequality.
Lemma (2.1.12)[80]: Let € > 0 and let A: (0,1) — (0,1) be a non-decreasing map.
There existsn >0, >0 and a finite subsetG € C(T),,. satisfying the following:
Suppose that Ais a Z —stable unital separable simple C* —algebra in A; and suppose that
u,v € U(A) are two unitariessuch that sp(u) = T,
Hrop(Ig) = A(a)for allt € T(A4) (28)
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and for all arcs I,with length at least a > n, where ¢: C(T) — Ais defined by ¢(f) =
f(u) forall f € C(T) and
It(g(w)) —1(g(v))| <8 forall ae€ Gand forallt e T(A) (29)
[u] =[v] in k;(A) and uv* € CU(A).
Then there exists a unitary w € U(A) such that
| w*uw — v|| < e. (30)
Proof: We first note, by [100], that TR(A @ Mr) < 1 for any supernatural number r. Let
@: C(T) — Abe the monomorphism defined by ¢ (f) = f(u).For any a € (0, 1), denote
by
A(a) = inf{p,0(0,); T € T(A), I an open arcs of length ain T}.
Since A is simple, one has that 0 < A(a) < 1 (for alla € (0,1)) and A(a) — 0 asa — 0.
Hrop(lg) = A(a)forallt € T(A) (31)
and all arcs with length a > 0. Lete > 0.
Let p and q be a pair of relatively prime supernatural numbers of infinite type withQ,, +
Q, = Q. Denote by M, and M, the UHF-algebras associated top and g respectively.
Let,: A - A ® M,be the embedding defined by ,.(a) = a ® 1 for all a € Awhere r is
asupernatural number. Define u, = t,.(u) andv, = .(v).Denote by ¢, : C(T) - A Q
M,. thehomomorphism given by ¢,.(f) = f(u,) forallf € C(T).
For any supernatural number r = p, q, the C* —algebrad @ M, has tracial rank at most
one.
Let §; > 0 (in place ofd8) and d, > 0 (in place ofg) for €/6.
Without loss of generality, we may assume that §; < €/12 and is small enough and Gis
largeenough so that bott;, (u,, z;) and bott, (u;, w;) are well defined and
bott, (ul,wj) = bott; (uy,z;) + -+ + bott; (ul,zj) (32)
ifu; is a unitary and z;is any unitaries with
1,2,3,4.
Let &, > 0 (in places) for §,/8 (in place ofe).
Furthermore, one may assume that &, is sufficiently small such that for any unitaries

|[u1;Zj]|| < 51,Where W] = Zy erj —

Z,,Z,in a C* —algebra with tracial states, t (Zimlog(zizj*)) (i,j = 1,2,3) is well defined

and

1

1 1
T (2—7Tilog(zlz§)) =T (2—mlog(zlzj )) +7 (2—nilog(z3Z§))

for any tracial state 7, whenever||z; — z3|| < 8, and ||z, — z3]|| < §,. We may further
assume that 6, < min{é1,€/6,1}.

Letd > 0,d, > 0 (in place ofn) and &5 > 0 (in place of o) required by (3) for &, (in place
of €). Letn = min{d,, d,}.

Now assume that uand vare two unitaries which satisfy the assumption of the lemma
with above Sandn. Since uv* € CU(A), R, € pa(Ky(A)).It follows that there is a €
Aff(T(A)) with [lall < 85/2such that a — R, € p,(K,(A)).Then the image of a, —
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Ry, v, isin py @ Mp(Ky(A Q Mp))), where a,, is the image of aunder the map induced

by tp. The same holds for g. Note that

Uz@t)op,(Ia) = A(a)for allt € T(A) (33)
wheretis the unique tracial state on M,, and for all a > 0,r = p,q.By Lemma
(2.1.11)there exist unitarieszp € A ® Mpandz, € A @ M, such that

lup = zpvp2p || < 8rand||ug — zgvyzy|| < 6.
Moreover,

1
( log(upzpvpzp)> = a,(v)for allt € T(4,)and (34)

1
(2 log(uqzqquq)> = a,(0)for allt € T(4,) (35)
We then identify w,, u,with u @ 1 and z, and z, with the elements in A @ Mp @ M, =

AR O.
In the following computation, we also identify T(A) with T(4,),T(4,).and T(4,), or

T(A,)with T(A ® Q) by identify Twitht @ t,where tis the unique tracial state on Mp, or
Mg, or Q.
In particular,
a,(t ® t) = 1(a)forallt € T(A)and (36)
aq(t ® t) = (a)for allt € T(A4). (37)
We compute that by the Exel formula (see Lemma (2.1.11)),
(TQ®1t) (bottl(u & 1,Z;;Zq)) (T®1t) ( -log (szq u & 1)) z,(u ® 1))
(38)

1

—r®0 (2—mlog(zq W ® 1752, (u @ 1)z;;)> (39)
1

—®0 <%log (27, ® Dz @ 1))) (40)

1
+(t Q1) (%log ((v* Q@ Dzy(u ® 1)25)) (41)
=(tQ®1t) (ilo (uziv,z )) (42)
o 08\UqZqVqZq

+(T®t) ( -log(uyz vpzp)) (43)
=1(a) — t(a) = O (44)

for allt € T(A). It follows that
T (bottl(u X1, Z{;Zq)) =0 (45)

forallt e T(AQ Q)
Lety = bottl(u X 1,z;;zq) € kre pago-Since Q, QpandQgare flat Z modules,

kre pago = kreps & Q (46)
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kre pagu, = krepa ® Q, r=p amd r=q (47)
Itfollows that there are x4, x,,...,x; € pa(ko(A)) and ry,1y,..., 17 € Q such that

l
yzzxj@)r
j=1

Since Q = Q, + Q4, 0ne has 1, € Quand r; , € Qgsuch thatr; =7;,, —1;,.S0
l

l
}’:z:xj@’}',p_zxj@’}'.q

j=1
Puty, = ] 1% Qrip,andy, = x;j Q 1;4.Then, by (47), y, € kre pA®Mpand Vq €
kre Pagm,-It follows that there are unltarles w, €EAQ® M, and w, € A ® M, such that

[ep, wplll < 61/8,  |[[ug, wyll| < 6:/8 (48)

botty (up, wy) =y, and botty(ug, wy) =y, (49)
PutW, = z,w, € AQ M, and W, = z,w, € A ® M,.Then
|lup, — Wyvw,|| < 6, +6,/8 <€/6 and

lup — Wyvpwy|| < 6, +6,/8 <€/6 (50)
Note, again, that u, = u®@ 1 and v, = v ® 1,r = p, q.With identification of W, w,, z,
with unitaries in A @ Q,we also have

l

”[u ® 1, Wp*Wq]” <d;/4 (51)
and
bott, (u ® 1, Wy W,) = bott, (u ® 1,wyz;z,w,) (52)
= bott, (u X 1,Wp) + bottl(u ® 1,zpzq) + bott, (u X 1,Wq) (53)
==Y+ (¥ = ¥g) + Y4 =0 (54

Let Z, = W, W,.Then it follows from the choice of §;, (33) that there is a continuouspath
of unitaries{Z(t) : t € [0,1]} € A ® Qsuchthat Z(0) = ZyandZ(1) = 1and
Iu® 1,Z(t)]ll <e/6 forallt € [0,1] (55)
Define U(t) = w,Z(t).Then U(0) = wyandU(1) = w,. So, in particular, U(0) €
AQ®Mp andU(1) EAQ® M,. So, UEAR Z,, € A® Zis a unitary and, by (50) and
(55),
lu®1-U"(v® DHU| < €/3. (56)
Note that we assume that A®X Z = A.Let I:A—> AQ Zbe the embedding defined
byl(a) = a® 1 forall a € Aand j: A ® Z — Asuch that j o lis approximately inner. Let
V' € Abe a unitary such that
lc=V*jol(c)V| <e/3. forallcc€{uv} (57)
Then, letw = Vj(U)V* € U(A).
lu —wuw| < |lu—-V*ju @ V||
HIVjiw @ DV =V7iU)7j(v @ 1)j(U)VII (58)
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+HIV W) & D)V = VWU KV UV (59)
<e/3+|Iu®1-U(w@ DU| + |lj ol(v) —V*vV| (60)
<e/3+€/3+¢€/3=¢. (61)
Lemma (2.1.13)[80]: Let A be a unital separable simple C* —algebra in A;. Then every
quasi-trace on A extends to a trace. Moreover, if in addition, A is Z —stable, then
W (A) = V(A)LLAS(T(A)),
where W (A) is the Cuntz semi-group of A4,V (A) is the equivalence classes of projections
inUr-; M,,(A) and LAff(T(A)) is the set of all bounded real lower-semi-continuous affine
functions on T'(A).
proof: Note that TR(A Q Q) < 1.Therefore every quasi-trace on A @ Qis a trace.
Suppose that s is a quasi-trace on A,then s & tis a trace on A, where t is the unique tracial
state of Q.
Therefore s ® t on A ® C1,is a trace. This implies that s is a trace.
The second part of the statement, A is assumed to be also exact. But that was only used so
that every quasi-trace is a trace.
Lemma (2.1.14)[80]: Let A € A, be a unital separable simple Z —stable C* —algebra. Let
I': C([0,1])s4.— Aff(T(A)) be a continuous affine map with I'(1)(r) = 1 for all T €
T(4) for some a€A, with lla]l < 1.Then there exists a
unitalmonomorphisme: C([0, 1]) — Asuch that
1(@(f)) = T(H() forall T€T(A)
and f € C([0, 1]).

Let pand gbe relatively prime supernatural numbers with Q, + Q, = Q.Let M, bethe
UHF-algebra associated with the supernatural number r,r = p,q. Let Qbe the UHF-
algebra such that (K,(Q), (Ko(Q)+,[1g]) = (Q Q4,1).By the assumption TR(A @
M, <1 andTR(AQ® Q) <1,h, € (AQ® M,),,.such that sp(h) = [0,1]and (® t) ©
o.(f) = T'(f)(»)forallt € T(A) andf € C([0, 1]) 4, where tis the unique
tracial state on M,r = p,q.We use the same notation forp, for the unital
monomorphismsC([0,1]) - A ® M, - A ® Qcomposed byg.and the embedding from
A® M, » A® Q.Note thatK,(C([0,1])) = Z
andK; (C([0,1])) = {0}.Then [¢,] = [@q] inKK(C([0,1]),A® Q)and,p, and ¢,
induce the same map from T(A ® Q) into T(C([0,1])) as well as the same map from
U(c(o,1p/cucco, 1) into CUAQ® Q)/CU(A Q Q).Moreover since
K, (C([0,1])) = {0}.They induce zero rotation map. ¢,ande, are strongly asymptotically
unitarily equivalent, i.e., there exists a continuous path of unitaries{u(t):t € [0,1)} c
A @ Qsuch that

lim u(t)” @p (fult) = @q(f)  forall f € C([0,1])
Define 1: C([0,1]) - A ® Z,, , by
Y@ = ul®) @p(fHut) forallt €[0,1)and
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V() = @u(f) forall f € C([0,1]).
Note ¥ (f)(0) = @,(f) EAQ Mpand Y(f)(1) = @,(f) EARM, for all fe€
C([0,1]).Byembedding AQ Z, 4into AQZ, we obtain a unital
monomorphisme: C([0,1]) » A ® Z = A.lt is easy to check that so defined ¢ meets the
requirements.
Let Abe a unital simple C* —algebra with T(A) # @. Let u € U(A)be a unitary
withsp(u) = T.For eachr, let p be the Borel probability measure on T induced by state
T o f(u)(for all f € C(T)) onT. Fixn =1, let log: {e!:t € [-m + n/n, 7]} - [-7 +
m/n, ] be theusual logarithm map. Consider the measure v, ,,on (—m, 7] defined by
Ven(E) = we({e:t € E n[-m+ m/n,m]})
for all Borel sets E c (—m, r].Define
vy (E) = tli_{g.ur,n(E)
for all Borel sets E c (—m, m]. It is easy to check that v,is a measure on (—m, ].Let f €
Co((—m, ])s 4.defined

F(@) = j f dv.
(—m,m]

Note that

F(H)(@) = j £ ologdp,.

(—m+m/n,m)
Let g,(t) = Lift€|-n+5,n|,g,() = 0ift € |-m—m+2| and g(t) is linear
in(—n + %,—n + g) Note that 0 < g, < 1andg, € C(T),. It is clear that I'(g,,) €

Aff(T(A))and I'(g,) < I'(gns1)andl(g,)(x) - 1 for each
T € Aff(T(A)).It follows from the Dini theorem that I'(g,,) converges to 1 uniformly on
T(A). On the other hand

| ra-gyar.

< f ]|f|2dvf j ](1—gn>2 v, (62)

(—m,m) (-m,m (-m,m
< [ IfPdve | a-gotdv -0 (63)
(=m,m] (-m,m]

uniformly on T'(A).This implies that T'(f) is continuous on T (A). Ifg € C([—m, ]) 4., We
maywrite  g(t) = g(0) + (g(t) —g(0)).Define T'(g) = g(0) +I'(g—g(0)).This
provides an affine continuous map from C([—m, ])s 4. toAff(T (4)).

We check that

(fw) = f £ o exp(it) dv,(t) = I(f 0 exp(i))(Dfor all f € C(T)s.

(=m.m]
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In the above, we can replace —m by 0 and m by 2. We will keep this notation in the
next proof.
Theorem (2.1.15)[80]: Let A € A; be a unital separable simple Z —stable C* —algebra.
Let u € Uy(A)be a unitary. Then, for any € > 0,there exists a self-adjoint element h €
Asuch that
lu —exp(ih)|| <€ (64)
In the other words
cer(A) <1 + e.
Proof: Let u € Uy(A).If sp(u) # T,then uis an exponential. So we may assume that
sp(u) = T.
Let € > 0.Let @: C(T) — Abe defined by o(f) = f(u) for allf € C(T). It is a unital
monomorphism. The a non-decreasing functionA;: (0,1) — (0, 1) such that
M.(0,) = A (a)for allt € T(A) (65)
for all arcs I,0f T with length a € (0, 1).Define A= (1/2)A;.
Letn > 0,6 >0 and let G ¢ C(T) be a finite subset required by (4) for €/2 (in place
of €).
Without loss of generality, we may assume that ||g]| <1 for allge §. Let o=
min{n/2,6/2}.
Let I': C([0, 2m])s 4 — Aff(T(A)) be the map defined in (7) (using [0,2m] instead
of[—m, ]).Define I'y : C([0, 21])s 4. — Aff(T(A)) as follows: define
() =0 —-a)'(f)(r)forallt € T(A)
and for allf € Cy((0,2m]) and define
[i(f) = f(0) + T1(f = f(0))(z) forallr € T(4)
and for all f € C([0, 2m])s .1t follows that, for anyf € C(T),,. With ||f]| < 1,

[7(f) = T'1(f © exp)| = [T'(f © exp) = TI'1(f ©exp)| < oforallr € T(A), (66)
whereexp : [0,2m] — T is defined by exp(t) = e'for all t € [0,2m]. Note since Ais
simple and sp(u) = T,I'; is strictly positive. It follows(6) that there is a self-adjoint
element b € Asuch that sp(b) = [0,2n] and <(f(b)) = I';(f)(r) for allf €
Co((0,2m]). It follows that

d.(b) = tli_)rg‘[(bl/n) < (1 — o)forallt € T(A4). (67)

Note that since Ais also Z —stable, by (5), W(4) = V(A) U LAff(T(A)).There are
mutuallyorthogonal elements a,, c;, c, € M (A)  with 0 < a4, ¢y, c, < 1 for some integer
K = 1 such that

d.(a;) = 1—-0/2, d.(c) =d;(c;) = a/5 forallt € T(4). (68)
Puta, =a; +¢; +c,. Notethat 0 <a, <1and

d.(a,) =1- ‘i—‘; <1 forallt € T(A). (69)
By the strict comparison, (67), (69) and the fact that A has stable rank one, we
mayassume, without loss of generality, that
a, €A and b€ a;Mg(A)a,.
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Suppose that

Det(u)(t) = s(t) forallt € T(A)(70)
for some s € Aff(T(A)).
The above argument also shows that there are b; € a;A c;. and b, € a,A c,. such that

t(b;) = os(t)/6 andt(b,) = ot(b)/6 forallt € T(A). (71)
Let
hy = 6b: Oh Ly,
o o
Note that
t(hy) = (6/0)t(b;) = s(z) forallt € T(A4). (72)
Definev = exp(ih,). One checks, by (72), that
Det(v) = Det(u). (73)
Therefore
uv* € CU(A). (74)

Let sp(hy) < [-mym, m,m] for some integersm,, m, > 0. Note that f(b;) € ¢,Ac)iff €
¢(sp(by)), j = 1,2.So0, if, in addition, [|f]| < 1, by (68),
lT(f(b)))| <o/5 forall T € T(A). (75)
We have, for any f € C([—mym, m,m])s, With ||f]| < 1, by (75),
|T(f(h1)) - F1(f|[0,2n])| = |T(f(b)) + 7(f (by)) + t(f (b)) — r‘1(f|[0,27r])| (76)
=0/5+0/5+ |t(f®)) — Ti(flozm)| = 20/5 (77)
For all T € T(A). Therefore, by (66), (76), and (77), we have that
lt(g(v)) —t(g(w))| <o+20/5<6 forallge€EQ. (78)
It follows from (4) that there exits a unitary w € U(A) such that
lu —w vw|| < e.
Leth = w*h,w. Then
lu — exp(ih)|| < €.
Corollary (2.1.16)[80]: Let Z be the Jiang-Su algebra. Then
cer(Z) =1+e.
We will prove much stronger result than the above for Z.The following is known
(something similar could be found in [129] and [109]). We state here forthe convenience.
Lemma (2.1.17)[80]: Let u be a unitary in ([0, 1], M,,). Then, for any € > 0, there
exist continuous functions h; € C([0, 1])s,. such that
lu —will <e
whereu, = exp(irH),H =¥, hjp; and {p1,py,..., pn} is a set of mutually orthogonal
rankone projections in C([0,1], M,), and exp(imh;(t)) # exp(imh,(t)) if j # k for all
t € [0, 1].Moreover, suppose that u(0) = X%, exp(ia;) p;(0) for some real number q;
which are distinct, we may assume that h;(0) = a;.
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Furthermore, if det(u(t)) =1 forallt € [0,1], then we may also assume that
det(u (t)) = 1forallt € [0,1].

Proof:

The last part of the statement follows from [109]. By Lemma (2.1.5), ifdet(u(t)) =
1 forallt € [0,1], then we can choose u; such that ||lu —u,|| < eand det(u,(t)) =
1 forallt €[0,1] and u(t) has distinct eigenvalues. Therefore u; = Z?:l zj(t) p;(t),
wherep;(t) € C([0,1],M,,) is a rank one projection,}]?:1 p;(t) =1 and z(t) € C([0,1])
with |z;(t)| = 1for all t € [0, 1]Let z;(t) = e'*©for some real number a(0). But z;(t) =
e'?i(t) for some real b; € C([0,1]),j = 1,2,...,n. Notethat a;(0) — b;(0) = Zkmr for
some integer k. By replacing b;jby a;(t) = hj(t) + (a;(0) — h;(0)).Then z;(t) =

e ®and z;(0) = a;(0),j = 1,2,...,n. In particular,
n

u, (t) = Z e p.(t) forallte[0,1].
j=1
Lemma (2.1.18)[80]: Let u € C([0,1],M,,) be a unitary with det(u)(t) =1 for
eacht € [0, 1]. Then, for any € > 0, there exists a self-adjoint element h € C([0,1], M,,)
such that||h|]| < 1,7(h) = 0 foreacht € T(C([0,1],M,,) and
lu — exp(i2mh)|| < €.
In particular length(u) < 2m.
Proof:  First, without loss of generality, wemay assume that u(0) has distinct

eigenvalues. Suppose that
n

u(0) = )" exp(i2mh) p; (0),
j=1
whereb; € (—1/2,1/2],j =1,2,...,n.
Then}j_, b; = k for some integer k. Since b; € (—1/2,1/2],k < n. Keep in mind thatb;
aredistinct. If k=1, to simplify notation, we may assume that b; >0,j =
1,2,...,k bgy < by <bjfor j < kand [ > 0. Define a; =b; — 1,j = 1,2,..., kand
a; = b;,j > k. Then

n
zaj =0 and|q|<1. (79)
j=1
Note that max;a; < by. Since b; > —1/2, min;a; = b, — 1. Therefore, we also have
m]ax a — mjin a; < 1. (80)

If & <—1, we may assume that b; < 0,j =1,2,...,k, by, = by > b; for j < k and
l > 0. Definea; =b; + 1,j = 1,2,...,k and a; = b;if j > k. Then (79) and (80) also
hold in this case.

We may assume, without loss of generality, that
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n
u() = ) exp(i2mhy(£)) py ©), (81)
j=1
whereh; (t) € C([0,1])s4. and {p;,p2,...,0n} is a set of mutually orthogonal rank one
projections.Moreover, we may assume that det(u(t)) = 1forallt € [0,1] and u(t) has
distinct eigenvaluesat each point ¢t € [0,1]. We may also assume that h;(0) = a;,j =
1,2,...,n.We also have that |h;(0)| < 1,

n
Z h; (0) =0 and m]ax a; — mjin a; < 1. (84)
Since det(u(t)) = 1 for a]I:Ilt € [0,1],
n
2 hi(t) €T forallt €[0,1]. (83)
Since}Y i, h; (t) € C([Oﬁi), it follows that it is a constant. By (81),
n
z hi(t)=0 forallt€I[01] (84)
j=1

Since u(t) has distinct eigenvalues, h;(t) — hy(t) € Z, for any t € [0, 1] when j # k. We
also havemax h;(t) — min h;(t) is a continuous function. It follows from (82) that
J ]
0 < maxh;(t) —minh;(t) <1 forallt e [0,1]. (85)
] ]

Now by (84), eitherh;(t) = 0 for all j, which is not possible, since u(t) has n
distincteigenvalues, or, for some j, h;(t) < 0 and for some other j', h;, > 0, it follows
from (85) that

|lhi| <1  forallte[0,1]. (86)
Now leth = Y7_; hj € C([0,1], My,)sq. Then
|kl <1, T(h) =0 forallt€T(A) and u = exp(i2rmh). (87)

We will use the following theorem .
Theorem (2.1.19)[80]: Let A € A, be a unital separable simple Z-stable C*-algebra.
Suppose thatu € CU(A). Then, for any € > 0, there exists a self-adjoint element h € A
with ||h|] < 1 suchthat
lu — exp(i2mh)|| < e. (88)

In particular, cel;;(A) < 2m.
Proof: We may assume that sp(u) = T. Lete > 0. Let g : C(T) — A be defined by
o(f) = f(w).lt is a unitalmonomorphism. That there is a non-decreasing function
A: (0,1) - (0,1) such that

U (0y) = A(a) forallt eT(A) (89)
for all open balls O, of T with radiusa € (0, 1).
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Note, by [95], for any supernatural number p of infinite type, TR(A ® M,) < 1.
Consideru @ 1. Denote by up for u @ 1in A ® M,,. For any €/2 > €, > 0, there is a
self-adjointelement h, € A ® M, with sp(h,) = [—2m, 2r] such that

|lup, — exp(ih,)|| <€ and t(h,) =0 forallteT(A®M,).  (90)
Let ,: C(T) » A ® M,, be the homomorphism defined by ¥, (f) = f(exp(ihp)) for all

f € C(T).Letn> 0,6 > 0 and let G be a finite subset as required by (4) for €/2 (in
place of €) and A.Choose ¢, sufficiently small, so the following holds: For any unitary

v EAQRQM,, Iif ||up — v|| < €y,then

|T (g(up)) — T(g(v))l <8 forallt € T(A) (91)
and for all g € G. Note each 7 € A ® M,, may be written as s @ t, where s € T(A) is any
tracialstate and ¢ € T(M,) is the unique tracial state.

LetT': C([—2m, 2r])sq, = Aff(T(A) be defined by
M@ = @ @ )(f(hy)) forall f € C([—2m2n])sq (92)
and for all T € T(A), where t is the unique tracial state on M,,.

It follows from (6) that there exists a self-adjoint element h € A with sp(h) =
[—2m, 2] suchthat

t(f() =T(H@) = T @ )(f(hy)) forall f€C([—2m 2n])(93)

and for all Tt € T(A). In particular,

t(h) =0 forall T €T(A). (94)
Define v; = exp(ih) € A. Note that, by (92),
(g(r) =0 t)g(exp(ihp)) forall TteT(A) (95)

and for all f € C(T). By the choice of ¢, as in (91),

[T(g(w) — (g (@)l = |z ® D (9(w)) — (x ® t) (g(exp(ih,)))| < & (96)
forall T € T(A) and for all g € G. We also have [v;] = [u] = 0in K;(A). Furthermore,
v; € CU(A @ Z). Thus, by applying (4), there exists a unitary w € A such that

lu —w* exp(ih) w|| < €/2. (97)
Theorem (2.1.20)[80]: Let A be a unital separable simple Z-stable C*-algebra in A,
with a uniquetracial state. Then, for any unitary u € U,(4), there exists a real number
—n < a <m suchthat, for any € > 0, there exists a self-adjoint element h € A
with||h|| < 2m and
lu — exp(i(h + a))|| < e.

Consequently

cel (A) < 3m.
Proof: Let u € Uy(4) and let e > 0. Since A has a unique tracial state 7, Uy(A4)/
CU(A) = R/p,4(K,(A)). Therefore thereist € (—1,1) such that

Det(u) =t + ps(K,(4)). (98)
Consequently
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e "u € CU(A). (99)
It follows from theorm (2.1.19) that there is a self-adjoint element h € A with ||h|| < 21
such that
lle ™ u — exp(ih)|| < e. (100)
Therefore
|lu — e™ exp(ih)|| < e. (101)
Let a = mt. Note that e'™ exp(ih) = exp(i(h + a)). Put hy = h + a. We conclude
that
lu — exp(ihy)ll <e.
Note that ||h,|| < ||| + |a| < 3m. There is h, € A, , with ||h,|| < 2arcsin(m/2) such
that
u = exp(ih,) exp(ih,). (102)
If we choose € so that
2 arcsin(e/2) < 3w — ||h|| + |a],
then
Al + llR2 |l < 37
Corollary (2.1.21)[80]: Let u € Uy(Z) be a unitary. There exists t € (—m, ) such
that, for any € > 0,there exists a self-adjoint element h € Z with ||h|| < 27 and a real
number —m < t < m satisfying

|le®u — exp(ih)|| < e. (103)
Letu € C(]0,1], M,,) be defined as follows:
. _pit@=1/m=1) (&
u(t) = e™t2-1/-1g ¢ (n-1) z ex | and (104)
k=2

~ t2-1/(n-1D) [~
A(D) = t2 =1/ (1= D)oy == 5 <kz=2 ek> forte[01], (105)

where{e,, e,, ..., e, } is a set of mutually orthogonal rank one projections.
Then
u(t) = exp(imh) and t(h) =0 forallt € T(C[0,1], M,).

