Chapter 1
Primitively of Unital Products Homomorphisms in C*-Algebra

A C*-algebra is called primitive if it admits a faithful and irreducible *-representation .Let
A and B be unital separable simple amenable C*-algebras which satisfy the Universal
Coefficient Theorem. Suppose that A and B are Z-stable and are of rationally tracial rank
no more than one. We show that this holds if A is a rationally AH -algebra which is not
necessarily simple. Moreover, for any strictly positive unit-preserving k € KL(A4, B), any
continuous ~ affine map A: Aff(T(4)) - Aff(T(B)) and any continuous group
homomorphism y:U(A)/CU(A) —» U(B)/CU(B) which are compatible.
Section (1.1): Full Free Products of Residually Finite Dimensional C*-Algebras

A C*-algebra is called primitive if it admits a faithful and irreducible *-representation.
Thus the simplest examples are matrix algebras. A nontrivial example, shown
independently by Choi and Yoshizawa, is the full group C*-algebra of the free group on n
elements, 2 < n < oo, see [146] and [11]. In [17], Murphy gave numerous conditions for
primitivity of full group C*-algebras. More recently, T. A. Omland showed in [27] that for
G, and G, countable amenable discrete groups and o a multiplier on the free product G, *
G,, the full twisted group C*-algebra C* — (G, * G,, ¢) is primitive whenever (|G;| —
DG -1) = 2.

We prove that given two nontrivial, separable, unital, residually finite dimensional
C*-algebras A,;and A,, their unital C*-algebra full free product A; * A, is primitive except
when 4; = C? = A,. The methods used are essentially different from those in [17], [146],
[2] and [105] but do rely on [40] that A; x A, is itself residually finite dimensional.
Roughly speaking, we first show that if (dim(4;) —1)(dim(4,) — 1) = 2, then there is
an abundance of irreducible finite dimensional *—representations and later, by means of a
sequence of approximations, we construct an irreducible and faithful *—representation.
Proposition (1.1.1)[30]: Let B be a finite dimensional C*-algebra and assume B
decomposes as

EB]!:1 BJ'
and there is a positive integer n such that all B; are =—isomorphic to M,,. Fix {f;: B; -
My }1<j<; @ set of x—isomorphisms.
(i) For a permutation o in S; define y;: B — B by
Ys(by,..., b]) = (/31_1 ° .30—1(1)(190—1(1))»---rﬁ]_l ° ﬁa—1(])(ba—1(]))-

Then 3, lies in Aut(B) and the map o+ 1), defines a groupembedding of S;into
Aut(B).
(if) Every element « in Aut(B) factors as

(69]!:1 Ad w;) o Y,
for some permutation o in S; and unitaries u; in U(B;).
(iii) There is a exact sequence

0 - Inn(B) — Aut(B) - §; - 0.

So far we have considerC*-algebras with only one type of block sub-algebra, so to speak.
Next proposition shows that a *—automorphism cannot mix blocks of different dimensions.

As a consequence, and along with Proposition (1.1.1), we get a general decomposition of
*—automorphisms of finite dimensional C*-algebras.
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Proposition (1.1.2)[30]: Let B be a finite dimensional C*-algebra. Decompose B as
=@l BGD.
Where for each i, there is a positive integer n; such that B(i, ) is isomorphic to M, for
alll <j <]J;, i.e. we group sub-algebras that are isomorphic to the same matrix algebra,
and wheren; <n, < - < n,.
Then any « in Aut(B) factors as a« =@!_; a; where
a; :®;L, B(i,)) ~®]L, iB())

IS a *—isomorphism.

We summarize some result that, later on, will be repeatedly used. Definitions and proofs
of results mentioned can be found in [56] and [53].
Theorem (1.1.3)[30]: Any closed subgroup of a Lie group is a Lie subgroup.
Theorem (1.1.4)[30]: Let G be a Lie group of dimensionnand H < G be a Lie subgroup
of dimension k.
(i) Then the left coset space G/H has a natural structure of a manifold of dimension n —
k such that the canonical quotient mapr : ¢ — G/H, is a fiber bundle, with fiber
diffeomorphic to H.
(if) If H is a normal Lie subgroup then G /H has a canonical structure of a Lie group.
Proposition (1.1.5)[30]: Let ¢ denote a Lie group and assume it acts smoothly on a
manifold M. Form € M let O(m) denote its orbit and Stab(m) denote its stabilizer i.e.

O(m)={g.m: g € G},
Stab(m)={g € G: g.m = m}.
The orbit O(m) is an immersed submanifold of M. If O(m) is compact, then the map g —
g.m, is a diffeomorphism from G /Stab(m) onto O(m). (In this case we say O(m) is an
embedded submanifold of M.)
Corollary (1.1.6)[30]: Let G be a compact Lie group and let K and L be closed subgroups
of G. The subspace KL = {kl: k € K,l € L} is an embedded submanifold of G of
dimension
dimK + dimL — dim(L n K).
Proof: First of all KL is compact. This follows from the fact that multiplication is
continuous and both K and Lare compact. Consider the action of K X L on G givenby
(k,1).g = kgl™1. Notice that the orhit of e is precisely KL. By Proposition (1.1.5), KL is
an immersed sub-manifold diffeomorphic to K x L/Stab(e). Since it is compact, it is an
embedded submanifold. But Stab(e) = {(x,x): x € K n L} and we conclude
dimKL = dim(K X L) — dim Stab(e) = dimK + dimL — dim(K n L).
Proposition (1.1.7)[30]: Let G be a compact Lie group and let H be a closed subgroup.
Let = denote the quotient map onto G /H.
There are:
(i)Vg, a compact neighborhood of ein G,
(ii)Vy , a compact neighborhood of e in H,
(iii) Vg /u, @ compact neighborhood of (e) in G/H,
(iiii) a continuous function s: Vg (t(e)) — G satisfying
(@) s(n(e)) = eandn(s(y)) = y forallyin Ng,u(m(e)),
(b) The map
Ny X Ng/u = Ne, (h,y) ¥ hsy(y)

Is a homeomorphism.



Notation (1.1.8)[30]: Whenever we take commutators they will be with respect to the
ambient algebra M, in other words for a sub-algebra4 in *-SubAlg(My)
A'={x €My : xa = ax,forall ain A}.

Recall that C(A) denotes the center of A i.e.

C(A) = AnA ={a € A: xa = axforall x in A}.
Proposition (1.1.9)[30]: For any B, in *-SubAlg(My) and for any B in *-SubAlg(B;), we
have

dim Stab(B;,B) = dimU(B) + dim U(B; N B") — dimU(C(B)).

Proof: We’ll find a normal subgroup of Stab(B;,B), for which we can compute its
dimension and that partitions Stab(B,, B) into a finite number of cosets. Let G denote the
subgroup of Stab(B,, B) generated by U(B; N B")and U(B). Since the elements of U(B)
commute with the elements of U(B; N B"), a typical element of G looks like vw,where v
lies in U(B) and w lies in U(B; N B'). Taking into account compactness of U(B)and
U(B, n B"), we deducedG is compact.

Now we show G is normal in Stab(B;,B). Take u an element in Stab(B,,B). For a
unitaryv in U(B) it is immediate that uvu* lies in U(B). For a unitary win U(B, N B’),
the following computation shows uwu* belongs to U(B; N B").

For any element b in B we have:
(uwu*)b = uww@buw)u® = u(u*bu)wu* = b(uwu®),

where in the second equality we used u*bu lies in B. In conclusion uGu™* is contained in G
for all uw in St(By, B)i.e. G is normal in Stab(B4, B).
As a result Stab(B4,B)/G is a Lie group. The next step is to show Stab(B,,B)/G is
finite. Decompose B as

B = @@L, BG.)),
where for all i there is k; such that for 1 < j < J;, B(i,j) is *-isomorphic to M, . For
the rest of our proof we fix a family, 5 (i,j) : B(i,j) — M, of ~—isomorphisms.
An element u in Stab(B,,B) defines a *—automorphism of B by conjugation. As a
consequence, Propositions (1.1.1) and (1.1.2) imply there are permutations o; in S;, and
unitariesv; in [U(EB}LI B(i,))) such that

Vb € B: ubu* = vy(b)v” (D
Where v =@j_, v; is a uitary in U(B) and ¥ =@{_, Y,,is a *—automorphism in Aut(B)
(the maps y depends on the family of *—isomorphismspg (i, j) we fixed earlier). Equation
(1) is telling us important information. Firstly, that i extends to an*—isomorphism of B,
and most importantly, this extension is an inner *-automorphism. Fix a unitaryU,, in
U(B,;) such that y(b) = AdU,(b) forall b in B (note that U,, may not be unique but we
just pick one and fix it for rest of the proof ). From equation (1) we deduce there is a
unitary w in U(B; n B") satisfying u = vU,,w. Since the number of functions v, that may
arise from (1), is at most /;! ...J;!, we conclude

|Stab(B;,B) /G| <J;! .. J;!.

Now that we know Stab(B4,B)/G is finite we have dimStab(B;,B) = dim G, and *-
gives the result. From Proposition (1.1.9), we get the following corollary.
Corollary (1.1.10)[30]: For any B; in *-SubAlg(My) and any B in *-SubAlg(B;), we
have

dim[B]s, = dimU(B;) — dimU(B' N B,) + dimU(C(B)) — dimU(B).
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Now we focus our efforts on Y (B,; B).
Proposition (1.1.11)[30]: Assume Y (B,; B) # @. Then Y(B,; B) is a finite disjoint union
of embedded submanifolds of U(M,). For each one of these submanifolds there is u €
Y (B,; B) such that the submanifold’s dimension is
Stab(My,B) + dimU(B;) — dimStab(B,, u"Bu).

Using Proposition (1.1.9) the later equals

dimU(B") + dimU(B,) — dimU(B,,u"B'u). (2)
Proof: We’ll define an action on Y (B,; B) which will partition Y (B,; B) into a finite
number of orbits, each orbit an embedded sub-manifold of dimension (2) for a
corresponding unitary. Define an action of Stab(My,B) X U(B,) onY(B,; B) via

(w,v).u = wuv”.
For u € Y(B,; B) let O(u) denote the orbit of u and let O denote the set of all orbits. To
prove O is finite consider the function
@ : 0 =% —SubAlg(B;)/ ~p,, ¢(0(w)) = [u"Bu]g, .
Firstly, we need to show ¢ is well defined. Assume u, € O(u,) and take (w,v) €
Stab(My, B) X U(B,) such that u, = wu,v*. From the identities
u,Bu, = vu;w*Bwu,v* = vy Bu v’

we obtain [u,Bu;]p, = [uBuj]p,. Hence ¢ is well defined.
The next step is to show ¢ is injective. Assume @(0(uy)) = @(0(uy)), for u,,u, €
Y(By; B). Since [u;Bujlg, = [u;Buz]p, , we have uzBu, = vu,Bu,v* for some v €
U(B;). But this implies w,v*u; € Stab(My,B)so if w =wu,v*u; we conclude
(w,v).u, =u,; Wwhich yields O(u;) = O(u,). We conclude |0| < | *x —=SubAlg(B,)/
~p, | < o,

Now we prove each orbit is an embedded submanifold of U(My) of dimension (2).
Since Stab(M,, B) X U(B,) is compact, every orbit O(u) is compact. Thus, Proposition
(1.1.5) implies O (u) is an embedded submanifoldof U(My ), diffeomorphic to

(Stab(My,B) x U(B,))/Stab(u)
where

Stab(u) = {(w,v) € Stab(My,B) X U(B,): (w,v).u = u}.
Since
w,v).u = u © wuv’® = u S u'wu = v,
we deduce the group Stab(u) is isomorphic to
U(By) N [u*Stab(My, B)u],
via the map (w, v) — v. A straightforward computation shows
u*Stab(My, B)u = Stab(My,u"Bu),

for any u € U(My). Hence, for any u € Y(B,; B), dimO(u) = dim Stab(My, B) +
U(B,) — dimU(B,) N Stab(My,u*Bu).  Lastly, one can check U(By)n
Stab(My,u"Bu) = Stab(B,,u*Bu).
Lemma (1.1.12)[30]: Suppose ¢ : A; = A, is a unital *-homomorphism and A; is
isomorphic to eajl.":l My, jy, (i = 1,2). Then ¢ is determined, up to unitary in A,, by on
[, x 1, matrix, written p = pu(¢) = u(4,,4,) , having nonnegative integer entries

such that
kq(1) k(1)
[klal)] [kzélz)l'



We call this the matrix of partial multiplicities. In the special case when ¢ is a unital *—
representation of A;into My, u is a row vector and this vector is called the multiplicity of
the representation. One constructs p as follows: decompose A,, as
4y =@, 40)
where each A, (j) is simple, p = 1,2,1 < j < [,,. Taking projections, 7 induces unitalx—
representations r;: A, = A,(i),1 < i < l,. But up to unitary equivalence, m; equals
idg, (1) D .. B idy, (1) B ... D idy, ) B ... D idy, 1
mi,1—times m;,li—times
for some nonnegative integer m; ;,1 <j <1[;. Set p[i,j] :=m;;. In particular, u[i,/]
equals the rank of m;(p) € A, (i), where p is a minimal projection in A;(j). Clearly, m is
injective if and only if for all j there is i such that p[i, j] # 0.
Furthermore, the C*-subalgebra
A, Nnp(A) ={x €A, : xp(a) = p(a)x foralla € A}

Isx—isomorphic toEB?:lEB]l.Ll M, and if we have morphismsA; - A, - A4j,
then w(A4s, A,)u(4,, A1) = w(4;, A,) for the corresponding matrices.

Our next task is to show d(B) < NZ2, for abelianB # C. We prove it by cases, so let us
start.
Lemma (1.1.13)[30]: Assume B; is =*—isomorphic toM, ,(i=1,2) and let k=
gcd(kq, k,). Take B a unital C*-subalgebra of B, such that it is unitarily equivalent to a
C*-subalgebra of B,. Then there is an injective unital *—representation of B into M,,.
Proof: Take u in Y(B,; B) so that u*Bu < B,. Let m; := u(My, B;), so thatm;k; =
N,(i = 1,2). Find positive integers p; and p, such that k;, = kp; and k, = kp,
Assume B is *—isomorphic to 695-:1 M.
To prove the result it is enough to show there are positive integers (m(1),...m(l)) such
that

nym(l) +--+nm(l) = k.
Let
W(By, B) = [my(1),...,my(D]u(Bz, u"Bu) = [my(1),...,my(D].
Since w(My, B))uW(By,B) = w(My,By)u(B,, u*Bu) we deduce that mym,(j) =
m,m,(j) forall 1 < j < [. Multiplying by k and usingN = m,k, = m,k, we conclude

N N

—my (j) = kmym,(j) = kmym,(j) = —m;(j)

P1 b2

m4(Jj) — my(J)

P1 D2

so p,my(j) = pym,(j). Since gcd(py,p2) = 1, the number IS a positive

integer whose value we name m(j). From
l l

kp, = ki = Z n;my(j) = z n; m(j)py,
j=1 j=1
we conclude k = X'_; n; m(j)p;.
Lemma (1.1.14)[30]: Fix a positive integer n and let ry,...,7;, be positive real numbers.
Then



n 2 n
_ X 1
min Z—ijzl =S
j=1 r] ]:1 ]=1 r]

where the minimum is taken over all n —tuples of real numbers that sum up to 1.
Proposition (1.1.15)[30]: Assume B; and B, are simple. Take B # C an abelian unital C*-
subalgebra of B, that is unitarily equivalent to a C*-subalgebra of B,. Then d(B) < N?2.
Lemma (1.1.16)[30]: For an integer k > 2 define

1 2 1 2
h(x,y) = 2xy — (1 +ﬁ)y X
Then
1 1
max{h(x,y) |0 < x < 1,0 <y < 1/2} =7~ 5
Proposition (1.1.17)[30]: Suppose dimC(B;) = 2 and B,is *—isomorphic to
My /dimesy) @ - @ Mn/dime(s,)- (3)

Assume one of the following cases holds:
(i) dimC(B,) =1,
(if) B;isx—isomorphic to
My, @ My ».
B,isx—isomorphic to
My /2 D My 210-
wherek > 2.
(iii) dimC(B,) = 3andB, is *—isomorphic to
My /dimcs,) D - D My /dimes,)-
Then for any B # C an abelian unital C*-subalgebra of B, that is unitarily equivalent to a
C*-subalgebraof B,, we have that d(B) < N2.
Lemma (1.1.18)[30]: Take B # C a unital C*-subalgebra of B, that is unitarily equivalent
to a C*-subalgebra of B,. If dimU(B;) + dimU(B,) < N2,B is simple and C in *-
SubAlg(B) is *—isomorphic to C?, then d(B) < d(C).
Proof: Assume B is *—isomorphic to M; and let m denote the multiplicity of Bin M.
Thus we must have km = N. Take a unitary u in the submanifold of maximum
dimension in Y(B,; B), so that d(B) is the sum of the terms
S:(B):= dimU(B,) — dimU(B, N B'),
S,(B): = dim U(B,) — dimU(B, N u*B'w),
S;(B):= dim U(B"),
S,(B):=dimU(B n B") — dimU(B).
and let v lie in the submanifold of maximum dimension in Y(B,, C) so that d(C) is the
sum of the terms
$,(C): = dimU(B;) — dimU(B, N C"),
S,(C):=dim U(B,) — dimU(B, N v*C'v),
S5(C): = dim U(C").
Clearly, S,(B) = 1 — k?*.We write
Ly l
By = @ Mg, B2= & My,
i=1 i=1
and



5(31) = [kl(l)w--»k1(l1)]t;5(32) = [kz(l):---;kz(lz)]t-
From definition of multiplicity and the fact that it is invariant under unitary equivalence
we get
|.1(B1,B)k = 5(31): (4)
W(Bz, u*'Bu)k = &(By),
W(My,B1)6(B,) = p(My,B;)8(B;) = N, u(My, B)W(By, B) = w(My, B)p(B,, u*Bu)
= m.
From Lemma (1.1.12) and equation (4) we get

1
dimU(B; N B") = ﬁdim[U(Bl). (5)
Hence
1
S.(B) = (1 - ﬁ) dim U(B,).
Similarly
1

Now it is the turn of C. To ease notation let

H(B, C) = [x17x2]'
Notice that x,, +x, = k.We claim
2 2

$.(C) = (1 4 ];x2> dim U (B,).

