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Chapter 1 

Primitively of Unital Products Homomorphisms in 𝐂∗-Algebra 

 

A 𝐶∗-algebra is called primitive if it admits a faithful and irreducible ∗-representation .Let 

𝐴 and 𝐵 be unital separable simple amenable 𝐶∗-algebras which satisfy the Universal 

Coefficient Theorem. Suppose that 𝐴 and 𝐵 are Ƶ-stable and are of rationally tracial rank 

no more than one. We show that this holds if 𝐴 is a rationally 𝐴𝐻 -algebra which is not 

necessarily simple. Moreover, for any strictly positive unit-preserving 𝜅 ∈ 𝐾𝐿(𝐴, 𝐵), any 

continuous affine map 𝜆: Aff(𝑇(𝐴)) → Aff(𝑇(𝐵)) and any continuous group 

homomorphism   𝛾: 𝑈(𝐴) 𝐶𝑈(𝐴)⁄ → 𝑈(𝐵) 𝐶𝑈(𝐵)⁄  which are compatible. 

Section (1.1): Full Free Products of Residually Finite Dimensional 𝑪∗-Algebras 

       A 𝐶∗-algebra is called primitive if it admits a faithful and irreducible ∗-representation. 

Thus the simplest examples are matrix algebras. A nontrivial example, shown 

independently by Choi and Yoshizawa, is the full group 𝐶∗-algebra of the free group on 𝑛 

elements, 2 ≤  𝑛 ≤  ∞, see [146] and [11]. In [17], Murphy gave numerous conditions for 

primitivity of full group 𝐶∗-algebras. More recently, 𝑇. Å. Omland showed in [27] that for 

𝐺1 and 𝐺2 countable amenable discrete groups and 𝜎 a multiplier on the free product 𝐺1 ∗
𝐺2, the full twisted group 𝐶∗-algebra 𝐶∗ − (𝐺1 ∗ 𝐺2, 𝜎) is primitive whenever (|𝐺1| −
1)(|𝐺2| − 1)  ≥  2. 
  We prove that given two nontrivial, separable, unital, residually finite dimensional 

𝐶∗-algebras 𝐴1and 𝐴2, their unital 𝐶∗-algebra full free product 𝐴1 ∗ 𝐴2 is primitive except 

when 𝐴1 = ℂ
2 = 𝐴2. The methods used are essentially different from those in [17], [146], 

[2] and [105] but do rely on [40] that 𝐴1 ∗ 𝐴2 is itself residually finite dimensional. 

Roughly speaking, we first show that if (𝑑𝑖𝑚(𝐴1) − 1)(𝑑𝑖𝑚(𝐴2) − 1) ≥ 2, then there is 

an abundance of irreducible finite dimensional ∗–representations and later, by means of a 

sequence of approximations, we construct an irreducible and faithful ∗–representation. 

Proposition (1.1.1)[30]: Let 𝐵 be a finite dimensional 𝐶∗-algebra and assume 𝐵 

decomposes as 

⊕𝑗=1
𝐽
𝐵𝑗 

and there is a positive integer 𝑛 such that all 𝐵𝑗 are ∗–isomorphic to 𝑀𝑛. Fix  {𝛽𝑗 ∶ 𝐵𝑗 →

𝑀𝑛}1≤𝑗≤𝐽 a set of ∗–isomorphisms.  

(i) For a permutation 𝜎 in 𝑆𝐽 define 𝜓σ: 𝐵 →  𝐵 by  

𝜓σ(𝑏1, . . . , 𝑏𝐽)  = (𝛽1
−1 ∘ 𝛽𝜎−1(1)(𝑏𝜎−1(1)), . . . , 𝛽𝐽

−1 ∘ 𝛽𝜎−1(𝐽)(𝑏𝜎−1(𝐽)). 

Then 𝜓𝜎 lies in Aut(𝐵) and the map 𝜎 ⟼ 𝜓𝜎 defines a groupembedding of 𝑆𝐽into 

𝐴𝑢𝑡(𝐵).   

(ii) Every element 𝛼 in 𝐴𝑢𝑡(𝐵) factors as  

(⊕𝑗=1
𝐽
 𝐴𝑑 𝑢𝑗) ∘ 𝜓𝜎  

for some permutation 𝜎 in 𝑆𝐽 and unitaries 𝑢𝑗 in 𝕌(𝐵𝑗). 

(iii) There is a exact sequence   

0 →  𝐼𝑛𝑛(𝐵)  →  𝐴𝑢𝑡(𝐵)  →  𝑆𝐽 →  0. 

So far we have consider𝐶∗-algebras with only one type of block sub-algebra, so to speak. 

Next proposition shows that a ∗–automorphism cannot mix blocks of different dimensions. 

As a consequence, and along with Proposition (1.1.1), we get a general decomposition of 

∗–automorphisms of finite dimensional 𝐶∗-algebras. 
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Proposition (1.1.2)[30]: Let 𝐵 be a finite dimensional 𝐶∗-algebra. Decompose 𝐵 as 

⊕𝑖=1
1 ⊕𝑗=1

𝐽𝑖  𝐵(𝑖, 𝑗). 

Where for each 𝑖, there is a positive integer 𝑛𝑖 such that 𝐵(𝑖, 𝑗) is isomorphic to 𝑀𝑛𝑖 for 

all1 ≤ 𝑗 ≤ 𝐽𝑖, i.e. we group sub-algebras that are isomorphic to the same matrix algebra, 

and where 𝑛1 < 𝑛2 < ⋯ < 𝑛𝐼 .. 
Then any 𝛼 in 𝐴𝑢𝑡(𝐵) factors as 𝛼 =⊕𝑖=1

𝐼 𝛼𝑖 where 

𝛼𝑖 ∶⊕𝑗=1
𝐽𝑖 𝐵(𝑖, 𝑗)  →⊕𝑗=1

𝐽𝑖 𝑖𝐵(𝑖, 𝑗) 

is a ∗–isomorphism. 

   We summarize some result that, later on, will be repeatedly used. Definitions and proofs 

of results mentioned can be found in [56] and [53]. 

Theorem (1.1.3)[30]: Any closed subgroup of a Lie group is a Lie subgroup. 

Theorem (1.1.4)[30]: Let 𝐺 be a Lie group of dimension 𝑛 and 𝐻 ⊆  𝐺 be a Lie subgroup 

of dimension 𝑘. 
(i) Then the left coset space 𝐺/𝐻 has a natural structure of a manifold of dimension 𝑛 −
 𝑘 such that the canonical quotient map𝜋 ∶  𝐺 →  𝐺/𝐻, is a fiber bundle, with fiber 

diffeomorphic to 𝐻. 
(ii) If 𝐻 is a normal Lie subgroup then 𝐺/𝐻 has a canonical structure of a Lie group. 