Therefore det(u(t)) =1 for all t € [0,1]and u € CU(C[0,1], M,,). Note also ||| =
n(2—1/(n—1)). In what follows we will show that cel(u) > (2—-1/(n—1))m. It
should be noted that it ismuch easier to show that if u(t) = exp(iH) for some self-adjoint
element in C([0,1], M)then||H|[ = (2—-1/(n — 1))m.
Suppose that cel(u) =r;. Fix r; > e >0 and put r = r;, + €/16. Then there are self-

adjointelements hy, h,, ..., hy € C([0, 1], M,,) such that
k k

u= 1_[ exp(ih;) and Z”h]” =T. (106)
j=1

j=1
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Define ug = §?=1exp (ihj(1 —s)). Then us is continuous and piecewise smooth on
[0, 1]. Moreoverlength{u(t)} < r. Since h;(t)(1 —s) is continuous on [0,1] X [0, 1],
one shows that W(t,s) = ug(t)is continuous on [0,1] x [0, 1].
Furthermore

||us1 - u52|| <rl|ls; —s,| foralls;s, €[01]. (107)
Lemma (2.1.22)[80]: Let u and v be two unitaries in a unital C*-algebra A. Suppose
that there is acontinuous path of unitaries {w(t):t €[0,1]} c Awith w(0) =
uand w(1l) = v. Then, ifA € sp(u), there is a continuous path {A(t) € T:t € [0,1]}
such that A(0) = LA(t) € sp(w(t)) forallt € [0,1].If furthermore,
length{w(t):t € [0,1]} = r < m/2, then one can require that

length {A(t):t € [0,1] <.

Proof: The proof of this was originally taken from an argument of Phillips . One obtains
a sequence of partitions {#,} of [0, 1] such that P, c P,,,,n = 1,2,..., foreach partition

Po= 0=t <t™ <. t,?(?l) = 1}, thereare A(n,i) € sp(w(t(™)) such that

A D) = Am i+ 1] = |w (™) —w(c2y)|  and (108)
k(n) k(n)

Z IA(n, i) — A(n,i + 1] < Z lw () = w (e, <7 (109)
i=1 i=1

iffw(t)} is rectifiable with length{w(t):t € [0,1]} = r. Write A(n,j) = ™) with
O(n,j) €[0,2n),j = 1,2,....,k(m)andn = 1,2,---. Define
0(t) = sup {e(n, Pt < t}. (110)

By the uniform continuity of w(t), one checks that A(t) = exp(if(t)) is continuous on
[0,1],A(t) € sp(w(t)) and length({A(t)} < .
Suppose that u(t) € C([c,d], M,,) is a unitary which has the form:

u(t) =f(t)q, +z(t) forallt € |cd],
wheref (t) € C ([0,1], T), q; IS a rank one projection and <z €
(1-q1) C([c,d],M)(1 — q,) isa unitary. Let cel(w) =7, and fix r,/2 > € > 0. Let
r =mnr +e/l6. let{lW(t,s): s € [0,1]} be a continuous rectifiable path such that
W(t,s) € C([c,d] x [0,1],M,) withiW (t,0) = u(t) and W(t,1) = 1 with lengthr.
Fix s, € (0,1]. Suppose that length{W (t,s):s € [0,s,]} = r,. Define S; the subset of
Tsuch that every point of S; can be connected to a point in sp(z) by a continuous path of
length at most ry,.

Then we have the following:
Lemma (2.1.23)[80]: Let{f(t): t € [c,d]} = {e:t € [ty t;]} With f(c) = e'to
and f(d) = e’ such that t; — t; = r,. Suppose that
dist(1:(s),5;) >0 forallt € [ty t;] ands € [0,sy],

where length{W (t,s):s € [0,sy]} =1y <1,/2.Then

W(t,so) = gso(t)ch +v(t) forallt € [cy,d4]
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for some [c;,dq] < [c,d] with d; > ¢;. Moreover g, (t) is a continuous function and

{95,(©):t € [c1,d1]} 2 {e":t € [ty + 10, t; — 1]}
Proof: View Z = W(t,5)|(cajx[o,s, 8 a unitary in C([c,d] X [0,s,], My,). Then the
assumptionimplies that
sp(Z2) c JUS;,

where] = {At(s):t € [ty, t;] and s € [0, sy]}, Note that J N S; = @. Then, there is a non-
zeroprojection q; € C([c,d] X [0,s,], M,,) such that

Z =2+ 7y, (111)
wherez, € q;C([c,d] % [0,s0], Mn)q; and z; € (1 —q1)C([c,d] X [0, 0], Mp)(1 — q1)
are unitariessuch that sp(z;) < J and sp(z,) S;. Since g;has rank one in [c,d] x {0}, we
conclude that g1 has rank one everywhere. Thus

Z(t,s) = g;(t)q1(t,s) + z,(s,t) forall (t,s) € [c,d] X [0, sy].
Note that g;(t) € C([c,d] X [0,so]). Therefore {gs, (t):t € [c,d]}is an are containing
g(c) = Ac(sp)and g, (d). By the assumption, g (¢) € {et:t € [ty — 15, ty + 1p]}and
gs,(d) € {e't € [t; — 15, t; + 73]} The lemma follows.
Lemma (2.1.24)[80]: Suppose that length({W(t,s):s € [0,s;]} =C, < m/4. If
[c,d] < [a, b] such that
dist({f(t): t € [c,d]},{sp(vi(t)): t € [c,d]}) =11 = 4sin(C;/2) + &

for some 0 < § < n/8, {f(t):t € [c,d]} = {e:t € [ty, t;]} With ty,—t; > 21y, then,
for any & > O,there exists an interval [c;,d;] < [c,d] with ¢; <d;, a rank one
projection gq; € C([c;, d4], M,,)such that

W(t, s1) = gs,()q1 + v1(2), (112)
wheregs, (t) € C([cq,d4]) with
{g1(©):t € [cy,di]} ={e:t €[ty + C, +6,t, — C, — 6]}, (113)

where 2r > t; > t), = 0, and where v; € (1 —q;)C([c;,d1], M,,))(1 — q,) is a unitary
withsp(v,(t)) € S;, where S; is a subset of T such that every point of S; can be
connected by a pointin sp(v(t)) (t € [c,d]) by a continuous path with length at most C; .
Proof: Let S; be the subset of T such that every point in S; can be connected to a point
insp(v,) with length at most C;. Since length({W (¢, s):s € [0,s:]} = C; < m/4,
dist(1:(s),S1) > 0 forallt € [ty t;]Jand s € [0, s;]. (114)
Theorem (2.1.25)[80]: Letu(t) € €([0,1], M,,) be the unitary. Forany ¢ > 0,

length {u(t)} = 7 (2 _ L) _e (115)

n—1
If h € C([0,1], M), such that
lu —exp(ih)|| <€, (116)

then ||h|| =« (2 — i) — 2arcsin(e/2). Moreover,

1
celcy(C[0,1],M,) = (2 o 1).
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Proof: From anterior definition . We write
u(t) = f(t)e; + v(t).
Let 0<d<e€/2and k =1 be an integer such that kd = n(1—1/n—1). Let 0 <
a, < by < 1such that
f(ao) — eid+e/k2 and f(bo) — ein(z—l/n—l)—d—e/kz_

Let 0 <s;< 1 such that length{W(t,s):s €[0,s0]}=d. It follows from
lemma(2.1.24) that there existsa, < a; < b; < b, such that

W(t, so) = 9:1(0)qy + z,(t) forall t € [ay, by], (117)
whereq, is a rank one projection, z; € (1 — q;)C([aq,b1],M,,))(1 — q;),

{g:(©):t € [ay, b} ={e:t €[2d +€/k2,m(2 —1/(n— 1)) — 2d — €/k2]}
withg, (a;) = e'?2+€/k2) and g,(b,) = e'(®2-1/n=1))-2d=€/k2) ¢n(z,) c S;, where S, is
thesubset of T such that every point in S15; is connected by a rectifiable continuous path
from{et:t € [—-(2—1/n— 1)mn — 1,0]}. In particular,

s, c {eit: t e [— (2- 14(1‘1_ DT _ g +d]}. (118)
Let 1 > s; > s, such that length{W (t,s) : s € [sy,$1]} = d. By repeating above, one
obtainsa, < a, < b, < b, such that

W(t, Sl) = -gZ(t)qZ + ZZ(t)r t e [a2' bZ]l (119)
wheregq, is a rank one projection, z, € (1 — q,)C([ay, b, M,)(1 — q3),
{g,(t):t € [ay, b,]} (120)
_ . € € [y g g & }
_{ te[2d+ +d+k4 n<2 n—l) 2d k2 d— (121)
— it. _ — — - - —
_{ te[3d+ +d+k4 (2 n—l) 3d - —d k4} (122)
Withgz (az) — l(3d+Q/k2+Q/k4—) and 9> (bz) — ei(n(z—l/n—l)) 3d—e/k2—- €/k4)’ Sp(Zl) C

S,, where S, isthe subset of T such that every point in S, is connected by a rectifiable
continuous path from {e: t € [-2(1 — 1/n — 1)n/(n — 1) — d,d]}. In particular,

S, c {eit: te [— 21/t~ 1)m } (123)

n—1
By repeating this argument k — 1 times, We obtain 1 > s;,_; > s;_, such that
length{W (t,s):s € [0,s,_1]}=(k—1Dd=n(1-1/(n—1))—d and

k-1 k-1
€
1)7T-(k—1)d+zlﬁ
]=

elet:te|(k—1d+ (2 !
mefetice |(mnd+ ) (2=
j=1
c Sp(W(t, Sk—l))'
Thus the minimum length of continuous path from W (¢, si_;) to 1 is at least . Thus
€
length{u(t)} + e >n+ (k—1)d (124)

— 2d,d

. 1) —d>n2-1/(n—1)) —€/2 (125)

n —
for all e > 0. It follows that

=7T+T[(1—
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length{u(t)} > n(2—-1/(n —1)). (126)
Fix an integer n > 12 and let k, = 0. Suppose that 0 < k < k. Let N = mn + k and
letNy = mn. Consider a unitary uq, € C([0,1], My,) :
Ugy = e7'ci1:(2—1/(n—1))P1 + e—nit(z—l/(n—l))Pz’ (127)
whereP;, P, € C([0, 1], My, ) are constant projections with rank Py = m and rank P, =
(n — 1)m. Define
Uy = Ugg + Vo € C([0,1], My), (128)
wherev, € (1 — (P; + P,))C([0,1], My)(1 — (P, + P,)) is another unitary such that
det(vy(t)) = 1for each t € [0,1] and v, = Zj?zl Ajej, where {e;,ey,..., e} is a set of
mutually orthogonal rankone constant projections in (1 — P, — P,)C([0,1],My)(1 — P; —
P,). Note that rank(1 — (P, + P,)) = k.
Lemma (2.1.26)[80]: Let n = 1 be a given integer and let € > 0. There exists § > 0
satisfying the following: Choose m, > 128(k, + 1)nm/e, for any unitary u with m >
my, iIf v € C([0, 1], My) is another unitary such that
lu—v|l <6,
then
\uerev({€:s € [t0, — €/2,t0, + €/2]}) — 1/n| < € and (129)
|ter e ({€25:5 € [0/ (n = 1) — €/2,—t8/(n = 1) + €/2]}) = (n — 1)/n]
<e€ (130)
forallt € [1/(n — 1),1], where u;, ¢, is the probability measure given by tr o m, o 1),
wherey : C(T) — C([0, 1], My) is the homomorphism defined by ¥(f) = f(v) for all
f € C(T), andwhere tr is the normalized trace on M.
Lemma (2.1.27)[80]: Let n = 12. There exists § > 0 and integer mq > 21°(k, +
1)n3n? satisfying the following: If h € C([0,1], My),, With ||h]| < 2m such that
llu — exp(ih)|| < 6, (131)
then
k]| = 2(1 —1/(n—1))m. (132)
Lemma (2.1.28)[80]: Let (G,G,) be a countable unperforated ordered group. Then
there exists a unitalsimple C*-algebra A which is an inductive limit of interval algebras
with (K,(4),K,(A4);) = (G, G, )satisfying the following:
For any € > 0, there exists a unitary u € CU(A) and § > 0 satisfying the following: ifh €
Ag o with ||h|| < 27 such that
lu — exp(ib)|| < 5,
then
|h]| = 27 — €.
Proof:
Fix 1/2 > €. Choose n = 12 suchthat t/(n — 1) <¢€/4. Let ko = n — 1. Let m| >
215(k, + 1)n3m? (in place of m,) be an integer required by lemma(2.1.27) for the above
mentioned n andk,. Let m, = 2my,.
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Let C = limy_4(Cy, @) be a unital simple AF-algebra, where each C, is a unital
finitedimensional C*-algebra, such that (K,(C),K,(C);) = (G, G;). We may assume that
the mapy;, : C, — Ci41 IS unital and injective. We write
Cre = My(110) @ Myr21)® .- My (i) 10)-
Let @y j: Myjk)y = Ciyq be the homomorphism defined by ¢;;, = (¢k)|Mr(j,k)- Define
Ty j * Ck = My Dy the projection to the summand. Set @;;x = Tyiq;© Qi)
My (jky = Myes1,jy-Note that (4.0 is determined by its multiplicity M (j, i, k). Since
C is simple, without lossof generality, we may assume that r(j,1): =r(j) = 2n(m, +
1),j=1,2,...,m(1). By passingto a subsequence if necessary, we may assume that
M(i,j, k)= (2my+1)k. There is a set ofM(j,i,k) mutually orthogonal
projections{e;; x s : S} iN My 41y SUch that each e; ; , has rankr(j, k),
m(j) M(j,i,k)

z z ks = Liygpany:
j=1 s=1

Put
M(j,ik)
e(j, i, k) = z e]-,i,kls.
s=1
We write

r() =d(n+k(), k() <n
where d(j) = 2m,,.
Denote 6y =(2—1/(n—1)m,j=1,2,...,m(1). Let Bj, =C([0,1],My(j1), J=
1,2,....m(k),k=1,2,... Let {t(0,k),t(1,k),...,t(k,k)} be a partition of [0,1] such
that t(0,k) = 0,t(k, k) = 1and t(i,k)—t(i — 1L,k) = 1/(k + 1),i =
1,2,...,kk = 1,2,...Define y; ; x: B, = e(j,1,k)B; 1€, i, k) as follows:

Y0k (f) = diag (f, foon £ (60, £(£Q2,K)), oo, f (2 (K, k))) (133)
M(j,ik)—-k
forall f € M; ;. Define Ay = C([0,1]) ® C. Note that
m(k)
A= @ C([0,1], My(j))-
j=1

Let y: Ay > Ayyq be the unital homomorphism given by the partial maps ;.
DefineA = lim,_ (A, P). It is known such defined A is a unital simple C*-algebra.
Moreover,

(Ko(A), (Ko(4)), ) = (6, Go).
Consider the unitaries

wj = e'%p, ; + 70/ Vp, .+ ps
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where{p, j,p2,j,P3,;} € My,;) are mutually orthogonal constant projections, p,; has
rank d(j),p,; has rank (n—1)r(j) and p;; has rank k(j) <n,j=1,2,...,m(1).
Define
w=u Du, D .0 upq). (134)

Let u =5 (W), Where 1, o, is the homomorphism induced by the inductive limit
system. Sinceeach w; € CU(C([0,1], M1 j)),u € CU(A). We now verify that u satisfies
the assumption. Lets; > 0 be as in lemma (2.1.27) for €/2 (in place of €) and ky = n —
1. Let 6 = 6,/2. Suppose that there is aself-adjoint element h € A, with ||h|| < 27
such that

lu — exp(ih)|| < 8. (135)
There is, for a sufficiently larger k, a self-adjoint element h; € A; for some k > 1 such
that

Ih =Yt <7 and o) —explih)]| <285 =8 (136)

Consider a summand A; ; of Aj. Note that A; , = C([0, 1], M,(;x)). We compute that
1e(w) = %P, +e70/("DP, L+ v, (137)
wherevy; € P3;xE;  P3;x 1S @ constant unitary, P;;x, Pyik, P3ir are mutually
orthogonalprojections with
Piig + Paik + P3ip = idy,,,
P, ; xhasrank n — 1 times as much as P; ;, and Py ;, has rank at least m, times that of
therank of P; ; .. Denote by K|, the rank of P; ; ;.. Then we have
rankPs;, > 2n3(Ky + )72

It follows from lemma (2.1.27) that

Ayl = 2(1 = 1/(n — 1)7 = 2n—%2 2n—§. (138)
Note that each v is injective. Therefore
s ChO = gl = 270 = =,

By (136),

|h]| = 21 — €.
Theorem (2.1.29)[80]: Let (Gy, (Go)4+) be a countable weakly unperforated Riesz
group and let G, be any countable abelian group. There exists a unital simple AH-algebra
Awith tracial rank onesuch that

(Ko (A). Ko (A) 4, K1(A)) = (Go, (Go) 4, G1).
Moreover, for any € > 0, there exists a unitary u € CU(A) and there exists § > 0
satisfying thefollowing: If h € A, such that
lu — exp(ib)|| < 5,

then

|h]| = 21 — €.

72



Corollary (2.1.30)[80]:  Let (Go, (Go)4) be a countable weakly unperforated Riesz
group and let G; be any countable abelian group. There exists a unital simple AH-algebra
Awith tracial rank onesuch that
(Ko (A). Ko (A) 4, K1 (A)) = (Go, (Go) 4, Gy) and (139)
celey(A) > m. (140)
Proof: Let A be in the conclusion of theorem(2.1.29). Let e = m/16. Choose a unitary
u in A and ¢ satisfythe conclusion of theorem(2.1.29) for this e. We may assume that § <
1/64. We will show that cel(u) > m.Otherwise, one obtains a self-adjoint element h €
A with [|h]| £ = such that
lu — exp(ih)|| < 8.
This is not possible.
Section (2.2): Approximate Unitary Equivalence in Simple C*-Algebras of Tracial
Rank One
Let T, and T, be two normal operators in M,,, the algebra of n X n matrices. Then T; and
T, are unitary equivalent, or there exists a unitary U such that U*T,U = T, if and only if
sp(Ty) = sp(Ty),
counting the multiplicities. Let X = sp(T;). Define ¢; : C(X) — M,, by
¢(f) = f(T)forf €CX), i =12
Let t: M, — C be the normalizedtracial state on M,,. Then to¢; (i = 1,2) gives a
Borel probability measure y; on C(X),i = 1,2. Then ¢, and ¢, are unitarily equivalent
if and only if u; = u,. More generally, one may formulate the following Let X be a
compact metric space and let ¢;, ¢, : C(X) — M,, be two homomorphisms. Then ¢, and
¢, are unitarily equivalent if and only if
Tog = To oy (141)
For an infinite dimensional situation, one has the following classical result: two bounded
normal operators on an infinite dimensional separable Hilbert space are unitary equivalent
if and only if they have the same equivalent spectral measures and multiplicity functions.
Perhaps a more interesting and useful statement is the following: let T; and T, be two
bounded normal operators in B(l?). Then there exists a sequence of unitary U, € B(1?)
such that
lim |UzTy Uy — T2 |l = 0 and

U,T,U — T,iscompact
if and only if
(O)spe(T1) = spe(T2),
(it)dim null(T; — AI) = dim null(T, — AI) forallld € C\ sp,(T,).

Here sp,.(T;) is the essential spectrum of T;, i.e., sp.(T;) = sp(m(T;)), where m :
B(1?) - B(I?)/k is the quotient map, i = 1, 2. Let X be a compact subset of the plane and
let ¢4, ¢, : C(X) = B(I*)/x be two unital monomorphisms. In the study of essentially
normal operators on the infinite dimensional separable Hilbert space, one asks when ¢,
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and ¢, are unitarily equivalent. This was answered: ¢, and ¢, are unitarily equivalent if
and only if (¢1). = (¢2).1, where(d).: K1 (C(X)) - K1 (B(1*)/x)) = Zis  the
induced homomorphism (Fredholm index), i = 1,2 (cf. [15]). In fact, one has the
following more general BDF-theorem:

Theorem (2.2.1)[71]: If X is a compact metric space, then ¢, and ¢, are unitarily
equivalent if and only

. B()

[$1] = [¢)inKK (C(X), - >
It is known that the Calkin algebra B(1?)/K is a unital simple C*-algebra with real rank
zero. It is also purely infinite. We will study approximate unitary equivalence in a unital
separable simple stably finite C*-algebra.
Definition (2.2.2)[71]: Let A and B be two unital C*-algebras and let ¢,,¢, : A — B be
two homomorphisms. We say that ¢, and ¢, are approximately unitarily equivalent if
there exists a sequence of unitaries {u,,} < B such that

7!Ll_r)rolo ad u,¢,(a) = ¢p,(a)foralla € A. (142)

In Definition (2.2.2), suppose that | = kcr¢,. Then ker¢p, = J if ¢, and ¢, are
approximately unitarily equivalent. Thus one may study the induced monomorphisms
from A/I to B instead of homomorphisms from A. To simplify matters, we will only study
monomorphisms.
We note that M,, is a unital finite dimensional simple C*-algebra with a unique tracial
state. We now replace A by an infinite dimensional simple C*-algebra. First we consider
AF-algebras, approximately finite dimensional C*-algebras.
Let A be a unital simple AF-algebra and let X be a compact metric space. Let ¢, ¢, :
C(X) — A be two unitalmonomorphisms. When are ¢, and ¢, approximately unitarily
equivalent or when are there unitaries u,, € A such that

lim un¢1 (@upn = ¢2(@)
forall a € C(X)?
Let C be a unital stably finite C*-algebra. Denote by T(C) the tracial state space of C.
Suppose that ¢, ¢, : C(X) — Aare two unital monomorphisms. Let T € T (A) be a
tracial state. Then 7 o ¢; is a normalized positive linear functional (j = 1,2). It gives a
Borel probability measure p; . Furthermore, it is strictly positive in the sense that
1j(0) > 0 for every non-empty open subset O c X. If ¢p; and ¢, are approximately
unitarily equivalent, then it is obvious that u; = wu,, or equivalently, To ¢, = To ¢,. In
fact, one has the following:
Let X be a compact metric space and let A be a unital simple AF-algebra with a unique
tracial state t. Suppose that ¢, ¢, : C(X) — A are two unital monomorphisms. Then ¢,
and ¢, are approximately unitarily equivalent if and only if

($1)s0 = (P2)s0andt o py = T o ¢,.
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Here (¢1).o 1S an induced homomorphism from K,(C(X)) into K,(A). Note in this case
that X is connected and K,(A) has no infinitesimal elements, i.e., 7 (p) = 7 (q) implies
[p] = [q] in K,(A) for any pair of projections p andgq, as in the case that A = M,,, or in
the case that A is a UHF-algebra, the condition(¢;).o = (¢,)., IS automatically satisfied
if the two measures are the same. Note also that K;(A) = {0}. In general, ¢; also gives
another homomorphism:
(6)),, : K1(CX)) - K (A),j = 1,2.
Theorem (2.2.3)[71]: Let X be a compact metric space and let A be a unital simple C*-
algebra with real rank zero, stable rank one, weaklyunperforatedK,(A) and with a unique
tracial state z. Suppose that ¢, ¢, : C(X) — A are two unital monomorphisms. Then ¢,
and ¢, are approximately unitarily equivalent if and only if
[¢1] = [¢2]inKL(C(X),A) andt o ¢y = T o ¢,
In the case that K, (C(X)) is torsion free, the condition that [¢;] = [¢,] inKL(C(X), A)
can be replaced by (¢1).; = (¢P2)., Where (¢)).; : Kii(C(X)) = Ki(A) (i =
0,1andj = 1,2),isthe induced homomorphism.
Recall that an AH-algebra is an inductive limit of C*-algebras with the form
Py Mj () (C (X)) By, where X, is a (not necessarily connected) finite CW complex and B,
is a projection in M) (C(Xy)). More recently, for the situation that T(A) has no
restriction, we have the following:
Theorem (2.2.4)[71]: Let C be a unital AH-algebra with property (J) and let A be a unital
simple C*-algebra with TR(A) < 1. Suppose that ¢,p: C - A are two unital
monomorphisms. Then ¢ and y are approximately unitarily equivalent if and only if
[¢] = [y] in KL(C,A), (143)
¢ =1 and ¢* = P+ (144)
Let X be a compact metric space, let x € X and let a > 0. Denote by B,(x) the open
ball of X with radius a and center x. Let A be a unital C*-algebra and ¢ € X. Denote by
mg : C(X) — A the point-evaluation defined by 7 (f) = f(¢) - 1, forall f € C(X).
Let A and B be two C*-algebras and let L,,L, : A — B be two maps. Suppose that F c
Aisasubsetand e > 0. We write
Li=,L, onF
If [Li(a) — Ly(a)|| <eforalla € F.
The map L, is said to be e- F -multiplicative if
||L;(ab) — L;(a)L{(b)|| < eforalla,b € F.
Let A be aC*-algebra. Set M, (A) = Un=1 M, (4).
Let A be a unital C*-algebra. Denote by U(A) the unitary group of A. Denote by U,(A) the
normal subgroup of U(A) consisting of the path connected component of U(A) containing
the identity. Suppose that u € U,(A4) and {u(t) : t € [0,1]} is a continuous path with
u(0) =uandu(1l) = 1. Denote by length ({u(t)}) the length of the path. Put

cel(u) = inf{length({u(t)})}.
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Definition (2.2.5)[71]: Let X be a compact metric space and let P € M;(C(X)) be a
projection. Put C =PM;(C(X))P.Letu € U(C). Define, as in [113],

Dc(w) = inf{|lall : a € Agg,such thatdet(e™ -u) = 1}. (145)
Let A be a unital C*-algebra. Denote by CU (A) the closure of the subgroup generated by
the commutators of U(A). For u € U(A), we will use u for the image of u in U(A)/
CU(A).