Using u(By,C) = u(By, B)u(B, C) we get
dimU(B; N C) = (x% + x%) dimU(B; n B").
Furthermore using (5) we obtain

. N XA
dimU(B; n C) = 2 dimU(B,).
Hence our claim follows from definition of S; (C). Similarly
xi+ x5\
S,(C) = <1 i )dlm[U (B,).
Lastly from u(My, C) = [mx;, mx,] and mk = N we get
2 NZ

— 2 2 N —
S3(C) = (xf + x3 %z S3(B) = 2
To prove d(B) < d(C) we’ll show
51(B) = 51(C) +53(B) —5,(C) +S54(B) = 53(C) —S53(B).  (6)
Using the description of each summand we have that left hand side of (6) equals

xi+xs—1 _ 5
P (dimU(B;) +dimU (B,)) + 1 — k~.
The right hand side of (6) equals
xf+x; -1
k? '

But x; and x, are strictly positive, because C is a unital subalgebra of B. Hence we can
cancel x# + x2 — 1 and finish the proof by using that 1 — §(B)? < 0 and the assumption
dim U (B;) + dimU (B,) < NZ.

We recall an important perturbation result that can be found in [27].



Lemma (1.1.19)[30]: Let A be a finite dimensional C*-algebra. Given any positive
number ¢ there is a positive number § = &(¢) so that whenever B and C are unital C*-
subalgebras of A and such that € has a system of matrix units {ec(s, i, )}, , satisfying
dist(e-(s,i,j),B) < 6 for all s,i and j, then there is a unitary u in U(C*(B,C)) with
llu — 1|| < eso that uCu* € B.
Notation (1.1.20)[30]: For an element x in My and a positive number &, V. (x) denotes
the open & —neighborhood around x (i.e. open ball of radius & centered at x), where the
distance is from the operator norm in My,.
Lemma (1.1.21)[30]: Take B in x-SubAlg(B,) and assume Z(By, B,; [B]p,) is nonempty.
Then the function

Z(BIJBZ; [B]Bl) - [B]Bl (7)

u+— uB,u* N By

IS continuous.

Proof: Assume B is *—isomorphic to
[

D My,
s=1
First we recall that the topology of [B]p, is induced by the bijection
U(B,)

B:1Bls. = SapB, BY’
For convenience let = : U(B;) — U(B;)/Stab(B,, B) denote the canonical quotient map.
Pick wyin Z(By, By; [B]g,). With no loss of generality we may assume B = uyB,ug N By.
We prove the result by contradiction. Suppose the function in (7) is not continuous at w.
Then there is a sequence (uy)k=1 < Z(B1, B;; [B]p,) and an open neighborhood N of B in
[B]p, such that
(i) limpuy, = u,,
(i1) for all k, u,B,u;, N By € V.
On the other hand, let e >0 be such that =w(N:(1p)) SLV).
Let{ex (s, [, j)}1<s<i,1<i,j<k, denote a system of matrix units for w, B,u; N By . Fix elements
fr(s,i,j) In Bysuch that ey(s,i,j) = ugfi(s,i,j)ug.Since B, is finite dimensional,
passing to a subsequence if necessary, we may assume that li{n fi (s,i,)) = f(s,i,)), for

B(uBu*) = uStab(B,, B).

all s,i and j. Using property (i) of the sequence (u)xs1, We deduce

limey (s,8,/) = limuy fie(s, i, Duge = uof (5,1, ))ue.
Hence the element e(s,i,j) = uyf(s,i,j)u* belongs to uyB,uy N B; = B. Use Lemma
(1.1.13) and take &; positive such that whenever C is a subal-gebra in x-
SubAlg(B;)having a system of matrix units{ec (s, i,j)}s, ; satisfying dist(ec(s,i,j), B) <
&y,for all s,i and j, then there is a unitary Q in U(B,) such that ||Q — 15, || < € and
QCQ* € B.Take k such that ||e,(s,i,j) — e(s,i,j)|| < &; forall s,i and j. This implies
dist(ec(s,i,j),B) < &, for all s,iand j. We conclude there is a unitary Q in U(B,) such
that ||Q — 15| < eand Q*(uxB,uj, N B,)Q € B. But dim B = dimw,B,uj N B; =
dimQ* (u,B,uy N B1)Q,
where in the first equality we used that u, lies in Z(By, By; [B]p, ). Hence Q" (u,Byuy N
B;)Q = B. As aconsequence,

B(uxByuz N By) = ﬁ(gBQ*) =n(Q) € B(N).



But the latter contradicts property (ii) of (uy)k>1-
Lemma (1.1.22)[30]: For B in *-SubAlg(B), the function c: [B]z, — [C(B)]p, given by
c(uBu*) = uC(B)u™ is continuous.
Proof: First, we must show the function c is well defined. In other words we have to
show Stab(B,,B) < Stab(B,,C(B)). But this follows directly from the fact that any u in
Stab(B,, B) defines a *—automorphism of B and any *—automorphism leaves the center
fixed. Since [B]p, and [C(B)]p, are homeomorphic to U(B;)/Stab(B,,B) and U(B,)/
Stab(B,, C(B)) respectively, it follows that ¢ is continuous if and only if the function
¢:U(B;)/Stab(B,B) = U(B;)/Stab(B,,C(B)) given by ¢(uStab(By,B)) =
uStab(B;,C(B)) is continuous. But the spaces U(B;)/Stab(B,,B) and U(B,)/
Stab(B,, C(B)) have the quotient topology induced by the canonical projections
g : U(B;) = Stab(By, B), - (B):U(B;) = U(B,)/Stab(By, C(B)).
Thus ¢ is continuous if and only if g o ¢ is continuous. But mg o ¢ = m¢(p), Which is
indeed continuous.
We are ready to find local parameterizations of Z(B,, B,; [B]g,).
Proposition (1.1.23)[30]: Take B a unital C*-subalgebra in B; that is unitarily equivalent
to a C*-subalgebra of B,. Fix an element wyin Z(By, By; [B]p,). Then there is a positive
number rand a continuous injective function
¥ : Ny(uo) N Z(By, By; [Blp,) = RACE,
Proof: Using that Z(By,B,; [B]g,) = Z(B1,B,; [ugByug N By]p,), with no loss of
generality we may assume uy,B,uy N B; = B. Now, we use the manifold structure of
[C(B)]g, and Y (Bz; C(B)) to construct ¥. Note that if Y (B,, B) is nonempty then
Y (B, C(B)) is nonempty as well. Let d; denote the dimension of [C(B)]p, and let d,
denote the dimension of the sub-manifold of Y (B,; C(B)) that contains u,. Of course, we
have d; + d, < d(C(B)).
We use the local cross section result from previous section to parametrize[C(B)]p, . TO
ease notation take G = U(B;),H = Stab(B,,C(B)) and let m denote the canonical
quotient map from Gonto the left-cosets of H. By Proposition (1.1.7) there are
(i) Vg, a compact neighborhood of 1 in G,
(if) vy, a compact neighborhood of 1 in H,
(iii) Vg /i, @ compact neighborhood of (1) in G/H,
(iiii) a continuous function s : N,y — N satisfying
(@) s(m(1)) = landm(s(m(g))) = m(g) whenever (g) lies in Ng y,
(b) the function
Ny X Ng/m = Ng,

(h,m(9)) — hs(m(g)),
Is an homeomorphism.

Since G/H is a manifold of dimension d,, we may assume there is a continuous injective
map ¥, : Ny /iy — R%.

ParametrizingY (B,, C(B)) is easier. Since uyB,uy N By = B,u, belongs to Y(B,,B).
Take 7, positive and a diffeomorphism¥, fromY(B,, C(B)) N N;, (u,) onto an open
subset of R%,



Now that we have fixed parametrizations ¥;and ¥,, we can parametrize Z (B, B;; [B],)
around u,. Recall [C(B)]g, has the topology induced by the bijectiong : [C(B)]p, —
G/H, given by f(uC(B)u*) = m(u).The function
Z(B1,B,; [Blg,) = [C(B)]p, ,u = c(uB,u" N By)
Is continuous by Lemma (1.1.21) and Lemma (1.1.22). Hence there is §,positive such that
B(c(uB,u" N By)) belongs to Vg, whenever u lies in the intersection Z(By, By; [B]p,) N
N, (up). For a unitary uin Z(By, By; [B]p,) N Ns,(u,) define
q(u) := s(B(c(uByu” N By)).

We note that q(uy) = 1,q(w) lies in G and that the map u — q(w) is continuous. The
main property of g(u) is that

(c(uByu* N By) = q(wc(B)q(u)". (8)
Indeed, for u in Z(By, By; [B]g,) N Ns,(uo) there is a unitary v in G with the property
uB,u” N B; = vBv*.Hence c(uB, N B;) = vC(B)v*. Since
lu — uoll < &,, B(c(uBu™ N By))lies in Ng . Hence B(c(uB,u” N By) = m(v) liesin
Ng/m - Using the fact that s is a local section on N,y (property (ia) above) we deduce
n(s(n(v))) = n(v).
On the other hand, by definition of q(u) we have

n(s(m(v))) = n(s(BuBu” N By))) = m(q(w)).

As a consequence, m(v) = m(q(u)) i.e. v*'q(u) belongs to Stab(B,,B) which is just
another way to say (8) holds. At last we are ready to find r. Continuity of the map u —

q(u) gives a positive 65, less that §,, such that ||q(u) — 1|| < % whenever u lies in

Z(By, By; [B]g,) N N5, (up). Define r = min{% ,03}. The first thing we notice is that
q(u)*u belongs to Y(By; C(B)) NNg (uo) whenever u lies in Z(By, By;[B]g,) N
Ns(up). Indeed, from
qw)c(B)q(w)* = c(uB,u* N B;) € uB,u”
we obtain g(u)*u € Y(B,; c¢(B)) and a standard computation, using ||q(u) — 1| < % :
shows [|g(u)*u — u,|| < &;. Hence we are allowed to take ¥, (q(u)*u). Lastly, for u in
Y(u) := (P1(B(c(uBu” N By))), ¥2(q(u)*w)).

It is clear that ¥ is continuous.

Now we show ¥ is injective. If ¥(u,) = ¥(u,), for two element u; and u, in
Z(By, By; [B]p,), then

¥ (B(c(uleuI N B1))) =¥ (,3 (C((uszuZ N B1)))>» 9)

¥, (q(uy)uy) = 2 (q(uz)uz)). (10)
From (9) and definition of q(w) it follows that q(u;) = q(u,) and from equation (10) we
conclude u; = u,.
Proposition (1.1.24)[30]: Take B a unital C*-subalgebra of B; such that it is unitarily
equivalent to a C*-subalgebra of B,. Fix an element wyin Z (B, B,; [B]p,).
There is a positive number r and a continuous injective function

¥ : N.(uo) NZ(By,By;[Blg,) » R

The proof of Proposition (1.1.24) is similar to that of Proposition (1.1.23), so we omit it.
We now begin showing density in U(My) of certain sets of unitaries.
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Lemma (1.1.25)[30]: Assume B; and B, are simple. If B # C is a unital C*-subalgebra of
B, and it is unitarily equivalent to a C*-subalgebra of B, then Z (B, B,; [B]p,)¢ is dense.
Proof: Firstly we notice that dimU(B,) + dimU(B,) < N?2. Indeed, if B; is *—isomorphic
to My,,i = 1,2 and m; = u(My,B;) then dimU(B;) +dimU(B,) = N*(1/mj +
1/m3) < N2. Secondly we will prove that for anyu in Z(B,, B,; [B]p,) there is a natural
number d,,, with d,, < N2, a positive number ru and a continuous injective function ¥, :
N, () NZ(By,By;[Blg,) — R%.We will consider two cases.

Case (i): B is not simple. Take d,, = d(C(B)). Since C(B) # C, Proposition (1.1.14)
implies d(C(B)) < N2.Taker, and ¥, as required to exist by Proposition (1.1.23)

Case (ii): B is simple. Take d,, = d(B). Since B # C, B contains a unital C*-subalgebra
isomorphic to €2, call it C. Lemma (1.1.12) implies d(B) < d(C) and implies d(C) <
N2, Take r, and ¥, the positive number and continuous injective function from
Proposition (1.1.24)

We will show that U N Z(By,B,;[B]g,) # @, for any nonempty open subset U <

U(My).First notice that if the intersection U N (UuEZ(BerZ;[B]Bl)Mu (u))€ is nonempty
then we are done. Thus we may assume U < (UuEZ(BLBZ;[B]Bl)]\fru (u)) . Furthermore,

by making U smaller, if necessary, we may assume there is u in Z(By, By; [B]p,) such
that U < NV, (u).

For sake of contradiction assume U < Z(B,, B;; [B]g,). We may take an open subset V,
contained in U, small enough so that V is diffeomorphic to an open connected set O of

RN Let @ :0 — V be a diffeomorphism. It follows we have a continuous injective
function
2 4 Yy 2
RN 205V —>R™ o RN
By the Invariance of Domain Theorem, the image of this map must be open in RM*, But
this is a contradiction since the image is contained in R%and d,, < N2. We conclude U n
Z(By,By; [Blg,)  # 0
Lemma (1.1.26)[30] :Suppose dim C(B;) = 2 and B, is *—isomorphic to
My sdim c8y) D@ - D My/dim c(B,)-
Assume one of the following cases holds:
(i) dim C(B,) = 1,
(if) Bisx—isomorphic to
My, @ My,
and B, is *—isomorphic to
My;2 @ My;car
where k > 2.
(i) dim C(B,) = 3andB, is *—isomorphic to
(HDMpy /dim c(8y) D - B My dim c(8,)-
Then for any B # C unital i-subalgebra of B; such that it is unitarily equivalent to a i-
subalgebra of B,, Z(B,, By; [B]p,)¢ is dense.
Proof: The proof of Lemma (1.1.26) is exactly as the proof of (1.1.25) but using Lemma
(1.1.17) instead of Lemma (1.1.14)
At this point if the sets Z (B, B,; [B]p,) Were closed one could conclude immediately that

A(B4, B,) is dense. Unfortunately they may not be closed. What saves the day is the fact
11



that we can control the closure of Z(B,, B,; [B]p,) With sets of the same form i.e. sets like
Z(B, B3;[C]g,) for a suitable finite family of subalgebras C.We make this statement
clearer with the definition of an order on *-SubAlg(B,).
Definition (1.1.27)[30]: On *-SubAlg(B,)/~p, we define a partial order as follows:

[Blg, < [C]p, © 3D €x —SubAlg(C) : D ~p, B.
Lemma (1.1.28)[30]: Assume one of the conditions (i)—(iiii). Then for any B # C, unital
C*-subalgebra of B; that is unitarily equivalent to a C*-subalgebra of B,, the set
Z(Bq, By; [Blg, ), IS dense.

Proof: Assume Z(B;,B,; [B]g,) is not dense. There is [C]g, > [B]p, such that

C

Z(By, By; [Blg, ) is not dense. We notice that again we are in the same condition to
apply, since [C]lp, > [B]p, > [C]p, . In this way we can construct chains, in x-
SubAlg(B,)/~g, , of length arbitrarily large, but this cannot be since it is finite.
At last we can give a proof of Theorem (1.1.29)

Theorem (1.1.29)[30]: Assume one of the following conditions holds:
(i) dim C(B;) = 1 = dim C(B,),
(ii)dim C(B;) = 2,dim C(B,) = 1and B, is *—isomorphic to

My aim cgy) D@ - D My aim c(8y)»
(ili) dim C(B;) = 2 = dim C(B,), B;is *—isomorphic to

My 2 © My /2,
and B, is *—isomorphic to
My /2 @ My /21)-

Where k > 2,
(ili)dim €(B;) = 2,dim C(B,) = 3and, fori = 1,2, B; is *— isomorphic to

My, dim ey D - D Muy dim c(8y-
Then

A(By,By) := {ue UWMy) : By N uB,u™ =C}

Is dense in U(My).
Proof : A direct computation shows that

~
A(By,By) = Z(By1, B, [B]Bl)c
[Blg,>[C]B,
Thus
m C
A(By, B3) 2 Z(By, B3, [Bls,)
[Blg,>[C]B,

Now whenever [B]g, > [C]p, , the set Z(By, B, [B]g,) is dense. Hence A4(By, B,) is
dense.