Proposition (1.1.5)[30]: Let 𝐺 denote a Lie group and assume it acts smoothly on a 

manifold 𝑀. For 𝑚 ∈  𝑀 let 𝒪(𝑚) denote its orbit and 𝑆𝑡𝑎𝑏(𝑚) denote its stabilizer i.e. 

𝒪(𝑚) = {𝑔.𝑚 ∶  𝑔 ∈  𝐺}, 
𝑆𝑡𝑎𝑏(𝑚) = {𝑔 ∈  𝐺 ∶  𝑔.𝑚 =  𝑚}. 

The orbit 𝒪(𝑚) is an immersed submanifold of 𝑀. If 𝒪(𝑚) is compact, then the map 𝑔 ⟼
𝑔.𝑚, is a diffeomorphism from 𝐺/𝑆𝑡𝑎𝑏(𝑚) onto 𝒪(𝑚). (In this case we say 𝒪(𝑚) is an 

embedded submanifold of 𝑀.) 

Corollary (1.1.6)[30]: Let 𝐺 be a compact Lie group and let 𝐾 and 𝐿 be closed subgroups 

of 𝐺. The subspace 𝐾𝐿 =  {𝑘𝑙 ∶  𝑘 ∈  𝐾, 𝑙 ∈  𝐿} is an embedded submanifold of 𝐺 of 

dimension 

𝑑𝑖𝑚 𝐾 +  𝑑𝑖𝑚 𝐿 −  𝑑𝑖𝑚(𝐿 ∩  𝐾). 
Proof: First of all 𝐾𝐿 is compact. This follows from the fact that multiplication is 

continuous and both 𝐾 and 𝐿are compact. Consider the action of 𝐾 ×  𝐿 on 𝐺 givenby 

(𝑘, 𝑙). 𝑔 = 𝑘𝑔𝑙−1. Notice that the orbit of e is precisely 𝐾𝐿. By Proposition (1.1.5), 𝐾𝐿 is 

an immersed sub-manifold diffeomorphic to 𝐾 ×  𝐿/𝑆𝑡𝑎𝑏(𝑒). Since it is compact, it is an 

embedded submanifold. But 𝑆𝑡𝑎𝑏(𝑒)  =  {(𝑥, 𝑥) ∶  𝑥 ∈  𝐾 ∩  𝐿} and we conclude 

dim𝐾𝐿   =  dim(𝐾 ×  𝐿)  −  dim Stab(𝑒)  =  dim 𝐾 +  dim 𝐿 −  dim(𝐾 ∩  𝐿). 
Proposition (1.1.7)[30]: Let 𝐺 be a compact Lie group and let 𝐻 be a closed subgroup. 

Let 𝜋 denote the quotient map onto 𝐺/𝐻. 

There are: 

(𝑖)𝒩𝐺, a compact neighborhood of 𝑒in 𝐺, 

(ii)𝒩𝐻 , a compact neighborhood of 𝑒 in 𝐻, 

(iii) 𝒩𝐺/𝐻, a compact neighborhood of 𝜋(𝑒) in 𝐺/𝐻, 

(iiii) a continuous function 𝑠:𝒩𝐺/𝐻(𝜋(𝑒))  →  𝐺 satisfying 

(a) 𝑠(𝜋(𝑒))  =  𝑒and𝜋(𝑠(𝑦))  =  𝑦 for all 𝑦 in 𝒩𝐺/𝐻(𝜋(𝑒)), 

(b) The map 

𝒩𝐻 × 𝒩𝐺/𝐻 → 𝒩𝐺 ,                    (ℎ, 𝑦) ⟼  ℎ𝑠𝑔(𝑦) 

is a homeomorphism. 
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Notation (1.1.8)[30]: Whenever we take commutators they will be with respect to the 

ambient algebra 𝑀𝑁, in other words for a sub-algebra𝐴 in ∗-SubAlg(𝑀𝑁) 
𝐴′ = {𝑥 ∈ 𝑀𝑁 ∶  𝑥𝑎 =  𝑎𝑥, for all 𝑎 𝑖𝑛 𝐴}. 

Recall that 𝐶(𝐴) denotes the center of 𝐴 i.e. 

𝐶(𝐴)  =  𝐴 ∩  𝐴′ =  {𝑎 ∈  𝐴 ∶  𝑥𝑎 =  𝑎𝑥for all 𝑥 𝑖𝑛 𝐴}. 
Proposition (1.1.9)[30]: For any 𝐵1 in ∗-SubAlg(𝑀𝑁) and for any 𝐵 in ∗-SubAlg(𝐵1), we 

have 

dim 𝑆𝑡𝑎𝑏(𝐵1, 𝐵)  =  dim𝕌(𝐵) +  dim 𝕌(𝐵1 ∩  𝐵′)  −  dim𝕌(𝐶(𝐵)). 
Proof: We’ll find a normal subgroup of 𝑆𝑡𝑎𝑏(𝐵1, 𝐵), for which we can compute its 

dimension and that partitions 𝑆𝑡𝑎𝑏(𝐵1, 𝐵) into a finite number of cosets. Let 𝐺 denote the 

subgroup of 𝑆𝑡𝑎𝑏(𝐵1, 𝐵) generated by 𝕌(𝐵1 ∩  𝐵′)and 𝕌(𝐵). Since the elements of 𝕌(𝐵) 
commute with the elements of 𝕌(𝐵1 ∩  𝐵′), a typical element of G looks like 𝑣𝑤,where 𝑣 

lies in 𝕌(𝐵) and w lies in 𝕌(𝐵1 ∩  𝐵′). Taking into account compactness of 𝕌(𝐵)and 

𝕌(𝐵1 ∩  𝐵′), we deduced𝐺 is compact. 

   Now we show 𝐺 is normal in Stab(𝐵1, 𝐵). Take 𝑢 an element in 𝑆𝑡𝑎𝑏(𝐵1, 𝐵). For a 

unitary𝑣 in 𝕌(𝐵) it is immediate that 𝑢𝑣𝑢∗ lies in 𝕌(𝐵). For a unitary 𝑤in 𝕌(𝐵1 ∩  𝐵′), 
the following computation shows 𝑢𝑤𝑢∗ belongs to 𝕌(𝐵1 ∩  𝐵′).  
For any element 𝑏 in 𝐵 we have: 

(𝑢𝑤𝑢∗)𝑏 =  𝑢𝑤(𝑢∗𝑏𝑢)𝑢∗  =  𝑢(𝑢∗𝑏𝑢)𝑤𝑢∗  =  𝑏(𝑢𝑤𝑢∗), 
where in the second equality we used 𝑢∗𝑏𝑢 lies in 𝐵. In conclusion 𝑢𝐺𝑢∗ is contained in 𝐺 

for all 𝑢 in 𝑆𝑡(𝐵1, 𝐵)i.e. G is normal in 𝑆𝑡𝑎𝑏(𝐵1, 𝐵). 
As a result 𝑆𝑡𝑎𝑏(𝐵1, 𝐵)/𝐺 is a Lie group. The next step is to show 𝑆𝑡𝑎𝑏(𝐵1, 𝐵)/𝐺 is 

finite. Decompose 𝐵 as 

𝐵 = ⊕𝑖=1
𝐼 ⊕𝑗=1

𝐽𝑖  𝐵(𝑖, 𝑗), 

where for all 𝑖 there is 𝑘𝑖  such that for 1 ≤  𝑗 ≤  𝐽𝑖 , 𝐵(𝑖, 𝑗) is ∗–isomorphic to 𝑀𝑘𝑖 . For 

the rest of our proof we fix a family, 𝛽(𝑖, 𝑗) ∶  𝐵(𝑖, 𝑗)  → 𝑀𝑘𝑖, of ∗–isomorphisms. 