Ifu,v € U (A)/CU (A), define
dist(u,v) = inf{x — y:x,y € U (A) suchthatx = u,y
If u,v € U (A),then
dist(u,v) = inf{Jluv* — x|| : x € CU (A)}.

Let A and B be two unital C*-algebrasand let ¢ : A — B be a unital homomorphism. It is
easy to check that ¢ maps CU(A) to CU(B). Denote by ¢* the homomorphism from
U(A)/CU(A) into U(B)/CU(B) induced by ¢. We also use ¢* for the homomorphism
from U (M, (A))/CU (M, (A)) into UM, (B))/CUM,(B)) (k = 1,2,...).
Definition (2.2.6)[71]: Let A be a C*-algebra. Following [21], denote

k@ = PP P @i,

i=0,1 i=0,1 k=2
Let B be a unital C*-algebra. Furthermore,
H om, (K (A),K(B)) = KL(A,B).
Here KL(A,B) = KK(A,B)/Pext(K,(A),K.(B)) (see [21] for details). Let k = 1 be an

integer. Denote
Rk @) = P k) €D K (4. 2/km)

i=0,1 nlk
i=0,1
Suppose that K;(A) is finitely generated (i = 0, 2). It follows from [21] that there is an
integer k > 1 such that
H om, (FK(4), FK (B)) = H om, (K(4),K(B)). (146)

Let A and B be two unital C*-algebras and let L: A — B be a unital contractive
completely positive linear map. Let 7 < K(A) be a finite subset. It is well known that,
for some small § and large finite subset G < A, if L is also §-G-multiplicative, then [L]|»
is well defined. In what follows whenever we write [L]|».
we mean 6 is sufficiently small and G is sufficiently large so that it is well defined (see 2.3
of [70]). If u € U(A), we will use (L)(w) for the unitary L(w)|L(w)*L(u)|™?.

For an integer m > 1 and a finite subset U ¢ U(M,,(A)), let F < U (A) be the
subgroup generated by U. There exists a finite subset G and a small § > 0 such that a 6-
G-multiplicative  contractive completely positive linear map L induces a

homomorphismL# : F — U (M,,(B))/CU(M,,(B)). Moreover, we may assume (L)(u) =
L* ().

7).
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If there are L,,L,: A = B and € > 0 is given, suppose that both L; and L, are §-G-

multiplicative and L and L% are well defined on F . Whenever we write
dist(L (@), L} (@) < €

forall u € U, we also assume that ¢ is sufficiently small and G is sufficiently large

so that

dist ((Ll)(u), (u)(Lz)) <e forall u €U
Definition(2.2.7)[71]: Let A and B be two unital C*-algebras. Let h: A— B be a
homomorphism and v € U(B) such that

h(g)v = vh(g)forallg € A.
Thus we obtain a homomorphism h: A® C(T) - B by h(f ® g) = h(f)g(v) for
f € Aand g € C(T). The tensor product induces two injective homomorphisms:
BO: Ky(A) > K (A ® €(T))and (147)

BV : Ki(A) » Ko(4A ® C(T)). (148)
The second one is the usual Bott map. Note that, in this way, one writes

Ki(A ® C(T) = K;(4) & B V(K1 (A)).
We use BO: K;(A ® C(T)) —» BUD(K;_,(A)) for the projection to B~V (K;_ (4)).

For each integer k > 2, one also obtains the following injective homomorphisms:
’Ei) . K, (A, Z

Dok (4@ cm2)i=ou (149)

Thus we write

K;_, (A ® C(T),k%) = K;_, (A,k%)eaﬁ,?) <Kl- (A,%)),i =0,1. (150)

Denote 8: K;(A ® C(T),Z/kZ) - By~ " (Ki_1 (4, Z/kT)), similar to that of

BO.,i = 1,2.1fx € K(A), we use B(x) for BO(x) if x € K;(A) and for B (x) if x €
ki(A,Z/KkZ). Thus we haveamap S : K(A) - K(A ® C(T)) as well as B:K(AR®
C(T)) = B(K(A)). Therefore one may write K(A ® C(T)) = K(A) & F(K(A)) On the
other hand h induces homomorphisms

hor : Ki(A® C(T)),,Z/kZ) - Ki(B,Z/kL), k = 0,2, ..., i = 0,1
We use Bott (h, v) for all homomorphisms h,; o ﬁ,gi). We write
Bott(h,v) = 0

if hoxo ﬁ,ﬁi) =0 for all k>1 and i = 0,1. We will use bott,(h,v) for the
homomorphism hy o o BM: K;(4) - Ky(B) and bott,(h, u) for the homomorphism A, o
B©®: Ky(A) - K, (B). Since A is unital, if botty(h,v) = 0, then [v] = 0 in K;(B). In
what follows, we will use z for the standard generator of C(T) and we will often identify
T with the unit circle without further explanation. With this identification z is the identity
map from the circle to the circle.

Given a finite subset P < K(A), there exists a finite subset F < A and §, > 0 such that
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Bott(h,v)|p
is well defined if
I[h(a), v]]| = l|h(a)v — vh(a)|| < &, foralla € F
(see [70]). There is 6; > 0 ([101]) such that bott, (u, v) is well defined for any pair of
unitariesu and v such that ||[u, v]|| < &;. As in 2.2 of [32], if v, v,,..., v, are unitaries
such that
||[u,vj]|| < 6;/n, j=12,...,n,
then

n
bott, (u,, vy, vy,...,v,) = Z bott; (u, v;).
j=1
By considering unitaries z € A ® C (C = C,, for some commutative C*-algebra with
torsion K, and C = SC,) from the above, for a given unital C*-algebra A and a given
finite subset P c K(A), one obtains a universal constant § > 0 and a finite subset ¥ c
A satisfying the following:
Bott(h, v;)|p (151)
is well defined andBott(h, vy, vy, ..., v,) = Xj=q bott (h, v;)
for any unital homomorphism h and unitaries v,, v,, ..., v, for which
||[h(a),vj]|| <%, j=12,...,n, foralla €F. (152)

Furthermore, if K;(A) is finitely generated, then (146) holds. Therefore, there is a finite
subset Q ¢ K (A) such that
Bott(h,v)

is well defined if Bott(h, v)|y is well defined (see [70]). See [70] for further information.
Let A be a unital C*-algebra. Denote by T(A) the tracial state space of A. Suppose that
T(A) # @. Let B be another unitalC*-algebra with T(B) # @. Suppose that¢ : A — B is
a unital homomorphism. Denote by ¢ : Af f (T (A)) = Af f (T (B)) the positive
homomorphism defined by ¢ (@)(7) =70 ¢(a) foralla € Ag,.
Let X be a compact metric space and let A be a unital C*-algebra with T(A) # @. Let L :
C(X) — A be aunital positive linear map. For each t € T (A) denote by u,,L the Borel
probability measure induced by 7 o L.
Let X;,X,,...,X,, be compact metric spaces. Fix a base point §; € X;,i = 1,2,...,m.
We write X; VX, V...V X,, as the space resulted by gluing X;, X5, ..., X,,, together at ¢;
(by identifying all base points at one point ;). Denote by &, the common point. If x,y €
X;, then dist(x, y) is defined to be the same as that in X;. If x € X;,y € X; with i # J,
and x # &,,y # &,, then we define

dist(x,y) = dist(x, &) + dist(y, &p).
Definition (2.2.8)[71]: Let A be a unital simple C*-algebra. A is said to have tracial rank
no more than one (T R(A) < 1) if the following hold for any ¢ > 0,any a € A, \ {0}
and any finite subset F c A, there exists a projection p € A and a C*-subalgebra B =
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EBi-;er(i)(C(Xi)), where each X; is a finite CW complex with covering dimension no
more than 1, with 1; = p such that:

(i) |lpx —xp|| <€ forall x € F,

(if) dist(pxp,B) < € for all F and

(iii) 1 — p is equivalent to a projection in aAa.

If in the above definition X; can always be chosen to be a point, then we say A has tracial
rank zero and write TR(A) = 0. If TR(A) < 1 but T R(A) # 0, then we write
T R(A) = 1 and say A has tracial rank one. As in [91], if T R(A) < 1, then A has TAI,
I.e., in the above definition, one may replace X; by [0, 1] or by a point.

Let A be a unital separable simple C*-algebra with T R(A) < 1. Then A is tracially
approximately divisible. For example, for any € > 0, any finite subset F c A, any a €
A, \ {0} and any integer N > 1, there exists a projection p € A and a finite dimensional
C*-subalgebra D = @, M, withr(j) = N and with 1, = p such that:

(i)  ll[xy]ll <e forallx € Fandforally € Dwith ||Y]|| < 1;

(i) 1 — pisequivalent to a projection in ada

Lemma (2.2.9)[71]: Let X be a connected simplicial complex, let F < C(X) be a finite
subset, let € > 0,e; > 0 be positive numbers, and let N > 1 be an integer. There exists
n, > 0 with the following properties.

For any g; > 0 and any o > 0, there exists a positive number n > 0 and an integer
K > 4/e (which are independent of o), and there exists a positive number § > 0, an
integer L > 0 and a finite subset G < C(X) satisfying the following.

Suppose that ¢, : C(X) = P M,(C(Y))P (where Y is a connected simplicial complex
with dimY < 3), where rank(P) > L are two unitalhomomorphisms such that

,ump(O,h) > oy, .u‘r°¢)(017) > onforallt € T (PMn(C(X))P) (153)
and for all open balls 0, with radius n; and open balls 0, with radius 7,, respectively,
and

[tep(g) — ToY(g)| < dforallg € G. (154)

Then there exist mutually orthogonal projections P, and P, (with P, + P; = P), a unital
homomorphism ¢, : C(X) = P;(M,(C(Y))P;) factoring through C([0, 1]),
and a unitaryu € P (M, (C(Y)))P such that

¢(f) — [Pop(H)Po + d1(f)] < 1/4K (155)and
lad w o p(f) — [Po(ad uoP()IPy + d1(N]Il < —forall f €F, (156)
rankP, > rm;(k i (157)

there are mutually orthogonal projections q4,q,,...,qm € P;(M,,(C(Y)))P; and an €;-
dense subset {x;, x5, ..., x,, } such that

[#1(F) = [(Py = 7Ly )1 (N (P — X2 4;) + X%y £ (x)q;]|| < €(158)
forall f € Fand
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rank(qj) > N - (rank P, + 2dimY),j = 1,2,...,m. (159)
Proof: This is a reformulation of Proposition 4.47" of [51] and follows from that
immediately.
We now will apply in [51]. Let € > 0,¢; > 0, N and F be given. Choose n, > 0 such
that

If (x) — F(x")] < gfor all f € F. (160)
Choose €, = min{e; /3N,n,/3N}. Let n; > 0 (in place of n) be as in [51] for €/2, €, (in
place of €;) and F. Let g, > Oandog > 0.Put§; = g, 'n;/32. Let K > 4/e and ij be
as in [51] for the above €/4, €, (in place of €;) and &, (in place of §). Let § = o -77/32.
Let L > 1 be an integer and let G € C(X) be a finite subset which corresponds to the
finite subset H in [51]. Letn, = n}/32,n = 7j/32and let0 < § < 6/4. Suppose that ¢
and y satisfy the assumption of the lemma for the above n,,7, 6, K, L andg.
It follows that ¢ has the properties sdp(n, /32, 8;) and sdp(ii/32, 6) (see [51]). One then
applies Proposition4.47' of [51] to obtain

() = [Pod(FHPo + b1 (NIl < (161)

and

llad wo Y(f) — [Polad uoY())Py + ¢1 (Al < 1/4K forall f € F.  (162)

and mutually orthogonal projections ey, e, ..., e, in P;(M,(C(Y)))P; and €, /4-dense
subset {x1, x5, ..., Xy, } Of X such that

mq mq m
. €
61N =P = ) )b (NP = ) e)+ ) fadel|| <3 (163)
i=1 i=1 i=1
forall f € F,
rank Py > rank® and ranke; = rank P, + 2dimY. (164)

Since there are at least N many disjoint open balls with radius €, in an open ball of radius
€1, by moving points within N., < min{e, /2,7,}, by (37), one may write

BN~ [P = ) edds (P = ) ed+ ) flx dail| <e
forall f € F (165)
and
rankq; = N(rankP, + 2dimY) (166)

where Y%, q; = Z:ill e -

The following is a generalization of [36]. The proof is essentially the same, but we will
also apply [45].

Theorem (2.2.10)[71]: Let X be a finite simplicial complex, let F c C(X) be a finite

subset and let e > 0. There exists n, > 0 with the following property.
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Forany g, > 0 and o > 0, there exists > 0 and an integer K (which are independent
of o), there exists § > 0, a finite subset § c C(X), a finite subset 7 < K(C(X)), a
finite subset U < PM(C(X)) and a positive integerL satisfying the following.

Suppose that ¢,y : C(X) - PM,(C(Y))P, where Y is a connected simplicial complex
with dimY < 3, are two unital homomorphisms such that

.urod)(Onl) = 011 and ﬂrod)(on) = o1 (167)
for all open balls 0, with radius n, and open balls 0, with radius n, and
[Top(g) —Te P(g)| < forallg € G (168)
and forallt € T (P M, (C(Y))P),
rank(P) = L, (169)
(]l = [W]lp (170)
and
dist (¢*(2),9#(2)) < (171)
forall z € U. Then there exists a unitary u € P M, (C(X))P such that
l¢(f) — adu-y(f)|l <forall f € (172)

Proof: It is clear that we may assume that X is connected. Since X is a simplicial simplex,
there is k, = 1 such that for any unital separable C*-algebra A,
Hom, (K(C(X)),K(4)) = Homy (Fe, K(C(X)), Fi, K (4) )(see [21])
Let C; be a commutative C*-algebra with K (C;) = Z/jZ and K, (C;) = {0},
j=1,2,...,ko.PutDy = C(X)andD; = (C(X) ® C}),j = 1,2,...,ko. There is
anintegerm, = 1 such that U(M, (D;))/Uo(My,,(D;)) = K1(Dj),j = 0,1,2,..., kg .
Put N, = (m,)2. Letr : N > N such that r(n) = 3kgn. Letb : U (M, (C(X))) -
R, be defined by b(u) = (8 + 2N;)m.
Let e > 0 and F be given. We may assume, without loss of generality, that F is in the
unit ball of C(X). Let 1 > &, > 0 (in place of §), let G, € C(X), let Il = 1 be an
integer, let P, ¢ PO(C(X)) and let U c PM(C(X)) be as required by Theorem 1.1 of
[45] for €/4 and F (and for the above r and b). We may assume that U c
ujfgo M, (D;)). We may also assume that there is [; = 1 such that P, U;fgo M, (D;).
We also assume that, for any unitalC*-algebra A, if u is a unitary and e is aprojection for
which
lleu — uel|| < &',
there is a unitary v € eAe such that
lleue — v|| < 26’

forany 0 < §’ < 6;.
SetF, =FUG,.Let ¢, > 0 besuch that

If(x) — f(x")]| < €/4 forall f €F,, (173)
if dist(x, x") < €.
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Put N = [ + 1and e, = min{6,/4,€/4}. Let n, > 0 be required by Lemma (2.2.9) for
€/2 (in place ofe), €;, F; (in place of ) and N. Fix g; > 0. Letn > 0 and K; >
4N, /e, (in place of K) be required by Lemma (2.2.9) Fix ¢ > 0. Let § > 0, an integer
L > 0andletg c C(X) be a finite subset required by Lemma(2.2.9)for €, (in place of
€), F, (in place of ), 0,0,,and N.

We may assume that G o F;. Let 7 < K(C(X)) be a finite subset which consists of the
image of P, and the image of U in K(C(X)),and let K = 2N;K;.

Now suppose that ¢,y : C(X) - PM,(C(Y))P are unital homomorphisms such that
(167), (168), (169), (170) and (171)) hold. It follows from Lemma (2.2.9) that there are
mutually orthogonal projections P, and P; with P, + P; = P, a unital homomorphism
¢,: C(X) » P,(M,(C(Y))P,) factoring through C([0,1]), and a unitary v €
P (M, (C(Y)))P such that

O(N) = [Pod(NPy + $1(N] < 7 (174)

and
ad v o y(f) — [Po(ad v o Y(N)Py + ¢1 ()] < 1/4Kiforall f €F,,  (175)
rankP, = rankp (176)

1
there are mutually orthogonal projectionsq,,q,,...,qm € PL(M,,(C(Y)))P; and an €;-

dense subset {x;, x5, ..., x,, } such that

<e,

61N =[P = ) ap$i (NP = ) a)+ ) fx )aj]
j=1 j=1 j=1

forall f € F; (177)
and

rank(qj) > N(rankP, + 2dimY),j = 1,2,...,m. (178)
Note that 1/4K; < §;/16(N,). For each C; , we may assume that

Ci = Co(Zi \ {&; D),

where Z; is a path connected CW complex with K,(Z;) = Z @ Z/jZ and K,(Z;) = {0}
and where ¢; € Z; isapoint, j = 1,2,..., k.
For each z € U and z € My, (D;), denotez; = (¢ @ idy,, )(2)andz, = (adv o) @
idm, (2), where d,advop: D; » (CNA ij is the induced homomorphism.
Identify (Mk(C(Y)ij) with a C*-subalgebra of C(Z;, M, (C(Y))) and denote by P, the
constant projection which is P, at each point of Z; and by P’ theconstant projection which
is P at each point of Z; . There are unitaries z;,3; € My, (PoM(C(Y ) ® C,-)Péj)such
that

I 2N 5 S 2N 5
|z1 — Poz1Poll <4_K1<§1,||Z£_P052P0” <4—Ki<?1 (179)
' 3(Nq)? , 3(N))2 8
Iz, — 21 @ 1 ()l < (4—1{11) <6 /4and||z, — 25, B P, ()l < i—Kll) < :1; (180)
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mq mq
where P = diag (P, P’,...,P")and P, = diag (P, Py, ..., Py). By (171)), one computes
that

Ust(Z, © 6,2, (@, © $,)) < ot ot  LEONIT
15(21®¢1Z’(Z2®¢1z))_41(7'[ 4-K1 4‘N1K17T,

where (z; @ ¢,(z) and (3, @ ¢,(z) are the images of (z; D ¢,(z) and (35 D ¢,(z). It
follows that

(181)

1+6N?1

D (z1(22) @ (P—&Py)) + 1ot (182)
where D is the determinant defined in Definition (2.2.5)
Since rankP, = razkp, see [113],
1
' N* . 1+6N?m
Dromi(conyrs (1(22) + =0 (183)
By the choice of 2 and the assumption (170), since dimY < 3,
3k0m1
(z:(22) © diag (P, Py, -, B)) € Up(Maym, (PoMi(D))P3)). (184)
By the theorem (2.2.11) of [113],
3k0m1
cel <Z{(Z§)* @ diag (B, P, ...,P0’)> < 2N;m + m)+6m < 2N, +7)n (185)

for all z € U. Denote ¢’ = Py¢pP, and Y’ = Py(ad u o Y)P,. Then both are §; — F;-
multiplicative. By the assumption (170),

[p'1lp = [W']lp - (186)
Since dimY < 3, forany p € P,, it follows that
3koly 3koly
[¢'1(p) @ diag (P, Py, ..., Py) ~[¥'](p) @ diag (Py, Py, .., Po) (187)

for all p € P,. Note that 3k,l; = r(l;) and (2N, + 7)m + 6,/4 < b(z) for any z.
Since (178) holds, N = [ and {x4,x5,..., x,;,} IS 1-dense in X. By (remark) of [45], there
exists a unitary

W € (Po+ ) 4)PMCONIP(Po+ ) )
such that g g
WO B ) f(5)gm - D) Fx)a)|| <3 (188)
forall f € F. _ )

Defineu = (uy P — (P, D Z}":lqj))v € PM, (C(Y))P.Then, by (265),(177),(174)
and (124),
ladu e y(f) — (NIl < forallf € F. (189)
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Theorem (2.2.11)[71]: Let X be a compact metric space and L : U (M (4)) = R, bea
map. For any e > 0 and any finite subset F < C(X), there exists a positive number § >
0, a finite subset G, a finite subset P < K(C(X)), a finite subsetl < U(M(4)), an
integer [ > 1 and ¢€; > 0 satisfying the following. If ¢, : C(X) —» B (Where B =
®jL,C(X;, M, (jy), X; = [0, 1],0rX;is a point) are two unital5-G-multiplicative contractive
completely positive linear maps with

[¢]l» = [¥]lpandcel(¢p(v) P (v)) < L(u) (190)

forall v € U, then there exists a unitary u € My,,,,1(B) such that
lu*diag(¢(f), a(f)u — diag@(f), eIl <e€ (191)
forall f € F, where a(f) = X, f(x;)e; for any €,-dense set{x,, x,, ..., x,,} and any

set of mutually orthogonal projections {e,, e,, ..., e} In My, (B) such that e;is equivalent
to idy, (B).
To prove the above theorem, we note that B has stable rank one, K,-divisible rank
T(n, k) = [n/k] + 1, and exponential length divisible rank E(L,n) = 8m + L/n (see
[46]). Therefore we have the following.
Corollary (2.2.12)[71]: Let X be a simplicial finite CW complex, let F < C(X) be a
finite subset and let € > 0. There exists n, > 0 with the following property.
For any g; > 0 and o > 0, there exists n > 0 and an integer K (which are independent of
g), 6 > 0, afinite subset G c C(X), a finite subset P c K(C(X)), a finite subset U c
UM ((C(X))) and a positive integer L satisfying the following. Suppose that ¢,y :
C(X) » B = @®[L,C(Xj, Mrj))(whereX; = [0,1]or X; is a point) are two unital
homomorphisms such that

,ump(O,h) = 017713ndﬂro¢(0n) > omn, (192)

Todp(g) — ToY(9)l < Sforallg € G, (193)
and forallt € T (B),

mjin{rank(T(i))} 2 L[¢]lr = [¥]lp and (194)
dist (¢*(2), P*(2)) < = (195)

for all z € U. Then there exists a unitary u € B such that
lp(f) —adueyp(H)ll <e forallf € F. (196)

lim [|¢,(f)Pn(9) — dn(f9)ll =0 forallf,g € C(TXT) (197)

And {¢,} is away from homomorphisms. Therefore {¢, } are not approximately unitarily
equivalent to homomor-phisms. This is because [¢,,](b) # 0, where b is the bott element.
However, even when X is contractive, as long as dimX > 2, one always has a sequence
of contractive completely positive linear maps ¢, : C(X) — M, such that (197) holds
and {¢,} is away from any homomorphisms (see [44]).Therefore the condition on KK-
theory (212) as well as the condition on the measure (213) in Lemma (2.2.15) are
essential.

The following is a version in [65] and follows from that immediately.