We unless stated otherwise, A; # C and A, # C denote two nontrivial, separable,
residually finite dimensional Cx-algebras. Our goal is to prove A; * A, is primitive, except
for the case A; = C2 = A,. Two main ingredients are used. Firstly, the perturbation results
from previous section. Secondly, the fact that A; x A,has a separating family of finite
dimensional *—representations, a result due to [40].

Before we start proving results about primitivity, we want to consider the case C? * C2.
This is a well studiedC*-algebra; see for in-stance [11], [107] and [118]. It is known that
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C% * C? is =—isomorphic to the Cx-algebra of continuous M,-valued functions on the
closed interval [0, 1], whose values at 0 and 1 are diagonal matrices. As a consequences its
center is not trivial. Since the center of any primitive C*-algebra is trivial, we conclude
C? * C? is not primitive.
Definition (1.1.30)[30]:We denote by ¢ the inclusion *-homomorphism from A;into A4, *
A,. Given a unital«—representation m: 4; * A, —» B(H), we define 7™ =m0y and
) = 1 o 1,. Thus, with this notation, we have = = 7™ x 73, For a unitary u in U(H)
we call the *representation 7 * (Ad u o w(?)), a perturbation of by u.
Definition (1.1.31)[30]: Assume A, and A, are finite dimensional and let p: A; * A, —
B(H)be a unital, finite dimensional representation. We say that p satisfies the Rank of
Central Projections condition (or RCP condition) if for both i = 1,2, the rank of p(p) is
the same for all minimal projections p of the center C(4;) of A;, (but they need not agree
for different values of i).
The RCP condition for p, of course, is really about the pair of representations (p™, p).
However, it will be convenient to express it in terms of A; * A,. In any case, the following
two lemmas are clear.
Lemma (1.1.32)[30]: Suppose A; and A, are finite dimensional, p: A; * A, - B(H) is a
finite dimensional representation that satisfies the RCP condition and u € U(H). Then the
representation p™ x (Ad u o p®)) of 4, = A, also satisfies the RCP condition.
Lemma (1.1.33)[30]: Suppose A; and A, are finite dimensional, p: A; * A, - B(H) and
o: A, * A, - B(K) are finite dimensional representations that satisfy the RCP condition.
Thenp @ o: A; x A, » B(H @ K) also satisfies the RCP condition.
The following is clear from Lemma (1.1.12)
Lemma (1.1.34)[30]: Assume A is a finite dimensional C*-algebra *—isomorphic
toEB}:1 My and take m: A - B(H) a unital finite dimensional =representation. Let
u(m) = [m(1),...,m(1)] and let 7 be the restriction of  to the center of A. Then

w@) = [m()n(l),...,mOn(D)].
The next lemma will help us to prove that the RCP condition is easy to get.
Lemma (1.1.35)[30]: Assume A is a finite dimensional C*-algebra and m: A - B(H) is a
unital finite dimensional *—representation. Let

wm) = [m(1),...,m(D].

For any nonnegative integers q(1),...,q(l) there is a finite dimensional unital *—
representation p : A — B(K)such that

um ©p) = [m) + q(),....mD) + qD]

[
A= @ A@)
i=1
whereA(i) = B(V;) for V; finite dimensional. For 1 < i < [, let p; : A - A(i) denote
the canonical projection onto A(i). Notice that p; is a unital —representation of A. Define
[ l
pi=@ Pi®.-Op): 4> & ADI® cBK).

i=1 q(i)—'times i=1

Proof: Write A as

Where K = @ (Vi@q"). Then p is a unital* —representation ofAon Kand
i=1
13



wr ©p) = m(1) + q(1),....,m1) + q(D].
The next lemma takes slightly more work and is essential to our construction.
Lemma (1.1.36)[30]: Assume A, and A, are finite dimensional. Given a unital finite
dimensional *—representation w : A; * A, — B(H), there is a finite dimensional Hilbert
space H and a unital *—representation
fi: AL x A, > B(H)
such that = @ 7 satisfies the RCP condition.
Proof: Fori = 1,2, letl; = dim C(4;), let A; be x—isomorphic to
@]{izl M, jyand write
u(r®) = [m;(1),..., my(L)].
Take n; = lem(n;(1),...,n;(1;)) and integers r;(j), such that r;(j)n;(j) = n;, for 1 <
j < ;. Take a positive integer s such that sr;(j) = m;(j)forall i = 1,2and 1 <j < [;.
Use Lemma (1.1.36) to find a unital finite dimensional =—representation p; : A; —
B(K;),i = 1,2 such that
u(@® @ py) = [s1(D),...,sr;(1)].

Letting x; denote the restriction of 7 @ p;to C(4;), from Lemma (1.1.36) we have

w(ry) = [sry(Dn;(1),..., sr(ln ()] = [sny, sny, ..., sny).
The *—representations (1™ @ p;) and (n® @ p,) are almost what we want, but they
may take values in Hilbert spaces with different dimensions. To take care of this, we take
multiples of them. Let N = Icm(dim(H @ K;),dim(H @ K,)), find positive integers k;
and k, such that

N = K,dim(H @ K,) = K, dim(H ® K,)
and consider the Hilbert spaces (H @ K;)®*: , whose dimensions agree for i = 1, 2.
Then
dim(K, @ (H @ K)®¥171) = dim(K, @ (H @ K;)®*="V)
and there is a unitary operator
U:K, @ (H®K)®®2™D > K, @ (H D K)®Kr~),
Take
H:=K, & (H+ K,)%F-1
i=p @ (n(l) D p)@(Kl_l)’
o:=1V D 7y,
fip:=Ad U (p, @ (n® @ p)®t=—1),
o, =1 P 1y,
i = 1, * 1l,.
Then o1x0,= (MYPR)*xTP D) =1 . We have u(o;) =
[k;sr;(1),..., k;sr;(1;)]. Let 6; denote the restriction of g;to C(4;).
From Lemma (1.1.35) we have
w(é;) = [kisri(Dn (1), ..., kysri(ln ()] = [kisny,..., kisng].
The purpose of the next definition and lemma is to emphasize an important property about
x—representations satisfying the RCP.
Definition (1.1.37)[30]: A =—representation m:A; * A, - B(H) is said to be densely
perturbable to an irreducible x-representation, abbreviated DPI, if the set
A(m) = {u € UH) : 7D (Ay)' N (ur@(4,)'us) = C)

Is norm dense in U(H). Here the commutants are taken with respect to B(H).

The next lemma shows that any **—representation satisfying the R.C.P is DPI.
14



Lemma (1.1.38)[30]: Assume A, and A, are finite dimensional C*-algebras and
(dim(A;) — D(dim(A,) — 1) = 2. If p:A; A, - B(H), with Hfinite dimensional,
satisfies the Rank of Central Projections condition, then p is DPI.

Proof: Since (dim(4;) — 1)(dim(4,) — 1) = 2, and after interchanging 4, and A4,, if
necessary, one of the following must hold:

(i) A;and A, are simple,

(i) dim C(A;) = 2 andA, is simple,

(iii) fori = 1,2,A; = My, ,, ® My, Withn,(2) = 2,

(iiil) dim C(4;) = 2,dim C(4,) = 3.

In case (1), take B; = p®M(4,),i = 1,2.

In case (2), let B; = p™M(C(4,))and B, = p@(4,)". Notice that dim C(B,) =
1,dim C(B;) = dim C(4;) = 2 and, by the R.C.P assumption, B; is *—isomorphic to
Maim 1y aim c8y) D -+ D Maim 1y aim c(8,)-

In case (iii), let B; = p™M(C(4,))'and B, = p@P(C D M,,
B, is *—isomorphic to

2(2))’. By the RCP assumption,

Mgim u/2 D Maim 12
andB, is *—isomorphic to
Maim 172 @ Maim 1/2n,2))-
In case (iiii), let B, = p®(C(4;))" for i = 1,2. Then dim C(B,) = dim C(4;) >
2,dim C(B,) = dim C(4,) = 3 and, fori = 1,2, RCP implies Bi is *—isomorphic to
Maim vy aim c8y) D - D Maim 1y aim c(8y)
Now define
A(By,B;) := {u€eU(H) : Byn Ad u(B,) = C}.

and notice that in all four cases 4(B4, B;) € A(p). By Theorem (1.1.29), the set A(B;, B,)
Is dense in all the four cases.
A downside of the DPI property is that it is not stable under direct sums. However, it is
stable under perturbations.
We obtain the following.
Lemma (1.1.39)[30]: For any unital finite dimensional =-representation m:A; * A, —
B(H), there is a unital finite dimensional =-representationft: A, * A, - B(H) such that
m @ 7 is DPI.
Proof: The assumption (dim(4,) — 1)(dim(4,) —1) = 2 implies there is a unital finite
dimensional *-representation 9 : A; * A, - B(H,), such that (dim(@W®(4,)) —
1) (dim(®®(4,)) — 1) = 2. Consider the unitalC*-subalgebras of B(H @ H,),D; =
(m@®9)D(4,),i =1,2, and notice that (dim(D;) — 1)(dim(D,) — 1) > 2. Let
6:D; x D, - B(H @ H,) be the unital *-representation induced by the universal property
of D, = D,via the unitalinclusions D; € B(H @ H,). Lemma 5.8 implies there is a unital
finite dimensional *-representation p: D; * D, — B(K) such that 8 @ p satisfies the RCP
condition, so by is DPI.

Let j;: D; = Dy * D,,i = 1,2, be the inclusion x-homomorphism from the definition of
unital full free product. Now consider the unital+-homomorphism o = (j; o (1 @ 9)D) «
oo (m @D 19)(2))) v Ay x Ay > Dy *+ D,
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Now just take H = Hy @ Kand # = 9 @ (poo). In order to showrn @ 7 is DPI we
just need to show that, for i = 1,2, (m @ #)P(4;) = (8 ® p)P(D;), but this is a direct
computation.
The proof of next lemma is a standard approximation argument and we omit it.
Proposition (1.1.40)[30]: Let A; and A, be two unital C*-algebras. Given a non zero
element x in A; * A, and a positive number ¢, there is a positive number § = §(x, ¢)
such that for any u and v in U(H) satisfying ||lu — v|| < § and any unitalx-
representations  : A; * A, —» B(H), we have
|(m® « (Aduom@))(x) — (@D * (Aduo @) (0)| < e.
Here is our main theorem.
Theorem (1.1.41)[30]: Assume A; and A, are unital, separable, residually finite
dimensional C*-algebras with (dim(4,) —1)(dim(4,)—1) > 2. Then A; *xA, s
primitive.
Proof: By the result of [40], there is a separating sequence (m;: Ay * A, - B(H;));>1, Of
finite dimensional unitalx-representations. For later use in constructing an essential
representation of A, * A,, i.e., a x-representation with the property that zero is the only
compact operator in its image, we modify (m;);>,, if necessary, so that that each x-
representation is repeated infinitely many times.
By recursion and using Lemma (1.1.39), we define a sequence
fi;: Ay x A, » B(H),(G = 1)
of finite dimensional unital*-representations such that, for all k > 1, Gaj?:l (m; @ fi;) is
DP.l Let m:=@;>, m; D fi;and H: = D>, H; © H} To ease notation, for k = 1, let
TC[k] =€B§?:1 m @ 7. Note that we have m(4; * A,) N K(H) = {0}. Indeed, if m(x) is
compact then lim;||(m; @ #;)(x)|| = 0, since each representation is repeated infinitely
many times and we are considering a separating family we get x = 0.
We will show that given any positive number &, there is a unitary u on U(H) such that
lu—idy|| < € and 7™M * (Ad u o #@®) is both irreducible and faithful. To do this, we
will to construct a sequence (uy, 0y, Fi) =1 Where:
(i) For all k,u is a unitary in U(®'_, (H; @ H))) satisfying
&

||u o ld@?lej@ﬁj || < 2k+1 (11)

(ii) Letting
g = Dldy; 08, O - Oldyen,

and

Uk = W11 Uk—2,k) = U(1,k)» (12)
theunitalx-representation of A; * A,onto B(e}le H; & HJ-), given by

6 = ) * (AdU o m(3)), (13)
is irreducible.

(iii) Fy, is a finite subset of the closed unit ball of A, * A, and for all y in the closed unit
ball of A; * A, there is an element x in Fj, such that

1
10 (x) — .Ml < 2k+1" (14)
(iv) If k > 2, then for any element x in the union U]’-‘:‘f F;, , we have
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1
16 () = (Bpe—1 © e © T ()| < 57 (14)
We construct such a sequence by recursion.

Step 1: Construction of (u,,68,,F,).Sincer @ 7 is DPI, there is a unitary u; in
H @ H, such that |lu —idygs || <Sand m() * Adu, o m(3)is irreducible Hence

condition (11) and (13) trivially hold. Since H, @ Hjis finite dimensional, there is a finite
set F, contained in the closed unit ball of A; = A, satisfying condition (14). At this stage
there is no condition (15).

Step 2: Construction of (uy41, 041, Frs1) from (w;,0;,F),1 < j < k.First, we are

prove there exists a unltary Upyq IN [U(GB"“ H; & 28 ) such that ||uk+1 -
1d®§=+11Hj®H] the unital =*-representation of A; * A, into [B%(GB"“ H; ® H)
defined by

” < gz 2k+2’

Orr1 = (O D iy D ﬁk+1)(1) * (Ad Uy 1) © (O D 411 D ﬁk+1)(2) (16)

is irreducible and for any element x in the union U]’-‘:1 F; , the inequality
~ 1 A~ .

16k+1(x) = (O D i1 @ Tpes1 (| < 5557, holds , Oy D 7y D fgeyq is DPI SO
Proposition (1.1.40) assures the existence of suchunitary wu,,,. Notice that, from
construction, conditions (11) and (15) are satisfied. A consequence of (13) and (12) is
O+1 = T[[(k+1 (AdUkH T[[(li-)i-l])
Finite dimensionality of 69"“ H; @H guarantees the existence of a finite set F,,,

contained in the closed unit baII of A, = A, satisfying condition (14). This completes Step
2.
Now consider the *-representations

D
Hk] > k41 D 7;. (17)

We now show there is a unital *-representatlon of 0 : A; x A, = B(H), such that for all x

in A; x Ay, limy||o, (x) —a(x)|| = 0. If we extend the unitariesu; to all of H via @i, =
U Djor+1 ide@,qj , then we obtain

o =« (4d Ty o n®), (18)
Where U, = iy, ... 7;. Thanks to condition (11), we have
k

k
~ &
1T — idy|| < Znak —id,| < 2 —
j=1 j=1

andforl > 1
k+1

- ~ €
|Tksr = Tp|| = Ntgss oo lieys — idyll < z o

j=k+1
Hence, Cauchy’s criterion implies there is a unitary u in U(H) such that the sequence

(U,) =1 COnverges in normto u and ||ju — idy|| < 2
Define

o =1« (Aduon®). (19)
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From Proposition (1.1.40) we have that for all x in A; * A,,

I

o @) — (@l = o. (20)
Our next goal is to show o is irreducible. To ease notation let A = A, * A,. We will show
—SOoT
o(A) = B(H). Take Tin B(H). With no loss of generality we may assume ||T|| < %

Recall that a neighborhood basis for the SOT topology around T is given by the sets
NT(fll"'ifn; 8) = {S € IB(H) : ”Sfl - TS;L” < E,i = 1,...,71}

where ¢ > 0,n €N, and &,,...,&, € H are unit vectors. We show that for any ¢ > 0

and any unit vectors &;,..., &, N3 (&4, ..., & €) N a(A) is nonempty. Let P, denote the

orthogonal projection from H onto eaj?zl H; & 1-71 Take k; > 1 such

1 £
2* <2
K>k,
andfork > k;,1 < i < n,
€
I(idy — P) DI < PER (21)
€
|(idg — P)(TE)N < >3 (22)

Since P, has finite rank and 6, is irreducible, there is a in A, with ||a|| < 1 such that

Pi,T Piey (§0) = 61, (@) (P, (80)) (23)
fori = 1,...,n. We have
61, (@) (P, (61)) = 0, (@) (i, (6))- (24)
Take x in F, such that
1
161, (@) = B, ()| < ki 1" (25)

We will show a(x) € Ny (&4,...,&,; €). To ease notation let §; = &. From (21), (22), (23)
and (24), we deduce

ITE — U(x)€I|3S |7 = Py, TPy, &|| + ||Pe, T P, € — 0, (@)€]|
< 5o+ llow, @¢ = oG + o, (@ = o]l
Forany p > 1 we have

0, (@)§ — o(x)¢

k1+p
= 0, (@ = 0, (I + D (0 I = 071 (DE) + Ty 4psa (0§
Z
— o(x)¢. ]
Thus, from (21), (24), (25), (17) and (15) we deduce
&
low, (@& = o ()] <5 + [|ow,4p+1(0)E — o (D]

hence

low, (@¢ = o@0)é] <=
We conclude a(x) lies in Ny (&4,...,&,; €).
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An application of Choi’s technique will give us faithfulness of ¢. Indeed, from
construction, for all x in A,0(x) = lim,oy(x). Thus if each o, is faithful then so is o.
But faithfulness of o, follows from the commutativity of the following diagram

A S BMH)

Tl 1 .
Ut

B(H) — B(H)/K(H)

(wherermr denotes the quotient map onto the Calkin algebra), which in turn is implied by
(17).