An element 𝑢 in 𝑆𝑡𝑎𝑏(𝐵1, 𝐵) defines a ∗–automorphism of 𝐵 by conjugation. As a 

consequence, Propositions (1.1.1) and (1.1.2) imply there are permutations 𝜎𝑖 in 𝑆𝐽𝑖 and 

unitaries𝑣𝑖 in 𝕌(⊕𝑗=1
𝐽𝑖 𝐵(𝑖, 𝑗)) such that  

∀𝑏 ∈  𝐵 ∶  𝑢𝑏𝑢∗  =  𝑣𝜓(𝑏)𝑣∗                                            (1) 
Where 𝑣 =⊕𝑖=1

𝐼 𝑣𝑖 is a uitary in 𝕌(𝐵) and 𝜓 =⊕𝑖=1
𝐼 𝜓𝜎𝑖is a ∗– automorphism in 𝐴𝑢𝑡(𝐵) 

(the maps 𝜓 depends on the family of ∗–isomorphisms𝛽(𝑖, 𝑗) we fixed earlier). Equation 

(1) is telling us important information. Firstly, that 𝜓 extends to an∗–isomorphism of 𝐵1 

and most importantly, this extension is an inner ∗–automorphism. Fix a unitary𝕌𝜓 in 

𝕌(𝐵1) such that  𝜓(𝑏)  =  𝐴𝑑𝕌𝜓(𝑏) for all 𝑏 in 𝐵 (note that 𝕌𝜓 may not be unique but we 

just pick one and fix it for rest of the proof ). From equation (1) we deduce there is a 

unitary 𝑤 in 𝕌(𝐵1 ∩  𝐵′) satisfying 𝑢 = 𝑣𝕌𝜓𝑤. Since the number of functions 𝜓, that may 

arise from (1), is at most 𝐽1!  … 𝐽1!, we conclude 

|Stab(𝐵1, 𝐵)/𝐺|  ≤ 𝐽1!  … 𝐽1!. 
Now that we know 𝑆𝑡𝑎𝑏(𝐵1, 𝐵)/𝐺 is finite we have dim𝑆𝑡𝑎𝑏(𝐵1, 𝐵) = dim 𝐺, and ∗-
gives the result. From Proposition (1.1.9), we get the following corollary. 

Corollary (1.1.10)[30]: For any 𝐵1 in ∗-SubAlg(𝑀𝑁) and any 𝐵 in ∗-SubAlg(𝐵1), we 

have 

dim[𝐵]𝐵1   =  dim𝕌(𝐵1) −  dim𝕌(𝐵
′ ∩ 𝐵2) +  dim𝕌(𝐶(𝐵)) −  dim𝕌(𝐵). 
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Now we focus our efforts on 𝑌(𝐵2;  𝐵). 
Proposition (1.1.11)[30]: Assume 𝑌(𝐵2;  𝐵) ≠ ∅. Then 𝑌(𝐵2;  𝐵) is a finite disjoint union 

of embedded submanifolds of 𝕌(𝑀𝑁). For each one of these submanifolds there is 𝑢 ∈
𝑌(𝐵2;  𝐵) such that the submanifold’s dimension is 

𝑆𝑡𝑎𝑏(𝑀𝑁 , 𝐵) +  dim𝕌(𝐵2)  − dim𝑆𝑡𝑎𝑏(𝐵2, 𝑢
∗𝐵𝑢). 

Using Proposition (1.1.9) the later equals 

dim𝕌(𝐵′) +  dim𝕌(𝐵2) −  dim𝕌(𝐵2, 𝑢
∗𝐵′𝑢).                                             (2) 

Proof: We’ll define an action on 𝑌(𝐵2;  𝐵) which will partition 𝑌(𝐵2;  𝐵) into a finite 

number of orbits, each orbit an embedded sub-manifold of dimension (2) for a 

corresponding unitary. Define an action of 𝑆𝑡𝑎𝑏(𝑀𝑁 , 𝐵)  × 𝕌(𝐵2) on 𝑌(𝐵2;  𝐵) 𝑣𝑖𝑎 

(𝑤, 𝑣). 𝑢 =  𝑤𝑢𝑣∗. 
For 𝑢 ∈ 𝑌(𝐵2;  𝐵) let 𝒪(𝑢) denote the orbit of 𝑢 and let 𝒪 denote the set of all orbits. To 

prove 𝒪 is finite consider the function 

𝜑 ∶ 𝒪 →∗ −𝑆𝑢𝑏𝐴𝑙𝑔(𝐵2)/ ∼𝐵2 , 𝜑(𝒪(𝑢))  = [𝑢
∗𝐵𝑢]𝐵2  . 

Firstly, we need to show 𝜑 is well defined. Assume 𝑢2 ∈ 𝒪(𝑢1) and take (𝑤, 𝑣) ∈
𝑆𝑡𝑎𝑏(𝑀𝑁 , 𝐵)  × 𝕌(𝐵2) such that 𝑢2 = 𝑤𝑢1𝑣

∗. From the identities 

𝑢2
∗𝐵𝑢2  =  𝑣𝑢1𝑤

∗𝐵𝑤𝑢1𝑣
∗  =  𝑣𝑢1𝐵𝑢1𝑣

∗ 
we obtain [𝑢2𝐵𝑢2

∗]𝐵2 = [𝑢1𝐵𝑢1
∗]𝐵2 . Hence 𝜑 is well defined. 

The next step is to show 𝜑 is injective. Assume 𝜑(𝒪(𝑢1))  = 𝜑(𝒪(𝑢2)), for 𝑢1, 𝑢2 ∈
𝑌(𝐵2;  𝐵). Since [𝑢1𝐵𝑢1

∗]𝐵2 = [𝑢2𝐵𝑢2
∗]𝐵2  , we have 𝑢2

∗𝐵𝑢2  = 𝑣𝑢1𝐵𝑢1𝑣
∗ for some 𝑣 ∈

𝕌(𝐵2). But this implies 𝑢1𝑣
∗𝑢2
∗ ∈ 𝑆𝑡𝑎𝑏(𝑀𝑁 , 𝐵)so if 𝑤 = 𝑢1𝑣

∗𝑢2
∗  we conclude 

(𝑤, 𝑣). 𝑢2 = 𝑢1  which yields 𝒪(𝑢1) = 𝒪(𝑢2). We conclude |𝒪| ≤  | ∗ −𝑆𝑢𝑏𝐴𝑙𝑔(𝐵2)/
 ∼𝐵2 | < ∞. 