84



Lemma (2.2.13)[71]: Let X be a compact metric space, e > 0 and F < C(X) be a finite
subset. There exists n > 0 which depends one and F for which

If(x) — f(x)| < €/8 forall f € F,
if dist(x, x") < n, and for which the following holds.
For any n/2-dense subset {x;, x,,...,x,,} and any integer s = 1 for which 0; n 0; =
@ (i # j), where

0; = {x € X: dist(x;,x) < n/2s},
and for any ¢ > 0 for which 1/2s > o > 0, there exist § > 0, a finite subset G c
C(X) and a finite subset P < K (C(X)) satisfying the following.
Suppose that ¢,y : C(X) — A (for any unital simple C*-algebra with tracial rank zero,
infinite dimensional or finite dimensional) are two unital §-G-multiplicative contractive
completely positive linear maps such that

[P1lp = [W¥]lp, (198)
[toep(g) —ToY(g)| < § forallg € G, T € T (A), (199)
Hrop(0;) = on andp;.,(0;) = on (200)
i =12,...,m.
Then there exists a unitary u € A such that
aduocdp = PponkF. (201)

Lemma (2.2.14)[71]: Let X be a compact metric space, let ; > 0,1 >n; > 0 and let
o > 0. For any € > 0 and any finite subset F c C(X), there exist n > 0(which
depends on and F but not on oy,0, Or n,), 6§ > 0, and a finite subset §
(both depend on €, F, g,, 0 and n,) satisfying the following.
Suppose that ¢ : C(X) — M, (forany integern > 1) is a §-G-multiplicative contractive
completely positive linear map such that
,ump(O,h) = 01771andllro¢(0n) > on (202)
for all open balls with radius n, and n, respectively.
Then there exists a unital homomorphism h : C(X) — M,, such that
[toh(f) —Ttop(f)| < eforallf € F, (203)
teon(0p,) = (01/2)11 andpuzn(0y) = (a/2)n, (204)
forall T € T (A).
Proof: We apply Lemma (2.2.15) of [65]. Lety > 0 and F; ¢ C(X) be a finite subset. It
follows from Lemma (2.2.15) of [65] that, for a choice of § andg, there is a projection
p € M, and a unital homomorphism h, : C(X) — pM,p such that

lo(f) = [(A=p)d(HA —p) + he(O]ll < yforall f €F; (205)

and
T(1-p) <. (206)
Moreover, for any open ball 0, with radius 7,
Jo, hodtean, > (3)7 (207)
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Let hy: C(X) —» (1 — p)M,,(1 — p) be a unital homomorphism and define h = h; @
ho. Therefore

e (0g) > (3) (208)
for any open ball with radius n. Moreover,
[Tep(f) —Tteoh(f)l < 2y forallf €F; (209)

We choose y < €/2 and F; D F. It is easy to see that, if we choose sufficiently small y
and sufficiently large F;, we may also have

.u‘roh(Onl) > (01/2)771-
Lemma (2.2.15)[71]: Let X be a path connected compact metric space, let € > 0,F C
C(X) be a finite subset, and let 6; > 0,0 > 0and 1 >n; > 0. Then, there exists n >
0 (which depends one and F but not on ,,0 orn,), § > 0, a finite subset G c C(X)
and a finite subset 7 c K(C (X)) satisfying the following.
Suppose that ¢ : C(X) — M, (for any integer n > 1) is a §-G-multiplicative contractive
completely positive linear map such that

trop(0n) 2 0 -1 and pro(0y,) 2 011 (211)
for all open balls with radius n and n,, respectively, and
(]l = [ﬂ§]|73 (212)

for some point & € X. Then there exists a unital homomorphism h: C(X) — M,, such
that

lo(f) — h(f)|| <€ forall f € F, (213)

Heon(Oy,) = (01/2)mand prp(0n) = (0/2)n. (214)
Proof: Fix € > 0, a finite subset F ¢ C(X),0,,0and1 >n; > 0. Letn, > 0 be a
positive number such that

If (x) — F(XD] <e/16,

if dist(x, x") < n,. We may assume that n, < n,. Let s,G, (in place of G), &; (in place of
d)and P c P(C(X)) be as in Lemma (2.2.13) (for the above €/2,7n, and o).
Letn > 0,6 > 0 and a finite subset G ¢ C(X) be as in Lemma (2.215) required for y
(in place of €), G; U F (in place of F), ¢ (with o, = o) and n, (in place of n,) above.
Now suppose that ¢ : C(X) - M, is a &-G-multiplicative contractive completely
positive linear map satisfying the assumption with the aboven, §, Gand P. By applying
Lemma (2.2.14), one obtains a unital homomorphism h; : C(X) — M, such that

|To¢p(g) —Ttohi(g)| <6 forallg € G,

()
Heeny (0) 2 (5)m and (215)
Heony (0r,) = (%) 2. (216)
Since X is a path connected,
[hi] = [m¢]
It follows that
(1]l = [@]]»



It then follows from Lemma(2.2.13) that there exists a unitary u € M,, such that
aduoh =, ¢pontF.
Put h = ad u o hy. One also has that
tron (On) = .urohl(On) = o-n/2
Note that, if one can choose &, sufficiently smaller and G, sufficiently larger, one may
also require that
.uroh(Onl) = (01/2)n;.
Lemma (2.2.16)[71]: Let X be a compact metric space and let A be a finite
dimensionalC*-algebra. Suppose that ¢ : C(X) — A is a unital homomorphism and u €
A is a unitary such that
¢(Hu = ugp(f) for all f € C(X).
Then there exists a continuous path of unitaries {u(t) : t € [0, 1]} such that
u(0) =u,u(l) =u, ¢(Hu(t) = ult)p(f) forall f € C(X) andLength({u(t)}) < m.
Proof: Define H: C(X X T) - Aby Hf ® g) = ¢(f)g(u) for f € C(X)and g €
C(T). Note that H(C(X)) is a commutative finite dimensional C*-algebra. The lemma
follows immediately.
Lemma (2.2.17)[71]: Let X be a compact path connected metric space, let e > 0 and let
F < C(X) be afinite subset. There exists n > 0 such that the following holds.
For any ¢ > 0, there exists an integer s = 1,8 > 0, a finite subset G ¢ C(X) and a
finite subset P < K(C (X)) satisfying the following.
Suppose that ¢ : C(X) —» M, (for some integer n) is a unital homomorphism and a
unitary u € M,, such that there is a §-G-multiplicative contractive completely positive
linearmap @ : C(X x T) - M, such that

l2o(f Q1) — dp(Hll< dforall f e, |lu—Pd(1R 2)| <6, (217)

where z is the identity map on the unit circle,
Bott(¢, uw)|» = {0} (218)
and :u'rodb(On/Zs) = 07] (219)

for any open ball 0, ,; of X X T with radius n/2s.
Then there is a continuous path of unitaries{u(t): t € [0,1]} such that u(0) = u,u(1) =
1 |lo(f),u(t)|l| <eforall f € Fand
length({u(t)}) < m + em.

Proof: Let € > 0 and F be as in the statement. We may assume that e < 1/4. LetY =
X x T and

Fi={fxg:feFu{llg=1landg = 3z},
where z is the identity map of the unit circle.
Letn > 0 be asin Lemma (2.2.15) for F, (instead of F) and €/4 (instead of ¢€) for Y .
Fixo, = ¢ > 0(andn,; = n). Lets > 1,8, (in place of §), G; (in place of G) and Q@ c
K(C(X x T)) (in place of ) be as required by Lemma (2.2.15) for the above €/4,F,n
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and o; (and for Y). There is §; > 0, a finite subset G; ¢ C(X x T) and a finite subset
9 c B(K(C(X)) such that
[Pllpy = [mellpo

for any &,-G,-multiplicative contractive completely positive linear map for which

P ®@1) =Nl <6, forall f € Gy, [|P(1 & 2) —vl <8 (220)

and Bott(¢,v)|p = {0} (221)

(for any unitary v € M,, satisfying the above).
Now suppose that ¢ and u satisfy the assumption for the above n,§,G and P. It follows
from Lemma 4.3 that there is a unital homomorphism H: C(X X T) - M,
such that

l®(g) —H(g)|l < ifor allg € F,. (222)
It follows from Lemma (2.2.16) that there exists a continuous path of unitaries{u(t) : t €
[1/4, 1]} such that

u(l/4) = HQ1 ® z),u(l) = 1, (223)
u(t)H(g ® 1) = H(g @ Du(t)forall g € C(X),t € [1/4,1] and (224)
Length({u(t) : t € [1/4,1]}) < m. (225)

Since
lu—H( ® 2)|l < €/2,
there is a continuous path of unitaries {u(t) : t € [0,1/4]} such that
u(0) = u, u(1/4) = HA Q z)and Length({u(t): t €[0,1/4]}) < €-m.
The lemma then follows.
Lemma (2.2.18)[71]: Let X be a compact metric space without isolated points, € > 0 and
1 € F c C(X) be a finite subset. Let [ be a positive integer for which 256rM/l < €,
where M = max{1l,max{ ||f|| : f € F}}. Then there exists n > 0 (which depends one
and F) for any finite n/2-dense subset {x;, x,,...,xy } of X for which 0, n0; = @ (i =
J), where
0; = {x € X: dist(x,x;) < n/2s}
for some integer s > 1 and for any ¢ > 0 for which o < 1/2s, and for any 6, > 0 and
any finite subset G, ¢ C(X ® T), there exists a finite subset G c C(X) and there exists
& > 0 satisfying the following.
Suppose that A is a unital separable simple C*-algebra with tracial rank zero (infinite
dimensional or finite dimensional), h : C(X) — A is a unital homomorphismand u € A
IS a unitary such that
I[h(a),u]|l <& foralla € Gand u,.,(0;) = on forall T € T(A). (226)
Then there is a 6&,-G,-multiplicative contractive completely positive linear map
@ C(X) ® C(T) = A and a rectifiable continuous path {u, : t € [0, 1]} such that
Uy =1u, [|[[p(a® 1), u.]ll <€ foralla€etF, (227)
lp(a® 1) —h(a)|]| <€ ,|lp(a® z) —h(a)u]|| <€ foralla € F, (228)
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where z € C(T) is the standard unitary generator of C(T), and

oo (00 % £)) > 200 = 1,2,..,mj=1,2,...,1, (229)
forall Tt € T (A), where t;, t,, ..., t; are [ points on the unit circle which divide T into [
arcs evenly and where

O(x; x tj) = {x x t € X x T : dist(x, x;) < n/2s and dist(t, t;) < w/4sl}
forallT € T (4)
(so that O(x; X t;) N O(xy % t;r) = @ if (i,j) # (i',j")). Moreover,
Length({u;})) < m + m. (230)
Proof: The only diffierence between this lemma and Lemma in [70] is that in the
statement of Lemma in [70] h is assumed to be a monomorphism. However, for the case
that A is infinite dimensional, it is the condition that
Heon(0;) 2 07
forall T € T (A) which is actually used. The existence of a monomorphism h implies that
A is infinite dimensional.
In the case that M,,, pAp may not have enough projections, a modification is needed for the
case where A = M,, for some integer n. Letn > 0 be such that
If(x) —f(x"N| <e€/32 forall f € F,
if dist(x, x") < n. Suppose that y;, y,,...,V,, € X ands; = 1 such that
GiNG = Qifi+],
where G; = By, 25, (i), i = 1,2,...,m. Let {x1,x;,..., X2} b€ another subset ofX such
that each G; contains 21 many points.
Now let §, and G, be given. Then thereis s > s; such that
0; N 0; = 0, if i #}j,

where 0; = By /25(x;),j = 1,2,...,m + 2l. Let0 < o < 1/2s, leto; = 2lo, and let
6 and G be required by Lemma in [70] for the above €, F,,n, s, 01, 6, and G,.
Now suppose that h : C(X) — A is a unital homomorphism and u € A is a unitary such
that

I[A(f), ulll < & forall f € G and u,(0;) = on.
Then

tron(Gi) = o 2 2lom.
In particular, pAp contains 2l — 1 mutually orthogonal and mutually equivalent non-zero
projections. Thus the proof of Lemma in [70] applies.
Lemma(2.2.19)[71]:Let X be a finite CW complex, F < C(X) be a finite subset and € >
0 be a positive number. Let 0 > 0. There exists n > 0 (which depends on and F but not
ono),§ > 0, afinite subset G ¢ C(X) and a finite subset P < K(C(X)) satisfying the
following.
Suppose that ¢ : C(X) — A, where A is a unital separable simple C*-algebra with tracial
rank zero (infinite or finite dimensional), is a unital homomorphism with
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Hro (02) > on (231)
for any open ball with radius /2 and a unitary u € A such that

[ (g), u]ll < 6 forall g € G and Bott(¢p,u)|, = {0}. (232)
Then there exists a continuous path of unitaries{u, : t € [0, 1]} such that
U= u, up = LI[[[o(fhulll <e (233)

forall f e Fandt € [0,1] and

length({u;}) < 2m +e€.
Let X be a locally path connected compact metric space. Let ¢, : C(X) — A be two
unital homomorphisms, where A is a finite dimensional C*-subalgebra. In this section, we
will show that ¢ and v, up to some homotopy, are unitary equivalent if they are close and
they induce similar measure. See Lemma(2.2.21) below.
Lemma (2.2.20)[71]: Let X be a connected compact metric space. For any n > 0 and
o > 0, thereis § = (on/16) and there is a finite subset G c C(X) such that if ¢, :
C(X) — A are two unital homomorphisms, where A is a unital C*-algebra with a tracial
state T such that

[Te¢p(g) —Top(g)| <6 forallg € G, (234)
on on
Hrog (02) > 2 and fiy.y (og) >, (235)
then, for any compact subset F c X,
oo (F) < trroy (By (F)) and prooy (F) < oy (By(F)), (236)

where
B,(F) = {x € X : dist(x, F) < n}.
Proof: There are finitely many open balls By, /g(x1), By /g(X2),- .., By /g(xy) With radius

n/8 covers X. It is an easy exercise to show that there is a finite subsetg of C(X)
satisfying the following. If (311) holds, then, for any subset S of{1, 2,..., N},

oo (U Bg(xi)> <y (U Bz(xl-)) + 5and (237)

IES IES

ey (U Bg<xi)> < fhrg (U Bz(xi)) + 0 (238)

IES IES

If Uiengn/4(xi) = X, then

Hrog (U Bg(xi)> < Hroy U B%ﬂ(xi) and (239)

iES ieS

. (U Bg(xi)> < g | BonGed. (240)

IES IES
Otherwise, since X is path connected, there is an open ball O of X with radius
n/8 such that
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0n (U B,(x)) = @ and0 < (U B, (%))
i€ES i€ES

Thus, by (237), (316) and (235),

frg (U Bgoci)) < Hrwy (U B, (xo) (241)

IES €S
Now for any compact subset F, thereis S < {1, 2,..., N} such that
Fc UBg(xl-) and F N By 5(x;) # @ foralli € S (242)
IES °
It follows that
Hrog (F) =< Hrog (U B"(xi)> (243)
iES °
< Hrap (U Bg(xl-)> < froy By (F)). (244)
i€s

Exactly the same argument shows that the other inequality of (e 6.97) also holds.
Lemma(2.2.21)[71]:Let X be a locally path connected compact metric space without
isolated points, let e > 0and let F c C(X) be a finite subset. Letn > 0 be such that
If(x) — f(x")| < /2 forall f € F, provided that dist(x, x") < n and such that any open
ball B,, with radius 7 is path connected.

Let 0 > 0. There is § > 0 and there exists a finite subset G ¢ C(X) satisfying the
following. For any two unital homomorphisms ¢,y : C(X) = M,(for anyn = 1)

for which

lo(f) =N < 8 forallf € G (245)
T T (027;_4) - (0211_4) > on (246)

for any open balls with radius n/24, there exist two unital homomorphisms @;, ®, :
C([0,1], M,,) such that

Tyo Py =h,mye®, = 1Y, (247)
I7te o @1(f) = dOI <, llme o P (f) — Y(HIl <€ (248)

forall f € Fandt € [0, 1], and there is a unitaryu € M,, such that
aduomyo®, = myod,. (249)

Proof:X is a union of finitely many connected and locally path connected compact metric
spaces. It is clear that the general case can be reduced to the case where X is a connected
and locally path connected compact metric space.

We will apply the so-called Marriage Lemma (see [53]). Let § and G be in Lemma
(2.2.19) corresponding to n/3 and o. We may assume that G © F. We may write that

¢(f) =X, fGopiand ¥(f) = 32, f(¥))a (250)
forall f € C(X), where{py,p,,...,pn,} aNd {q1,q2,...,qy, }are two sets of
mutuallyorthogonal projections such thaty 2, p; = 1 =32, q;
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By Lemma (2.2.19),

Hrogp (F) < proy(By /3 (F)) and piroy (F) < trog (Bn/s (F)) (251)
for any compact subset F < X.
Suppose that p; has rank r(i). Choose r(i) many points {x; 1, X;z,---, Xir@)} € Bp/3(x;)

and define
Ny r()

6:1(F) =) () f (xuewsd) forall f € C(X),
i=1 k=1
where {e;q,€;,...,€;r@} 1S a set of mutually orthogonal rank one projections

suchthaty "™ e, = p;. It follows that

Hrag, (F) < feoy(By 3 (F)) aNGtteey (F) < ttrags, (Byy(F)) (252)
for any compact subset F < X. Since B,,(x) is path connected for every x € X, there is a
unital homomorphism @, : C(X) — C(]0, 1], M,,) such that

Tgo®@y = ¢, myo®@ = ¢y (253)
and
| e @,(f) — (NIl < €/2forallg € Fandt € [0,1]. (254)
We rewrite
¢1(f ) = Xiza f (xpeforall f € C(X), (255)

where each e; is a rank one projection and x; is a point in X,i = 1,2,...,n, and
* .e; = 1. Similarly, there is a unital homomorphism @; : C(X) — C([0,1/2],M,,)
such that

Ty o @, = 1Y, ”%“pz = Y (256)
and |lm, o 23(f) —W(PIl <Sforallf € Fandte [03], (257)

where
U1 (f) = Xiz f (vi)e; forall f € C(X), (258)

where each e/is a rank projection, y; isapointinX,i = 1,2,...,n,and}" e/ = 1.
Moreover,

Heop, (F) <tz (By/3 (F)) a0troy (F) < prrayy, (By/a(F)) (259)
for any compact subset F < X. Combining (251), (252) and (259), one has
e, (F) < ttzag (By/s(F)) < btz (Bzn/a(F)) (260)
< ttrap, (By(F)) (261)
and
oo, (F) < lrog, (By(F)) (262)

for any compact subset F < X.
By the Marriage Lemma (see [53]), there is a permutation A: {1, 2,...,n} —
{1,2,...,n} such that
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dist(x;, ya)) < n,i = 1,2,...,n. (263)
Definey, : C(X) —» M, by
Vo (f ) = 2o, f(x), ezll(i) forallf € C(X). (264)
Since every open ball of radius 7 is path connected, one obtains anotherunital
Homomorphism
o) C(X) - C([1/2,1],M,):

Ty o @) = Py, ”% o) = P (265)
and
e o @5(f) =1 (HIl < e/2forall f € F. (266)
Now define @&, : C([0,1],M,) bym,ec®, =m,o®;, fort € [0,1/2]and m; o &, =
T o @7

fort € [1/2,1]. Then @,and &, satisfy (247) and (248).
Moreover, by
(255) and (264), there exists a unitary u € M,, such that

adu oy = Y2 = myod,.
Lemma (2.2.22)[71]: Let X be a finite CW complex with torsion K;(C(X)) and torsion
free K,(C(X)). Let e > 0,F c C(X) be a finite subset and let ¢ > 0. There exist n >
0 (which depends one and F but not on o), a finite subset G ¢ C(X)and 6§ > 0
satisfying the following.
Suppose that ¢, : C(X) = M,(for any integer n) are two unitalnomomaor- phisms such
that

() — YOI < éforallf € G, (267)
o (0y) = on and proy(0,) = o7 (268)

for any open ball 0,, of radius n, where 7 is the normalized trace on M,, and
adu o =Y (269)

for some unitary u € A. Then there exists a homomorphism @ : C(X) — C([0,1], M,)
such that
Moo ® =¢,mo® = Yand
lW(f) —m e @(F)Il < forallf € F.
Proof:It is easy to see that the general case can be reduced to the case where X is
connected.
Lete > 0,F c C(X) be afinite subset and let ¢ > 0. Let ;0 (in place of ), § > 0, a
finite subset G c C(X), a finite subset P c K(C(X)) be required by Lemma (2.2.19) for
€/2,Fando/2. Letn = n,/2.
We may assume that P c K;(C(X)). Since K;(C(X)) is torsion and K,(M,,) is free, for
sufficiently small § and sufficiently large G, and for any pair of ¢ and u for which
I[¢(9) ulll < éforallg € G,
bott; (¢, u)|p = 0.
We may assume that § and Ghave this property. We may further assume that
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6 <e/2andF c G.
Now we assume that ¢,y and u satisfy the assumption of the lemma for theaboven, § and
G. Then

s () 222 = (), ana e

s (2)2 (e e
By applying Lemma (2.2.19), one obtains a continuous path of unitaries{u(t): t €
[0, 1]} such that
u(0)=uwu(l)=1 (272)

and

lu(®)*p(HHu) —d(NHIl < €/2 forallf € F. (273)
Define® : C(X) - C([0,1],M,) by

mro® = adu(l — t)o¢ forallt € [0,1].
Then,
Moo ® = ¢ andmyo® = 1.
Moreover, by (350) and (346),
lW(f) —m o @(f)|| < forall f € F andt € [0,1].

Lemma (2.2.23)[71]: Let X be a finite CW complex with torsion K;(C(X)) and let k be
the largest order of torsion elements in K;(C(X)) (i = 0,1). Lete > 0,F ¢ C(X) be a
finite subset and let 0 > 0. There existy > 0 (which depends on and F but not on o), a
finite subset G ¢ C(X) and § > 0 satisfying the following.
Suppose that ¢,y : C(X) — M, (for any integer n) are two unital homomor-phisms such
that

lo(f) — YOIl < sforall f € G, (274)
“T°¢(0n) > on and /,tmp(On) > on (275)

for any open ball 0,, of radius n, where 7 is the normalized trace on M,,, and
aduog =Y (276)

for some unitary u € A. Then there exists a homomorphism
®: C(X) = My, (C([0,1], M)
such that
Moo ® = ¢*,m 0@ = 1p(*Dand
||¢(ko)(f) — 1, 0 D(f) || < forall f € F,
ko

where k, = k!, and where ¢&*(f) = diag(¢(f), ¢(f),...,¢(f)) andyp&o)(f) =

ko
diag (W(f), ¥ (f),...,v¥(f)) forall f € C(X), respectively.
Proof: By [20], one has
H om, (K(C(X)),K(My)) = H om, (FeK(C(X)), FK (My)).
Let ko, = k!. It follows that
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ko
A+A+-+41=0,
for any homomorphism A from K, (C(X),Z/mZ) with m < k,. (to ¢ (ko) and P(ky)).
The point is that

BOtt(Qﬁ(k’O),u(kO))lg:' = {0}

for any finite subset P’ c K, (C(X),Z/mZ) for0 < m < kg,as long as it is defined,
ko

where u0) = diag(i, u,..., 0).

Lemma (2.2.24)[71]: Let X = Tor X = I X T (with the product metric). Let F C
C(X)be a finite subset and let € > 0. There exists n; > 0 such that, for any a; > 0,
the following holds. There exists a finite subset G < C(X) and there exists n, > 0 such
that, for any o, > 0, there exists § > 0 satisfying the following.

Suppose that ¢,y : C(X) — M, (for some integer n) are two unital homomorphisms
such that

le(f) — YOIl < sforall f € g, (277)
teop(On,) = 111, Hrap(On) = 01714, (278)
brog(On,) 2 0ol teoyy(0n,) = 03105, (279)
for any open ball Op, of radiusn; ,j = 1,2, where 7 is the normalized trace on M, and
aducgp =9y (280)

for some unitary u € M,,. Then there exists a homomorphism @ : C(X) - C([0,1], M,)
such that
Moo ® = ¢p,myo® = Yand
lW(f) —m e @(f)ll <€ forallf € F.
Proof: Let §,, > 0 satisfy the following: for any pair of unitaries u,, v, in a unital C*-
algebra, bott; (uy, vy) is well defined whenever ||[ug, vo]ll < 890 We will prove the case
that X = I x T. The proof for the case that X = T follows from the same argument but
is simpler. Let e > 0 and F be given as in the lemma. Let F; = F U {z}, where
z(t,e?™) = e2™s forallt € [0,1]and s € [0,1].
Let n, > 0 (in place of n) be required by Lemma (2.2.19) for €/4 (in place ofe) and F;
(in place of F). Let g; > 0.
Let G € C(X) be a finite subset, let 5§, > 0 (in place of §) and let » < K(C(X)) be a
subset required by Lemma(2.2.19) for €/4 (in place ofe) and F,(in place of F) and o, /2
(aswellasforX = I x T).
Since Ky(C(X)) = ZandK;(C(X)) = Z, without loss of generality, we may assume that
P = {[z]}. We assume that &, < §y0/2. We may also assume that &, satisfies the
following. If u;, u, and v are unitaries with
lug — ull < 8¢ and ||[wy, v]ll < o,

then

bott, (u,,v) = bott, (u,, v) (281)

(whenever[u,, v] < 8y0/2). Let n; > 0 such that
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lf(x) — f(x)| < min{%,e;}for allf € GU F (282)
provided that dist(x,y) <n,. Choose an integer K > 1 such that 2z/K < min{n,/
16,n5/16}and putn, = m/4K. Let o, > 0. Choose § = min{é,/2,a,n,/2}.

Suppose that ¢ and y satisfythe assumption of the lemma for the above g.
M1,M2, 01,0, and 8. Let w; = e2mV=1/K gnd {(i=1xw,j =12,...,K. Then, by
the assumption,

Heoy (an(c,-)) = 0,1 > 26, (283)
j = 1,2,...,K. Note that
By, () N By, (S)) = @, (284)
Ifj#j.j,j = 1,2,...,K.
Write
V() =3, f(x)e for allf € C(X), (285)

where {e;, e,,...,ey } is a set of mutually orthogonal projections and x;, x,,...,xy are
distinct points in X. Define

p; = z el,j =12,....,K.

X1€By, (j)

By (283),

T(pj) > o1, j = 1,2...,K. (286)
Put

1 % *

y =5-7 (log(u ¢ (2)ug(2)"), (287)

where t is the normalized trace on M,,. Then
ly| < 6. (288)

We first assume that y = 0. For convenience, we may assume that y < 0. By the Exel
formula (see [43]), y = m/n for some integer |[m| < n.
For each j, there is a projection q; < p; such that

t(q;) =lyland q;e, = €,q;, j = 1,2,...,K, | = 1,2,...,N. (289)
There is a unitary v; € (X2, )M, (X351 q;) such that
Viqjvs = qj+1,) = 1,2,...,K —1land viqgv; = q;. (290)
Definev = (1 — X%, q;) + v;. Note that, by the choice of §, we have
[uv, p(f)] < §, forall f € G. (291)

Write x, = s x e2™~1t,1 =1,2,...,N.Define 2’ = (1 — ¥, q)y(2) +

K
Z w;q; .Then
j=1

|¥(2) - 2’| < 8y and v*z'v = (1 -3, q)(@) + X/, Wjqje1 + wikq,.  (292)
It follows that
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ﬁr(log(v*z’v(z’)*)) = T(qj) = —. (293)
By the choice of §,, we have that

%T (log(v*¢(z)v¢(z)*)) — T(Qj) = —Y. (294)
By the choice of 6§, and the Exel formula, we have
—1 (log(v'u' p(2)uvep (2)")) (295)

1 loa(u® \ 1 log(p* ]
= 5—7 (logw' ¢ (Dud(2))) + 57 (log (v $(2)v$(2)")

1 * * 1 * *
= 517 (log(' p(Dud(2)")) + 57— (log " h(@Dp(2)"))  (296)
=y —y = 0. (297)
It follows from the Exel formula, bott,(¢,uv) = {0} and Bott(¢,uv)|p = {0}. It
follows from Lemma (2.2.19) that there exists a continuous path of unitaries{u(t) : t €
[0,1/2]} such that
u(0) = 1, u(1/2) = wwand||[¢(f), u®]ll < € /4 (298)
forall f € Fandforallt € [0,1/2].
Define @, : C(X) — C([0,1/2], M,,) by
o @1(f) = u@®) ¢(Hu(t) forall f € C(X)andt € [0,1/2]. (299)
Then
I o @1 (f) — d(NHI <forallf € Fandt € [o,%]. (300)
Let
N()

ap(f) = ) f(§s)er; forallf € CCX),
A

where {e;;} is a set of mutually orthogonal projections and & ; € B, ({;),j =

1,2,...,K.Note that
K NO)

v g(Fuv = (N - Z 0) + ) f(Eu)vick o) (301)
j=1 k=1

forall f € C(X). Itis easy to find a homomorphlsm ®,:C(X)—-C([1/2,1], M,)such
that (with g1 = qq, e, K +1 = ey qandSy g1 = & 1)

T1/2 © Py (f) =vued(f Huy, (302)
m o @2(f) = w1~ 2y q) + T J(f ) (2R vierv) (303)
= ()1 - Z ap + Z F(&) a1 + FEDan (304)

and
110 0,(F) = PN - Thaa) +TETERG F(ejan) e + e f(Ekade,, (305)
= Y(f) (306)
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forall f € C(X).Moreover,

Ime o @,(f) = YOI < = forallf € . (307)
Now define @ : C(X) = C(]0,1], M,) by
M o0 = modforallt € [0,1/2]andm 0@ = mojforallt € 5,1 (308)
One checks that

e e @(f) — ¢(f) || <€ forall f € F. (309)
Finally, if y = 0, we do not need v and can apply Lemma (2.2.19) directly.
Lemma (2.2.25)[71]: Let X = T or X = I X T (with the product metric). Let F c
C(X) be a finite subset and let € > 0. Then there exists n, > 0, for any a; > 0,
satisfying the following. There exists a finite subset G ¢ C(X) and there exists n, > 0
such that, for any o, > 0, there exists § > 0 such that the following holds.
Suppose that ¢,y : C(X) — M, (for some integer n) are two unital homomorphisms
given by

Ny Ny
6N = ) fep and Y(f) =) fFOa
i=1 j=1

for all f € C(X), where {x;,x5,....,x5, },{¥1,¥2,--,¥n,} € X and where
{p1,p2,--.,pn,} AN {q1, 92, ..., qn,} are two sets of mutually orthogonal projections such
that
I(f) =Dl < 8 forallf € G, (310)
Heop(On) 2 M, Uewp(Op,) 2 0 (311)
for any open ball Op, of radius n;,j = 1,2, where 7 is the normalized trace on M,,. Then
there exists a homomorphism @ : C(X) — C(]0, 1], M,,) such that
MTygo® = ¢, m; o P = P and
W) —me o @)l <eforallf € F.
Moreover, ;o @(C(X)) c C; for t € [0,1/4], my - @(C(X)) c C, for t € [3/4,1]
and

o @(f) = ult) ¢(HHu(t) forallt € %,%] (312)
and for all f € C(X), where C; is a finite dimensional commutative C*-subalgebra
containing projections py,p,,...,pn,,C, is a finite dimensional commutative C*-
subalgebra containing q, qz,...,qn,, u(1/4) = landu(t) € C([1/4,3/4], M,).
Definition (2.2.26)[71]:Let X be a compact metric space. It is said to satisfy the property
(H) if the following holds.