To obtain the following corollary, see [2].
Corollary (1.1.42)[30]: Assume A, and A, are nontrivial residually finite dimensional C*-
algebraswith (dim(4,) — 1)(dim(4,) — 1) = 2. Then A, * A, is antiliminal and has an
uncountable family of pairwise in-equivalent irreducible faithful xrepresentations.
We finish with a corollary derived in [28].
Corollary (1.1.43)[30]: Assume A, and A, are nontrivial residually finite dimensional C*-
algebras with (dim(A4,) — 1)(dim(A,) — 1) = 2. Then pure states of A; * A, are W~*-
dense in the state space.

Section (1.2): Homomorphisms into Z-Stable C*-Algebra

Let X and Y be two compact Hausdorff spaces, and denote by C(X) (or C(Y)) the C*-
algebra of complex-valued continuous functions on X (or Y). Any continuous map A: Y —
X induces a homomorphism ¢ from the commutative C*-algebra C(X) into the
commutative C*-algebra C(Y) by ¢(f) = fA, and any homomorphism from C(X) to C(Y)
arises this way (by homomorphisms or isomorphisms between C*-algebras, we mean -
homomorphismsn or *-isomorphisms). It should be noted that, by the Gelfand-Naimark
theorem, every unital commutative C*-algebra has the form C(X) as above.

For non-commutative C*-algebras, one also studies homomorphisms. Let A and B be
two unital C*-algebras and let ¢,y : A — B be two homomorphisms. A fundamental
problem in the study of C*-algebras is to determine when ¢ and y are (approximately)
unitarily equivalent.

The last two decades saw the rapid development of classification of amenable C*-
algebras, or otherwise known the Elliott program. For instance, all unital simple AH-
algebras with slow dimension growth are classified by their Elliott invariant ([36]). In fact,
the class of classifiable simple C*-algebras includes all unital separable amenable simple
C*-algebras with the tracial rank at most one which satisfy the Universal Coefficient
Theorem (the UCT) (see [88]). One of the crucial problems in the Elliott program is the so-
called uniqueness theorem which usually asserts that two monomorphisms are
approximately unitarily equivalent if they induce the same K-theory related maps under
certain assumptions on C*-algebras involved.

Recently, W. Winter’s method ([141]) greatly advances the Elliott classification
program. The class of amenable separable simple C*-algebras that can be classified by the
Elliott invariant has been enlarged so that it contains simple C*-algebras which no longer
are assumed to have finite tracial rank. In fact, with [141], [86], [99] and [73], the
classifiable C*-algebras now include any unital separable simple Z-stable C*-algebra A
satisfying the UCT such that A @ U has the tracial rank no more than one for some UHF-
algebra U (it has recently been shown, for example, A @ U has tracial rank at most one
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for all UHF-algebras U of infinite type, if A @ C has tracial rank at most one for one of
infinite dimensional unital simple AF-algebra (see [95])). This class of C*-algebras is
strictly larger than the class of AH-algebras without dimension growth. For example, it
contains the Jiang-Su algebra Z itself which is projectionless and all simple unital
inductive limits of so-called generalized dimension drop algebras (see [85]).

Recall that the Elliott invariant for a stably finite unital simple separable C*-algebra A is

El(A) = ((Ko(A), Ko(A), [14], T(A)), K1 (4)),

where (K,(A),K,(A)4,[14],T(A)) is the quadruple consisting of the Koy-group, its
positive cone, the order unit and tracial simplex together with their pairing, and K; (4) is
the K;-group.

Denote by C the class of all unital simple C*-algebras A for which A @ U has tracial
rank no more than one for some UHF-algebra U of infinite type. Suppose that A and B are
two unital separable amenable C*-algebras in C which satisfy the UCT. The classification
theorem in [73] states that if the Elliott invariants of A and B are isomorphic, i.e.

Ell(A) = Ell(B),
then there is an isomorphism ¢: A — B which carries the isomorphism above.

However, the question when two isomorphisms are approximately unitarily equivalent
was still left open. A more general question is: for any two such C*-algebras A and B, and,
for any two homomorphisms ¢,y : A — B, when are they approximately unitarily
equivalent?

If ¢ and i are approximately unitarily equivalent, then one must have,

[¢] = [Y] in KL(A,B) and ¢y = )y,
where ¢y, P4 Aff(T(A)) — Aff(T(B)) are the affine maps induced by ¢ and v,
respectively. Moreover, as shown in [71], one also has
¢* = ¥,
where ¢*,y¥*: U(A)/CU(A) —» U(B)/CU(B) are homomorphisms induced by ¢, 1,
and CU(A) and CU(B) are the closures of the commutator subgroups of the unitary groups
of A and B, respectively.

We will show that the above conditions are also sufficient, that is, the maps ¢ and y are
approximately unitarily equivalent if and only if [¢] = [y] in KL(A,B), ¢ = Y and
¢* =yt

The proof of this uniqueness theorem is based on the methods developed in the
proof of the classification result mentioned above, which can be found in [73], [82], [71],
[99] and [74]. Most technical tools are developed in this research, either directly or
implicitly. We will collect them and then assemble them into production.

In [103], it is shown that, for any partially ordered simple weakly unperforated
rationally Riesz group G, with order unit u, any countable abelian group G,, any
metrizable Choquet simple S, and any surjective affine continuous map r : S — Su(G;)
(the state space of G,) which preserves extremal points, there exists one (and only one up
to isomorphism) unital separable simple amenable C*-algebra A € C which satisfies the
UCT sothat Ell(A) = (G, (Gy)4,u, Gq,S, 7).

Then a natural question is: Given two unital separable simple amenable C*-algebras
A,B € C which satisfy the UCT, and a homomorphism I' from Ell(A) to Ell(B), does
there exist a unital homomorphism ¢ : A — B which induces I'? We will give an answer
to this question. Related to the uniqueness theorem discussed earlier and also related to the
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question above, one may also ask the following: Given an element k € KL(A, B) which
preserves the unit and order, an affine map

A Aff(T(A) - Aff(T(B)) and a homomorphism y: U(A)/CU(A) —» U(B)/
CU(B) which are compatible, does there exist a unital homomorphism ¢ : A — B so that
[p] = Kk, ¢pu = Aand ¥ = y? We will, at least, partially answer this question.

Let A be a unital stably finite C*-algebra. Denote by T (A4) the simplex of tracial states
of A and denote by Aff (T (A)) the space of all real affine continuous functions on T (4).
Suppose that T € T(A) is a tracial state. We will also denote by 7 the trace t @ Tr on
M, (A) = A ® M, (C) (for every integer k > 1), where Tr is the standard trace on
M, (C). A trace t is faithful if 7(a) > 0 for any a € A, \{0}. Denote by T;(A) the

convex subset of T'(A) consisting of all faithful tracial states.
Denote by M, (A) the set U;-; M, (4), where Mk(A) is regarded as a C*-subalgebra of

M, ,1(A) by the embedding a - (g

T — 1(p) defines a positive affine function on T (A). This induces a canonical positive
homomorphism p,: Ky(A) = Aff(T(A)).

Denote by U(A) the unitary group of A, and denote by U(A), the connected component of
U(A) containing the identity. Let C be another unital C*-algebra and let ¢: C — A be a
unital *-homomorphism. Denote by ¢,: T(A) — T(C) the continuous affine map induced

by ¢, i.e.,
¢r()(c) =70 ¢(c)
forall c € C and T € T(A). Denote by ¢p4: Aff(T(C)) = Aff(T(A)) the map defined by

o (DH(1) = f((l)T(r)) for all T € T(A).

2) . For any projection p € M, (A), the restriction

Definition (1.2.1)[98]:

Let A be a unital C*-algebra. Denote by CU(A) the closure of the subgroup
generated by commutators of U(A). If u € U(A), its image in the quotient U(A)/CU(A)
will be denoted by u. Let B be another unital C*-algebra and let ¢ : A — B be a unital
homomorphism. it is clear that ¢ maps CU(A) into CU(B). Let ¢* denote the induced
homomorphism from U(A)/CU(A) into U(B)/CU(B).

Let n > 1 be any integer. Denote by U, (A) the unitary group of M, (A), and
denote by CU(A),, the closure of commutator subgroup of U, (A). Regard U,(A) as a

subgroup of U,,;;(A) via the embedding u — (g (1)) and denote by U, (A) the union of

all U,,(A). Consider the union CU.(A) := U, CU,(A). It is then a normal subgroup of
U, (A), and the quotient U(A)/CU4(A) is in fact isomorphic to the inductive limit of
U, (4)/CU,(A) (as abelian groups). We will use ¢* for the homomorphism induced by ¢
from Uy, (A)/CU(A) into Uy, (B)/CU(B).
Definition (1.2.2)[98]:

Let A be a unital C*-algebra, and let u € U(A4),. Let u(t) € C([0, 1], A) be a piecewise-
smooth path of unitaries such that u(0) = uw and u(1) = 1. Then the de la Harpe—
Skandalis determinant of u(t) is defined by

1 (1 /d
Det (u(t))(r) = Z_mf T( I;(tt)
which induces a homomorphism
Det:U(A)o = Aff (T(A))/pa(Ko(A)).
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The determinant Det can be extended to a map from U, (4), into Aff(T(A))/
pa(Ky(A)). It is easy to see that the determinant vanishes on the closure of commutator
subgroup of U,(A). In fact, by a result of K. Thomsen ([133]), the closure of the
commutator subgroup is exactly the kernel of this map, that is, it induces an isomorphism
Det: Uy (A)y/CUx(A) = Aff(T(A))/pa(Ky(A)). Moreover, by ([133]), one has the
following short exact sequence

— "

0 Aff(T(A))/pa(Ko(A)) = Un(A)/CUx(A) > K1(A) =0 (26)
which splits (with the embedding of Aff(T(A4))/pa(K,(4)) induced by (Det)™1). We
will fix a splitting map s;: K;(A) = U, (A)/CU(A). The notation IT and s; will be used
late without further warning.

For each u € s; (K, (A)), select and fix one element u, € Uy~ M,, (4A) such that u, =
u. Denote this set by U.(A).
In the case that A has tracial rank at most one .
U (A)/CUx(A) = U(A)o/CU(A)
and thus the following splitting short exact sequence:
0 = Aff(T(A))/pa(Ko(A)) » U(A)/CU(A) > K1 (A) - 0. (27)
Definition (1.2.3)[98]:
Let A be a unital C*-algebra and let C be a separable C*-algebra which satisfies
the Universal Coefficient Theorem. Recall that KL(C,A) is the quotient of K(C,A)
modulo pure extensions. By a result of D ad arlat and Loring in [82], one has

KL(C, A) = Hom, (K(C),K(A)), (28)
where

K(B) = (Ko(B. K, (B))) ® @ (Ka(B.2/02)) @ Ki (B, Ky (5))
n =

for any C*-algebra B. Then, we will identify KL(C, A) with Hom, (K(C),K(A)). Denote
by k;: K;(C) = K;(A) the homomorphism given by x with i = 0,1, and denote by
KL(C,A)** the set of those k € Hom, (K(C),K(A)) such that
ko (Kg (€){0}) < Kg (A)\{0}.

Denote by KL,(C,A)*" the set of those elements k € KL(C,A)*" such that k,([1:]) =
[14]. Suppose that both A and C are unital, T(C) # @ and T(A) + @. Let 1;:T(A) —
T(C) be a continuous affine map. Let hy: K,(C) — K,(A) be a positive homomorphism.
We say A is compatible with hy if for any projection p € M, (C), Ay (t)(p) = t(ho([p]))
forall T € T(A). Let :: Aff (T (C)) — Aff(T(A)) be an affine continuous map. We say
A and h, are compatible if h, is compatible to Ay, where A7:T(A) — T¢(C) is the map
Ar(T)(@) = A(a*)(z), Va € C* and 7 € T(A), where a* € Aff(T;(C)) is the affine
function induced by a. We say k and A (or A;) are compatible, if k is positive and k, and
A are compatible.

Denote by KLT,(C,A)** the set of those pairs (k,A;) (or, (x,1)), where k €
KL.(C,A)™" and A7:T(A) — Tp(C) (or, A:Aff(Tf(C)) — Aff(T(A))) is a continuous
affine map which is compatible with k. If A is compatible with x, then A maps
pPc(Ko(C)) into ps(Ky(A)). Therefore A induces a continuous homomorphism
A Aff(Tp(€))/pc(KO(C)) = Aff(T(A))/pa(KO(A)).  Suppose  that  y:Usx(C)/
CUyx(C) = Uyp(A)/CU4(A) is a continuous homomorphism and h;: K;(C) = K;(A) are
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homomorphisms for which h, is positive. We say that y and h; are compatible if
Y(Ux(C)o/CU(C)) c v(A)y/CU,(A) and y o s; = s; o hy, we say that h,, hy, A and y
are compatible, if A and h, are compatible, y and h, are compatible and

Dety o ¥y c)o/cun(c) = 4 © Dete,
and we also say that «, A and y are compatible, if k,, x;, A and y are compatible.

For each prime number p, let €, be a number in {0, 1,2,..., +oo}. Then a supernatural
number is the formal product p =[], p“». Here we insist that there are either infinitely
many p in the product, or, one of €, is infinite. Two supernatural numbers p = prep(p)
and q =TI, p€r(@ are relatively prime if for any prime number p, at most one of €, (P)
and €,(q) is nonzero. A supernatural number p is called of infinite type if for any prime
number, either €,(p) = 0 or €,(p) = +o. For each supernatural number p, there is a
UHF-algebra M,, associated to it, and the UHF-algebra is unique up to isomorphism (see

124)).

[ E])ganote by Q the UHF-algebra with (K,(Q),Ky(Q)4, [14]) = (Q,Q,, 1) (the
supernatural number associated to Q is [, p*®), and let M,, and M, be two UHF-algebras
with M, @ M, = Q and p =[L,p*® and q =[I,p»@ relatively prime. Then it
follows that p and g are of infinite type. Denote by

1 1
Q,=1% [—, .y — ] € Q, wheree, (p) =+ and
P1 1 Pn 1
Q=Z|—,..,—, ] C Q, whereeg, (q) = +oo.
P1 Pn

Note  that  (Ko(Mp),Ko(Mp)s, [Ls,]) = (Qp (@)+,1)  and  (Ko(M,),
Ko(Mg) 4, [lMp]) = (Qq, (Qg)+,1). Moreover, Q, NQ, = Zand Q = Q; + Q,

For any pair of relatively prime supernatural numbers p and g, define the C*-algebra
Z, q by

Zpq = {:101] = M, @ My; £(0) € M, ® 1, and f(1) € 1,1, @ M},

The Jiang-Su algebra Z is the unital inductive limit of dimension drop interval algebras
with unique trace, and (K,(2),K,(2),[82]) = (Z,Z*,1) (see [55]). For any pair of
relatively prime supernatural numbers p and g of infinite type, the Jiang-Su algebra Z has
a stationary inductive limit decomposition:

Zpq > 2pq 2 Zpg 2
The C*-algebra Z, , absorbs the Jiang-Su algebra: Z,,, ® Z = Z,,. A C*-algebra A is
said to be Z -stable if A Q Z = A.
Definition (1.2.4)[98]:

A unital simple C*-algebra A has tracial rank at most one, denoted by TR(A) < 1, if for
any finite subset F c A4, any € > 0, and any nonzero a € A*, there exist a nonzero
projection p € A and a C"-subalgebra I =@, C(X;) ® M,y with 1, = p for some
finite CW complexes X; with dimension at most one such that
) Ik, plll < € foranyx € F,

(ii) for any x € F, there is x' € I such that |[pxp — x'|| < €, and

(ili)) 1 — p is Murray-von Neumann equivalent to a projection in aAa.
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Moreover, if the C*-subalgebra I above can be chosen to be a finite dimensional C*-
algebra, then A is said to have tracial rank zero, and in such case, we write TR(A) = 0. It
Is a theorem of Guihua Gong [51] that every unital simple AH-algebra with no dimension
growth has tracial rank at most one. It has been proved in [73] that every Z -stable unital
simple AH-algebra has tracial rank at most one.

Definition (1.2.5)[98]:

Denote by N the class of all separable amenable C*-algebras which satisfy the
Universal Coefficient Theorem (UCT). Denote by C the class of all simple C*-algebras A
for which TR(A ® M,) < 1 for some UHF-algebra M,,, where p is a supernatural number
of infinite type. Note, by [103], that, if TR(A ® M) < 1 for some supernatural number p
then TR(A ® M,) < 1 for all supernatural number p.

Denote by C, the class of all simple C*-algebras A for which TR(A ® M,,) = 0 for some
supernatural number p of infinite type (and hence for all supernatural number p of infinite
type).

Theorem (1.2.6)[98]:

Let C be a unital AH-algebra and let A be a unital simple C*-algebra with TR(A) < 1.
Suppose that ¢,:C - A are two unital monomorphisms. Then ¢ and Y are
approximately unitarily equivalent if and only if

[¢] = [¥] in KL(C, A),
by =Py and ¢* =Y.