   Now we prove each orbit is an embedded submanifold of 𝕌(𝑀𝑁) of dimension (2). 

Since 𝑆𝑡𝑎𝑏(𝑀𝑛, 𝐵)  × 𝕌(𝐵2) is compact, every orbit 𝒪(𝑢) is compact. Thus, Proposition 

(1.1.5) implies 𝒪(𝑢) is an embedded submanifoldof 𝕌(𝑀𝑁), diffeomorphic to 

(𝑆𝑡𝑎𝑏(𝑀𝑁 , 𝐵)  × 𝕌(𝐵2))/𝑆𝑡𝑎𝑏(𝑢) 
where 

𝑆𝑡𝑎𝑏(𝑢)  =  {(𝑤, 𝑣)  ∈  𝑆𝑡𝑎𝑏(𝑀𝑁 , 𝐵)  × 𝕌(𝐵2) ∶  (𝑤, 𝑣). 𝑢 =  𝑢}. 
Since 

(𝑤, 𝑣). 𝑢 =  𝑢 ⇔  𝑤𝑢𝑣∗  =  𝑢 ⇔ 𝑢∗𝑤𝑢 =  𝑣, 
we deduce the group 𝑆𝑡𝑎𝑏(𝑢) is isomorphic to 

𝕌(𝐵2)  ∩ [𝑢
∗𝑆𝑡𝑎𝑏(𝑀𝑁 , 𝐵)𝑢], 

via the map (𝑤, 𝑣) ⟼ 𝑣. A straightforward computation shows  

𝑢∗𝑆𝑡𝑎𝑏(𝑀𝑁 , 𝐵)𝑢 =  𝑆𝑡𝑎𝑏(𝑀𝑁 , 𝑢
∗𝐵𝑢), 

for any 𝑢 ∈ 𝕌(𝑀𝑁). Hence, for any 𝑢 ∈ 𝑌(𝐵2;  𝐵), dim𝒪(𝑢) = dim 𝑆𝑡𝑎𝑏(𝑀𝑁 , 𝐵) +
𝕌(𝐵2) − dim𝕌(𝐵2) ∩ 𝑆𝑡𝑎𝑏(𝑀𝑁 , 𝑢

∗𝐵𝑢). Lastly, one can check 𝕌(𝐵2) ∩
𝑆𝑡𝑎𝑏(𝑀𝑁 , 𝑢

∗𝐵𝑢) =  𝑆𝑡𝑎𝑏(𝐵2, 𝑢
∗𝐵𝑢). 

Lemma (1.1.12)[30]: Suppose 𝜑 ∶ 𝐴1 → 𝐴2  is a unital ∗-homomorphism and 𝐴𝑖 is 

isomorphic to ⊕𝑗=1
𝑙𝑖 𝑀𝑘𝑖(𝑗), (𝑖 =  1, 2). Then 𝜑 is determined, up to unitary in 𝐴2, by on 

𝑙2 × 𝑙1 matrix, written µ = µ(𝜙) = 𝜇(𝐴2, 𝐴1) , having nonnegative integer entries 

such that 

𝜇 [
𝑘1(1)
⋮

𝑘1(𝑙1)
] = [

𝑘2(1)
⋮

𝑘2(𝑙2)
]. 
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We call this the matrix of partial multiplicities. In the special case when 𝜑 is a unital ∗–
representation of 𝐴1into 𝑀𝑁 , µ is a row vector and this vector is called the multiplicity of 

the representation. One constructs µ as follows: decompose 𝐴𝑝 as 

𝐴𝑝 = ⊕𝑗=1

𝑙𝑝 𝐴𝑝(𝑗) 

where each 𝐴𝑝(𝑗) is simple, 𝑝 = 1, 2, 1 ≤ 𝑗 ≤ 𝑙𝑝. Taking projections, 𝜋 induces unital∗–

representations 𝜋𝑖: 𝐴1 → 𝐴2(𝑖), 1 ≤  𝑖 ≤ 𝑙2. But up to unitary equivalence, 𝜋𝑖 equals 

id𝐴1(1)⊕…⊕ id𝐴1(1)⏟              
𝑚𝑖,1−𝑡𝑖𝑚𝑒𝑠

⊕…⊕ id𝐴1(𝑙1)⊕…⊕ id𝐴1(𝑙1)⏟              
𝑚𝑖,𝑙1−𝑡𝑖𝑚𝑒𝑠

 

for some nonnegative integer 𝑚𝑖,𝑗  , 1 ≤ 𝑗 ≤ 𝑙1. Set µ[𝑖, 𝑗] ∶= 𝑚𝑖,𝑗. In particular, µ[𝑖, 𝑗] 

equals the rank of 𝜋𝑖(𝑝) ∈ 𝐴2(𝑖), where 𝑝 is a minimal projection in 𝐴1(𝑗). Clearly, 𝜋 is 

injective if and only if for all 𝑗 there is 𝑖 such that µ[𝑖, 𝑗] ≠ 0. 
Furthermore, the 𝐶∗-subalgebra 

𝐴2 ∩ 𝜑(𝐴1)′ = {𝑥 ∈ 𝐴2 ∶  𝑥𝜑(𝑎) = 𝜑(𝑎)𝑥   for all 𝑎 ∈ 𝐴1} 

is∗–isomorphic to⊕𝑖=1
𝑙2 ⊕𝑗=1

𝑙1 𝑀µ[𝑖,𝑗] and if we have morphisms𝐴1 → 𝐴2 → 𝐴3, 

then µ(𝐴3, 𝐴2)µ(𝐴2, 𝐴1) =  µ(𝐴3, 𝐴1) for the corresponding matrices.   

   Our next task is to show 𝑑(𝐵) < 𝑁2, for abelian𝐵 ≠ 𝐶. We prove it by cases, so let us 

start. 

Lemma (1.1.13)[30]: Assume 𝐵𝑖 is ∗–isomorphic to𝑀𝑘1 , (𝑖 = 1, 2) and let 𝑘 =

gcd(𝑘1, 𝑘2). Take 𝐵 a unital 𝐶∗-subalgebra of 𝐵1 such that it is unitarily equivalent to a 

𝐶∗-subalgebra of 𝐵2. Then there is an injective unital ∗–representation of 𝐵 into 𝑀𝑘. 