For any finite subset F < C(X) and for any € > 0, there exists n, > 0 such that, for any
a; > 0, the following holds. There exists a finite subset G < C(X) and n, > 0 such that,
for any o, > 0, there exists § >0 satisfying the following.
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Suppose that ¢, : C(X) — M, (for any integern) are two unital homomorphisms such
that

lo(f) — pNOII < 8 forallf € G, (313)
Herog (0nj) = i), Moy (O,U) = 0j1; (314)
for any open ball Onjof X with radius n;,j = 1,2, where 7 is the normalized trace on M,

and

aduogp =y (315)
for some unitary u € A. Then there exists a homomorphism @ : C(X) - C([0,1], M,)
such that

Mgo® = @m0 ® = Yand
W(f) = me®(H)I < forallf € F.

We have proved in Lemma (2.2.22) that if X is a finite CW complex with torsion
K;(C(X)) and torsion free K,(C (X)), then X satisfies property (H), and we have proved in
Lemma (2.2.24) thatif X = TorX = I x T, then X has property (H).

m

Lemma (2.2.27)[71]: Let X =TvTvTv..vTVvY, where Y is a finite CW
complexwith torsion K; (C(Y)) and torsion free K,(C(Y)). Then X has property (H).
m

Lemma (2.2.28)[71]: Let X = T X T X ... X T. Then X has property (H).
Proof: Define zi(eZ”‘/‘_”l  e2mV=1t; ,...,eZ”\/‘_”m) =e2™W-1ti | = 12,... m.

Let 6,0 > 0 be as in the proof of Lemma (2.2.24) Let € > 0,F < C(X) be a finite
subset. Let F; = F U {34,%3,...,3m} Let n; > 0 be as in the proof of Lemma (2.2.24)
and let 0; > 0. Let G € C(X),6, > 0 and P c K(C(X)) be as in the proof of Lemma
(2.2.24) (for this X).

Since Ky(C(X)) =Z™ and K, (C(X)) =7Z™, we may assume that P =
{[z1],[32],---, [Zm]}. Letn, > 0,0, > 0,K and 6 be as in the proof Lemma(2.2.27)

Let w; = e(2mV=1+0)/K he a5 in the proof of Lemma (2.2.27)Choose{; ; =

i—1 m—1

1,...,1,w;,1,...,1),j = 1,2,...,K andi = 1,2,...,m.Note that

By, ($i) 0 By, (§rir) = 0 (316)
if j#=j 0 =12,...,Kii =1,2,..,m Moreover, 1¢B, (3)J =
1,2,...,Kandi = 1,2,...,m. Write

() =) fGe forallf € C(X), (317)
=1

where {eq,e,,..., ey } IS a set of mutually orthogonal projections and x;, x,,...,x; are
distinct points in X. Define
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By (318),

t(p) = oalp j = L,2...,Kandi = 1,2,...,m. (318)
Put
vi = s—=r(log(w’ ¢ (z:)ud(z:)")), (319)
where 7 is the normalized trace on M,,. Then
lvil < 6. (320)

By the Exel formula (see [43]), y; = m;/n; for some integer |m;| < n;.
For each i and j, there is a projection q;; < p;; such that

T(qj,i) |yi|andqj,iel = elqj,i, ] = 1,2,...,K, [ = 1,2,...,m and [ =

1,2,...,N. (321)
There is a unitary v; € (X2, q;,)M, (X%, q;,;) such that
V;q;jiVi = Qi+ J = L2,...,K—1, and v{qy;v; = qq,;ify <0, (322)
and
v;q;ivi =qj—1; J = 1,2,...,K—1, (323)

and v;q;v; = qgif y; > 0. If y; =0, define v;,= 1. Define v=(1-
i=1 Zf:l qj:) + Xi%, v;. Note that, by the choice of &, we have

Ifuv, p(HIIl < 8¢ forall f € G. (324)
Moreover, the same computation as in the proof of Lemma (2.2.24)shows that
1
T(logl (uv)* @ (z))uvep(z;)*)) =0, i=1.2,...,m 325
Zm/_—l(g(( ) Pz )uvd(z:)")) (325)
Then, using the Exel formula, obtains that
Bott(¢, uv)|» = {0}. (326)

It follows from Lemma (2.2.19) that there exists a continuous path of unitaries{u(t) : t €
[0,1/2]} c M,, such that

1 €
u(0) = uv, u(§> = land ||[¢(f),uv]|l < I (327)

forall f e Fandt € [0,1/2]. The rest of the proof is exactly the same as that of Lemma
(2.2.24).
Theorem (2.2.29)[71]: Let X be a finite CW complex which has property (H). Let e > 0
be a positive number and let F be a finite subset of C(X). There exists n; > 0 such that,
for each o; > 0, the following holds. There exists n, > 0 such that, for any o, > 0,
there existsn; > 0 such that, for any a; > 0, there are a finite subset G ¢ C(X)and§ >
0 satisfying the following. Suppose that ¢,y : C(X) — M,, (for some integer n) are two
unital homomorphisms such that

Ip(f) =N < b forallf € G uwg(Oy) = ajnj, broyp(Oy;) = oy (328)
for any open ball 0, of radius n;,j = 1,2,3, where 7 is the normalized trace on M,,.
Then there exists a homomorphism @ : C(X) = C([0,1], M,,) such that

T[OO(p =¢,T[1°(p = l[)and
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W(f) —mee@(N)ll <e€forallf € F.

Proof: It is clear that one can reduce the general case to the case that X is connected.
Let n; > 0 (in place of n,) be given by Definition (2.2.26) for €¢/2 and F. Let n, =
ni1/16 . Let a; > 0. Let G, (in place of G) be a finite subset of C(X) and n;, > 0 (in place
of n,) be given by Definition (2.2.26)for n1 and o, /16 (in place of g,). Let o, > 0.
Choose 6, (in place of &) required by Definition (2.2.26) for the given €¢/2 >
0,F,G1,n1, 15 and o,/16. We may assume that n;<n, and F c G. Denote n, = n3/16.
We may assume that G, is larger than the G required by Lemma (2.2.20) for n5/2 (inplace
of n) and a,/16 (in place of ¢). Choose §, = min{é,/2,0,1n,/64}. Let n, > 0 be such
that
If(x) — f(XN] <82/4forallf €G,,

provided that dist(x, x") < n,.
Let 0 <n3; < min{n,/2,1n5/2}. We may also assume, by choosing a smaller n,, that any
open ball with radius n5 is path connected. Let n; = n3/24 and let o5 > 0. Let §3 > 0
(in place of §) and let G c C(X) be a finite subset required by Lemma (2.2.21) for §,/2
(in place of €), G; (in place of F),n; (in place of ) and 03/24. Letd = min{d5/2,65,/
2}.
Now suppose that ¢ and 1 satisfy conditions (328) for the above
N1,N2,N3,01, 02, 03,G and §. In particular,

ﬂro¢(0ng/24) = (03/24)n; and Heep(Optj24) 2 (03/24)n3
for every open ball 0, ,, with radius n3/24. It follows from Lemma (2.2.21)that there

are unitalhomomorphisms®; : C(X) — C(][0, 1], M,,) such that
Togo®Py =, mye P, = 1P, (329)

)

e o @1(9) — Il < 82/2and |l = @,(9) — (DI < (330)

forallg € G, andt € [0, 1]. Moreover, there is a unitary u € M,, such that
adu °7T1°¢1 ES 7T1°¢2. (331)
Note that
Hrocp(On;/m) = 0,13/16.

It follows from the proof of Lemma (2.2.20) (with possibly larger G which depends on 7,)
that

Hees(Ony16) = Maeryo, (On,): (332)
It follows that
Uromyo0, (Op1) = (02/16)1; . (333)
Similarly,
Uzom,od, (0,,2) = (02/16)1,. (334)
Moreover,
rorryow, (O1) = (01/16)n120d Yoy, (Oryr) = (01/16)73. (335)
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Since X has property (H), there is a unital homomorphism @5 : C(X) = C([0,1], M,)
such that

Mgo®D; =My 0®;, mMod; =m0, (336)
and

Ime 2 @3(f) =y o @y(F)| <> forall f € F. (337)

The theorem follows from the combination of (329), (330), (336) and (337).
Theorem (2.2.30)[71]: Let X be a finite CW complex with dimension 1. Let € > 0 and let
F c C(X) be a finite subset. There exists § > 0 and a finite subset ¢ < C(X)
satisfying the following. For any unital §-G-multiplicative contractive completely
positive linear map ¢ : C(X) — C([0,1],M,) (for any integer n), there is a unital
homomorphism h : C(X) — C([0,1], M,,) such that
le(f) — (DIl <€
forall f € F.
Definition (2.2.31)[71]: LetX, be the family of finite CW complexes which consists of all
those with dimension no more than one and all those which have property (H). Note that
X, contains all finite CW complexes X with finite K;(C(X)) and torsion free
Ko(C(X)),I x T, n-dimensional tori and those with the form T v ... v T v Y with some
finite CW complex Y with torsion K; (C(Y)) and torsion free K,(C(Y)).
Let X be the family of finite CW complexes which contains all those in X, and those with
torsion K; (C(X)).
Let X be a finite CW complex and let h: C(X) - C([0,1],M,) be a unital
homomorphism. It is easy to see that there are finitely many mutually orthogo-nal
projections py, p,, ..., pm and points &;,¢,,..., &, in X with one point in each connected
component such that
[h] = [®]in KK(C(X),C([0,1], My,)),
where @(f) = X%, f(§)p; forall f € C(X).
Theorem (2.2.32)[71]: Let X € X,. Let e > 0 and let F c C(X) be a finite subset.
There exists n; > 0 such that, for any o; > 0, there existsn, > 0 such that, for any o, >
0, there exists n; > 0 such that, for any a5 > 0, there exists a finite subset G,§ > 0, and
a finite subset P c K(C (X)) satisfying the following.
Suppose that ¢ : C(X) = C([0,1], M,,) (for any integern > 1) is a unital
&-G-multiplicative contractive completely positive linear map for which
Heop(On,) = ojm); (338)
for any open ball Op, withradiusn; ,j = 1,2,3, and for all tracial states 7 of
C([0,1],M,,), and
[Pllp = [@]l», (339)
where @ is a point-evaluation.
Then there exists a unital homomorphism h : C(X) — C([0, 1], M,,) such that
lp(f) —h(HIl <e (340)
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forall f € F.

Proof: The cases that need to be considered are those X which have property (H). We may
assume that X is connected and & = m; for some point ¢ € X. Let e > 0 and F C
C(X) be given.

Letn,; > 0 be required by Theorem (2.2.29) for €/4 (in place of €) and F above. Let g; >
0. Let n, > 0 be as required by Theorem (2.2.29)for €/4 (in place of €), F, n, and o;.
Let g, > 0. Letn; > 0 (in place of n3) be required by Theorem (2.2.29)for €/4 (in place
of €), F, ny, n,, 0,and o, /4 (in place of g,). Let 0, > 0.

Let G, € C(X) (in place of G) be a finite subset and §; > 0 (in place of §) be required by
Theorem (2.2.29)for €/4,F,n4, n,.m3 (in place of n3), and %(j =1,2,3) as above. We

may assume that F c G,. Let G, € C(X) be a finite subset which is larger than G; and
which also depends on n, and ;.
Let e, = min{e/4,6,/4}. Let n; > 0 (in place of n), 6, > 0 (in place of §), G < C(X)
be a finite subset and P < K(C (X)) be a finite subset required by Lemma (2.2.15)for 1 (in
place ofe), G, (in place of F), o, (in place of o;), a5 /2(in place of o) and n, (in place of
n1). We may assume that n; < min{ns/2,1,/2}.
Suppose that ¢ satisfies the assumption of the theorem for the above n;,0;(j =
1,2,3),6,G and P. Consider .., for each t € [0,1]. Note that K(C([0,1],M,)) =
K(M,,). It follows that
[ 0 llp = [me]l» - (341)

Note that

Urp(0y,) = 0313 and pr.4(0,,) = om, (342)
for all open balls 0,, with radiusns, all open balls 0,, with radius n, and for all tracial
states t of C([0,1], M,,).
By applying Lemma (2.2.15), one obtains, for each t € [0, 1], a unital homomorphism
h;: C(X) - M, such that

e e p(g) — he(PIl < 61/4 forall g € Gy, (343)
02
e (0y,) 2 (03/2m5 and e, (05,) = (5) 2, (344)

where 7 is the unique tracial state on M,,. Note that, by choosing the large G, (depends on
€, and o;) and smaller §;, we may also assume that

e (00,) = () M1 (345)
There is a partition 0 = t, <t; <:+ <t, = 1suchthat
”T[ti op(g) — Ty, © ¢(9)” <&;/4forallg € G, (346)
i = 1,2,...,m. Therefore
”hti(.g) - hti_l(g)” < ”hti(g) — T, ° (f)(g)” (347)
+||T[tl- o p(g) — Ty, ° ¢(9)” + ||7Ttl-_1 o p(g) — hti_l ° ¢(9)” (348)

103



<61+61+61<6 349

for all g € G;. Thus, using (342) and (345), and by applying Theorem (2.2.29), there
exists, for each i, a unital homomorphism @, : C(X) — C([t;_4, t;], M,,)such that
Ty 0Py =hy Ty 0 Py = htiand””t o ®i(f) — hti_l(f)” <e€/4 (350)

forall f € F,i = 1,2,...,m.
Define h: C(X) — C([0,1],M,) by

mpoh = mo®@; if t € [t;i_q,t],
i = 1,2,...,m. It follows that

Ih(f) — (Dl <€ forallf €F.
Lemma (2.2.33)[71]: Let X €X. Lete > 0 and F < C(X) be a finite subset. Suppose
that k, = k!, where k is the largest finite order of torsion elements in K; (C (X)),
i =0,1.
There exists n; > 0 such that, for any a; > 0, there exists n, > 0 such that, for any o, >
0, there exists n; > 0 such that, for any a; > 0, the following holds. There is a finite
subset G c C(X), thereis & > 0 and there is a finite subset ? c K(C (X)) satisfying the
following.
Suppose that ¢ : C(X) = C([0,1],M,) is a unital §-G-multiplicative contractive
completely positive linear map for which

Heog (0nj) = o1, (351)
for any open ball Onjwith radiusn;,j = 1,2,3, forall tracial states 7 of C([0, 1], M,,),and

[1l> = [Pl (352)

where @ is a point-evaluation.
Then there exists a unital homomorphism h : C(X) - M (C([0,1], My,)) such that
lp® () — h(f)] <e (353)

ko
forall f € F, where p®)(f) = diag(¢p(f), p(f),..., d(f)) for all f € C(X).
Corollary (2.2.34) [71]: Let X € X,. Lete > 0, let F c C(X) be a finite subset and
letA: (0,1) — (0,1) be a non-decreasing map. There existsn > 0, a finite subset G, § >
0, and a finite subset P c K(C (X)) satisfying the following.
Suppose that ¢ : C(X) — C([0,1],M,,) (for any integer n > 1) is a unital §-G-
multiplicative contractive completely positive linear map for which

ﬂtod)(oa) = A(a) (354)
for any open ball 0, with radius a > n and for all tracial states = of C([0, 1], M,,), and
[Pl = [@]lp, (355)

where @ is a point-evaluation.
Then there exists a unital homomorphism h : C(X) — C([0, 1], M,,) such that

lp(f) —h(Dll <e (356)
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forall f € F.

Proof: Lete > 0,F c C(X) be a finite subset and be given as described. Let n; > 0 be
as required by Theorem (2.2.32). Let o = 4(n,)/n,). Let n, > 0 be required by
Theorem (2.2.32). for the above €, F,n, and o,. Let o, = 4(n,).n,. Let n3; > 0 be
required by the above €,F,n; and o;,j = 1,2. Let g3 = 4(n3)/n3. Choose n =
min{n; : j = 1,2,3}. We then choose § > 0,Gand P as required by Theorem
(2.2.32). for the above €, F,n; and 0;,j = 1,2,3. Suppose that ¢ satisfies the assumption
for the above 7, 6, G and P. Then ¢ satisfies the assumption of Theorem 8.3 for the

above n;, 05,6 and P. We then apply Theorem (2.2.32).

Note that Lemma (2.2.33). also has its version of Corollary (2.2.34).

We collects a number of elementary facts about simple C*-algebras with tracial rank one.
Let B = @], C(X;, M,;)), where X; = [0, 1]or X; is a point. For j < m, denote by ¢t ,
the normalized trace at x € X; for the j-th summand. For example,
if b € B, then

tjx(b) = 7 (m;(b)(x)),
where 7; : B — C([0, 1], M,(j)) is the projection to the j-th summand, x € X; and 7 is
the normalized trace on M,. ;.

Corollary (2.2.35)[71]: Let A be a unital simple separable C*-algebra with tracial rank
oneorzeroand leta € A,\ {0} with ||a]| < 1. Suppose that

t(a) = o forallt € T (A) (357)
forsome ¢ > 0. Then, forany 1 > r > 0, there is a projection e € aAa such that
t(e) = ro forallt € T (A). (358)

Proof: Forany b € A, andany § > 0, there exists e > 0 such that
Ife(b)b — bl < 6,

where f. is as defined in the proof of Lemma (2.2.37). Then one sees that the corollary
follows immediately from the previous lemma.
Proposition (2.2.36)[71]: Let A be a unital separable simple C*-algebra with tracial rank
no more than one and let p € A be a projection. Then, for any ¢ > 0 and integers m >
n = 1, there exists a projection g < p such that

n+1

r(p) > 7(q) >%‘L’(p) forallt € T (A). (359)

Proof. This follows from the fact that A is tracially approximately divisible
Lemma (2.2.37)[71]: Let X be a compact metric space, let A: (0,1) — (0,1) be a non-
decreasing map, let € > 0, let F c C(X)be a finite subset.be a finite subset and let
{x1,%5,...,xy}Letn > 0 be such that
If(x) — f(x")]| <e€/4forallf € F,
if dist(x,x") < 2nand
Oz (%) N Oy (%) = Bif i # ]
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(so n does not depend onA). Let 1 > r > 0. Then there exists § > 0 and a finite subset
G < C(X) satisfying the following.
For any unital separable simple C*-algebra A with tracial rank no more than one and any
unital §-G-multiplicative contractive completely positive linear map L: C(X) — A for
which
Uro(0y) = A(a)forallt € T (A) (360)

and for all 1 > a = n, there exist mutually orthogonal non-zero projections
D1, P2, -+, Pm IN A such that

t(p;) = rd(m)forallt € T (A),i = 1,2,...,m, (361)

and <e forallf € F, (362)

LA — [PLIFP+ ) f(xpi]

where P =1 —-Y" p;.
Proof: Suppose that the lemma is false (for the abovee, F, A and{xy, x5, ..., xn})-
Letn > 0 be such that

F(0) = FD)] <2for alf € F, (363)

if dist(x,x") < 2n. We may assume that 0,,(x;) N Oy,(x;) = @if i #j, i,j =
12,...,m.

Let g; be a function in C(X) such that O
dist(x,x;) <n and g;(x) = 0 if dist(x, x;)
1,2,...,m}

Then, there exists a sequence of unital separable simple C*-algebras with tracial rank no
more than one and a sequence of §,,-G,,-multiplicative contractive completely positive
linear maps L,, : C(X) — A, for a sequence of decreasing positivenumbers §,, — 0 and
a sequence of finite subsets {G,,} withU;~, G,, dense in C(X)

such that

gi(x) <1 foral xekX, gx)=1Iif

<
> 20,0 =1,2,...,m. Put Go={g;: i =

Uz (0,) = A(a)forall T € T (A)and foralll > a = n (364)

lim inf{inf{max{

La(D) = [Pala(PPu+ ) fGpial||: £ € P}

>€n (365)
where infimum is taken among all possible mutually orthogonal non-zero
projectionspy », Py -+ -» Pmn With 7(p;) = 7r4(m) for all T €T (4,) and p, = 1, —

?=1 pi,nin Ap.
Let B =][n=14,, let Q = B/®;-,A, and let [ : B — Q be the quotient map. Define
@:CX)->B by of)=L,(fland ¢ =1IM-d. Theng:C(X)—- Qis a unital
homomorphism.
By (488),

T(Ln(9:)) 2 Heor,, (Oy) = A(M)
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for all 7 € T (A). It follows from Corollary 9.4 that there exists a projection p;, €
L,(g:)AL,(g;) such that
1(pin) = rd(mforallt € T (4,),i = 1,2,...,m, (366)
for all n = nyfor some ny, > 1. Define p; = {p; ,}(withp;, = 1forn = 1,2,...,n,)
and q; = II(P;),i = 1,2,....,m. Note that

q; € p(9DAP(g:),i = 1,2,...,m. (367)
It follows that

< €
B(f) ~ [a9(Na + Z feDal|| <5rall f €F, (368)
where g =1 — Y1, q;. It follows that, forsome sufficiently large n; > n,
[Ln(f) = [Puln(F) Py + X2 f(xDPin]|| < €forall — f €F. (369)

foralln > ny, where P, = 1%, p; , . This contradicts (489).
Lemma (2.2.38)[71]: Let X be a connected finite CW complex, let £ € X be a point and
lety = X\ {€}. Suppose that Ko(Co(Y)) = Z¥®Tor (Ko(Co(Y))) and gy, ga, ..., gi are
generators of Z*. Suppose that ¢ : C(X) — A (for some unital separable simple C*-
algebra with tracial rank one or zero) is a §-G-multiplicative contractive completely
positive linear map for which [¢](g;) is well defined (i = 1,2,...,k), where § is a
positive number and G is a finite subset of C (X), and

|T([gb](gi))| < oforallt € T(A),i = 1,2,...,k, (370)
forsome 1 > o > 0. Then, forany e > 0 and any finite subset ,any 1 > r > 0 and
any finite subset H' < A, there exists a projection p € A and a unital C*-subalgebra B =
®jz, C(X;, M,(;y), where X; = [0,1] or X; is a single point, with 1, = p and a unital
(6 + e)-G-multiplicative contractive completely positive linearmapL : C(X) — B such
that

lo(f) —[A-p)p(HHA—-p) +L(NO]ll <€ forallf €F (371)
and |tj,x([L](gi))| <@+ nroa,j=12,..k, and x € X;. (372)
(We use t;, for 7;, ® Trg on B @ Mg, where Try is the standard trace on Mpg.)
Moreover,
lpa — ap|| < € foralla € H.
Proof: The proof is similar. Let pj, q; € Mg (C(X)) such that
[pjl — lg;] = g9;, Jj=12,..k
for some integer R > 1. There exists a sequence projections p,, € A such th
rlli_r)glollcpn—pncll =0 forall c € A, (373)

m(n)

and there exists a sequence of C*-subalgebras B,, = D2y CXjn» Myijmy) (where X; , =
[0, 1] or X is a single point) with 15 = p,,such that
lim dist(p,,cp,, B,) = 0andlim sup {t (1 —p,)}=0. (374)
n—oo

N=% 7eT (4)
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For sufficiently large n, there exists a contractive completely positive linear map L;, :
pnAp, — B, such that

lim ||, (a) — ppap,|l = 0 foralla € A.

n—oo
We have

lim [|¢(f) = [(1 = p)P(f)(A = pn) +Lno¢(N]ll = Oforall f € C(X).  (375)

br = ¢ & idy,.
Suppose that (for some fixed 1 >r > 0) there exists a subsequence {n;}, {ji}and
{x;} € [0, 1] such that

o (Lng © Pr(Pr—40)) = (1 + 1o (376)
for all k. Define astate Ty, : A —» C by Ty(a) =tj, x (a),k = 1,2,....Let T be a limit
point. Note T, (14) = 1. Therefore T is a state on A. Then, by (500),

T([$1(g)) = (1 + 7)o. (377)