Let A and B be two unital C*-algebras. Let h: A - B be a homomorphism and v €
U (B) be such that

[h(g),v] =0 forany g € A.
We then have a homomorphism h: A @ C(T) — B defined by f ® g — h(f)g(v) for any
f € Aand g € C(T). The tensor product induces two injective homomorphisms:
BO@: Ky (A) = K1 (A® C(T)) and BM: K (A) - Ko (A ® C(TN).
The second one is the usual Bott map. Note that, in this way, one writes
 K((A®C(M) =K;(A) & BV (K1 (4)).

Let us use BW:K;(4A ® C(T)) - BE"Y(K;_1(4)) to denote the quotient map.

For each integer k > 2, one also has the following injective homomorphisms:

. K;(AKZ) - Ki_1 (A ® C(T), Z/KZ),  i=0,1.
Thus, we write
K;(AQ® C(T),Z/kZ) = K;(A, Z/kZ) @ L~V (K;_,(A), Z/kT).

Denote by B: K; (A %) C(T),k%) - BUD (K;_;(A), Z/kZ) the map analogous to O,

If x € K(A), we use B(x) for BO(x) if x € K;(A) and for B° (x) if x € K;(A, Z/KT).
Thus we have a map B : K(A) » K(A @ C(T)) as well as f: K(A ® C(T)) - L(K).
Therefore, we may write K(A ® C(T)) = K(4) @ B(K(A)). On the other hand, h
induces homomorphisms

Rh.i i Ki(A ® C(T), Z/kT) — K;(B, Z/kT),
k=202,...,andi = 0,1.

We use Bott(h, v) for all homomorphisms ﬁ*i,k ° 3,9'), and we use bott, (h, v) for the
homomorphism hy, o BM: K;(A) - Ko(B), and bott,(h,v) for the homomorphism
hoo B®:Ky(A) = Ky (B). Bott(h,v) as well as bott;(h, v)(i = 0,1) may be defined for

24



a unitary v which only approximately commutes with h. In fact, given a finite subset P c
K (A), there exists a finite subset F c 4 and §, > 0 such that
Bott (h,v)|p
is well defined if
I[h(a), V]Il < 8o
foralla € F.

We have the following generalized Exel’s formula for the traces of Bott elements.
Theorem (1.2.7)[98]:

There is § > 0 satisfying the following: Let A be a unital separable simple C*-algebra
with TR(A) < 1 and let u,v € U(A) be two unitaries such that ||uv — vul|| < §. Then
bott, (u, v) is well defined and

1
t(botty (u,v)) = P (z(log(vuv*u®)))
forallT € T(A).

we collect several facts on the rotation map which are going to be used frequently in this

essay. Most of them can be found in the literature.
Definition (1.2.8)[98]:

Let A and B be two unital C*-algebras, and let 1) and ¢ be two unital monomorphisms
from B to A. Then the mapping torus My, ,, is the C*-algebra defined by

My = {f € C([0,1]); f(0) = ¢(b) and f(1) =y(b) for someb € B}.
For any ), € Hom(B, A), denoting by 7, the evaluation of M., at 0, we have the short
exact sequence
0 — S(A) > Mgy > B — 0,
where S(A) = C,((0,1),4). If ¢,; = ¢,;(i = 0,1), then the corresponding six-term exact
sequence breaks down to the following two extensions:
Th(Mq;’lp) 0— Ki+1(A) — KL(M¢,1[)) — Kl(B) — 0, (l = 0,1)

Suppose that, in addition,

Top =10y forall T €T(A). (29)
For any continuous piecewise smooth path of unitaries u(t) € My, consider the path of
unitaries w(t) = u*(0)u(t) in A. Then it is a continuous and piecewise smooth path with
w(0) =1 and w(1) =u"(0)u(1). Denote by Ry, (u) = Det(w) the determinant of
w(t). Itis clear with the assumption that Ry, (u) depends only on the homotopy class of
u(t). Therefore, it induces a homomorphism, denoted by Ry, from K;(Mg,,) to
Aff(T(A)).
Definition (1.2.9)[98]:

Fix two unital C*-algebras A and B with T(A) # @. Define R, to be the subset
of Hom(K,(B),Aff(T(A))) consisting of those homomorphisms h€
Hom(K,(B),Aff(T(A))) for which there exists a homomorphism d:K;(B) — K,(4)
such that

h=pyod.
It is clear that RO is a subgroup of Hom(K;(B), Af f (T (A4))).

If [¢] = [¢] in KK(B, A), then the exact sequences 1;(M ;) (i = 0,1) above split. In
particular, there is a lifting 0: K; (B) — K;(M_,). Consider the map

Ry © 0:K1(B) » Aff(T(A)).
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If a different lifting 6’ is chosen, then, & — 6’ maps K, (B) into K,(A). Therefore
R¢,¢ ol — R¢,1/) o 0, € :RO'
Then define
Rpy = [Rey © 0] € Hom(K,(B),Aff(T(A)))/Ro.

If [¢] = [¢] in KL(B, A), then the exact sequences n;(Mg ) (i = 0,1) are pure, i.e.,
any finitely generated subgroup in the quotient groups has a lifting. In particular, for any
finitely generated subgroup G < K, (B), one has a map

Ry 05:G — Aff(T(4)),
where 65:G — K1 (Mg ,,) is a lifting. Let G  K;(B) be a finitely generated subgroup.
Denote by R, ; the set of those elements h in Hom (G, Af f (T (A))) such that there exists
a homomorphism d;: G — K,(A) suchthat h|; = ps o d;.

If [¢] = [¥] in KL(B,A) and Ry, (K1(Mg ) € pa(Ko(A)), then 8, € Ry for any
finitely generated subgroup G < K, (B) and any lifting 6,. In this case, we will also write
Lemma (1.2.10)[98]:

Let C and A be unital C*-algebras with T(A) # @. Suppose that ¢,y: C — A are two
unital homomorphisms such that

(9] = [¥] inKL(C,A), ¢y =1y, and ¢p* =y~
Then the image of Ry, ,;, is in the p, (Ko (A)) € Aff(T(4)).
Proof:

Let z € K, (C). Suppose that u € U,,(C) for some integer n > 1 such that [u] = z. Note
that Y (u)*¢(u) € CU,(A). Thus, by (28), for any continuous and piecewise smooth path
of unitaries {w(t): t € [0,1]} € U(A) withw(0) = Y(u)*¢p(u) and w(l) =1,

Lodw(t _
Det(w)(t) = j r( di )W(t)*) dt € 5, Ry (A)). (30)
0
Suppose that {(v)(t):t € [0,1]} is a continuous and piecewise smooth path of unitaries in
U,(4) with v(0) = ¢(u) and v(1) = Y(u). Define w(t) = Y(w)*v(t). Then w(0) =
Y*(w)p(u) and w(l) = 1. Thus, by (3),

1 d
R (2)(7) = f T( Z(tt)v(t)*)dt 31)
0
__[1 _adv(t) .
= [ (o T vy ar (32)
0
1 d o
_ j T( Zit)w(t)*> dt € p,(Ro(A)). (33)

Let A be a unital C*-algebra and let u and v be two unitaries with ||u*v — 1|| < 2. Then
h = % log(u*v) is a well-defined self-adjoint element of A, and w(t): = uexp(2miht) is
a smooth path of unitaries connecting u and v. It is a straightforward calculation that for
any T € T(A),

1
Det(w(t)) (1) = 77 (log(u*v)).

Let A be a unital C*-algebra, and let u and w be two unitaries. Suppose that w € U, (4).
Then w = [[}%, exp (2mih;) for some self-adjoint elements hy, ..., h,,. Define the path
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-1
w(t) = (1_[ exp (Znihk)> exp(2mibymt), if t € [(L— 1)/m,1/ml],
k=0
and define u(t) = w*(t)uw(t) for t € [0,1]. Then, u(t) is continuous and piecewise
smooth, and u(0) = u and u(1) = w *uw. A straightforward calculation shows that
Det(u(t)) = 0.

In general, if w is not in the path-connected component containing the identity, one can
consider unitaries diag(u, 1) and diag(w,w™). Then, the same argument as above shows
that there is a piecewise smooth path u(t) of unitaries in M,(A) such that u(0) =
diag(u,1),u(1) = diag(w*uw, 1), and

Det(u(t)) = 0.
Lemma (1.2.11)[98]:
Let B and C be two unital C*-algebras with T(B) # @. Suppose that ¢,: C — B are
two unital monomorphisms such that [¢p] = [¢] in KL(C,B) and
Top =10y
forall T € T(B). Suppose that u € UI(C) isaunitary and w € Ul(B) such that
||(qb X idMl)(u)w*(t,lJ X idMl)(u*)W — 1|| < 2.
Then, for any unitary U € U;(Mg,) With U(0) = (¢ ® idy)(u) and U(1) = (Y &®
idy,)(u), one has that

1
5 (log (¢ ® idu,) @)W (¥ ® idy,) WW)) = Ry y (VD (@)

€ ps(Ko(B)). (34)
Proof:

Without loss of generality, one may assume that u € C. Moreover, to prove the lemma,
it is enough to show that (34) holds for one path of unitaries U(t) in M,(B) with U(0) =
diag(¢p(u),1)and U(1) = diag(y(u),1).

Let U; be the path of unitaries specified with U;(0) = diag(¢(u),1) and U,(1/2) =
diag(w*yp(u)w, 1), and let U, be the path specified with U,(1/2) = diag(w Y (uw)w, 1)
and U,(1) = diag(y(uw), 1).

Set U the path of unitaries by connecting U; and U,. Then U(0) = diag(¢(u),1) and

U(1l) =diag(y(u),1), forany t € T(B), one computes that
Ry y([U]) = Det(U(t))(7) = Det(Uy(t))(7) + Det(U,(¢))(7)

1
= s 1(PUIW Pw),
as desired.
Definition (1.2.12)[98]:

Let A be a unital C*-algebra. In the following, for any invertible element x € A,
let (x) denote the unitary x(x*x)_%, and let x denote the element (x) in U(A)/CU(A).
Consider a subgroup Z* € K, (A), and write the unitary {u,,...,u,} € U.(A) the unitary
corresponding to the standard generators {e;,e,,...,e,} of ZF. Suppose that
{uy, uy, ..., u} € M, (A) for some integer n > 1. Let @: A — B be a unital positive linear
map and ® & idy, is at least {u;,uy,,...,u;} — 1/4-multiplicative (hence each ® ®
idy, (u;) is invertible), then the map ®¥|_ .k, = Z* — U(B)/CU(B) is defined by

CD*lsl(Zk)(ei) = (P Qudy, (u)), 1<i<k.
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Thus, for any finitely generated subgroup G < U.(A), there exists § > 0 and a finite
subset G A such that, for any unital § — G-multiplicative completely positive linear map
L: A - B (for any unital C*-algebra B), the map L* is well defined on s, (G). (Please see
2.1forU.(A) and s;.)

The following theorems are taken from [97].
Theorem (1.2.13)[98]:

Let = PM,,(C(X))P, where X is a compact subset of a finite CW-complex and P a
projection in M,,(C (X)) with an integer n > 1. Let A: (0,1) — (0,1) be a non-decreasing
map. For any € > 0 and any finite subset F < C, there exists 6§ >0,n > 0,y > 0, a
finite subsets G € C, P <€ K(C), a finite subset Q = {x1,x,,...,x} € Ky(C) which
generates a free subgroup and x; = [P;] — [q;], where p;, q; € M,,,(C) (for some integer
m = 1) are projections, satisfying the following:

Suppose that A is a unital simple C*-algebra with TR(A) <1, ¢:C — A is a unital
homomorphism and u € A is a unitary, and suppose that

I[p(c),ulll <6, VceG and Bott(¢p,u)|p =0,
and
Hrogp(Og) = A(a) VT ET(AQ D),

where O, is any open ball in X with radius n < a <1 and .4 is the Borel probability
measure defined by t o ¢p. Moreover, for each 1 <i < k, there is v; € CU(M,,,(A)) such
that

(L = & (i) + () w) (11 — d(q:) + P(g)u”)) —vill <.
Then there is a continuous path of unitaries {u(t) : t € [0,1]} in A such that

u(0) =uw,u(l) =1, and [[[¢p(c),u®]ll <e

forany c € Fand forany t € [0,1].
Theorem (1.2.14)[98]:

Let C = PM,(C(X))P, where X is a compact subset of a finite CW-complex and P a
projection in M,(C(X)) for some integer n=>1. Let GcK,(C) be a
finitely generated subgroup. Write G = Z¥ @ Tor(G) with Z* generated by

{x1 = [p:] — (@) x2 = [p2] — [q2), ) %k = [pic] — [qi]}
where p;,q; € M,,(C) (for some integer m > 1) are projections, i=1,...,k.

Let A be a simple C*-algebra with TR(A) < 1. Suppose that ¢:C - A is a
monomorphism. Then, for any finite subsets F € C and P € K(C),any e > 0andy > 0,
any homomorphism

T:Z% - Uy(4)/CU(A),
there is a unitary w € A such that
g wlll <e VfEF
Bott(¢,w)|, =0,
and

dist (L — @0 + d@PIWI (L — $(a) + $l@IWIN T ) < v V1< i<k,
where U,(A)/CU(A) is identified as U,(M,,,(A))/CU(M,,(A)), and the distance above is
understood as the distance in Uy(M,,,(A4))/CU(M,,(A)).
Lemma (1.2.15)[98]:

Let A be a simple C*-algebra with TR(A) < 1, and let C be a unital AH-algebra. If
there are monomorphisms ¢, y: C — A such that
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[¢] = [Y] in KL(C,4), ¢y =1y, and ¢* =y*,
then, for any 2 > € > 0, any finite subset F < C, any finite subset of unitaries P c
U, (C) for some n > 1, there exist a finite subset G c K, (C) with P € G (where P is the
image of P in K;(C)) and § > 0 such that, for any map n : G(G) = Aff(T(A)) with
In(x)(x)| < &forall T € T(A) and n(x) — Ry (x) € pa(Ko(A)) forall x € G, there
Isa unitary u € A such that

lep(f) —wyp(Hll <e VfEF,

and

r(zi tog ((# ® id, ) (4 ® 1s,)" (¥ @ idy, ) ( ® 1Mn))) = 2(n([x]))

forallx e Pandforallt € T(A)
Proof:

Without loss of generality, one may assume that any element in F has norm at most
one. Let € >0. Choose ¢ >6 >0 and a finite subset F c F, c C satisfying the

following: Forallx € P, T (#log((P(x*)Wj*l/J(x)Wj)) is well defined and
1
T <%log(¢(x*)wj*¢(x)wj)> (35)
1
=T <—109(¢(X*)UI¢(X)U1)> +

21l

+7 <2im log((l)(x*)vjf‘lp(x)vj)) forall t € T(A4), (36)
whenever

|6(f) —vjp(Hv|| <6 forall f €F,,

where v; are unitaries in A and w; = vy, - -, v;,j = 1,2,3. In the above, if x € U,,(C),
we denote by ¢ and i the extended maps ¢ & idy, and ¥ & idy, , and replace w;, and
v; by diag(wj,...,w;) and diag(v;,...,v;), respectively.

Let C',1:C' > C, 6' > 0 (in the place of §) and G’ € K,(C") (in the place of Q) the
constant and finite subset with respect to C (in the place of C), F, (in the place of F), P
(in the place of P), and ¥ (in the place of h). Put § = 6'/2.

Fix a decomposition (1),,(C") = Z* @ Tor((1),,(C")) (for some integer k > 0), and
let G be a set of standard generators of Z*. Let "' < U,,,(C) be a finite subset containing a
representative for each element of G. Without loss of generality, one may assume that P <
G'"', the maps ¢ and y are approximately unitary equivalent. Hence, for any finite subset Q
and any §,, there isa unitary v € A such that

Ilp(f) = v (vl < b1, VfEQ.

By choosing Q 2 F, sufficiently large and §; < n/2 sufficiently small, the map
1 * * 14
[x] = 7 (5= log(@" OV (v ) x € G,
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induces a  homomorphism 71, : ()., (K3 (C")) - Aff(T (A4)) (note that
1 (Tor (((D.1(K1(C")))) = {0}), and moreover, ||n,(x)|| < & forall x € G.

By Lemma (1.2.11), the image of n; — Ry, is in p(Ko(A)). Since n(x) — Ry (x) €
pa(Ko(4)) forall x € G, the image (17 — ) ((l)*l(Kl(C’))) is also in p, (K, (4)). Since
n — ny factors through Z*, there is a map h: (1., (K1(C")) = K, (A) such thatn —n, =
p4 © h. Note that |t (h(x))| <26 =6 forallt € T(A)and x € G.