Proof: Take 𝑢 in 𝑌(𝐵2;  𝐵) so that 𝑢∗𝐵𝑢 ⊆ 𝐵2. Let 𝑚𝑖 ∶= µ(𝑀𝑁 , 𝐵𝑖), so that𝑚𝑖𝑘𝑖 =
 𝑁, (𝑖 =  1, 2).  Find positive integers 𝑝1 and 𝑝2 such that 𝑘1 = 𝑘𝑝1 and 𝑘2 = 𝑘𝑝2 

Assume 𝐵 is ∗–isomorphic to ⊕𝑗=1
𝑙 𝑀𝑛𝑗.   

To prove the result it is enough to show there are positive integers (𝑚(1), . . . 𝑚(𝑙)) such 

that 

𝑛1𝑚(1) + ⋯+ 𝑛𝑙𝑚(𝑙)  =  𝑘. 
Let 

µ(𝐵1, 𝐵)  =  [𝑚1(1), . . . , 𝑚1(𝑙)]µ(𝐵2, 𝑢
∗𝐵𝑢)  =  [𝑚2(1), . . . , 𝑚2(𝑙)]. 

Since µ(𝑀𝑁 , 𝐵1)µ(𝐵1, 𝐵)  =  µ(𝑀𝑁 , 𝐵2)µ(𝐵2, 𝑢
∗𝐵𝑢) we deduce that 𝑚1𝑚1(𝑗)  =

 𝑚2𝑚2(𝑗) for all 1 ≤  𝑗 ≤  𝑙. Multiplying by 𝑘 and using 𝑁 = 𝑚1𝑘1 = 𝑚2𝑘2 we conclude

          
𝑁

𝑝1
𝑚1(𝑗) = 𝑘𝑚1𝑚1(𝑗) = 𝑘𝑚2𝑚2(𝑗) =

𝑁

𝑝2
𝑚2(𝑗) 

so 𝑝2𝑚1(𝑗)  =  𝑝1𝑚2(𝑗). Since gcd(𝑝1, 𝑝2) = 1, the number 
𝑚1(𝑗)

𝑝1
=
𝑚2(𝑗)

𝑝2
 is a positive 

integer whose value we name 𝑚(𝑗). From       

𝑘𝑝1 = 𝑘1 =∑𝑛𝑗

𝑙

𝑗=1

𝑚1(𝑗) =∑𝑛𝑗

𝑙

𝑗=1

𝑚(𝑗)𝑝1, 

we conclude 𝑘 = ∑ 𝑛𝑗
𝑙
𝑗=1 𝑚(𝑗)𝑝1.         

Lemma (1.1.14)[30]: Fix a positive integer 𝑛 and let 𝑟1, . . . , 𝑟𝑛 be positive real numbers. 

Then  
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min{∑
𝑥𝑗
2

𝑟𝑗

𝑛

𝑗=1

|∑𝑥𝑗

𝑛

𝑗=1

= 1} =
1

∑ 𝑟𝑗
𝑛
𝑗=1

, 

where the minimum is taken over all 𝑛 −tuples of real numbers that sum up to 1. 

Proposition (1.1.15)[30]: Assume 𝐵1 and 𝐵2 are simple. Take 𝐵 ≠ ℂ an abelian unital 𝐶∗-

subalgebra of 𝐵1, that is unitarily equivalent to a 𝐶∗-subalgebra of 𝐵2. Then 𝑑(𝐵) < 𝑁2. 

Lemma (1.1.16)[30]: For an integer 𝑘 ≥  2 define  

ℎ(𝑥, 𝑦) = 2𝑥𝑦 − (1 +
1

𝑘2
) 𝑦2 −

1

2
𝑥2 

Then    

max{ℎ(𝑥, 𝑦) | 0 ≤  𝑥 ≤  1, 0 ≤  𝑦 ≤  1/2} =
1

4
−
1

4𝑘2
 

Proposition (1.1.17)[30]: Suppose dim𝐶(𝐵1)  ≥  2 and 𝐵1is ∗–isomorphic to 

   𝑀𝑁/dim𝐶(𝐵1)⊕…⊕𝑀𝑁/dim𝐶(𝐵1).                                              (3) 

Assume one of the following cases holds:        

(i) dim𝐶(𝐵2) = 1, 

(ii) 𝐵1is∗–isomorphic to 

𝑀𝑁/2⊕𝑀𝑁/2. 

𝐵2is∗–isomorphic to 

𝑀𝑁/2⊕𝑀𝑁/(2k). 

where𝑘 ≥  2. 
(iii) dim𝐶(𝐵2) ≥  3and𝐵2 is ∗–isomorphic to 

𝑀𝑁/dim𝐶(𝐵2)⊕…⊕𝑀𝑁/dim𝐶(𝐵2). 

Then for any 𝐵 ≠ ℂ an abelian unital 𝐶∗-subalgebra of 𝐵1 that is unitarily equivalent to a 

𝐶∗-subalgebraof 𝐵2, we have that 𝑑(𝐵) < 𝑁2. 
Lemma (1.1.18)[30]: Take 𝐵 ≠ ℂ a unital 𝐶∗-subalgebra of 𝐵1 that is unitarily equivalent 

to a 𝐶∗-subalgebra of 𝐵2. If dim𝕌(𝐵1)  +  dim𝕌(𝐵2)  ≤ 𝑁
2, 𝐵 is simple and 𝐶 in ∗-

SubAlg(𝐵) is ∗–isomorphic to ℂ2, then 𝑑(𝐵)  ≤  𝑑(𝐶). 
Proof:  Assume 𝐵 is ∗–isomorphic to 𝑀𝑘 and let 𝑚 denote the multiplicity of 𝐵in 𝑀𝑁. 

Thus we must have 𝑘𝑚 =  𝑁. Take a unitary 𝑢 in the submanifold of maximum 

dimension in 𝑌(𝐵2;  𝐵), so that 𝑑(𝐵) is the sum of the terms 

𝑆1(𝐵):= dim𝕌(𝐵1)  −  dim𝕌(𝐵1 ∩  𝐵′), 
𝑆2(𝐵):= dim 𝕌(𝐵2)  −  dim𝕌(𝐵2 ∩ 𝑢

∗𝐵′𝑢), 
𝑆3(𝐵):= dim 𝕌(𝐵′), 
𝑆4(𝐵):= dim 𝕌(𝐵 ∩  𝐵′)  −  dim𝕌(𝐵). 
and let 𝑣 lie in the submanifold of maximum dimension in 𝑌(𝐵2, 𝐶) so that 𝑑(𝐶) is the 

sum of the terms 

𝑆1(𝐶):= dim𝕌(𝐵1)  −  dim𝕌(𝐵1 ∩ 𝐶′), 
𝑆2(𝐶):= dim 𝕌(𝐵2)  −  dim𝕌(𝐵2 ∩ 𝑣

∗𝐶′𝑣), 
𝑆3(𝐶):= dim 𝕌(𝐶′).  