However, it is easy to check that T is a tracial state. This contradicts (484). Sothe lemma
follows by choosing B to be B,,, p to be p,, and L to be L, o L for some sufficiently large n.
Lemma (2.2.39)[71]: Let A be a unital separable simple C*-algebra with tracial rank no
more than one. Let p,, p,, ..., p, be a finite subset of projectionsin A,and let L : C(X) —
A be a contractive completely positive linear map with L(1.x,) beinga projection. Let
d,,d,,...,d, be positive numbers, A: (0,1) — (0,1) be a nondecreasing map and let
n > 0. Suppose that

©(p;) = a; and uTQL(On) > A(a)foralla = n (378)
forall T € T (A).
Then, forany 1 > r > 0,any 1 > § > 0, any finite subset § c C(X) andany finite
subset /' < A, there exists a projection E € A, a C*-subalgebraB = €B§=1 C(X; , M)
with 15 = E (X; = [0, 1]or X; is a point), projections p;,p;'with p; € B, and a
contractive completely positive linear map L; : C(X) » B with L;(1¢(x))being a
projection satisfying the following:

|Ea — aE|| < & foralla € H U{L(f):g € G}, (379)

lpi—@i©pHI<s, i=12..n (380)

L(f) — [EL(f)E + L(f)] < 6 forall f € G, (381)

tix(pi) = rd;, i =12,...,n, (382)

and ,ut].’xoLl(Oa) > r4(0y)foralla = n (383)

forallx € X;andj = 1,2,...,L. Moreover,
(1 — E) < forallt € T (A).
If L' : C(X) — Ais another §-G-multiplicative contractive completely positive linear map
such that
[toL'(g)T o L(g)| < & forallg €, (384)
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we may further require that
IEL'(f) =LOOEN < 6,[L'(f) = [EL'(FIE+Li(NDIIl <6 forallf € G, (385)
|t o Li(f) = tix o Li(H] < and iy, .17 (05) 2 T4(a)  (386)
forallx € X;,j = 1,2,...,L,fora = nandforall f €g.
Proof: There exists a sequence of projections E,, € A and a sequence of C*-subalgebra
B = @™, C(X;n,My(;n)) such that
r1i_>r(r>1o||Ena — aE,|| =0 forall a € A. (387)

One then obtains a sequence of projections p;, € B,,p;, € (1 - E,)A(1 - E,) and a
sequence of contractive completely positive linear maps @, : A — B, (see[69]) such that
lim [|p; = (pin + pik)|| = 0 and lim [la — [EnaEn + @u(@)]ll = 0 (388)

n—oo

forall a € A. Moreover
lim sup {t(1 — e,)} = 0. (389)

N=00 7eT (A4)
Suppose that there exists a subsequence {n,} such that
o Pin) < Tdyi = 1,2,...,1. (390)
Define Ty (a) = t;, . x, (Pn, (@) for a € A. Let T be a limit point. Then T(1,) = 1. So

T is a state. It is easy to see that it is also a tracial state. Then

T(p;) <rd,, i =1,2,...,n, (391)
a contradiction.
Suppose that there exists a subsequence {n,} such that

Mtjnk'xkOd)nkOL(Oak) < rd(ay) (392)
for some 1 >a;, = n and for all k. Again, use the above notation T for a limit
Of{tjnk,xk o @, }. Then Tis a tracial state so that

1o (0g) < 14(a) (393)
for some a = n, another contradiction.
The first part of the lemma follows by choosing L, to be &, o L, p;to be p1 ,,
and p;’ to be py’,, for some sufficiently large n.
The last part follows from a similar argument.
Lemma (2.2.40)[71]: Let A be a unital separable simple C*-algebra with tracial rank no
more than one. Suppose that p,q € A are two projections such that
t(p) =2 Dandt(q) = D forallt € T (A).
Then, forany 1 > r > 1, there are projections p; < p and gq; < q such that
[p1] = [q1]in Ko(A)and T (p,) = ©(q) = r-D (394)
forallt € T (A).
Proof: Fix1 >r, > r > 0.
A similar argument as in Lemma (2.2.39) leads to the following. There are mutually
orthogonal projections p, p; and mutually orthogonal projectionsqy, g; such that
lpo + p1— Pl <1/2, |lgo +q1—q| < % (395)
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and p1,q1 € B = @}, C(X;, M,;)), where X; = [0, 1] or where X;is a single point
tjx(p1) > D and tj,(q1) > 1D (396)
forx € X;andj = 1,2,..., L. Moreover, as [90], r(j) = 2

(r1-7)D’
P1,j € C(X] ,MT(])) such that P1,j < T[](pill) and
1D = tj,(py;) > 1D (397)
forx € X;andj = 1,2,...,L, where ;: B — C(X;, M,(j)) is a projection.
Hence

There isa projection

tix(P1) < tx(q1)
forallx € X;,j = 1,2,..., L. There exists a partial isometry v; € X; , M,..;)such that

*
Vj

v; = py,; and v;v; < m;(qy),
j=12,...,L.
Define py’ = Xi_1pyjand v = X5, v;. Then
pi < p,v'v =p{ and vv* < q;.
Moreover,
t(py) = rD forallt € T (A).
By (519), there exists a projection p; < p and a projection g; < g such that

[p1] = [pi] = [vv'] = [q4]. (398)

Note that
t(p1) = 1(qu) = 7D forallt € T (A).

Lemma (2.2.41)[71]: Let B be a unital separable amenable C*-algebra and let A be a
unital simple C*-algebra with TR(A) < 1. For any € > 0,any finite subset ¥ c B, any
o > 0, any integer k > 1, any integer K > 1 and anyfinite subset F; ¢ A. Suppose
that ¢, : B — A are two unital positive linear maps. Then there is a projection p €
A,a C*-subalgebraCy =@;2; (C([0, 1], Mq())® B2, My(;y with d(i),7(j) = K and a
C*-subalgebra C of A with C = M, (C,) and with 1. = p and unital positive linear maps
b0, Yo : B = C, such that

lp(F).pll < e, W), pll <€ forall f € F, (399)
lx,pll <€ forall x €Fy, (400)
|6tH = (@ - DO - ) B <€ . (401)
[vH) - (@ = v A - BY(P)| < € forau fer (402

and
(1 — p) < oforallt € T (4), (403)

where
k

6 (f) = diag(bo(F), Po(f), — Po(F)) (404)

and

k

WS = diagWo (P, Yo (H), -, Yo () for allf € B. (405)

110



Lemma (2.2.42)[71]: Let X be a connected finite CW complex and let Y = X\{¢} , where
§ € X is a point. Let Ko(C(Y)) =G =Z* D T or(G) and K,(C(X)) =Z D G.
Fix kK € Hom,(K(Cy(Y)), K(K)). Put

i-1
K = max{|x(g))| : g; = (0,...,0,1,0,...,0) € Z¥}.
Then, for any § > 0 any finite subset G < C(X) and any finite subset? c K(C,(Y)),
there exists an integer N(K) = 1 (which depends on K, §,G and P, but not k) and a
unital §-G-multiplicative contractive completely positive linear map L : C(X) — My,
such that
[L|c0(y)]|sp =Kl|p. (406)
(Note that the lemma includes the case that K = 0.)
Proof: Choose 6, > 0 and a finite subset G, c C,(Y) such that, for any pair of §,-G,-
multiplicative contractive completely positive linear maps from C,(Y) to any C*-algebra,
[L;]]» is well defined and
[Li]lp = [L2]lp, (407)
provided that
Ly =5, L, ongy.
It follows that there exists an asymptotic morphism{¢; : t € [1,0)}: Cy(Y) — XK such
that
[{}e}] = k. (408)
Note that, for each t € [1, ), ¢, Is a contractive completely positive linear map and
lim|lp;(ab) — ¢ (@) (D)l = 0
for all a,b € Cy(Y). Define §; = min{d,/2,8/2} and G; = G, U G. It follows that, for
sufficiently large t,

[Pedlp = Klp (409)
and ¢, is 6,-G; multiplicative. Choose a projection E € k such that

where G, =G, U {ab: a,b € G;}. Define L: C(X) » EXE by L(f)=f(§)E +
Ed.(f — f(E)E for f € C(X). It is easy to see that L is a &-G-multiplicative
contractive completely positive linear map and

[Llc,n ]Iz = xlp - (411)
Define the rank of E to be N (i). Note that EXE = My,,. Note that since
K;(Co(Y)) is finitely generated, by [21],

Hom, (K (Co(Y)), K()) = Hom,(FnK (Co(Y)), K (X))
for some integer m > 1. Thus, when K is given, there are only finitely many di erent « so
that |k(g;)| < K fori = 1,2,...,k. Thus such N(K) exists by takingthe maximum of
those N (k).
Lemma (2.2.43)[71]: Let X be a connected finite CW complex and let Y = X\{¢},
where € X is a point. Let K,(C(Y)) =G =ZF¥ @ T or(G) and Ko(C(X)) =Z @ G.
111



Forany § > 0, any finite subset G < C(X) and any finite subset P c K(Cy(Y)), there
exists an integer N(6, G, P) = 1 satisfying the following.
Letk € Hom,(K(Cy(Y)), K(¥X)) and let
i-1
K = max{|x(g))|: g; = (0,...,0,1,0,...,0) € Z¥}
There exists an integer N(K) = 1 and a unital §-G-multiplicative contractive completely
positive linear map L : C(X) — My, such that
N(K)

[L]|p = k|p and max(K, 1} < N(3,G,P). (412)
Proof: Fix §,? and G. Let N(0) and N(1) be as in Lemma (2.2.42) corresponding to the
casethat K = 0and K = 1. Define

N(6,G,P) = kN(1) + N(0).

Fix k € Hom,(K(Cy(Y)), K(¥)). Suppose that x(g;) =m;, i = 1,2,...,k. For each
i(i =012,...,k)thereisk; € Hom,(K(Cy(Y)), K(K)) such that

Ko(gi) = 0, i =12,...k, (413)
Ko(gi) = 0, if m; = 0, j=12,...k (414)
Ko(g;) = sign(m;) -1 (inZ) and Ko(gj) =0ifj#1, (415)
ifm#+0, i =1,2,..,k, (416)
and
k
Ko + Zmi}ci = K. (417)
i=1

By Lemma (2.2.42), there exists a unital§-G-multiplicative contractive completely
positive linear mapL; : C(X) - My such that
[Lilco(y)]lfp :Kil?: [ = O,].,Z,...,k. (418)

PutN = N(0) + X%, |m;IN(1).DefineL: C(X) - Myby

L) = LN @ éii(f) : (419)
forall f € C(X), where -
L;(f) = diag Li(f),Li(l;n)i[ L) i=12,....,k (420)
One estimates that
maxng’ T N ;gﬁ;{lff}iw(l) < N(0) + kN(1) = N(5,G, P). (421)

Lemma(2.2.44)[71]: Let X be a connected finite CW complex with KO(C(X)) =7
GwhereG =ZF @ T or(G)zKO(CO(X)) and Y = X\ {&} for some point & € X. For any
o > 0, thereexists § > 0 and a finite subset G  C(X) satisfying the following.

For any unital separable C*-algebra A with T(A) # @ and any unital §-G-
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multiplicative contractive completely positive linearmap L : C(X) — A, one has

|t o [L](g)| < o forallt € T (A), (422)
i—1

where g; = (0,...,0,1,0,...,0) € Z¥and 7 is the state on K,(C(X))induced by thetracial
state 7.

Proof: Suppose that the lemma is false.

Then there exists a sequence of unital separable C*-algebras A,, and a sequence of §,,-G,,-
multiplicative contractive completely positive linear maps L,,: C(X) — A,,whereé,, 1 0
and G,, is a sequence of finite subsets such that G,, € G,,1 andU,-, G, is dense in C(X)
and that there exists t,, € T(4,,) such that

|Tn ° [Ln](gl)l =

N1 Q

(423)

forsomei € {1,2,...,k}.
Let B = [[5=, A,. Definet,,({a,}) = t,(a,). Then t, is a tracial state of B. Let T be a
limit point of {t,,}. One obtains a subsequence {n,} such that

T ({an)) = Jim 70, (an,) (424)
for any {a,,} € B. Note that forany a €®;-, 4,, € B,T(a) = 0. It follows that defines
a tracial state Ton B/@®5_, A,. Letll : B - B/®%_, A, be the quotient map. Define L :

C(X) » Bby L(f) = {L,(f)}. Put ¢ = Il1oL. Then ¢ is a unital homomorphism.
Therefore

T o ¢.(g:) = 0. (425)
It follows that there is a subsequence {n;} < {n,} such that
limt, o|Ly | (g0 = o. (426)

However, this contradicts (347).
Lemma (2.2.45)[71]: Let C(X) be a connected finite CW complex and P c K(C(X)).
There exists § > 0 and a finite subset G ¢ C(X) satisfying the following. For any unital
C*-algebra A and any unital §-G-multiplicative contractive completely positive linear map
L : C(X) — A,there existsk € Hom,(K(C(X)), K(A)) suchthat

[L]lp = K|p . (427)
This is known (see [70]).
Lemma (2.2.46)[71]: Let X € X be a finite simplicial complex. Let e > 0, let ¢; > 0, let
No >0, let F ¢ C(X) be a finite subset, let N > 1 and K > 1 be positive integers and
let A: (0,1) — (0,1) be a non-decreasing map. There existn > 0, § > 0, a finite subset
G and a finite subset P c K(C (X)) satisfying the following.
Suppose that A is a unital separable simple C*-algebra with tracial rank no more than one
and ¢,y : C(X) — A are two unital5-G-multiplicative contractive completely positive
linear maps such that

Hropp(0g) = A(a)foralla = n, (428)

To¢(g) —Tow(g)l < 8 forallg € G (429)

113



forallt € T(A) and.
[P]l> = [Y]l» (430)
Then, for any €, > 0, there are four mutually orthogonal projections P,, P;, P, and Ps
with Py + P; + P, + P; = 14, there is a unital C*-subalgebraB, c (P, + P, +
P;))A(Py + P, +P;) with 15 = P+ P,+P;, where B; has the formB; =
693?:1 C(Xj, M,.(jy) with Py, P,, P; € By, where X; = [0, 1] or X; is a point.
There are also unitalhomomorphisms¢,,¥, : C(X) — B,where B = P;B,P;,
there exists a finite dimensional C*-subalgebra C, ¢ P;BP; with 1, = P, and there
exists a unital e-F-multiplicative contractive completely positive linear map ¢, :
C(X) = Cyand mutually orthogonal projections p,,p,,...,pm € P,B;P, and a unitary
u € A such that
lp(F) = [Pod(F)Po + b2 (F) + 1%y f(x)pi + D1 (H]lle/2 (431)

and

|ad w o p(f) — [Po(ad o p(f))Py + 2 (f) + X%y f(x)pi + Y1 (D] < €/2

432

forall f € F, where {x;,x,,...,%,}iS €,-densein X and P, = Y%, p;, 9
Nt(Po + P1) <t(pi) Ktj(Py + P;) <t (P3), (433)

Hreg, (0a) 2 22, pirey, (00) 2 %2 for all a = n,, (434)
ITep1(f)=Teops(f)I < forallf € F, (435)

forallt € T(4),i = 1,2,....m,forallx € X;,j = 1,2,...,s,andforall T € T (B).
Moreover, for any finite subset H < A, one may require that
laPy — Pyal| < €y and (1 — Py)a(l — Py) €. B, foralla € H. (436)
Corollary (2.2.47)[71]: Let X € X. Let € > 0, let ny, > 0, let F c C(X) and let
A: (0,1) — (0,1) be a non-decreasing map. Then there existsn > 0,6 > 0, and afinite
subset G © C(X) satisfying the following.
Suppose that A is a unital separable simple C*-algebra with T R(A) < 1and ¢: C(X) —
A is a unital 6-G-multiplicative contractive completely positive linearmap such that
Uregp(0g) = A(a) foralla = 7. (437)
Then, for any €, > 0, for any integer K > 1, there are mutually orthogonal projections
PyP; and P, withP, + P; + P, = 14, there exists a unital C*-subalgebraB =
721 C(Xj , My () with P, = 15, where X; = [0, 1] or X; is a point, a finite dimensional
C*-subalgebra D, a unital completely positive linear map ¢, : C(A) — D and there exists
a unital homomorphism ¢, : C(X) — B suchthat||¢p(f) — (Pod(f)Py + ¢P.(f) +

bd1(f)| <e for all f eF (438)
and
Kt(Py, + P,) < 1t (P))forallt € T (A). (439)
Moreover, for any finite subset ' < A, one may require that
laPy — Pyall < €y foralla € H U ¢(F). (440)

Proof: Choose iy = ¢ and then apply Lemma (2.2.46).
114



Theorem (2.2.48)[71]: Let X be a finite simplicial complex in X. Let ¢ > 0, let F c
C(X) be a finite subset and let A: (0,1) — (0,1) be a non-decreasing map. There exists
n > 0,6 > 0, afinite subset G ¢ C(X) a finite subset P c K(C(X)) and a finite subset
U c UM (C(X))) satisfying the following,

Suppose that A is a unital separable simple C*-algebra with tracial rank no more than one
and ¢, ¢ : C(X) — A are two unital §-G-multiplicative contractive completely positive
linear maps such that

Hrop(0g) = A(a) foralla = n, (441)
ltop(g) — ToP(g)| < 6forallg € G, (442)
forallT € T (A4), and
(61l = [Yllp and dist (¢*(2),¥*(2) < 6 (443)
for all z € U. Then there exists a unitary u € A such that
aduoy =~ ¢ ontF. (444)

Proof: Letn, > 0 be as in Corollary (2.2.12) for €/4 and F. Let o, = A(n,)/4n,. Let
no > 0 (in place of n) and K; = 1 (in place of K) be as in Corollary (2.2.12) for € /4 and
F above. Let o, = 4A(ny)/4m, (in place of o). Let 6; > 0 (in place of §), G; € C(X) (in
place of G), P, € K(C(X)) (in place of P), U; € U (M, (C(X))) (in place of U) and
L; = 1 (in place of L) be finite subsets required by Corollary (2.2.12)
Let L = 8m + 1.Letd, > 0 (inplace of §), G, € C(X) (in place of G), P, c K(C(X))
(in place of P), U, € U (M, (C(X))) (in place of U), l = 1 and €; > 0 be as required
by Theorem (2.2.11)for €/4 and F. Let €, = min{8,/2, 6,/2}and F, =F UG, UG,.
Let €3 > 0 be anumber smallerthan e,. Let N = land K > 16/ min{on,o,n,,5,}. Let
n, > 0, let 53 > 0 (in place of §), let G; ¢ C(X) (in place of G), let P; ¢ K(C(X)) be
required by Lemma (2.2.46)for €5 (in place ofe) €;, min{n,,ny} (in place of n,) and F,
(in place of F).
Letn = min{n,,ny,n,}andletd, = min{d(n)/4,85,1/32K,m}.
Let 6 be a positive number which is smaller than 6, and let G be a finite subset containing
G;. Let P c K(C(X)) be a finite subset which contains P; U P, U P; and the image of U
in K(C(X)).
Suppose that A is a unital separable simple C*-algebra withtracial rank one or zero and
suppose ¢, Y : C(X) —» A are two unital §-G-multiplicative contractive completely
positive linear maps which satisfy the assumption of the theorem for the above 6, G, P and
U.
It follows from Lemma (2.2.46)that there are four mutually orthogonal projections
Py, Py, Prand P; with Py + P, + P, + P; = 14, there is a unital C*-subalgebra B, c
(Py+ Py + PAP, + P, + P)With 1, =P, + P, +P; and P, P,,P; € B;,where
Bhas the form B, = @&j_, C(X;, M, ;) and where X; = [0, 1] or X;is a point, there are
unitalhomomorphisms¢,, ¥, : C(X) — P;B;P;, and there exists a finite dimensional C*-
subalgebra C, ¢ P;B;Pywith 1, = P;. There also exists a unital e;-F,-multiplicative
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contractive completely positive linear map ¢, : C(X) = C, and mutually orthogonal
projections p;, p,,...,pm € B; and a unitary v € A such that

() — [Pod (FIPo + b2 () + Xy fCxdp: + pa (DI < 2 (445)
and

advop(f) — [Po(ad veop(f))Po + ¢2(f) +Zf(xi)pi + lpl(f)]H

, i=1

<< (446)
forall f € F,, where {x;,x;,...,x}iS €,-dense in X and P, = Y%, p;,

Nt (Py+P) < 1) Ktj (P + P) < tj,(P3), (447)

Hropy (0a) 2 A(@) /47y, (0g) = A(a)/4foralla = minfne,n,}  (448)
And|T o p,(f) — T oY1 (f)| <€z forall f €F,, (449)

forallte T (A),x€eXj,j=1,2,..,mand forall T € T (B). Moreover, for any finite
subset H c A, one may require that
laPy — Poall < €3 and (1 — Py)a(l — Py) €., By foralla € H.  (450)
We may also assume that r(j) = L,for j = 1,2,...,s.Put ¢o(f ) = Py (f )Py, Yo(f) =
Po(ad wop(f))Po, ds(f ) = d2(f) + T2y f(xdpi + $1(f) andips(f ) = ¢ (f) +
™ fG)p + Wi (f) for f € C(X).

Since
dist (¢*(2),¥*(2)) < 6 forallz € U, (451)
with a sufficiently large H (and sufficiently small €5), in [90], we may assume that
dist(¢pi(2),i(2) < 26 forall z € U. (452)
Furthermore, we may also assume that
dist(¢p¥(2),y¥(2)) < 26forall z € U. (453)
Denote by D the determinant function on B;. We compute that
D(p1(2)Y,(2)") < 46 forall z € U. (454)
It follows that
dist(p¥(2),9¥(2)) < 1/8K mforall z € U. (456)
We may also assume (with sufficiently large U and sufficiently small €3) that
[p1]lp = [¥1]l» (457)
and
[Pollr = [Wollp - (458)

By (660), (661) and (667) and by applying Corollary (2.2.12), we obtain a unitary w; € B
such that
ad Wl o lpl zf ¢10n T. (459)

By applying Theorem (2.2.11), we also have a unitary w, € (P, + P,)A(P, + P,) such
that
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€
<Zf0rallf € F.

w; (%(f) ®) f(xapi) W - (fl)o(f) T Zf(x»m)
i=1 =1

The theorem then follows from the combination of (446), (447), (459) and (460).
Definition (2.2.49):Let C = P M, (C(X))P for some finite CW complex X and for some
projection P € M, (C(X)). Suppose that the rank of P is m. Let t be a state on C. Then
there is a Borel probability measure u, such that

t(f) =J; Le(f())du; forallf € C, (461)
where L, is a state on M,,,. If t € T (C), then L,.(f (x)) = tr(f (x)), where tr is the
normalized trace on M,,. There is an integer n > 1 and a rank one trivial projection e €
M, (C) such that eM,,(C)e = C(X). It follows that there is a unitary u € M,,(C) and a
projection Q € M, (C) such that u*Cu = QM;(eM, (C)e)Q. Suppose that A is a unital
C*-algebra, s is a state on A and suppose that ¢ : C — A is a contractive completely
positive linear map. Then

s°¢(f) =j Ly(f(x))dprp forall f € C,

X

(460)

where L, is a state on M,,,.
Let T € T (C) and let ¢™ : M,(C) — M,(A) be the homomorphism induced byg.
Denote by ¢ : C(X) —» ¢™(e)M, (A)p™ (e) the restriction of ¢ ™on eM,,(C)e.

It follows that the probability measure p .5 induced by 7 o ¢ is equal t0 ;0.

Corollary (2.2.50)[71]: Let X be a finite simplicial complex in X. Let ¢ > 0, let F c
C = PM,(C(X))P, where P € M,,(C(X)) is a projection, be a finite subset and let
A: (0,1) — (0,1) be a non-decreasing map. There exists n > 0,6 > 0, a finite subset
G, a finite subset  c K(C) and a finite subset U c U(M,,(C)) satisfying the following.
Suppose that A is a unital separable simple C*-algebra with tracial rank no more than one
and ¢,y : C — A are two unital §-G-multiplicative contractive completely positive linear
maps such that

Hropp(0g) = A(a)for alla = 7, (462)
[Te¢p(g) —ToYp(g)| < & forallg €, (463)
forallt € T (A), and
(6l = [llp and dist (¢*(2),¥*(2) < 6 (464)
for all z € U. Then there exists a unitary u € A such that
aduoy = ¢ onF. (465)

Proof. It is standard (using Definition 10.9) that the general case can be reduced to the case
that C = M, (C(X)). Itisthen clear that this corollary follows from Theorem (2.2.48)

It should be noted in the case that X = I X T or X is an n-dimensional torus, in the above
Theorem (2.2.48)and Corollary 10.10, one may only consider U < U (C). Moreover, in
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the case that X is a finite simplicial complex with torsion K;(C(X)), the map ¢* and y*
can be removed entirely (see [36]).
Let X be a compact metric space and let A be a unital simple C*-algebra with T (A) # @.
Suppose that ¢ : C(X) — A is a unital monomorphism. Then wu..4 is a strictly positive
probability Borel measure. Fix a € (0,1). Let {x{,x3,...,%,} € X be an a/4-dense
subset. Define
d(a,i) = (1/2) inf{to(Ba/a(x;)) : T € T (A)}i = 1,2,...,m.
Fix a non-zero positive function g € C(X) with g < 1 whose support is contained in
Bga/4(x;). Then, since A is simple, inf{z (¢(g)) : 7 € T (A)} > 0. It follows that
d(a,i) > 0.Put
A(a) = min{d(a,i): i = 1,2,...,m}.