By the universal multi-coefficient theorem, there is k € Hom,(K(C' ® C(T)),K(4))
with

koBlk,ccn=he (D

Applying, there is a unitary w such that

Iw, (DIl <6/2,  VfETF,

and Bott(w,y o 1) = k. In particular, bott, (w,y)(x) = h(x) for all x € P.
Set u = wv. One then has

le(f) —uwyp(Hull <6, VfETF,

and forany x € Pandanyt € T(A4),

t (5 log(@(xu 1¢<x)u)) = 7 (3= log(@ v wpIwn) )
= 7 (5= log(@ (W PIvr PG w p W)

Zilri .
= 7 (5 1og (@G I () ) + 7 (- logp (rIw pow)

= 11 ([x]) () + h([xD(7) = n([xD(0).
Corollary (1.2.16)[98]:
Let C be a unital AH-algebra and let A be a unital separable simple Z-stable C*-algebra
in C. Let ¢,y : C = A be two unital monomorphisms. Then there exists a sequence of
unitaries {u, } ¢ A such that

71113010 uy Y(cu, = ¢(c) forallceC,
if and only if
[¢] =[] inKL(C,A), ¢x =1y and ¢¥ =¥
Proof:

We only show the “if” part. Suppose that ¢ and ) satisfy the condition. Let € > 0, and
let F c C be afinite subset. Then exists aunitary v € A @ Z such that

v (W(a) ® Dy — ¢(a) @ 1]| < g foralla € F. 37)

Letl:A - AQ Z be defined by l(a) = a ® 1 for a € A. There exists an isomorphism j :
AQ® Z — A such that j ol is approximately inner. So there is a unitaries w € A such
that
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@@ ® D —wp@wl <5 and lw'p@w—j($@ @ DI <5 (38)
foralla € F.Letu = wj(v)w* € 4; then,fora € F,
lwp(@)u - $(@l = wj @) p@wjw’ - (@)l (39)
< lwj () w p(@wj@)w* —wj(®)j (@) @ Di@w’ll  (40)

+ Wi (((¥(@) ® 1)j(@) (41)
+w(j(9(@ ® D)w - p(@| (42)
<= +———eforalla€7-" (43)

3 33
A version of the following is also obtained by H. Matui.

Corollary (1.2.17)[98]:

Let C be a unital AH-algebra and let A be a unital separable simple C*-algebra in C,
which is Z-stable. Suppose that ¢,y:C — A are two unital monomorphisms. Then there
exists a sequence of unitaries {u,,} c A such that

7111_{23 uy ¢p(c)u, = () forallceC,

if and only if
[¢] = [Y] inKL(C,A), ¢4 =1py and ¢* =¥

Lemma (1.2.18)[98]:

Let A be a unital C*-algebra such that A @ M, is an AH-algebra for any supernatural
number r of infinite type. Let B € C be a unital separable C*-algebra, and let ¢,{: A - B
be two unital monomorphisms. Suppose that

[¢] = [¥] inKL(4,B), (44)
by = Py and ¥ = P*. (45)
Let p and q be two relatively prime supernatural numbers of infinite type with M, ®
M, = Q. Then, for any € > 0 and any finite subset F c A ® Z 4, there exists a unitary
v EB® Z,4 such that
v ((p®id)(@))v— Y ®id)(a)|| <e foralla €F (46)

The proof of this lemma will be lengthy and technical in nature. Using homotopy
lemmas, one could find a certain path of unitaries in B @ Q such that it implements the
approximate equivalence above when it is regarded as a unitary in B ® Z,, ;. But since the
domain C*-algebra A is only assumed to be rational tracial rank at most one, in order to
apply the homotopy lemmas, one also needs to interpolate paths in A ® Z, ,, and this
increases the technical difficulty of the proof.

Proof:

Let r be a supernatural number. Denote by L.: A - A ® M,. the embedding defined by
l,(a) =a @1 for all a € A. Denote by j,.: B—> B @ M, the embedding defined by
jr(b) = b @ 1 for all b € B. Without loss of generality, one may assume that ¥ = F; ®
F,, where F; € Aand F, € Z, , are finite subsets and 1, € F and 1z,, € F2. Moreover,
one may assume that any element in F; or F,has norm at most one.

Let0 =t, <t; < <ty =1Dbeapartition of [0, 1] such that

16 = b(e)ll <5 Vb E€Fy Ve € [ty i=1,. (47)

b.q’

Consider
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e={a®b(t;);a € F;,beF,,i=0,..m}ICTAQRQ,
g, ={a®b(ty);a €EF,bEF,}CSAQM,c AR Q and (48)
gq =1a®b(t,,);a EF,bEF,}CSAQM, c AR Q. (49)

Since A ® Q is an AH-algebra, without loss of generality, one may assume that the finite
subset E is in a C*-subalgebra of A @ Q which is isomorphic to C := PM,,(C(X))P (for
some n = 1) for some compact metric space X. Since PM,(C(X))P =
lim,, 00 (ByM,, (C(X:n))Py), Where X,,, are closed subspaces of finite CW-complexes,
then, without loss of generality, one may assume further that X is a closed subset of a
finite CW-complex.

Fix a metric on X, and forany a € (0, 1), denote by
A(a) = inf{uto(d)@id)(Oa); T € T(B),0, an open ball of radius a in X}.
Since B is simple, one hasthat 0 < A(a) < 1.
LetH < C,P S K(C), Q = {xq,x5,...,xp} € Ky(C) which generates a free subgroup of
Ky(C),6 > 0,y > 0, and d > 0 (in the place of n) be the constants of Theorem (1.2.13)
with respect to E, €/8, and A. We may assume that x; = [pi] — [q;], where p;, q; € M,,(C)
are projections (for some integer n > 1), i = 1,2,..., m. Moreover, we may assume that
Y < 1. Denote by o the supernatural number associated with Q. Let P, =P N K;(A ®
Q),i = 0,1. There is a finitely generated free subgroup G (®);, < K;(A) such that if one
sets

G(P)icoo = G({gr: g€ (loo)*i(G(P)i,o) andr € DO}), (50)

where 1 € D, c Q is a finite subset, then G(P); « contains the subgroup generated by
P;, i =0,1. Moreover, we may assume that, if r = k/m, where k and m are nonzero
integers, and r € D, then 1/m € D,. Let P/ c K;(A) be a finite subset which generates
G(P);o,i = 0, L.Also denote by P' = Py U Py.

Denote by j: € - A @ Q the embedding.

Write the subgroup generated by the image of Q in K,(A ® Q) as Z* (for some integer
k = 1). Choose {x1,...,x;} € Ko(A) and {r;;;1 <i <m,1 < j < k} € Qsuch that

k
Jro(x) = zrijx]f, 1<i<m1<j<k,
j=1

and moreover, {xi,...,x;} generates a free subgroup of K,(A) of rank k. Choose
projections p;, q; € M, (A) such that x; = [p;] — [q;],1 < j < k. Choose an integer M
such that Mr;; are integers for 1 <i<m and 1 <j < k. In particular Mx; is the linear
combination of x; with integer coefficients.

Also noting that the subgroup of K,(A ® Q) generated by {(1s).;i(x1), -+, (Leo)+i (X))}
is isomorphic to Z¥ and the subgroup of K,(A ® M,) generated by {(l,).;(x]),
..o, (1) (x})} has to be isomorphic to Z*, where r = p or r = q.

Since A @ M, is an AH-algebra, one can choose a C*-subalgebra C, of A @ M, which is
isomorphic to P.M, (C(X,))PB. (for some n, = 1) such that E, < C, and projections
{P1rr o Pkrr Qirs - Qe r} © My (C,) such that forany 1 < j < k,
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1P} ® 1, — L || <v/| 32{ 1+ Z|Mri,j, <1, (51)
i
and

la; ® 1, — @il <v/{ 32( 1+ Y Mrop| | | <1, (52)
i,j'

where X, is a closed subset of a finite CW-complex, and r = p or r = q.
Denote by x;, = [pj.] —[gj,], 1 <j <k, and denote by G, the subgroup of K,(C,)
generated by {xi,,...,x; .}, and write G, = Z* @ Tor(G,). Since G, is generated by k
elements, one has that » < k and r = k if and only if G, is torsion free. Note that the
image of G, in Ko,(A® M,) is the group generated by {[p; ® 1y ]—[q1 &®
Il [Pk @ 13,1 — [q @ 14}, which is isomorphic to Z* (with {[p; ® 1), ] —
[q; ® 1y,.]; 1 <j < k} as the standard generators). Hence G, is torsion free and r = k.

Without loss of generality, one may assume that L.(P") € K(C,). Assume that H is
sufficiently large and § is sufficiently small such that for any homomorphism h from A @
Q to B ® Q and any unitary z;(j = 1,2,3,4), the map Bott(h,z;) and Bott(h,w;) are
well defined on the subgroup generated by P and

Bott(h, z;) = Bott(h,z;) + -+ + Bott(h, z;)

on the subgroup generated by P, if |[h(x),z]|| <& for any x € 2, where w; =
Z1, - Zj, ] = 1,2,3,4.

By choosing larger H and smaller &, one may also assume that

1 1
||h(pi),zj|| < 16 and ||h(ql-),zj|| < T 1<i<m,j=1234, (53)
andforany1l < i < m,

k
dist [ ¢, | (@)™ | <v/8, (54)
|
where
Gi,zy = (1 — h(py) + h(p))z1) (1, — h(py) + h(py))z1)),
and
$iz,

={(1n — h(p} ® lage) + 1(Pj ® Lago))z1)(1n — h(q} ® lago) + h(d} ® Lage))zi)):
By choosing even smaller §, without loss of generality, we may assume that

H=H'QH? Q HY,
where H° c A, H? c M, and H'9 c M, are finite subsets, and 1 € #°, 1 € HP and 1 €
HA.

Moreover, choose #°, HP and 77 even larger and & even smaller so that for any
homomorphism h,.: A @ M, - B @ M, and unitaries z,,z, € B @ M, with ||h,(x), z;|| <
6 forany x € H, Q H,., one has
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1 1
\h-(pi,). 2| < Te and ||h,(qi,) 2] < e 1<i<kj=1.2, (55)
and

dist (Ci,zl,zzt (1B®Mr)n) < diSt((i'ZI’ (i,zz) +y/(32{ 1+ z|MTi’J| ’
inj

where

$ior = {(Ln = e (pf) + e (07, ))2) (Ln = he(af,) + h(41,))(2))), 2" = 2125, 21, 2.

Denote by C' = P'M,,(C(X))P",I:C' - A® Q, &, (in the place of §) the constant, G S
K, (C(X)) (in the place of Q) the finite subset with respectto A & Q (in the place of (),
B @ Q (in the place of A), ¢ @ idQ (in the place of h), §/4 (in the place of €), H (in the
place of F) and P. Note that X is a finite CW-complex.

Let H' € A ® Q be a finite subset and assume that &, is small enough such that for any
homomorphism h from A® Q to B ® Q@ and any unitary z;(j = 1,2,3,4), the map
Bott(h, z;) and Bott(h, w;) is well defined on the subgroup [I](K(C")) and

Bott(h,w;) = Bott(h, z,) + -+ + Bott(h, z;)
on the subgroup [1](K(C"), if ||[h(x),z]| < &, for any x € H', where w; = z,,z;, j =
1, 2, 3, 4. Furthermore, as above, one may assume, without loss of generality, that
H =H" Q HP' Q H?,
where H° € H* c A, HP € HP' € My and H? € H? c M, are finite subsets.

Let 6, > 0 be a constant such that for any unitary with [Jlu — 1| < §;, one has that
lllog u|| < &,/4. Without loss of generality, one may assume that §; < 6,/4 < €/4 and
5, < 6.

Let C):= P.M,,C(X;)P. (in the place of C"), Li.: C, > A @ M, (in the place of I), R, C
K, (C))) (in the place of Q) and &, (in the place of &) be the finite subset and constant with
respect to A @ M, (in the place of C), B @ M,. (in the place of A), ¢ & idM,. (in the place
of h), Y @ H™ (in place of F) and (1,).o(Ps) U (1)1 (P]) (in the place of P) and
8, /8 (in place of €) (r = p or r = q). Note that X;. is a finite CW-complex with K; (C]) =
Z* @ Tor(K,(C))). Let Rﬁi) = (1;).;(K;(C;)),i =0,1. There is a finitely generated
subgroup G; o, © K;(A) and a finitely generated subgroup D, € Q, so that

GiI,O,r = G({g?’: g€ (lr)*i(Gi,O,r) andr € DO,r})
contains the subgroup Rﬁl),i = 0,1. Without loss of generality, one may assume that
Dy, = {mip; k €Z}and Dy, = {miq; k € Z} for an integer m, divides p and an integer

m, divides q. Let R c K(A® Q) be a finite subset which generates a subgroup
containing
1
m,m, ((lp,oo)*(Gé,o,p U Giop) U (lge),(Gooq U Gi.o,q))
in K(A® Q), where [, is the canonical embedding AQ M, - AQ Q,r =p,q.
Without loss of generality, one may also assume that R 2 1/, (§).Let H,, € A ® M, be a
finite subset and &5 > 0 such that for any homomorphism h from A® M, t0 B Q
M, (r =porr =q)any unitary z; (j = 1,2,3,4), the map Bott(h, z;) and Bott(h, w;)
are well defined on the subgroup [I;](K(C;)) and
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Bott(h, Wj) = Bott(h,z,) + -+ + Bott(h, Zj)
on the subgroup generated by [I;](K(C))), if ||[R(x),z]| < &5 for any x € #,, where
w; = 24, ...,2,j = 1,2,3,4. Without loss of generality, we assume that H° @ HP c H,
and H° @ H? c H,. Furthermore, we may also assume that
Hy = Hoo @ Hor

for some finite subsets H,, and H,, with H* cHyoc AHP cHy,C
M, and H?" c H, 4. In addition, we may also assume that 63 < §,/2.

Furthermore, one may assume that &5 is sufficiently small such that, for any unitaries

Zy,Z,,Z5 In a C*-algebra with tracial states, r(ﬁ log(zz)) (i,j = 1,2,3) is well
defined and

1 1 1
T <% log(zlzz)> =T <% log(zlz3)> +1 <% log(z3zz)>

for any tracial state T , whenever ||z, — z3|| < 63 and ||z, — z3]| < J3.
To simply notation, we also assume that, for any unitary z;, (j = 1,2,3,4) the map
Bott(h, z;) and Bott(h, w;) are well defined on the subgroup generated by R and
Bott(h,w;) = Bott(h, z,) + -+ + Bott(h, z;)
on the subgroup generated by R, if ||[h(x),z]| < 85 for any x € K", where w; =
Zy, - Zj,j =1,2,...,4, and assume that
H" = 7'[0,0 X }[O,p 0% }[O,q-

Let R; = RN K;(A® Q). There is a finitely generated subgroup G;, of K;(A4) and there

is a finite subset D) c Q such that

Gio = G({gr: g€ (lr)*i(Gi,O) andr € D(’,})

contains the subgroup generated by R' i = 0,1. Without loss of generality, we may
assume that G; ., is the subgroup generated by R!. Note that we may also assume that
Gio D G(P);o and 1 € Dy D D,. Moreover, we may assume that, if r = k/m, where m, k
are relatively prime non-zero integers, and r € D}, then 1/m € Dy . We may also assume
that G;o, € Gy for r=p,q and i =0,1. Let R' c K;(A) be a finite subset which
generates G;o,i = 0,1. Choose a finite subset U c U, (A) for some n such that for any
element of R, there is a representative in U. Let S be a finite subset of A such that if
(z;;j) €U, thenz;; € S.