Clearly, 𝑆4(𝐵) = 1 − 𝑘
2.We write 

𝐵1 ≃
𝑙1
⨁ 
𝑖 = 1

𝑀𝑘1(𝑖), 𝐵2 ≃
𝑙2
⨁ 
𝑖 = 1

𝑀𝑘2(𝑖), 

and 
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𝛿(𝐵1) = [𝑘1(1), . . . , 𝑘1(𝑙1)]
𝑡 , 𝛿(𝐵2)  = [𝑘2(1), . . . , 𝑘2(𝑙2)]

𝑡. 
From definition of multiplicity and the fact that it is invariant under unitary equivalence 

we get 

µ(𝐵1, 𝐵)𝑘 = 𝛿(𝐵1),                                                          (4) 
µ(𝐵2, 𝑢

∗𝐵𝑢)𝑘 =   𝛿(𝐵2), 
µ(𝑀𝑁 , 𝐵1)𝛿(𝐵1)  =   µ(𝑀𝑁 , 𝐵2)𝛿(𝐵2) = 𝑁, µ(𝑀𝑛, 𝐵1)µ(𝐵1, 𝐵) = µ(𝑀𝑁 , 𝐵2)µ(𝐵2, 𝑢

∗𝐵𝑢)  
=  𝑚. 

From Lemma (1.1.12) and equation (4) we get  

dim𝕌(𝐵1 ∩ 𝐵
′) =

1

𝑘2
dim𝕌(𝐵1).                                     (5) 

Hence 

𝑆1(𝐵) = (1 −
1

𝑘2
) dim𝕌(𝐵1). 

Similarly  

𝑆2(𝐵) = (1 −
1

𝑘2
) dim𝕌(𝐵2). 

Now it is the turn of 𝐶. To ease notation let   

µ(𝐵, 𝐶) = [𝑥1, 𝑥2]. 
Notice that 𝑥1, +𝑥2 =  𝑘.We claim  

𝑆1(𝐶) = (1 −
𝑥1
2 + 𝑥2

2

𝑘2
)dim𝕌(𝐵1). 

Using µ(𝐵1, 𝐶)  =  µ(𝐵1, 𝐵)µ(𝐵, 𝐶) we get   

dim𝕌(𝐵1 ∩  𝐶′)  =  (𝑥1
2 + 𝑥2

2) dim𝕌(𝐵1 ∩  𝐵′). 
Furthermore using (5) we obtain  

dim𝕌(𝐵1 ∩  𝐶′)  =  
𝑥1
2 + 𝑥2

2

𝑘2
dim𝕌(𝐵1). 

Hence our claim follows from definition of 𝑆1(𝐶). Similarly   

𝑆2(𝐶) = (1 −
𝑥1
2 + 𝑥2

2

𝑘2
)dim𝕌(𝐵2). 

Lastly from µ(𝑀𝑁 , 𝐶)  =  [𝑚𝑥1, 𝑚𝑥2] and 𝑚𝑘 =  𝑁 we get   

𝑆3(𝐶) = (𝑥1
2 + 𝑥2

2)
𝑁2

𝑘2
 𝑆3(𝐵) =

𝑁2

𝑘2
. 

To prove 𝑑(𝐵)  ≤  𝑑(𝐶) we’ll show 

𝑆1(𝐵) − 𝑆1(𝐶)  + 𝑆2(𝐵)  − 𝑆2(𝐶)  + 𝑆4(𝐵)  ≤ 𝑆3(𝐶)  − 𝑆3(𝐵).         (6) 
 Using the description of each summand we have that left hand side of (6) equals 

𝑥1
2 + 𝑥2

2 − 1

𝑘2
(dim𝕌(𝐵1) + dim𝕌(𝐵2)) + 1 − 𝑘

2. 

The right hand side of (6) equals 

𝑥1
2 + 𝑥2

2 − 1

𝑘2
𝑁2. 

But 𝑥1 and 𝑥2 are strictly positive, because 𝐶 is a unital subalgebra of 𝐵. Hence we can 

cancel 𝑥1
2 + 𝑥2

2 − 1 and finish the proof by using that 1 − 𝛿(𝐵)2 <  0 and the assumption 

dim𝕌(𝐵1) + dim𝕌 (𝐵2) ≤  𝑁
2. 

   We recall an important perturbation result that can be found in [27]. 
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Lemma (1.1.19)[30]: Let 𝐴 be a finite dimensional 𝐶∗-algebra. Given any positive 

number 𝜀 there is a positive number 𝛿 =  𝛿(𝜀) so that whenever 𝐵 and 𝐶 are unital 𝐶∗-
subalgebras of 𝐴 and such that 𝐶 has a system of matrix units {𝑒𝐶(𝑠, 𝑖, 𝑗)}𝑠,𝑖,𝑗 , satisfying 

dist(𝑒𝐶(𝑠, 𝑖, 𝑗), 𝐵)  <  𝛿 for all 𝑠, 𝑖 and 𝑗, then there is a unitary 𝑢 in 𝕌(𝐶∗(𝐵, 𝐶)) with 
‖𝑢 −  1‖ < 𝜀so that 𝑢𝐶𝑢∗ ⊆  𝐵. 
Notation (1.1.20)[30]: For an element 𝑥 in 𝑀𝑁 and a positive number 𝜀,𝒩𝜀(𝑥) denotes 

the open 𝜀 −neighborhood around 𝑥 (i.e. open ball of radius 𝜀 centered at 𝑥), where the 

distance is from the operator norm in 𝑀𝑁. 

Lemma (1.1.21)[30]: Take 𝐵 in ∗-SubAlg(𝐵1) and assume 𝑍(𝐵1, 𝐵2; [𝐵]𝐵1) is nonempty. 

Then the function 

𝑍(𝐵1, 𝐵2; [𝐵]𝐵1) → [𝐵]𝐵1                                            (7) 

𝑢 ⟼ 𝑢𝐵2𝑢
∗ ∩ 𝐵1 

is continuous. 

Proof: Assume 𝐵 is ∗–isomorphic to 
𝑙
⊕
𝑠 = 1

𝑀𝑘𝑠 . 

First we recall that the topology of [𝐵]𝐵1 is induced by the bijection  

𝛽: [𝐵]𝐵1 →
𝕌(𝐵1)

Stab(𝐵1, 𝐵)
, 𝛽(𝑢𝐵𝑢∗) = 𝑢Stab(𝐵1, 𝐵). 

For convenience let 𝜋 ∶ 𝕌(𝐵1)  → 𝕌(𝐵1)/Stab(𝐵1, 𝐵) denote the canonical quotient map. 

Pick 𝑢0in 𝑍(𝐵1, 𝐵2; [𝐵]𝐵1). With no loss of generality we may assume 𝐵 = 𝑢0𝐵2𝑢0
∗ ∩ 𝐵1. 