Forany x € X, there exists i such that B, (x) D Bg/4(x;). Thus

trop(Ba(x)) = A(@)forallt € T (A). (466)
Note that A gives a non-decreasing map from (0,1) — (0, 1).
This proves the following.
Proposition (2.2.51)[71]: Let X be a compact metric space and let A be a unital simple
C*-algebra with T(A) # @. Suppose that ¢: C(X) — A is a unitalmonomo-rphism. Then
there is a non-decreasing map A: (0,1) — (0, 1) such that

Hrop(0g) = A(a)forallt € T (A) (467)
for all open balls 0, of X with radiusa € (0, 1).
Definition (2.2.52)[71]: Let C be a C*-algebra. Let T = N X K: C, +\ {0} - N X
R, \ {0} be a map. Suppose that A is a unitalC*-algebra and ¢ : C - A is a
homomorphism. Let H < C, \ {0} be a finite subset. We say that ¢ is T -F-full if there

arex,; € A,i = 1,2,...,N(a) withx,; < K(a),i = 1,2,...,N(a), such that
N(a)
Z Xa,iP(@)xq; = 1,
i=1
forall a € . The homomorphism ¢ is said to be T-full if
N(a)

> xaub@xar = 1,

i=1
forall a € A\ {0}. If ¢ is T-full, then ¢ is injective.
Proposition (2.2.53)[71]: Let X be a finite CW complex, let P € M, (C(X)) be a
projection and let C; = P M (C(X))P. Suppose that T = N XN : C,\{0} - N X
R,\{0} is a map. Then there exists a non-decreasing map A: (0,1) — (0,1) associated
with T satisfying the following.
For any n > 0, there is a finite subset H c (C; ® C(T)), \ {0} such that, for
anyunitalC*-algebra B with T(B) # @and any unital contractive completely positive linear
map ¢ : C — B which is T-H-full, one has that
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Hrog(0g) = A(a)foralla = n foralla € (n,1). (468)
Proof: To simplify notation, using Definition 10.9, without loss of generality, we may
assume that C = C(X). Fix1 > a > 0. Let {xq,x,,...,x,} be an a/4-dense subset of
X. Let f; be a positive function in C(X) with 0 < f; < 1 whose support is in B, (x;)
and contains B,/ (x;),i = 1,2,...,m. DefineA”: (0,1) — (0,1) by

’ . 1
M) = o moRG s T i)

(469)

Define
A(a) = min{A'(b): b = al.
It is clear that Ais non-decreasing.
Now let B be a unitalC*-algebra with T(B) # @ and let ¢: C — B be a unital contractive
completely positive linear map which is T -F-full. For each i, there are x;;,j =

1,2,...,N(f), with ||x; ;]| < N(f,) such that

SO d(f)xi = 1pi = 1,2,...,m. (470)
Fixat € T (B). There exists j such that
T (0% 2 5 (471)
It follows that
i, T (8 (D) = 7 (D (f)2x, jxi b (£)2) (472)
= 1(x;0(fxi)) = 5 (473)
It also follows that
T(p(f)) = W (474)

This holds for all T € T (B),i = 1,2,...,m. Now for any open ball 0, with radius a,
suppose that y is the center. Theny € B, /,(x;) forsome 1 < i < m. Thus

Oa > Ba/4(xi)-
It follows that

Heop(0g) 2 T(fi) 2 = A(a) (475)

N(fL)K(fL)Z -

forall T € T (B). Itisthen clear that, whenn > 0 is given, such a finite subset H exists.
Definition (2.2.54)[71]: An AH-algebra C is said to have property (J) if C is isomorphic to

an inductive limit 11m (Cn, ®;), where @R(l)P i My (n,j)(C(Xn,j)) Py, ; Where

Xy, jis aone dlmen3|onal finite CW complex or a simplicial complex in X and where P, ; €
M,.n,jy(C(Xy,;)) is a projection and each ¢; is injective.

119



Section (2.3): Unitaries in a Simple €*-Algebra of Tracial Rank One

Let M,, be the C*-algebra of n x n matrices and let u € M,, be a unitary. Then u can
be diagonalized, i.e., u = Y7_, e!®p,, where 6, € R and {p;,p,,...,p,} are mutually
orthogonal projections. As a consequence, u = exp(ih), where h =Y7_,0;py iS a
selfadjoint matrix. Now let A be a unital C*-algebra and let U(A) be the unitary group of
A. Denote by U,(A) the connected component of U(A) containing the identity. Suppose
that u € U,(A4). Even in the case that A has real rank zero, sp(u) can have infinitely many
points and it is impossible to write u as an exponential, in general. However, it was shown
([79]) that u can be approximated by unitaries in A with finite spectrum if and only if A
has real rank zero. This is an important and useful feature for C*-algebras of real rank
zero. In this case, u is a norm limit of exponentials.

Tracial rank for C*-algebras was introduced in the connection with the program of
classification of separable amenable C*-algebras, or otherwise known as the Elliott
program. Unital separable simple amenable C*-algebras with tracial rank no more than one
which satisfy the universal coefficient theorem have been classified by the Elliott invariant
([36] and [89]). A unital separable simple C*-algebra A with TR(A) = 1 has real rank
one. Therefore a unitary u € U,(A) may not be approximated by unitaries with finite
spectrum. We will show that, in a unital infinite dimensional simple C*-algebra A with
tracial rank no more than one, if u can be approximated by unitaries in A with finite
spectrum then u must be in CU(A), the closure of the subgroup generated by commutators
of the unitary group. A related problem is whether every unitary u € U,(A4) can be
approximated by unitaries which are exponentials. Our first result is to show that, there are
selfadjoint elements h,, € A, , such that

u= Ylll_)rglo exp(ih,)

(converge in norm). It should be mentioned that exponential rank has been studied quite
extendedly (see [112], [113], [108], [111], etc.). In fact, it was shown by N. C. Phillips that
a unital simple C*-algebra A which is an inductive limit of finite direct sums of C*-
algebras with the form C(X;,) ® M;,, with the dimension of X;, is bounded has
exponential rank 1 + €, i.e., every unitary u € U,(A) can be approximated by unitaries
which are exponentials (see [113]). These simple C*-algebras have tracial rank one or
zero. Theorem (2.3.11) was proved without assuming A is an AH-algebra, in fact, it was
proved in the absence of amenability.

Let T(A) be the tracial state space of A. Denote by Aff(T(A)) the space of all real
affine continuous functions on T'(A4). Denote by pA : KO(A) — Aff(T(A)) the positive
homomorphism induced by p,([p])(z) = t (p) for all projections in M, (A) (with k =
1,2,..) and for all = € T(A4). It was introduced by de la Harpe and Scandalis a
determinant like map A which maps U,(A) into Aff(T(A))/p4(Ky(A)). By a result of K.
Thomsen ([133]) the de la Harpe and Scandalis determinant induces an isomorphism
between Aff(T(A))/pa(Ky(A)) and U,(A)/CU(A). We found out that if u can be
approximated by unitaries in A with finite spectrum then u must be in CU(A). But can
every unitary in CU(A) be approximated by unitaries with finite spectrum? To answer this
question, we consider even simpler question: when can a self-adjoint element in a unital
separable simple C*-algebra with TR(A) = 1 be approximated by self-adjoint elements
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with finite spectrum? Immediately, a necessary condition for a self-adjoint elementa € A

to be approximated by self-adjoint elements with finite spectrum is that A" € p, (K0 (A))
(for all n € N). Given a unitary u € U,(A4), there is an affine continuous map from
Aff(T(C(T))) into Aff(T(A)) induced by u. Let I'(u):Aff(T(C(T))) — Aff(T(A))/
pA(KO(A)) be the map given by u. Then it is clear that (u) = 0 is a necessary condition for
u being approximated by unitaries with finite spectrum. Note that I'(w) = 0 if and only if
u™ ¥ (W), i(ur = (Wn)*) € pa(Ky(4)) for all positive integers n. By applying a
uniqueness theorem together with classification results in simple C*-algebras, we show
that the condition is also sufficient. From this, we show that a unitary u € CU(A) can be
approximated by unitaries with finite spectrum if and only if I'(u) = 0. We also show that
A(u) = 0 is not sufficient for I'(u) = 0. Therefore, there are unitaries in CU(A) which can
not be approximated by unitaries with finite spectrum. Perhaps more interesting fact is that
I'(u) = 0 does not imply that A(u) = 0 for u € Uy(A).

Denote by I the class of C*-algebras which are finite direct sums of Cx-subalgebras
with the form M, (C([0,1]) or My, k = 1,2,....

Definition (2.3.1)[94]. Recall that a unital simple C*-algebra A is said to have tracial rank
no more than one (or TR(A) < 1), if for any € > 0, any a € A, \{0} and any finite
subset F c A, there exists a projection p € A and a C*-subalgebra B with 1; = p such
that

(i) |lpx — xp|| < eforallx € F;

(it) dist(pxp, B) < e forall x € F and

(iii) 1 — p is Murry-von Nuemann equivalent to a projection in aAa.

Recall that, in the above definition, if B can always be chosen to have finite dimension,
then A has tracial rank zero (TR(A) = 0). If TR(A) < 1 but TR(A) # 0, we write
TR(A) = 1.

Every unital simple AH-algebra with very slow dimension growth has tracial rank
no more than one (see [89]). There are C*-algebras with tracial rank no more than one
which are not amenable.

Definition (2.3.2)[94]. Suppose that u € U(A). We will use u for the image of u in
U(A)/CUA). Ifx,y € U(A)/CU(A), define
dist(x,y) = inf{|]lu — v||: 4 = xand v = y}.

Let C be another unital C*-algebra and let ¢ : C — A be a unital homomorphism.
Denote by ¢* : U(C)/CU(C) - U(A)/CU(A) the homomorphism induced by ¢.

Let A be a unital separable simple C*-algebra with TR(A) < 1, then A is quasi-
diagonal, stable rank one, weakly unperforated K,(4) and, if p,q € A are two
projections, then p is equivalent to a projection p’ < q whenever t(p) < t(q) for all
tracial states = in T (A).

For unitary group of A, we have the following:

() CUCA) © Uy(A) [89];

(it) Uy(A)/CU(A) is torsion free and divisible [89];

Theorem (2.3.3)[94]. [84] Let A be a unital separable simple C*-algebra with TR(A) <1
and let e € A be a non-zero projection. Then the map u+ u + (1 —e) induces an
isomorphism j from U(eAe)/CU(eAe) onto U(A)/CU(A).
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Corollary (2.3.4)[94]. Let A be a unital separable simple C*-algebra with TR(A) < 1.
m

Thenthe map j : a — diag(a,1,1,..,1) from A to M,,(A) induces an isomorphism from
U(A)/CU(A) onto U(M,,(4))/CU(M,,(A)) for any integer n > 1.

Definition (2.3.5)[94]. Let u € U,(A). There is a piece-wise smooth and continuous path
{fu(t): t €[0,1]} € Asuchthat u(0) = uandu(1l) = 1. Define

d
RAuODE) = — f ( G )u(t)*>dt

R({{u(t)}) () is real for every t.
Definition (2.3.6)[94]. Let A be a unital C*-algebra with T(A4) # @. As in [133], define a

homomorphism A: Uy (4) — Aff(T(A))/pa(Ko(A)) by

1t u(t)
2w =855, (%))

where A: Aff(T(A4)) — Aff(T(A))/pa(Ko(A)) is the quotient map and where {u(t) : t €
[0,1]} is a piece-wise smooth and continuous path of unitaries in A with ©(0) = u and
u(1) = 1,. Thisis well-defined and is independent of the choices of the paths.

The following is a combination of a result of K. Thomsen ([133]). We state here for
the convenience.
Theorem (2.3.7)[94]. Let A be a unital separable simple C*-algebra with TR(A) < 1.
Suppose that u € U,(A). Then the following are equivalent:
(i)u € CU(A);
(i) A(w) =
(iii) for some piecewise continuous path of unitaries {u(t):t € [0,1]} € A with u(0) =
uand u(l) = 1,

R({u(t)}) € pa(Ko(4)),
(iv) for any piecewise continuous path of unitaries {u(t):t € [0,1]} € A with u(0) = u
and u(1) = 1,,

R({u(t)}) € pa(Ko(4)).
(v) there are hy, h,,..., h,, € Asa such that

ﬂexp(lh) and zh € pA(KO(A))

j=1
(Vi) X721 by € pa(Ko(A)) forany hy, hy, ..., hm € A, ,. for which
m
U= Hexp(ihj)
j=1

Proof. Equivalence of (ii), (iii), (iv), (v) and (vi) follows from the definition of the
determinant and follows from the Bott periodicy. The equivalence of (i) and (ii) follows on
[133].

The following is a consequence.
Theorem (2.3.8)[94]. Let A be a unital simple separable C*-algebra with TR(A) < 1.
Then ker A = CU(A). The de la Harpe and Skandalis determinant gives an isomorphism:

A: Uo(A)/CU(A) ~ Af(T(A))/pa(Ko(A)).

Moreover, one has the following short exact (splitting) sequence
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A—1
0 - AFF(T(A))/pa(Ko(A)) — U(A)/CUA) > Ky(A) — 0.

(Note that U,(A)/CU(A) is divisible in this case, by [89].)
Theorem (2.3.9)[94]. Let A be a unital simple C*-algebra with TR(A) < 1 and let
C(T)sq — Aff(T(A)) be a (positive) affine continuous map.

For any e > 0, there exists § > 0 and there exists a finite subset F c C(T);,
satisfying the following: If v € U,(A) with

lt(fw) —vy(H@| <8,  forall f €F and v € T(A),and  (476)

dist(, 7)) < 6 in Uy(A)/CU(A). (477)
Then there exists a unitary W € U(A) such that
lu —W*vW| < e. (478)

Proof. The lemma follows immediately on [64]. See [71], [64]. Note that, of [64], we can
replace the given map h, (in this case a given unitary) by a given map y.

Corollary (2.3.10)[94]. Let A be a unital simple C*-algebra with TR(A) < 1andletu €
Uy(A) be a unitary. For any € > 0, there exists § > 0 and there exists an integer N > 1
satisfying the following: If v € U,(A) with

|t@w®) — T (v®)| <8,k = 1,2,...,N forallt € T(A)and (479)
dist(it,7) < & in Uy(A)/CU(A). (480)

Then there exists a unitary W € U(A) such that
lu — W vW| < e. (481)

Proof. Note that (479),

lt(u®) — ()| < § k = +1,+2,...,%N. (482)
For any subset G ¢ C(S1) and anyn > 0, thereexists N > 1and § > 0 such that

lt(gw) —(g(w))| <n forall TeT(A)

if (482) holds.
Then the lemma follows from (2.3.9) (or [64]).
Theorem (2.3.11)[94]. Let A be a unital simple C*-algebra with TR(A) < 1. Suppose
that u € U,(A), then, for any € > 0, there exists a selfadjoint element a € A, such that

lu —exp(ia)|| < e. (483)
Proof. Since u € U,(A), we may write
k
" = 1_[ exp(ih)). (484)
j=1

Let M =max{||h||: j = 1,2,...,k} + 1. Let § > 0 and N be given in Corollary

(2.3.4) for u. We may assume that § < 1and N > 3. We may also assume that § < e.
Since TR(A) < 1, there exists a projectionp € A and a C*-subalgebra B € A with 1; =

p such that B =@, C(Xi,Mr(i)), where X; = [0, 1] or a point, and

llpu — upll < TeNME’ (485)
k

A = pu —p) ~ @ = p)] [ew@ - 1y - o)|| < g @80
j=1

pup€ s Bandt(1 — p)< forall T € T(A). (487)

U v 2NMk
There exist unitary u; € B such that
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lpup — will < g (488)
Put u, = (1 — p) [T exp(i(1 — p)h;j(1 — p)). Since u, € B, it is well known that
there exists a selfadjoint element b € B, , such that

lu; — pexp(ib)|l < TeNME: (489)

Let vy = (1 — p) + pexp(ib) and uy = p exp(ib) + u,. Then, by (485), (486), (488)
and (489),

lug — ull < llu—pup— (1 — p)u(l — p)l| (490)
+(pup — pexp(ib)) + (1 — p)u(l — p) — w)ll  (491)
<35+5+5—35 492

16NMk 8NMk 16NMk 8NMk' (492)
and
k
ugvg = | [explt - iyt - p)). (493)
j=1
Note that

k k
f( Y a-pya-p) <> [(a-pya-mp) @
j=1 j=1
=kt (1 — pymax{||h||: j = 1,2,...,k} < 5/16N (495)
forall t € T(A). It follows that

dist(u, 7y) < 6/16N in Uy(A)/CU(A). (496)
It follows from that
dist(u, 7)) < &/8N. (497)
On the other hand, foreachs = 1,2,..., N, by (493), (492) and (487)
[T(us) — t(vp)| < lt(®) — 7 (up)| + |r(ug) — 7(wp)l (498)
k
<llws = wgl+ |o| A= - =] [exo (it = psit = ») || 499)
j=1
< Nllu — uell +27(1 — p) (500)
< 30 + 0 <6 501
8Mk MNk ( )

for all T € T(A). From the above inequality and (497) and applying Corollary (2.3.4), one
obtains a unitary W € U(A) such that
lu — W, W|| <e. (502)
Puta =W~*((1 — p) + b)W. Then
lu — exp(ia)|| < e. (503)
Note that Theorem (2.3.11) does not assume that A is amenable, in particular, it may not
be a simple AH-algebra. The proof used a kind of uniqueness theorem for unitaries in a
unital simple C*-algebra A with TR(A) < 1. This bring us to the following theorem
which is an immediate consequence of Corollary (2.3.4).
Theorem (2.3.12)[94]. Let A be a unital simple C*-algebra with TR(A) < 1. Letu and v
be two unitaries in Uy (A). Then they are approximately unitarily equivalent if and only if
A(u) = A(v) and (504)
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T(u®) = 1(v*) forallt € T(4), (505)
k=1,2,....
Since A: Uy(A)/CU(A) - Aff(T(A))/pa(Ko(A)) is an isomorphism, one may ask if
(505) implies that A(u) = A(v)? In other words, would t(f(w)) = 7(f(v)) for all f €
C(SY) imply that A(uw) = A(v)? This becomes a question only in the case that

pa(Ko(A)) # Aff(T(A)). Thus we would like to recall the following:

Theorem (2.3.13)[94].

Let A be a unital simple C*-algebra with TR(A) < 1. Then the following are equivalent:
() TR(A) = 0,
(1) pa(Ko(A)) = Aff(T(4)) and
(ii) CUA) = Uy(A).

However, when TR(A) = 1, at least, one has the following:

Proposition (2.3.14)[94]. Let A be a unital simple infinite dimensional C*-algebra with

TR(A) < 1.1fa € py(Ky(A)), then

ra € pA(KO(A)) (506)
forall r € R. In fact, p,(K,(A)) is a closed R-linear subspace of Aff(T(4)).

Proof. Note that pA(K0 (A)) Is an additive subgroup of Aff(T'(A)). It suffices to prove the
following: Given any projection p € A, any real number 0 <r; <1 and € > 0, there
exists a projection g € A such that

|t (p) — t(q)| < eforallt € T(A). (507)
Choosen > 1 such that

Im/n — ;| <e€/2and1/n <e€/2 (508)

forsome1l < m < n.
Note that TR(pAp) < 1. By [89], there are mutually orthogonal projections
Qo) D1, P2+ Pn With [qo] < [p] and [p1] = [pi], i = 1L,2,...,nand Xi 1 p; + qo = p.
Put g = X, p;- We then compute that

|rit(p) —t(q)| < € forallt € T(A). (509)
Theorem (2.3.15)[94]. Let A be a unital simple infinite dimensional C*-algebra with
TR(A) = 1. Then there exist unitaries u,v € U,(A4) with

T(u®) =1(w*) forall t€ T(A),k = 0,+1,42,...,4n,...

such that A(u) # A(v). In particular, u and v are not approximately unitarily equivalent.
Proof. Since we assume that TR(A) = 1, then, by Theorem (2.3.13), Aff(T(A)) #

pa(Kow) and Uy(4)/CU(A) are not trivial.

Let k1, k, + K;(C(T)) = Uy(A)/CU(A) be two different homomorphisms. Fix an
affine continuous map s : T(A) — T¢(C(T)), where T;(C(T)) is the space of strictly
positive normalized Borel measures on T. Denote by y, : Aff(T(C(T))) — Aff(T(A4))
the positive affine continuous map induced by y,(f)(z) = f(s(z)) for all fe€
Aff(T(C(T))) and T € T(A). Let

Yo : Up(C(T))/CU(C(T)) = Aff(T(C(T)))/Z — Aff(T(A))/pa(Ko(A))
= Uo(A)/CU(A)
be the map induced by y,. Write
U(C(T))/CU(C(T)) = Uy(C(T))/CU(C(T)) & K;1(C(T)).
Define 4; : U(C(T))/CU(C(T)) - Uy,(A)/CU(A) by
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Ai(x @ z) = yo(x) + Ki(2)
for x € Uy(C(T))/CU(C(T)) and z € K,(C(T)),i = 1,2. That there are two unital
monomorphisms ¢4, @, : C(T) — A such that
(0D.i=0, @/ =% and g¢f=5 (510)
i = 1,2. Let z be the standard unitary generator of C(S1). Define u = ¢,(z) and v =
@2(2).
Then u,v € Uy(A). The condition that ¢/ = s implies that T(u*) = t(v¥) for all 7 €
T(A),k = 0,+1,%2,...,%n,....
But since 1, # 4,
A(u) # A(v).
Therefore u and v are not approximately unitarily equivalent.
Lemma (2.3.16)[94]. Let A be a unital separable simple infinite dimensional C*-algebra
with TR(A) < 1andleth € A be aself-adjoint element. Then h can be approximated by
self-adjoint elements with finite spectrum if and only if A € p,(Ko(4)),n = 1,2,....
Proof. If h can be approximated by self-adjoint elements so can hn. By Proposition
(2.3.14), p4(Ko(A)) is a closed linear subspace. Therefore A" € p,(Ky(A)) for all n.
Now we assume that A" € p,(Ko(4)),n = 1,2,.... The Stone-Weierstrass

theorem implies that f(h) € pa(Ko(A4)) for all real-value functions f € C(sp(h)). For
any € > 0, by Lemma 2.4 of [89], there is f € C(sp(x))sa. such that
IlF() — hll<e

and sp(f(h)) consists of a union of finitely many closed intervals and finitely many
points.

Thus, to simplify notation, we may assume that X = sp(h) is a union of finitely
many intervals and finitely many points. Let ¥ : C(X) = A be the homomorphism
defined by y(f) = f(h). Let s: T(A) — T,(C(X)) be the affine map defined by

f(s(t)) = Y(f)(r) forall f € Aff(C(X)) and t € T(A).

Let B be a unital simple AH-algebra with real rank zero, stable rank one and

(Ko(B), Ko(B)+,[15], K1 (B)) = (Ko(A), Ko ()4, [14], K1 (A)).

In particular, K,(B) is weakly unperforated. The proof on [89] provides a unital
homomorphism 1 : B — A which carries the above identification. This can be done by
applying of [89] and the uniqueness Theorem of [89], or better by corollary 11.7 of [71]
because TR(B) = 0, the map ¢ is not needed since U(B) = CU(B) and the map on
traces is determined by the map on K, (B).

Note that Aff(T(B)) = pp(K,(B)). By identifying B with a unital C*-subalgebra
of A, we may write pg(Ko(B)) = pa(Ko(4)).
Lety?: Aff(T(C(X))) = pa(Ko(A)) be the map induced by . This gives an affine map
y : Af(T(C(X))) — ps(Ko(B)). That there exists a unital monomorphism ¢ : C(X) —
B such that

Lo @, =1y, and (lo(p)[] = wlir
where (10 @)’ : Aff(T(C(X))) — Aff(T(A)) defined by (10 @) (a)(z) = t (10 ¢)(a)
for all a € Ag,.. It follows on [71] that ¥ and 1o ¢ are approximately unitarily
equivalent. On the hand, since B has real rank zero, ¢ can be approximated by
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homomorphisms with finite dimensional range. It follows that h can be approximated by
self-adjoint elements with finite spectrum.
Theorem (2.3.17)[94]. Let A be a unital separable simple infinite dimensional C*-algebra
with TR(A) < 1andletu € Uy(A). Then u can be approximated by unitaries with finite
spectrum if and only if u € CU(A) and

u™ ¥ (W) 1(u — (un)*) € pA(KO(A)),n =1,2,...
Proof. Suppose that there exists a sequence of unitaries {u,,} € A with finite spectrum
such that

Jim = .

There are mutually orthogonal projections p; ,,, P25, - - Pmm)n € 4 and complex numbers
M Aggr e or Amemym € CWith [2;,] = 1,i=1,2,...,m(n,) andn = 1,2, ..., such that

m(n)

lim ||u — E Ainbinl|| = 0.
n—>0oo
i=1

It follows that

m(n)
lim [[((u)™ + u™) — Z 2Re(/1i,n)pi,n = 0.
n—oo

i=1

By Proposition (2.3.14),

m(n)
> 2Re(Lin)n € palKorn))
i=1

ThusRe(u™) € pA(KO(A)). Similarly, Im(u™) € pA(KO(A)).
To show that u € CU(A), consider a unitary v = Y%, A;p,, Where {p1, 02, ..., Pm}
is a set of mutually orthogonal projections such that 372, p; = 1, and where |A;| = 1,i =

1,2,...,m. Write 4; = e'%i for some real number 0;,j = 1,2,.... Define
m
j=1

v = exp(ih).
By Proposition (2.3.14), h € p,(K,(4)). It follows from Theorem (2.3.7) that v €
CU(A). Since u is a limit of those unitaries with finite spectrum, u € CU(A).

Now assume u € CU(A) and u™ + ()", i(u™ — (u")*) € pa(Ky(4)) for n =
1,2,... If sp(u) # T, then the problem is reduced to the case in Lemma (2.3.16). So we
now assume that sp(u) = T. Define a unital monomorphism ¢:C(T) - A by ¢(f) =
f(u). By the Stone-Weirestrass theorem and Proposition (2.3.14), every real valued
funtion f € C(T), [p(f) € pa(Ko(A)).

As in the proof of Lemma (2.3.16), one obtains a unital C*-subalgebra B c A

which is a unital simple AH-algebra with tracial rank zero such that the embedding i: B —
A gives an identification:

(Ko(B), Ko(B)+, [15], K1(B)) = (Ko(A), Ko(A)+, [14], K1(A)).
Moreover, that there is a unital monomorphism y: C(T) — B such that

Then
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Y= 0 and (o)’ = ¢’

(o)t = ¢*

Note also

(both are trivial, since u € CU(A)).

It follows on (see [71]) that 1 o ¥ and ¢ are approximately unitarily equivalent. However,

since Y,; =0, in B, by [79], ¥ can be approximated by homomorphisms with finite

dimensional range. It follows that u can be approximated by unitaries with finite spectrum.
If A is a finite dimensional simple C*-algebra, then TR(A) = 0. Of course, every

unitary in A has finite spectrum. But CU(A) # Uy(A). To unify the two cases, we note that

K,(4A) = Z.