Denote by 6, and Q, c K;(AQ® M,) = K,(A) Q Q,the constant and finite subset of
Lemma (1.2.15) corresponding to &£, U H,. @ 1 U [,.(S) (in the place of F), [,.(U) (in the
place of P) and %min{dé/& &5 /4} (in the place of €) (r = p or r = q). We may assume
that Q. = {x ® r:x € Q" and r € D,'}, where Q' c K, (A) is a finite subset and D, c Q,
is also a finite subset. Let K = max{|r|:r € D,/ UD;'}. Since [¢] = [¢] in KL(A, B),
¢y =y and ¢* = Y*, by Lemma (1.2.10), Ry (K1(A)) S pp(Ko(B)) < Aff (T (B)).
Therefore, thereisamapn : G(Q") -

pg(Ky(B)) € Aff(T(B)) such that
(1= Ry)([2]) € pp(Ko(B)) and |In(2)l <

04
1+K

forallz e Q' (56)
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Consider the map ¢, = ¢ Q idy,. and Y. =Y Qidy, (r=porr=gq). Since n
vanishes on the torsion part of G(Q"), there is a homomorphism n,.: G((l,)..(Q")) -
peaum, (Ko(B ® M,)) < Aff(T(B ® M,)) such that

Nro (L) =1 (57)
Since pggu, (Ko(B ® M,)) = R, (Ky(B)) is divisible, one can extend 7, so it defines on
K;(A) ® Q,. We will continue to use n, for the extension. It follows from (50) that
Nr(2) = Ry (2) € pagm, (Ko(B ® M,)) and |[n.(2)ll < 8, for all z € Q.. By Lemma
1.2.17, there exists a unitary u,, € B @ M, such that

1
|5 (¢ ® idy, ) @u, — (¥ @ idy, ) (2) | < —min{83/8, 85/43, Ve
€ &, U, UL, (9). (58)
Note that

| Uy, (¢ 0% ide) (2u, — (1/1 0% ide) (2) || < &3 foranyz e U.
Therefore 7( ﬁ log(uy (¢ ® idy,)(2)u, (Y & idy)(2))) = n,([2*])(z) forall z € L,(U),
where we identify ¢ and ¥ with ¢ @ idy, and Y ® idy,, and up with u, ®
1p,,, respectively.
The same argument shows that there is a unitary u, € B @ M, such that
1
| U (qb 0% idMq) (2Dug — (1,[1 0% idMq) (z)” < ﬁmin{Sé/B, 03/4},Vc
€ Eq UH, UL, (S). (59)

and r(# log(ug(¢p ® idy)(2)u,(Y Q idy)(2))) = nga([z" D (r) for all z € l,(V),
where we identify ¢ and ¥ with ¢ ® idy, and ¥ & idy, , and ug with u; & 1, ,
respectively. We will also identify w, with u, ® 1 M, and u, with u, ® 1 M,
respectively. Then u,u; € A ® Q and one estimates that for any ¢ € Hyg & Hy,, ® Hy,

[uqup(d @ 1o(0))@upug — (¢ ® 15)(0)|| < 85, (60)

and hence Bott(¢ @ idg,u,ugy)(z) is well defined on the subgroup generated by R.
Moreover, forany z € U, by the Exel formula by applying (83),

t(bott; (¢ ® idg, upuy) (leo) .1 ([2])) (61)
= 7(bott, (¢ ® idg, upuy)(lo(2))) (62)
1
=7 < P log(upyu; (¢ ® idy) (Lo (2))ugusy (¥
® idq)(loo(z))*)> (63)

1

=1 ( 5= log (u;(qb ® idg)(lo(2)u, (¥ ® idq)(loo(z*)))> (64)
1

e ( L t0g (15(9 ® id) 1@y (9 @ idq)(loo(z*)))> 65)

=14 ((t)., (D) @ = 1, (1), D) @) (66)

=n([zD(@) = n([zD(z) = 0 for all T € T(B), (67)
36



where we identify ¢ and ¥ with ¢ & idy,, and ¢ ® idy,, and u, and u, with u, ®
1y, and u, withu, ® 1, , respectively.
Now suppose that g € G; .. Then g = (k/m)(ls).1([2]) for some z € U, where k, m
are non-zero integers. It follows that
t(bott, (¢ ® idy, uyu;)(myg)) = kr(botty (¢ ® idy, upu;)([z])) =0  (68)
forall t € T(B). Since Aff(T(B)) is torsion free, it follows that
7(bott, (¢ ® idg, upu;)(g)) =0 (69)
forall g € G, . and T € T(B). Therefore, the image of R* under bott, (¢ ® id, u,uy) is
in ker ppgo. One may write

Gl’o == ZT®Z/plz® @Z/pSZ
where r is a non-negative integer and p,,...,ps are powers of primes numbers. Since p
and g are relatively prime, one then has the decomposition

G1o = L"®Tor,(Gy0)®Tor,(Gyo) S K1 (4),
where Tor,(Gy,) consists of the torsion-elements with their orders divide p and
Torq(Gl,O) consists of the torsion-elements with their orders divide q. Fix this
decomposition. Note that the restriction of (1,)  to Z" @ Tor,(Gy,0) is injective and the

restriction to Tor,(Gy,) is zero, and the restriction of (I,) . toZ" @ Tor,(Gy,) is

injective  and  the  restriction to  Tor,(G,,) is  zero.
Moreover, using the assumption that p and q are relatively prime again, for any element

k € (lq)*1 to Z" @ Tor,(G, ) and any nonzero integer g which divides g, the elementg

is well defined in K;(A ® M,); that is, there is a unique element s € K; (4 ® M, ) such
that gs = k.
Denote by ey, ..., e, the standard generators of Z". It is also clear that
(loo)*l (TOT‘p(GLO)) = (loo)*l (TOTP(GLO))
Recall that Dy, = {k/m,;k €Z} cQ, and Dy, = {k/mg k € Z} c Quq, for an
integer m, dividing p and an integer m, dividing q. Put m, = m,m,.
Consider min EK,(A® Q),and foreache;, 1 < i < r,consider

1 ) .
m—bott1(¢ ® idg, upuy)((Uew).1(e;)) € ker ppgo-

Since ker ppgo = (ker pp) ® Q, ker ker Peem, = (ker pg) ® Qp, and ker PeM, =
(ker pg) @ Qg, there are g;,, € ker PB@M, and g; 4 € ker Pe@M, such that

1
bott, (¢ ® idg, upiy) <m_oo (loo)*l(ei)> = (jp)*o(gi,p) + (jq)*o(gi,q)'

where g;, and g;, are identified as their images in K,(4A® Q).
Note that the subgroup (1,).1(G1,) in Ko(A ® M,,) is isomorphic to Z" € Tor, and

miq (Z" @ Tory) is well defined in Ky(A ® M,,), and the subgroup (1;).1(G1,) in Ko(B ®
M,,) is isomorphic to Z" € Tor, and mi(ZT @ Tor,) is well defined in Ko(A @ M,).
q

37



One then defines the maps 6,,: mip (1,)41(G1o) — ker PB@M, and 6,: miq (1g)+1(G1p) —

ker PB®RM, by

1 1
Op (m_p (lp)*1(ei)> =mggip and b (m_q (lq)*l(ei)> = MpPiq

forl < i < rand

9p|Tor((zp)*1(cl,o)) =0 and 9q|ror((zq)*1(cl,o)) = 0.

Then, for each e;, one has
U)o 2 0p ° Up)ea(ed) + (g),, © Og © () ealed)
=m, (mip (Up),,°6p© (lp)*l(ei)> +mg (miq Uq),g°6q° (lq)*l(ei))
= mymg () o(960) + (i) o (910))

= moobottl(gb X idQ,upuZl) ° ((loo)*l(ei/moo))

= bottl(gb ® idQ,upuZl) ° ((loo)*l(ei)).
Since the restriction of 6, o (1,).1,6, ° (I5).1 and bott; (¢ ® idg, upu) © ((leo).r) 10
the torsion part of G, , is zero, one has

bott, (¢ ® idg, upug) © ((Ueo)ar) = (jp)*l °ap ° (lp)*o + (jq)*l °Qq° (lq)*o-
The same argument shows that there also exist maps a, : mi ((1p)1(Gop)) —
14

K,(B ® M,) and a, : miq ((l)+1(Go)) — Ki(B ® M,) such that

botto(¢ ® idg, upttg) © ((lo)so) = (jp)*l °ap ° (lp)*o + (jq)*l °&q° (lq)*o'
On Gy .
Note that G;o, S G;o,i = 0,1,7 = p,q. In particular, one has that (1).; (G;o,) S

I 1 I} 1

(1) (Gip), and therefore Gi,, S m_p(lp)*i (Gyp) and G4 S m—q(lq)*i (Gyo). Then
the maps 6,, and 6, can be restricted to Gy , ,, and G , , respectively. Since the group G;, ,
contains (1;).;(K;(C;)), the maps 6, and 6, can be restricted further to (1) (Kl(Cz’,))
and ()., (Kl(cg,)) respectively.

For the same reason, the maps a, and «, can be restricted to (1) (Ko(C{;)) and
(l{,)*o (KO (CL’,)) respectively. We keep the same notation for the restrictions of these maps
Ay, Ag, Oy, and 64

By the universal multi-coefficient theorem, there is k, € Hom,(K(C, ®
C(T)),K(B @ M,)) such that

kplﬂ("l(cé)) = =6, (L), °B7" and kp'ﬁ(Kl(c{;)) =—apo(lp) B
Similarly, there exists k, € Hom,(K(C; ® C(T)),K(B ® M,)) such that
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— _ o1’ o R 1 — _ o1’ o 1
kq |ﬁ(K1(Cé)) = 9q (lq)*l ,3 and kqlﬁ(lﬁ(cé)) aq (lq)*O B .

Note that since g;, € kerpsgm,. k-(B(K1(C)))) € kerppgm.,mr =porr =gq. By
Theorem (1.2.15), there exist unitaries w, € B ® M,, and w, € B ® M, such that

[ (¢ @ i, ) ]| < 8378, |[[wp (@ @ i, ) ]| < 378,
foranyx e " @ HP andy € X ® H4, and
Bott (¢ ® idy,, wp) o [l)] = ky o f and Bott (¢ ® idy,,wy)° [lg] = kg o B.
Forr = porr = gandeach1l < j < k, define
$jwruy
= (10— (¢ ® idu, ) (7)) + (¢ ® i, ) (7)) ) wrttr) (1 — (& ® i, ) (],) + (& ® i, )(4]) ) 13w )
Itiselementin U(B ®Q M,)/CU(B @ M,).
Define the map I: ZX - U(B @ Mp)/CU(B @ M,) by
L(x':) =Cwouy 1<j<k
C, (in the place of C), G(x'14, ..., x k) (in the place of G), B ® M, (in the place of A4), and
(¢ ® ith)|Cr (in the place of ¢), there is a unitary ¢, € B ® M, such that

llce (¢ @ idy, ) ()| < 85/16

forany x € 9 Q@ H¥,
Bott(¢ ® idy, ;)| (P") =0,
dist ($)ce Ti(0) ) < v/(32(1 + 2|Mrij|)), 1<j<k  (70)

i,j
where

e = (L= (@ @) (¢7,) + (0 ®1d1s) (') ) )

(1n— (& ®@1du) (') + (& @ 1du)(@’, ))cD))
Put v, = c,w,u,. Then, by (81)and (70),for1 < j <k

dist(G;,, (Tpgm)) < dist(Gyec, Gwya,) +7/ (3201 + ) |[Mry]))
Lj

<y/(16(1 + Z|Mrij|)), | 71)
where N
Gy = (e = (6 @ 1) (¢7,) + (6 ®1d1) (') ) v

(1n = (¢ ®1dy,) (¢7,,) + (& ®1di ) (@, ))7)-
Recall that [x; ] = [p';] — [q’j].Define

Gy = ((1n = @' ) @ Ly, + (S’ ) ® L )v) (1 — ¢ (¢,) ® Ly, +
(¢ (a',) ® 1) w)).

one has

dist ((x',-,vr' (j,vr) <y/(16(1+ z|Mrij/|))r
iL,jr
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and hence by (39),
dist (G, Tam)™)) < ¥/B(L+ ) My ]))

iL,jr
Regard Cx';,0,85 its image in B ® Q, one has

dist (¢, o)) < ¥/(8CL+ Y. [Mrys]),
i,j'

and henceforany1 < i < m,

k
dist(| [@u,), Tagdm) < ¥/8.
j=1

One has
dist(((1 — (¢ ®1dq)(p,) + (¢ ® 1dg) (P V) (1 — (¢ ® 1dg)(q)))
+(¢ & ldQ) (@)vOM, (1pgein) <v/4,

diSt(((1 - (¢ 0y ldQ)(pl) + (d) X ldQ)(pl)vr)(l - (d) 03y ldQ)(ql))
+(¢ ®1dg) (@) 1)), (1pgo)n) < v/(4M) < y/4.

In particular,
dist({((1 — (¢ ®1dq)(p)) + (¢ ® 1dq)(P)Vevs)(1 — (¢ @ 1dg)(a)))
+(¢ ®1dq)(@)vvg)), (1))
< dist(((1 - (¢ & ldQ)(pl) + (¢ X ldQ)(pl)vq)(l - (¢ & ldQ)(%))
+(¢ ®1dq)(@)v;)), (LpgeIn) + dist(((1 — (¢ ®1dq)(p) +

(¢ ®1dq)(PIVp)(1 — (¢ ®1dg)(a,) + (¢ ®1dq)(a)vp)), (IpgeIn) < ¥/2
That is

dist (Givgv0 In) < 7/2, (72)
where

(i,qu; = diSt(<(1 - (¢ ® ldQ) (pl) + (¢ ® ldQ)(pl)quf;)(l - (¢ ® ldQ)(ql))
+(¢ X ldQ)(ql)vpvc}k))

Moreover, one also has
¥ ® idq(x) — vi(¢ ® idg())v,|| < 63/4, VxeEHY” Q HP @ H? and
[ ® idg(x) — v (¢ ® idg())v, || < 85/4, VxeH® @ HP @ HY
Hence
v, () @ 14|| < 83/2, VxeH'
Thus Bott(¢ & idq, v,v4)is well defined on the subgroup generated by P.
Moreover, a direct calculation shows that
bott(¢p & idg, v,v7) © (£)1(2)
= bott; (¢ ® idg, ¢;,) © (£x).1(2) + bott; (¢ Q idg, wp) © (£)41(2)
+bott(¢p & idg, upug) © (£e).1(2) + bott; (¢ & idg, wy) © (£e).1(2)
+bott; (¢  idq, cg) © (£e).1(2)
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= (Jjp)+o0 O bott; (¢ ® ide' Cp) © ({)p)*l(z) + (jp)«o0 © bott; (¢ & ide» wp) ©
(¢p),, @ +bott; (¢ ®idg,  Upuy) © (£en)1(2) + (p)uo © botty (p ®idy,  wg) ©
(fp)*l(z) + (jp)«o © bott; (¢ & idMq; Cq) © (fp)*l(z)

= (jp)«o © bott; (¢ ® ide, wy) © ({’p)*l(z) + bott(¢p & idg, upug) © (£eo)s1(2)
+(p)+o © botty (¢ & idy,, wg) © (fq)*l(z)

= —(pl0©6p© ({)p)*l(z) + ((jp)*o © 60 ({)p)*l + (jq)*o © 8,0 (fq)*l) -
(jq)*o © 8,0 (fq)*l(z)
=0 forall z € G(P)1p.
The same argument shows that bott,(¢ & idg, v,v5) =0 on G(P)q, Now, forany g €
G(P)1,0,0 there is z € G(P)4 o and integers k, m such that (k/m)z = g. From the above,
bott; (¢ & idg, v,v4)(mg) = kbott; (¢ ® idg, v,v5)(2) = 0. (73)
Since Ky (B ® Q) is torsion free, it follows that bott, (¢ & idq, v,v4)(g) = 0.
forall g € G(P),,,0 So it vanishes on P N K, (A ® Q). Similarly,
bott; (¢ & idq, vyvg) PORLARQ) = OonPNKy(AQ Q).
Since K;(B® Q,Z/mZ)={0} for all m =2, we conclude that Bott(¢ & idg,
Uy V) = 0 on the subgroup generated by P
Since [¢] = [¢] inKL(A,B), ¢4 = ,and ¢p* = ¥, one has that
[¢ ®idg] = [ ®idg]in KL(A® Q,B ® Q), (74)
(¢ ®idg)y= (¥ ®idg)y and (¢ ®id)* = W ®idx)* (75)
Therefore, ¢ ® idg and ¥ ® idg are approximately unitarily equivalent. Thus there
exists a unitary u € B @ Q such that

|
It follows that
|luvs(d(c) ® 1g)vyu" —YP(c) ® 1g|| < 62/2 +<6,/8 VceG
By the choice of &, and H', Bott(¢ ® idq, v,v;) is well defined on [1](K(C"), and
|T bott1(¢ ® idg, vpv;)(z)| <é,/2 VTeET(B)VzEQG.
There exists a unitary y, € B @ @ such that
||[yp, (p X idQ)(h)]” <6/2, Vh € H,

and Bott(¢ ® idq, ¥,) = Bott(¢ & idg, v,u*) on the subgroup generated by P.

Foreach1 <i < m, define

(i,yp,uv{, = ((1n - (¢ ® ldQ)(pl) + ((d) ® ldQ) (pl)ypuvi;)(ln - (¢ ® ldQ)(ql)
+(¢ ®1do) (@) vpu’yp)),

and definethemapI': Z™ - U(B Q@ Q)/CU(B ® Q) byI'(x;) = Siypuvy:

Applying Corollary (1.2.15 )to € and G (Q), there is a unitary ¢ € B @ Q such that

u' (¢ ®idg)()u— (Y ® idg)(c)|| < 85/8 forall c € e UK’ (76)

Ic. (¢ ® id)(W]|| < 5/4, VhEeH
Bott(¢p ® idg, ¢) |» =0
and forany 1 < i <k,
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diSt((’i’C*, F(xl)) < Y/Z;
(,i,c* =((1, - ((]5 0% ldQ)(pl) + ((]5 03y ldQ)(pl)C*)(ln - (¢ 0%y ldQ)(ql)
+(¢ ®1dq)(g)))),

Consider the unitary v = cy,u, one has that
I[v. (¢ ® idx)(R)]|| < 6/4, forall heH Bott(p ®idg,vvy)=0
on the subgroup generated by P, and forany 1 <i < m,
dist (¢ Tn) < V/2 (77)
where

C'i’vv; = (1, — (¢ ®1dg) () + (¢ @ 1dg)(PIvvy) (1, — (¢ ®1dg)(qy)
+(¢ ®1dq)(4))vpv")),

By the construction of A, it is clear that

HTO(lp®1)(0a) = A(a)
for all a, where O, is any open ball of X with radius a; in particular, it holds forall a > d.
Applying Theorem (1.2.13) to C and Bott(¢ ® idq ) |., one obtains a continuous path of
unitaries v(t) in B ® @ suchthat v(0) = 1andv(t;) = vv, and

I[z,(®, (¢ ®idx)(©)]|| <e/2, vxee  Vte[0t]. (78)
Note that
Bott(¢ ® idq, v,v*) = Bott(¢ ® idg, v,vpv,v*) (79)
= Bott(qb & idg, qu;) + Bott(qb & idg, vpv*) (80)
=0+0=0 (81)

on the subgroup generated by P, and forany 1 < i < m,

dist (', 1) (82)
< dist (¢, 1) + dist (¢, ) (83)
=, (by (98)and (127)) (84)

where
Z,i,qu* = <(1 - (¢ ® ldQ) (pl) + (¢ ® ldQ) (pl)qu*)(l - ((p ® ldQ) (ql)

+(¢ ® 1dg) (@))vvy)),
Theorem (1.2.13) implies that there is a path of unitaries z,(t) : [t;;,—1, 1] > U(A ® Q)

such that z, (t,—1) = vv,,24(1) = land
||[Zp(t),q.’> 0% idQ(c)]” <€/8, Vte€|[ty,_1,1] Vcee (85)

Z, () vy, if 0<t<t,
v(t) =

Consider the unitary

v, if ty<t<t,_q
Z,(t)vp, if tp_q <t<tny.
Then, forany t;,0 < i < m, one has that
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|lv* () (P ® idg)()v(t) — (¥ ® idg)(c)|| <€/2, Vcee (86)
Thenforanyt € [¢;, tiz]Jwithl <j <m — 2, one has

lv(t)(¢ ®id(a @ b(D)))v(t) — ¢ @ id(a & b(D)| (87)
= [[v*(¢(a) @ b))V — P (a) ® b(O)| (88)
< |lv*(¢(@ @ b(£)))v —¥(a) @ b(t))|| +€/4 (89)
<e/d+e€/4 =¢€/2. (90)
Forany t € [0, t,],0one has that foranya € F, andb € F,,
[v*(©)(¢ @ id(a ® b())v(t) — P @ idg(a ® b)) (9D
= |lvpzy ((a) ® b(D))z,(H)v, — P(a) @ b(V)| (92)
< v2(¢(@) ® b( )2y ()v, — (@) @ b(to))|| + /2 (93)
< [lvp(p(a) ® b(te))v, — P(a) ® b((tp))|| + 3e/2 (94)
3¢/2+€/4 =€ (95)

The same argument shows that for any t € [t,,_4, 1], one has that forany a € F; and b €
¥,
lv'(t)(¢ ®id(a @ b()))v(t) -y @ id@@a @ b))l <e. (96)

Therefore, one has
lv(p K id(f))v -y Kid(f)]| <€ forall f € F.