We prove the result by contradiction. Suppose the function in (7) is not continuous at 𝑢0. 

Then there is a sequence (𝑢𝑘)𝑘≥1 ⊂ 𝑍(𝐵1, 𝐵2; [𝐵]𝐵1) and an open neighborhood 𝑁 of 𝐵 in 

[𝐵]𝐵1 such that 

(i) lim𝑘𝑢𝑘 = 𝑢0, 
(ii) for all 𝑘, 𝑢𝑘𝐵2𝑢𝑘

∗ ∩ 𝐵1 ∉ 𝒩. 
On the other hand, let 𝜀 >  0 be such that 𝜋(𝒩𝜀(1𝐵1))  ⊆ 𝛽(𝒩). 

Let{𝑒𝑘(𝑠, 𝑖, 𝑗)}1≤𝑠≤𝑙,1≤𝑖,𝑗≤𝑘𝑠 denote a system of matrix units for 𝑢𝑘𝐵2𝑢𝑘
∗ ∩ 𝐵1. Fix elements 

𝑓𝑘(𝑠, 𝑖, 𝑗) in 𝐵2such that 𝑒𝑘(𝑠, 𝑖, 𝑗)  =  𝑢𝑘𝑓𝑘(𝑠, 𝑖, 𝑗)𝑢𝑘
∗ .Since 𝐵2 is finite dimensional, 

passing to a subsequence if necessary, we may assume that lim
𝑘
𝑓𝑘 (𝑠, 𝑖, 𝑗) = 𝑓(𝑠, 𝑖, 𝑗), for 

all 𝑠, 𝑖 and 𝑗. Using property (i) of the sequence (𝑢𝑘)𝑘≥1, we deduce 

lim
𝑘
𝑒𝑘 (𝑠, 𝑖, 𝑗)  = lim

𝑘
𝑢𝑘 𝑓𝑘(𝑠, 𝑖, 𝑗)𝑢𝑘

∗ = 𝑢0𝑓 (𝑠, 𝑖, 𝑗)𝑢0
∗ . 

Hence the element 𝑒(𝑠, 𝑖, 𝑗)  =  𝑢0𝑓(𝑠, 𝑖, 𝑗)𝑢
∗ belongs to 𝑢0𝐵1𝑢0

∗ ∩ 𝐵1 =  𝐵. Use Lemma 

(1.1.13) and take 𝛿1 positive such that whenever 𝐶 is a subal-gebra in ∗-
SubAlg(𝐵1)having a system of matrix units{𝑒𝐶(𝑠, 𝑖, 𝑗)}𝑠,𝑖,𝑗 satisfying dist(𝑒𝐶(𝑠, 𝑖, 𝑗), 𝐵) <

𝛿1,for all 𝑠, 𝑖 and 𝑗, then there is a unitary 𝑄 in 𝑈(𝐵1) such that ‖𝑄 − 1𝐵1‖ <  𝜀 and 

𝑄𝐶𝑄∗ ⊆  𝐵. Take 𝑘 such that ‖𝑒𝑘(𝑠, 𝑖, 𝑗)  −  𝑒(𝑠, 𝑖, 𝑗)‖ < 𝛿1 for all 𝑠, 𝑖 and 𝑗. This implies 

dist(𝑒𝐶(𝑠, 𝑖, 𝑗), 𝐵) < 𝛿1 for all 𝑠, 𝑖and 𝑗. We conclude there is a unitary 𝑄 in 𝕌(𝐵1) such 

that ‖𝑄 − 1𝐵1‖ <  𝜀and 𝑄∗(𝑢𝑘𝐵2𝑢𝑘
∗ ∩ 𝐵1)𝑄 ⊆  𝐵. But dim 𝐵 = dim𝑢𝑘𝐵2𝑢𝑘

∗ ∩ 𝐵1 =

dim𝑄∗(𝑢𝑘𝐵2𝑢𝑘
∗ ∩ 𝐵1)𝑄, 

where in the first equality we used that 𝑢𝑘 lies in 𝑍(𝐵1, 𝐵2; [𝐵]𝐵1  ). Hence 𝑄∗(𝑢𝑘𝐵2𝑢𝑘
∗ ∩

𝐵1)𝑄 =  𝐵. As a consequence, 

𝛽(𝑢𝑘𝐵2𝑢𝑘
∗ ∩ 𝐵1)  =  𝛽(𝑄𝐵𝑄

∗) = 𝜋(𝑄) ∈ 𝛽(𝑁 ). 
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But the latter contradicts property (ii) of (𝑢𝑘)𝑘≥1. 
Lemma (1.1.22)[30]: For 𝐵 in ∗-SubAlg(𝐵), the function 𝑐: [𝐵]𝐵1 → [𝐶(𝐵)]𝐵1  given by 

𝑐(𝑢𝐵𝑢∗)  =  𝑢𝐶(𝐵)𝑢∗ is continuous. 

Proof:  First, we must show the function 𝑐 is well defined. In other words we have to 

show 𝑆𝑡𝑎𝑏(𝐵1, 𝐵)  ⊆  𝑆𝑡𝑎𝑏(𝐵1, 𝐶(𝐵)). But this follows directly from the fact that any 𝑢 in 

𝑆𝑡𝑎𝑏(𝐵1, 𝐵) defines a ∗–automorphism of 𝐵 and any ∗–automorphism leaves the center 

fixed. Since [𝐵]𝐵1 and [𝐶(𝐵)]𝐵1 are homeomorphic to 𝕌(𝐵1)/𝑆𝑡𝑎𝑏(𝐵1, 𝐵) and 𝕌(𝐵1)/

𝑆𝑡𝑎𝑏(𝐵1, 𝐶(𝐵)) respectively, it follows that 𝑐 is continuous if and only if the function 

�̃�: 𝕌(𝐵1)/𝑆𝑡𝑎𝑏(𝐵1, 𝐵)  → 𝕌(𝐵1)/𝑆𝑡𝑎𝑏(𝐵1, 𝐶(𝐵)) given by �̃�(𝑢𝑆𝑡𝑎𝑏(𝐵1, 𝐵))  =
 𝑢𝑆𝑡𝑎𝑏(𝐵1, 𝐶(𝐵)) is continuous. But the spaces 𝕌(𝐵1)/𝑆𝑡𝑎𝑏(𝐵1, 𝐵) and 𝕌(𝐵1)/
𝑆𝑡𝑎𝑏(𝐵1, 𝐶(𝐵)) have the quotient topology induced by the canonical projections 

𝜋𝐵 : 𝕌(𝐵1) → 𝑆𝑡𝑎𝑏(𝐵1, 𝐵), 𝜋𝐶(𝐵):𝕌(𝐵1) → 𝕌(𝐵1)/𝑆𝑡𝑎𝑏(𝐵1, 𝐶(𝐵)). 
Thus �̃� is continuous if and only if 𝜋𝐵 ∘ �̃� is continuous. But 𝜋𝐵 ∘ �̃� = 𝜋𝐶(𝐵), which is 

indeed continuous.  