Instead of using p, (Ko (4)), one may consider the following definition:

Definition (2.3.18)[94]. Let A be a unital C*-algebra. Denote by V (p4(Ky(A))), the

closed R-linear subspace of Aff(T'(A)) generated by p,(K,(A)). Let II: Aff(T(A)) —

Aff(T(A))/V (pa(Ky(A))) be the quotient map. Define the new determinant

A: Uo(A) — Aff(T(A))/V (pa(Ko(A)))

A(u) = o A(u) forall u € Uy(A).
Note that if A is a finite dimensional C*-algebra Aff(T'(4)) =V (pa(K,(A4))). Thus A= 0.
If A is a unital simple infinite dimensional C*-algebra with TR(A) < 1, by Proposition
(2.3.14),

by

V (pa(Ko(4))) = pa(Ko(4)).
Definition (2.3.19)[94]. Suppose that u € A is a unitary with X = sp(u). Then it
induces a positive affine continuous map from y, : C(X),, — Aff(T(A)) defined by
Yo(f W) (@) = (f (W)

forall f e C(X);, and all T € T(A). Let A: Aff(T(A)) — Aff(T(A))/V (p4(Ky(A))).
PutT'(w) = Mo y,. Then I'(w) is a map from C(X),, into Aff(T(A))/V (p4(Ky(A))).

It is clear that, T'(w) = 0 if and only if u™+ (un)*i(u™+ (U™)*) €
V (ps(Ky(A))) foralln > 1.

Thus, we may state the following:
Corollary (2.3.20)[94]. Let A be a unital simple C*-algebra with TR(A) < 1andletu €
Uy(A). Then u can be approximated by unitaries with finite spectrum if and only if

A(uw)=0 and T'(u) =0.

Corollary (2.3.21)[94]. Suppose that u = exp(ih) for some self-adjoint element h € A.
If u € CU(A), then, by Theorem (2.3.7), A(w) = 0, i.e., h €V (ps(Ky(A))). So one
may ask if there are unitaries with A(u) = 0 but I'(u) # 0. Proposition (2.3.22) below
says that this could happen.
Proposition (2.3.22)[94]. For any unital separable simple C*-algebra A with TR(A) =1,
there is a unitary u with A(u) = 0 (or u € CU(A)) such that I'(u) # 0 and which is not
a limit of unitaries with finite spectrum.
Proof. Let e € A be a non-zero projection such that there is a projection e; € (1 —
e)A(1 — e) such that [e] = [e;]. Then TR(eAe) < 1. Since A does not have real rank
zero, one has TR(ede) = 1.

It follows from Theorem (2.3.13) that

AFE(T (eAe)) # pa(Ko(eAe)) = pa(Ko(d)).
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Choose h € (ede),, with ||h|| <1 such that A is not a norm limit of self-adjoint
elements with finite spectrum.

If h € pa(Ko(ede)), then define

u = exp(ih).
Then, A(u) = 0 and by Theorem (2.3.7), u € CU(A). Since h can not be approximated
by selfadjoint elements with finite spectrum, nor u can be approximated by unitaries with
finite spectrum since h = (1/i) log(u) for a continuous branch of the logarithm (note
that sp(u) = T).

Now suppose that i & p, (K, (ede)).

We also have, by Proposition (2.3.14), 2rh ¢ pA(KO(A)). We claim that there is a
rational number 0 < r < 1suchthatrh? — 2mh & p,(Ky(ede)).

In fact, if hZ € p,(K,(eAe)), then the claim follows easily. So we assume that
h2 ¢ p,(Ko(ede)). Suppose that, for some 0 < r; < 1,1h% —2mh € py(K,(ede)).
Then (1 —r;)h2 ¢ p,(Ko(ede)). Hence

h?2 —2mh = (1 — r)h? 4 (r,h? — 2mh) ¢ pA(KO(eAe)).
This proves the claim.

Now define h, =rh+ 2me; —w*rhw, where w € A is a unitary such that
w ew = e;. Put

u = exp(ih;)
It follows from Proposition (2.3.14) that
2ré; € pa(Ko(ede)).
Thus t(hy) = 2mt(ey) € pa(Ko(ede)). Therefore, by Theorem (2.3.7), u € CU(A).
Since

h? = r2R2 + Am2el — Anrh + r2R2 (511)

= 2r(rh? — 2rh) — 4m? &, & p,(Ko(4)). (512)

Therefore, by Lemma (2.3.16), h; can not be approximated by self-adjoint elements with

finite spectrum. It follows that u can not be approxiamted by unitaries with finite
spectrum.

Another question is whether I'(u) = 0 is sufficient for A(u) = 0. For the case that
sp(u) # T, one has the following. But in general, Proposition (2.3.24) gives a negative
answer.

Proposition (2.3.23)[94]. Let A be a unital separable simple C*-algebra with TR(A) < 1.
Suppose that u € Uy(A) with sp(u) = T. If I'(w) = 0, then A(u) = 0,u € CU(A) and u
can be approximated by unitaries with finite spectrum.

Proof. Since sp(u) # T, there is a real valued continuous function f € C(sp(u)) such
that u = exp(if (w)). Thus the condition that I'(w) = 0 implies that f(u) € ps(Ko(4)).
By Theorem (2.3.7), u € CU(A).

Proposition (2.3.24)[94]. Let A be a unital infinite dimensional separable simple C*-
algebra with TR(A) = 1. Then there are unitaries u € Uy(A) with I'(u) = 0 such that
u & CU(A). In particular, A(u) # 0 and u can not be approximated by unitaries with finite
spectrum.
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Proof. There exists a unital C*-subalgebra B < A with tracial rank zero such that the
embedding gives the following identification:

(Ko(B), Ko(B)+,[15], K1(B)) = (Ko(A), Ko(A)+, [1a], K1 (A)).

Note that Aff(T(B)) = ps(Ko(B)) = pa(Ko(4)).

Let weUy,(B) be a unitary with sp(w) =T. Thus TI'(w)=0. Let
y: Aff(T(C(T))) - Aff(T(A)) be given by y(f)(z) = t(f(w)) for f € C(T)s, and T €
T(A). Since TR(A) = 1, by Theorem (2.3.7), there are unitaries uy € U,(A) \CU(A). By
the proof of Theorem (2.3.15), there is a unitary u € U,(A) such that

u=u, and
T(f(u)) = T(f(W)) forall T € T(A)

and for all f € C(T)s,. Thus A(w) # 0 and I'(w) = I'(w) = 0. By Theorem (2.3.17), u
can not be approximated by unitaries with finite spectrum.
Corollary (2.3.25)[147]. Let A be a unital separable simple C*-algebra with TR(A) < 1.

Suppose that u? € Uy(A). Then the following are equivalent:
(i) u? € CU(A);
(i) A(u?) = 0;
(iii) for some piecewise continuous path of unitaries {u?(t):t € [0,1]} € A with
u?(0) = u?andu?(1) = 1,
R({u*(®)}) € pA(KO(A));
(iv) for any piecewise continuous path of unitaries {u?(t):t € [0,1]} c 4 with u?(0) =
u? and u2(1) = 1,,

R({u*()}) € pa(Ko(4)).
(v) there are h%, h3,..., h%, € A, ,2. such that
m m
u? = Hexp(ihjz) and Z h2 € pa(Ko(4)).
j=1 j=1
(Vi) XL, h? € pa(Ko(A)) forany hZ, h2,..., h% € A; 42. for which
m
u? = nexp(ihjz)
j=1

Proof. Equivalence of (ii), (iii), (iv), (v) and (vi) follows from the definition of the
determinant and follows from the Bott periodicy. The equivalence of (i) and (ii) follows on
[133].
The following is a consequence.
Corollary (2.3.26)[147]. Let A be a unital simple C*-algebra with TR(A) < 1 and lety :
C(T),q2 — Aff(T(A)) be a (positive) affine continuous map.
Forany e > 0, there exists § > 0 and there exists a finite subset F c C(T);, 42 satisfying
the following: If u? + € € U,(A) with

lt(f@w?®) —y(H@)| <8  forall f €F and v € T(A),and (513)

dist(u?,uZ +€) < § in Uy(A)/CU(A). (514)
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Then there exists a unitary W € U(A) such that

lu? — W*(w? + e)W| <e. (515)
Proof. The lemma follows immediately on [64]. See [71] and [64]. Note that of [64], we
can replace the given map h? (in this case a given unitary) by a given map y.
Corollary (2.3.27)[147]. Let A be a unital simple C*-algebra with TR(A) < 1 and let
u? € Uy(A) be a unitary. For any € > 0, there exists § > 0 and there exists an integer
N > 1 satisfying the following: If (u? + €) € U,(A) with

ltw?) — t ((W* +e)*)| <6,k = 1,2,...,N forallt € T(A) and (516)
dist(u?,u +€) <8 in Uy(A)/CU(A). (517)
Then there exists a unitary W € U(A) such that
lu? —wW*w? + e)W| < e. (518)
Proof. Note that (516),
lt(u?) — 1(W?+e)*)| < 6§ k = £1,42,...,£N. (519)

For any subset G c C(SY) and anyn > 0, there exists N > 1and § > 0 such that
|t(gw?) —t(g(w? +€))| <n forall teT(A)

if (519) holds.

Then the lemma follows from ([64])

Corollary (2.3.28)[147]. Let A be a unital simple C*-algebra with TR(A) < 1. Suppose

that u? € U,(4), then, for any e > 0, there exists a selfadjoint element a® € A, ,2 such

that

lu? — exp(ia?)|| < e. (520)
Proof. Since u? € U,(A4), we may write
k
u? = Hexp(ihjz). (521)
j=1

Let M = max{||h}||: j = 1,2,...,k} + 1. Lets > 0and N be given in 3.2 for u®. We
may assume that § < 1and N > 3. We may also assume that § < €. Since TR(A) < 1,
there exists a projection p? € A and a C*-subalgebra B € A with 1; = p? such that B =
@, C(X;, M), where X; = [0,1] or a point, and

2% — up?|| €« ——, 522

llp p-l TeR TR (522)
k

(1 - pur( = p?) = (1 = p2)| [expG((1 = pDREA = p?)

j=1

<—, 523

16N Mk (523)

2up? e B and 7(1 — p?) < ——= forall T € T(4). 524

P P 161€ME ( P ) 2NMk ( ) ( )

There exist unitary u? € B such that
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o)
Ip2u?p® — ufl <m (525)

Put us = (1 — p*) [1f-, exp(i(1 — p*>)h?(1 — p?). Since uf € B, it is well known
that there exists a selfadjoint element b% € B, ,2 such that

luf — p? exp(ib?)l < R (526)

Let ui+e= (1 — p?) + p?exp(ib?) and uj = p? exp(ib?) + us. Then, by (522),
(523), (525) and (526),

lug — w?l < llu* — p*u®p® — (1 — p*u*(1 — p?)l (527)
+H(@*u?p? — p? exp(ib?)) + (1 — pHu*(1 — p?) — u))ll (528)
36 5 5 35
= (529)
16N Tk | 8Nk 16Nk  8Nilk
and
k
uZ(ug? +€) = Hexp(i(l — PR — p?)). (530)
j=1
Note that
k k
t( YA - pri - ) Z - PR - p?) (531)
j=1 j=1
=kt (1 — p»)max{||h7|| : j Lk} < &/16N (532)

forall t € T(A). It follows that
dist(ﬁ,u_g +€) < §/16N in Uy(A)/CU(A). (533)
It follows from that

dist(u?,u2 + €) < &/8N. (534)
On the other hand, foreachs = 1,2,..., N, by (530), (529) and (524)
lt(@?) — t(u§ + €)°| < [t(@W?) — 7 (ug”)| + [t (ug®) — v(ug + €)°| (535)

<l - wdl+ [o| - p) -1 - pZ)Hexp (i - psit = ) || (536)

j=1
< Nflu? — udll +27(1 — p? (537)
36 5
— +——=< 6§ (538)
<8k MNE

for all T € T(A). From the above inequality and (534) and applying Corollary (2.3.27),
one obtains a unitary W € U(A) such that

lu?2 —Ww*(i +e)W| <e. (539)
Puta? = W*((1 — p2) + b2)W. Then
lu? — exp(ia?)|| < e. (540)

Note that Corollary (2.3.28) does not assume that A is amenable, in particular, it may not

be a simple AH-algebra. The proof used a kind of uniqueness theorem for unitaries in a
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unital simple C*-algebra A with TR(A) < 1. This bring us to the following theorem
which is an immediate consequence of Corollary (2.3.27).
Corollary (2.3.29)[147]. Let A be a unital simple infinite dimensional C*-algebra with

TR(A) < 1.1fa? € p,(K,(A)), then
ra® € pu(Ko(4)) (541)
forall r € R. In fact, p,(K,(A)) is a closed R-linear subspace of Aff(T(4)).

Proof. Note that pA(K0 (A)) Is an additive subgroup of Aff(T'(A)). It suffices to prove the
following: Given any projection p? € A, any real number 0 < r; <1 and € > 0, there
exists a projection p? + € € A such that

|rt (p?) — t(p? +€)| <e forall T € T(A). (542)
Choose n > 1 such that
Im/n — | <€/2and1/n <e€/2 (543)

forsomel < m < n.
Note that TR(p?Ap?) < 1. By [89], there are mutually orthogonal projections p3 +
€,p%,p5,...,p5 with [p§ +€] <[p{] and [pf]=[pfl.i = 1,2,...,n and ¥}, pf +
ps +€=p°
Put p? + € = ¥, p?. We then compute that

|Irnt(@?) —1(p? +€)| <€ forallt € T(A4). (544)
Corollary (2.3.30)[147]. Let A be a unital simple infinite dimensional C*-algebra with
TR(A) = 1. Then there exist unitaries u?,u? + € € U,(A) with

T(u?*) = 1 (u?*) forall € T(A),k = 0,£1,+2,...,4n,...
such that A(u?) # A(u? + €). In particular, u? and u? + € are not approximately unitarily
equivalent.
Proof. Since we assume that TR(A) = 1, then, by Theorem (2.3.13), Aff(T(A)) #
pa(Koay) and Uy(4)/CU(A) are not trivial.
Let iy, kK, : K;(C(T)) = Uy(A)/CU(A) be two different homomorphisms. Fix an affine
continuous map s : T(A) — T¢(C(T)), where T¢(C(T)) is the space of strictly positive
normalized Borel measures on T. Denote by y,: Aff(T(C(T))) — Aff(T(A)) the
positive affine continuous map induced by y,(f)(7) = f(s(z)) for all f € Aff(T(C(T)))
and T € T(A). Let
Yo : Ug(C(T))/CU(C(T)) = Aff(T(C(T)))/Z — Aff(T(A))/pa(Ko(A))
= Uo(A)/CU(A)
be the map induced by y,. Write
U(C(T))/CU(C(T)) = Uy(C(T))/CU(C(T)) & K;1(C(T)).
Define 4; : U(C(T))/CU(C(T)) — U,(A)/CU(A) by
Ai(x @ x4+ 2€) = yo(x) + ki(x + 2¢)
for x € Uy(C(T))/CU(C(T)) and x + 2¢ € K,(C(T)),i = 1,2. That there are two
unital monomorphisms ¢4, ¢, : C(T) — A such that
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@D.i=0, ¢ =24 and ¢/=s, (545)
i = 1,2. Let x + 2¢ be the standard unitary generator of C(S'). Define u? = @, (x + 2¢)
and u? + € = @, (x + 2¢).
Then u?,u? + € € Uy(A). The condition that ¢/ = s implies that T(u?¥) = T((u? + €)¥)
forallt e T(A),k = 0,+1,%+2,...,4n,...
But since 1, # 4,,

A(u?) # A(u? + e).

Therefore u? and u? + € are not approximately unitarily equivalent.
Corollary (2.3.31)[147]. Let A be a unital separable simple infinite dimensional C*-
algebra with TR(A) < 1 and let h? € A be a self-adjoint element. Then h? can be

approximated by self-adjoint elements with finite spectrum if and only if A2" €
pa(Ko(A)),n = 1,2,...

Proof. If h? can be approximated by self-adjoint elements so can h?n. By 3.6, m
is a closed linear subspace. Therefore h2" € m for all n.

Now we assume that h2» em,n = 1,2,.... The Stone-Weierstrass theorem

implies that f(h2) € py(K,(A)) for all real-value functions f € C(sp(h?)). For any € >
0, by [89], there is f € C(Sp(x))s.a2' such that
If(R?) — R?ll <€
and sp(f(h?)) consists of a union of finitely many closed intervals and finitely many
points.
Thus, to simplify notation, we may assume that X = sp(h?) is a union of finitely many
intervals and finitely many points. Let ¢ : C(X) — A be the homomorphism defined by
Y(f) = f(h?). Let s: T(A) = T¢(C(X)) be the affine map defined by f(s(r)) =
Y(f)(z) forall f € Aff(C(X)) and 1t € T(A).
Let B be a unital simple AH-algebra with real rank zero, stable rank one and
(Ko(B), Ko(B)+, [15], K1 (B)) = (Ko (A), Ko(A)+, [14], K1 (A)).

In particular, K,(B) is weakly unperforated. The proof of Theorem 10.4 of [89] provides a
unital homomorphism 1 : B — A which carries the above identification. This can be done
by [89] and the uniqueness Theorem of [89], or better by corollary 11.7 of [71] because
TR(B) = 0, the map ¢7 is not needed since U(B) = CU(B) and the map on traces is
determined by the map on K, (B).

Note that Aff(T(B)) = pp(K,(B)). By identifying B with a unital C*-subalgebra
of A, we may write pg(Ko(B)) = pa(Ko(4)).
Lety?: Aff(T(C(X))) = pa(Ko(A)) be the map induced by . This gives an affine map
Yy Af(T(C(X))) — pg(Ko(B)). It follows that there exists a unital monomorphism ¢ :
C(X) - B such that

Lo Py =lp*O and (loql))[] = 11157
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where (10 ¢)?: Aff(T(C(X))) — Aff(T(A)) defined by (1o@)/(a®>)(t) =1 (o
@) (a?) for all a® € A, 42. It follows from Corollary 11.7 of [71] that ¥ and 1o ¢ are
approximately unitarily equivalent. On the other hand, since B has real rank zero, ¢ can be
approximated by homomorphisms with finite dimensional range. It follows that h? can be
approximated by self-adjoint elements with finite spectrum.
Corollary (2.3.32)[147]. Let A be a unital separable simple infinite dimensional C*-
algebra with TR(A) < 1 and let u? € Uy(A). Then u? can be approximated by unitaries
with finite spectrum if and only if u? € CU(A) and

u?n + (w2n)*, (un — W?)*) € pa(Ko(A),n = 1,2,....
Proof. Suppose that there exists a sequence of unitaries {u2} c A with finite spectrum
such that

lim u? = u?,
n—0o

There are mutually orthogonal projections p% ., p3.,, ..., pfn(n),n € A and complex numbers
Mg eor Ameyn € CWith [4,| =1,i=1,2,...,m(n,) andn = 1,2, ..., such that

m(n)
lim [[u? — E Liapin|l = 0.
n—oo ’

i=1

It follows that

m(n)

lim [|((u*)?" + u?") — z 2Re(A)pia|| = 0.
n—oo
i=1

By Corollary (2.3.29),

m(n)

> 2Re(i )l € pa(Ko (D).
i=1

Thus Re(u?™) € pu(Ko(A)). Similarly, Im(u?™) € p,(Ko(4)).
To show that u? € CU(A), consider a unitary u? + e = Y.1%, A;p2, where {p?,p3,...,p%}
is a set of mutually orthogonal projections such that ), pjz =1, and where [4;| =

Li=1,2,..,mWrtej = e'%7 for some real number 9]-2 ,j = 1,2,....Define
m
2 _ 2,.2
W2 = 6p?.
j=1

u? + e = exp(ih?).
By Corollary (2.3.29), hZ € p,(Ky(A)). It follows from Theorem (2.3.7) that u? + € €
CU(A). Since u? is a limit of those unitaries with finite spectrum, u? € CU(A).
Now assume u? € CU(4) and u?™ + (u2m)*,i(u2" — (u2")*) € p,(Ko(4)) for n =
1,2,.... If sp(u?) # T, then the problem is reduced to the case in Corollary (2.3.31). So

Then
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we now assume that sp(u?) = T. Define a unital monomorphism ¢:C(T) » A by
o(f) = f(u?). By the Stone-Weirestrass theorem and Corollary (2.3.29), every real

valued funtion f € C(T), [¢(f) € pa(Ko(A)).
As in the proof of Corollary (2.3.31), one obtains a unital C*-subalgebra B < A which is
a unital simple AH-algebra with tracial rank zero such that the embedding i: B — A gives
an identification:
(Ko(B), Ko(B)+,[15], K1(B)) = (Ko(A4), Ko(A)+, [1a], K1 (4)).
Moreover, by Lemma 5.1 of [8] that there is a unital monomorphism : C(T) — B such
that
g =0 and (o9p)’ = "
Note also
(o)t = ot
(both are trivial, since u? € CU(A)).
It follows from ([71]) that 1 o ¥ and ¢ are approximately unitarily equivalent. However,
since Y,; =0, in B, by [79], ¥ can be approximated by homomorphisms with finite
dimensional range. It follows that u? can be approximated by unitaries with finite
spectrum.
If A is a finite dimensional simple C*-algebra, then TR(A) = 0. Of course, every unitary
in A has finite spectrum. But CU(A) # Uy(A). To unify the two cases, we note that
Ky,(A) = Z.
Instead of using p4 (KO (A)), one may consider the following definition:
Corollary (2.3.33)[147]. For any unital separable simple C*-algebra A with TR(A) =1,
there is a unitary u? with A(u?) = 0 (oru?® € CU(A)) such that T'(u?) # 0 and which is
not a limit of unitaries with finite spectrum.
Proof. Let e? € A be a non-zero projection such that there is a projection ef € (1 —
e?)A(1 — e?) such that [e?] = [eZ]. Then TR(e?4e?) < 1 by 5.3 of [4]. Since A does
not have real rank zero, one has TR(e?4e?) = 1.
It follows from Theorem (2.3.13) that

AFF(T (e2Ae?)) # pa(Ko(e?Ae?)) = pa(Ko(A)).
Choose h? € (e?Ae?), ,2 with ||h?|| < 1 such that h? is not a norm limit of self-adjoint
elements with finite spectrum.

If k2 € p,(Ky(e2Ae?)), then define

u? = exp(ih?).

Then, A(u?) = 0 and by Theorem 2.9, u? € CU(A). Since h? can not be approximated
by selfadjoint elements with finite spectrum, nor u? can be approximated by unitaries with
finite spectrum since h? = (1/i) log(u?) for a continuous branch of the logarithm (note
that sp(u?) = T).

Now suppose that i & p, (K, (e24e?)).
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We also have, by Corollary (2.3.29), 2rh? ¢ m. We claim that there is a rational
number 0 < r < 1suchthatrh® — 2mh? & p,(K,(e24e?)).
In fact, if h* € p,(Ko(e2Ae?)), then the claim follows easily. So we assume that h? ¢
pa(Ko(e2Ae?)). Suppose that, for some 0 < r; < 1,1h* — 2mh? € p,(K,(e?Ae?)).
Then (1 — r)h* ¢ p,(Ko(e2Ae?)). Hence

h* —2mh? = (1 — r))h* + (,h* — 2mh?) ¢ pa(Ko(e?4e?)).
This proves the claim.

Now define h? = rh? + 2me? — w*rh?w, where w € A is a unitary such that w*e?w =
2
ei. Put

u? = exp(ih?)

It follows from Corollary (2.3.29) that
27121E € pA(Ko(eerz)).

Thus t(h?) = 2nt(e?) € ps(Ko(e24e?)). Therefore, by 2.9, u? € CU(A). Since

hF = 72h* + 4n%el? — Amrh? + 2R (546)

= 2r(rh* — 2mh?) — 4m? e’ ¢ pa(Ko(4)). (547)

Therefore, by Corollary (2.3.31), h? can not be approximated by self-adjoint elements
with finite spectrum. It follows that u? can not be approxiamted by unitaries with finite
spectrum.
Another question is whether I'(u?) = 0 is sufficient for A(u?) = 0. For the case that
sp(u?) = T, one has the following. But in general, Corollary (2.3.35) gives a negative
answer.
Corollary (2.3.34)[147]. Let A be a unital separable simple C*-algebra with TR(A) < 1.
Suppose that u? € Uy(A) with sp(u?) # T. If ['(u?) = 0, then A(u?) = 0,u? € CU(A)
and u? can be approximated by unitaries with finite spectrum.
Proof. Since sp(u?) # T, there is a real valued continuous function f € C(sp(u?)) such

that u? = exp(if (u?)). Thus the condition that [(u2?) =0 implies that f(u?) €
pa(Ko(A)). By Theorem (2.3.7), u? € CU(A).
Corollary (2.3.35)[147]. Let A be a unital infinite dimensional separable simple C*-
algebra with TR(A) = 1. Then there are unitaries u? € Uy(A4) with I'(u?) = 0 such that
u? ¢ CU(A). In particular, A(u?) # 0 and u? can not be approximated by unitaries with
finite spectrum.
Proof. There exists a unital C*-subalgebra B < A with tracial rank zero such that the
embedding gives the following identification:

(Ko(B), Ko(B)+, [151, K1 (B)) = (Ko(A), Ko(A)+., [14], K1 (A)).
Note that Aff(T(B)) = ps(Ko(B)) = pa(Ko(A)).
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Let w2?2€Uy(B) be a unitary with sp(w?) =T. Thus T'(w?)=0. Let
y: Aff(T(C(T))) — Aff(T(A)) be given by y(f) (1) = t(f (u?)) for f € C(T),,2 and T €
T(A). Since TR(A) = 1, by Theorem (2.3.7), there are unitaries uZ € U,(4) \CU(A). By
the proof of Corollary (2.3.30) (see also Theorem (2.3.8)), there is a unitary u? € U,(4)
such that
u? =u2 and
t(f(w?) = t(f(w?)) for all 7 € T(A)

and for all f € C(T),,2. Thus A(u?) # 0 and I'(u?) = I'(w?) = 0. By Corollary (2.3.32),
u? can not be approximated by unitaries with finite spectrum.
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