[¢] = [Y] inKL(A,B), p» = Y, and $p* = ¥, (97)

Theorem (1.2.19)[98]:

Let A be a Z —stable C* —algebra such that A ® My is an AH —algebra for any
supernatural number r of infinite type, and let B € C be a unital separable Z-stable
C* —algebras.

If ¢ and y are two monomorphisms from A to B with

[¢] = [¥] inKL(A,B), ¢y = Yy and ¢* = y*. (98)
then, for any € > 0 and any finite subset F € A, there exists a unitary u € B such that
lu*p(a) —Y(a)|| <e forall a€F. (99)
Proof :
Leta: A-» AQRZandf : Z - Z Q Z be isomorphisms. Consider the map

o id®p a”Qid
TvA->ARZ—ARZRZ—ARZ.

Then T is an isomorphism. However, since S is approximately unitarily equivalent to the
map

Z39a—aQ®@l1eZQRIZ,
the map I', is approximately unitarily equivalent to the map

A2a—a®1€eAdARZ.
Hence the map I'g © ¢p © ' is approximately unitarily equivalent to ¢ @ id;. The same
argument shows that I'g © Y 0 I'is approximately unitarily equivalent to ¥ & idy. Thus,
in order to prove the theorem, it is enough to show that ¢ & id; is approximately unitarily
equivalentto ¥ @ id,.

Since Z is an inductive limit of C* —algebras Z, 4,it is enough to show that ¢ & idzp,q

isapproximately unitarily equivalent to ¥ @ idzp’q, and this follows from Lemma (1.2.18).
The range of approximate equivalence classes of homomorphisms.
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Now let A and B be two unital C* —algebras in N n (. States that two unital
monomorphisms are approximately unitarily equivalent if they induce the same element in
KLT,(A,B)**and the same map on U(4)/CU(A). In this section, we will discuss the
following problem: Suppose that one has k € KLT,(4,B)*" and a continuous
homomorphism y : U(A)/CU(A) — U(B)/CU(B) which is compatible with k. Is there
always a unital monomorphism ¢ : A — B such that ¢ induces k and ¢* = y? At least
in the case that K; (A) is free, states that such ¢ always exists.

Lemma (1.2.20)[98]:

Let A and B be two unital infinite dimensional separable stably finite C* —algebras
whose tracial simplexes are non-empty. Lety : U,(A)/CU,(A) = U,.(B)/CU,(B) be a
continuous homomorphism, h;: K;(A) — K;(B) (i = 0,1) be homomorphisms for which
ho is positive, and let A: Aff(T(A)) — Aff(T(B)) be an affine map so that ( hy,
hi,A,y) are compatible. Let p be a supernatural number. Then y induces a unique
homomorphism y, : U,(A4,)/CU,(Ap) = Ux(B,)/CU.(B,) wWhich is compatible with
(hy)i(i = 0,1) and y,, where A, =A@ M, andB, = B ® M, and (h,);: K;(A) ®
Q, — K;(B) ® Q, isinduced by h; (i = 0,1). Moreover, the diagram

U,(A)/CU(A) ——  U,(B)/CUL(B)
L Yy
14 (4

Un(A)/CU(Ay) —> U,.(Bp)/CU..(Bp)

commutes, where ¢, : A - A, and ,: B — Bp are the maps induced by a —» a ® 1 and
b - b ® 1,respectively.
Proof. Denote by A, = 4, A, =A®M,, By= B andBp, = B Q@ Mp. By a result
of K.
Thomsen ([133]), using the de la Harpe and Skandalis determinant, one has the following
short exact sequences:

0 - Aff(T(A))/pa(Ko(A1)) = Us(A)/CUL(A) = Ki(A) = 0,i = 0,p,
and

0 — Aff(T(B;))/pa(Ko(Bi)) = U,(Bi)/CU,(Bi) = Ki(B;) = 0,i = 0,p.
Note that, in all these cases, Aff(T(A;))/pa(Ko(A;)) and Aff(T(B;))/pa(Ko(B;)) are
divisible groups, i = 0,p . Therefore the exact sequences above splits. Fix splitting maps
s K (A;) = Uy(A)/CUL(A;) ands';: K U, (B)/CUL(B;), i = 0,p, for the above two
splitting short exact sequences. Let ¢,: A — A, be the homomorphism defined
by,(a) =a® 1 for all a € A and 1,: B - Bp be the homomorphism defined
by, (b)) =b®1 for all b € B. Let (y,)* U,(A)/CU,(A) - U,(4,)/CU.(A)
and(t,)*: U,,(B)/CU.,(B) - U,(B,)/CU,(B,) be the induced maps. The map ¢, induces
the following commutative diagram:

0 = Aff(T(A))/pa(Ko(B)) 5 Un(A)/CUL(A) LKi(A) g
(O by Yup)a
AFE(T(A)/Pa(Ko(Bp))  Ur(AD/CUL(A)  Ka(As)
Since there is only one tracial state on M,,, one may identify T'(4) with T(A,) and T (B)
with T(B,). One may also identify ps (Ko(Ap)) with R,, (Ko (A))which is the closure of
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those elements r[p] with » € R. Note that (h,);: K;(AQ M) - K;(B® M,) (i =
0,1) is given by the K'unneth formula. Since y is compatible with A,y maps

R, (Ko(A)/0a (Ko (A)) into R, (Ko(B))/pa(Ko(B)). Note that
ker(iy).; = {x € K;(4):px = 0 for (6.1)some factorp of p}  (100)

and
ker(i'y).; = {x € K;(B):px = 0 for (6.1)some factorp of p}. (101)
Therefore
ker(i5) = {x + 500 : ¥ € Ry, (Ko(A))/pa(Ko (M), ¥ € ker((1).1)} (102)
and

ker(4))* = {x + s() : x € R, (Ko(B))/pp(Ko(B)),y € ker((1,), )} (103)
If y € ker((1,).1), then, for some factor p of p,py = 0. It follows that py(so(y)) = 0.
Therefore y(s,(y)) must be in ker((t,)¥) It follows that

y(ker(d)) < ker(y)* (104)

This implies that y induces a uniqgue homomorphism y, such that the following diagram

commutes:

U.(A)/CU,(A) ——  U.(B)/CU.(B)

b Yyt
U.(A)/CU(Ay) —= U.(Bp)/CU..(Bp)
The lemma follows.
Lemma (1.2.21)[98]:

Let A and B be two unital infinite dimensional separable stably finite C* —algebras
whose tracial simplexes are non-empty. Lety : U,(4)/CU,(A) = U,(B)/CU,(B) be a
continuous homomorphism, h;: K;(A) = K;(B) (i = 0,1) be homomorphisms and A :
Aff(T(A)) — Aff(T(B)) be an affine homomorphism which are compatible. Let p and g
be two relatively prime supernatural numbers such that M, ® M, = Q. Denote by o the
supernatural number associated with the product pand g. Let Ez: B - B ® Z,,, be the
embedding defined by Ez(b) = b ® 1,Vb € B.Then

(T, O Eg)¥ oy =y, 0 f, forall te (0,1) (105)
(my 0 Eg)toy =y, 014 and (106)
(i 0 Eg)f oy =y, 014 (107)

with the notation of (1.2.20) where mr,: Z,, , — Q@ is the point-evaluation at t.
Proof:
Fix ze U,(B)/CU,(B).Let u € U,(B) for some integer n > 1 such that w = z in
U,(B)/CU,(B). Then
Efz)=u®1 (108)

In other words, E},(z) is represented by w(t) € M, (B ® Z,,,) for which
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w(t)=u®1 forallt € [0,1]. (109)

Therefore, forany t € (0,1), ; © Eg (z) may be written as
M O0Ep(2) =u®1 in Uy(B® Q)/CU,(B® Q. (110)

This implies that
T O Eg(z) = (1,)*(z) forall z € U,(B)/CU,(B). (111)

wheret, : B - B @ Q isdefinedby (. (b) = b® 1forallb € B.
(m, 0 Egp)¥oy =y, 0 forall te (0,1) (112)

The identities (106) and (107) for end points exactly follow from the same arguments.
Lemma (1.2.22)[98]:

Let A be a unital AH-algebra and let B be a unital separable simple amenable
C* —algebra with TR(B) < 1. Suppose that ¢,,¢, : A = B are two monomorphisms
such that

[§1] = [¢,] in KK(A, B), (1) = (¢2)sand ¢f = 3. (113)

Then there exists a monomorphism B: ¢,(A) —» B such that [ © ¢p,] = [¢,]in
KK(A,B),(BO $2)z = ¢z, (BO ¢p)F = ¢¥ and B o ¢, is asymptotically unitarily
equivalent to ¢;. Moreover, if HI(KO(A),Kl(B)) = K;(B), they are strongly
asymptotically unitarily equivalent, where H, (K,(A4), K,(B))
={x € K;(B): ¥([14]) = x for some yp € Hom(K,(A), K;(B))}.
Proof:

There is a monomorphism B € Inn(¢,(4), B) such that [8] = [(] in KK (¢,(4), B) and

Rl:ﬁ = _R¢1;¢2

where [ is the embedding of ¢,(A) to B and R, is viewed as a homomorphism from
Ki(A) = K1(¢,(A4)) to Aff(T(B)). In other words

R¢2;ﬁ°¢2 = _E¢1'¢2' (114)
One also has that
[¢.] = [B © ¢,lin KK (A, B), (115)
(B0 ¢2)s = (¢2)s and (Bo ¢;)" = ¢} (116)
($1)s = (B O dz)gand ¢} = (B0 ) (118)
It follows from (100) and (115) that
¢ =Rg, ¢, =Ry, pog, = 0. (119)

Therefore, it follows from Theorem (1.2.13) of [97] that the map ¢, and S o ¢, are
asymptotically unitarily equivalent.

In the case that Hl(KO(A),Kl(B)) = K;(B) of [97] that § o ¢, and ¢, are strongly
asymptotically unitarily equivalent.

Lemma (1.2.23)[98]:
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Let C and A be two unital separable stably finite C* —algebras. Suppose that ,y : C —
A are two unital monomorphisms such that

[¢] =[] in KL(C,A),pg =Yp and Ry, = O.

Suppose that {U(t):t € [0,1)} is a piecewise smooth and continuous path of unitaries in
A with U(0) = 1 such that

lim U"()¢)U(t) = P(u) (120)

for some u € U(C) and suppose that there exists w € U(A) such that Y (u) w* € U,(A).
Let
Z=7Z(t)=U'M)pU)w" if te [0,1)

and Z(1) = y(u) w*. Suppose also that there is a piecewise smooth continuous path of
unitaries {z(s):s € [0,1]} in A such that z(0) = ¢(u) w*and z(1) = 1. Then, for any
piecewise smooth continuous path {Z(t,s):s € [0,1]|} c C(]0,1],A) of unitaries such
that Z(t,0) = Z(t) and Z(t,1) = 1, thereis f € p,(K,(A)) such that

f (dz(t S)Z(t s)")ds = (d—()Z( )ds + f(r) (121)
271\/_ ' \/_

forallt € [0,1] and T T(A).

Proof:

Define

d(u) w fors € [t/2,1/2) (122)

U*(t —2s)p(uw)U(t — 2s) w* fors € [0,t/2)
Z,(t,s) =
z(2s—1) fors € [1/2,1]

Fort € [0,1) and define

Y(u)w fors=0
Z(t,s) =1 U (1-25)¢p(w)U(1 —2s5)w" fors € [0,1/2) (123)
z(2s—1) fors € [1/2,1]

Thus {Z,(t,s):s €[0,1]} € C(]0,1],4) is a piecewise smooth continuous path of
unitaries such that Z,(t,0) = Z(t)and Z,(t,1) = 1. Thus, there is an element f; €

pa(ky(4)), such that
(dZ (t,s)

f (d Zl(t $) Z,(t,s)")ds

271\/_ Z(t, S)*> ds —

forallz € T(A)anforallt € [0,1].

m/_
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On the other hand, let V (t) = U*(t)¢p(w)U(t) for t € [0,1) and V (1) = yY(u). For any
s €]0,1), since U(0)=1, U(t) € U(C([0,s],A)),(for t € [0,s]). There there are
a, a,,.. ak € U([O s],A)s 4. Such that

dZ(t,s)
fi(r) = ( Z(t, s)*> ds

Zn\/_

(dzl(t S) (¢ )*)d 124
271'\/_ e ’ ( )

forallt e T(A)anforallt € [0,1].
On the other hand, let V(t) = U*(t)¢p(w)U(t) for t € [0,1) andV (1) = Y (u). For any
s €[0,1), since U(0)=1,U(t) e U(C([0,s],4)), (fort € [0,s]). There there are
a,a,,..., a, € U([0, s], A) 4such that

k

Ut = 1_[ exp(ia;(t)) forall t € [0,s]
j=1
Then a straightforward calculation shows that
av(e) .
jo TV (H)dt=0 (125)
we also have
dV( )

an/_ = Ry (VD (@) = f(7) € pako(4))

forall T € T(A).
Then

Zl(l,s)*> ds =

1/2 <d Z:(1,5)
Zm/_

1/2 <dV(ZS - 1) e 1)*> g (126)
_— S — S
21\ — ds

R(M,([ ])(T) = f(r) forall T € T(A). (127)
One computes that, for any t € T(A) and for any t € [0, 1), by applying (126),

<d Zy (¢, S) (t )*> J (128)
,S S
277\/_ Z
= 27'[\/——1[ 0 T((d(U (t— Zs)q;(su)U(t— 25)w’) (U (t = 25)p(W)U(t - 25)w™)") ds](129)
1/2 d Zl(t, S) ) 1 dZ(S . 1) *
jt/z T( s Zy(t,s) )ds + L/;( Is z(2s—1) >ds] (130)

t/2 _
(MSZS) (t— 25)*) ds

+ jl r (dz(s U s - 1)*) ds]  (131)
1/2

Zn\/_

ds
1 1 (dz(Zs -1)

=0+ T
27'[‘\/—1 1/2 ds

z(2s — 1)*> ds] (132)
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f (dz(s) 2(s)") ds (133)

271\/_
It then follows from (126) that
1( ,S) *
/ Zn\/_f ( Z.(1,5)")ds (134)
1 2 (d7Z,(1,s) . L (dz(2s — 1) .
= o [j; T<—ds Z,(1,s) )ds + Jl/ZT <—ds z(2s—1) ds)]
(135)
=f(1) + Zn\/_f (d 2(s) z(s)")ds (136)

The lemma follows.
Lemma (1.2.24)[98]:

Let A be a unital C* —algebra satisfying that A @ M,is an AH-algebra for all
supernatural number r with infinite type (in particular, all AH-algebra satisfies this
property), and let B be a unital simple C* —algebrain N n C. Letkx € KL,(4,B)** and
A Aff(T(A)) = Aff(T(B)) be an affine homomorphism which are compatible (see
Definition 1.2.3). Then there exists a unital homomorphism ¢: A — B such that

[¢] =k and (¢p)p = A
Moreover, if y € U,(A)/CU,(A) = U,(B)/CU,(B) is a continuous homomorphism
which is compatible with x and A, then one may also require that
d)#lUOO(A)O/CUw(A) = Ylu,ca),/cu.,ca) p*to s, =y os —h, (137)
where s; : ky(A) = U,(A)/CU,(A) is a splitting map (see 2.3), and
h:ky(A) = Rpp(ko(B))/pp(ko(B))
Is @ homomorphism. Moreover,

(¢ ®id,, )¥0 sy =Eg0y0 s — h, (138)
where Egis as defined in (101).
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