We are ready to find local parameterizations of 𝑍(𝐵1, 𝐵2;  [𝐵]𝐵1). 

Proposition (1.1.23)[30]: Take 𝐵 a unital 𝐶∗-subalgebra in 𝐵1 that is unitarily equivalent 

to a 𝐶∗-subalgebra of 𝐵2. Fix an element 𝑢0in 𝑍(𝐵1, 𝐵2;  [𝐵]𝐵1). Then there is a positive 

number 𝑟and a continuous injective function 

𝛹 ∶ 𝑁𝑟(𝑢0) ∩ 𝑍(𝐵1, 𝐵2;  [𝐵]𝐵1) →  ℝ
𝑑(𝐶(𝐵)). 

Proof: Using that 𝑍(𝐵1, 𝐵2;  [𝐵]𝐵1) = 𝑍(𝐵1, 𝐵2;  [𝑢0𝐵2𝑢0
∗ ∩ 𝐵1]𝐵1), with no loss of 

generality we may assume 𝑢0𝐵2𝑢0
∗ ∩ 𝐵1 =  𝐵. Now, we use the manifold structure of 

[𝐶(𝐵)]𝐵1 and 𝑌(𝐵2;  𝐶(𝐵)) to construct 𝛹. Note that if 𝑌(𝐵2, 𝐵) is nonempty then 

𝑌(𝐵2, 𝐶(𝐵)) is nonempty as well. Let 𝑑1 denote the dimension of [𝐶(𝐵)]𝐵1 and let 𝑑2 

denote the dimension of the sub-manifold of 𝑌(𝐵2;  𝐶(𝐵)) that contains 𝑢0. Of course, we 

have 𝑑1 + 𝑑2 ≤  𝑑(𝐶(𝐵)). 
We use the local cross section result from previous section to parametrize[𝐶(𝐵)]𝐵1 . To 

ease notation take 𝐺 = 𝕌(𝐵1), 𝐻 = 𝑆𝑡𝑎𝑏(𝐵1, 𝐶(𝐵)) and let 𝜋 denote the canonical 

quotient map from 𝐺onto the left-cosets of 𝐻. By Proposition (1.1.7) there are 

(i) 𝒩𝐺, a compact neighborhood of 1 in 𝐺, 

(ii) 𝒩𝐻, a compact neighborhood of 1 in 𝐻, 
(iii) 𝒩𝐺/𝐻, a compact neighborhood of 𝜋(1) in 𝐺/𝐻, 

(iiii) a continuous function s : 𝒩𝐺/𝐻 → 𝒩𝐺 satisfying 

(a) 𝑠(𝜋(1))  =  1and𝜋(𝑠(𝜋(𝑔)))  =  𝜋(𝑔) whenever 𝜋(𝑔) lies in 𝒩𝐺/𝐻, 

(b) the function 

𝒩𝐻 ×𝒩𝐺/𝐻 → 𝒩𝐺 , 

(ℎ, 𝜋(𝑔)) ⟼ ℎ𝑠(𝜋(𝑔)), 
is an homeomorphism. 

Since 𝐺/𝐻 is a manifold of dimension 𝑑1, we may assume there is a continuous injective 

map 𝛹1 ∶ 𝒩𝐺/𝐻 → ℝ
𝑑2 . 

Parametrizing𝑌(𝐵2, 𝐶(𝐵)) is easier. Since 𝑢0𝐵2𝑢0
∗ ∩ 𝐵1 =  𝐵, 𝑢0 belongs to 𝑌(𝐵2, 𝐵). 

Take 𝑟1 positive and a diffeomorphism𝛹2 from𝑌(𝐵2, 𝐶(𝐵)) ∩𝒩𝑟1(𝑢0) onto an open 

subset of ℝ𝑑2. 
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Now that we have fixed parametrizations 𝛹1and 𝛹2, we can parametrize 𝑍(𝐵1, 𝐵2; [𝐵]𝐵1) 

around 𝑢0. Recall [𝐶(𝐵)]𝐵1has the topology induced by the bijection𝛽 ∶ [𝐶(𝐵)]𝐵1 →

 𝐺/𝐻, given by 𝛽(𝑢𝐶(𝐵)𝑢∗)  = 𝜋(𝑢).The function 

𝑍(𝐵1, 𝐵2; [𝐵]𝐵1) → [𝐶(𝐵)]𝐵1  , 𝑢 ⟼ 𝑐(𝑢𝐵2𝑢
∗ ∩ 𝐵1) 

is continuous by Lemma (1.1.21) and Lemma (1.1.22). Hence there is 𝛿2positive such that 

𝛽(𝑐(𝑢𝐵2𝑢
∗ ∩ 𝐵1)) belongs to 𝒩𝐺/𝐻, whenever u lies in the intersection 𝑍(𝐵1, 𝐵2; [𝐵]𝐵1) ∩

𝒩𝛿2(𝑢0). For a unitary 𝑢in 𝑍(𝐵1, 𝐵2; [𝐵]𝐵1) ∩𝒩𝛿2(𝑢0) define 

𝑞(𝑢) ∶=  𝑠(𝛽(𝑐(𝑢𝐵2𝑢
∗ ∩ 𝐵1)). 

We note that 𝑞(𝑢0)  =  1, 𝑞(𝑢) lies in 𝐺 and that the map 𝑢 ⟼ 𝑞(𝑢) is continuous. The 

main property of 𝑞(𝑢) is that 

(𝑐(𝑢𝐵2𝑢
∗ ∩ 𝐵1) =  𝑞(𝑢)𝑐(𝐵)𝑞(𝑢)

∗.                     (8) 
Indeed, for 𝑢 in 𝑍(𝐵1, 𝐵2; [𝐵]𝐵1) ∩𝒩𝛿2(𝑢0) there is a unitary 𝑣 in 𝐺 with the property 

𝑢𝐵2𝑢
∗ ∩ 𝐵1 =  𝑣𝐵𝑣

∗. Hence 𝑐(𝑢𝐵2 ∩ 𝐵1) =  𝑣𝐶(𝐵)𝑣
∗. Since 

‖𝑢 − 𝑢0‖ < 𝛿2, 𝛽(𝑐(𝑢𝐵2𝑢
∗ ∩ 𝐵1))lies in 𝒩𝐺/𝐻. Hence 𝛽(𝑐(𝑢𝐵2𝑢

∗ ∩ 𝐵1) =  𝜋(𝑣) lies in 

𝒩𝐺/𝐻 . Using the fact that s is a local section on 𝒩𝐺/𝐻 (property (ia) above) we deduce 

𝜋(𝑠(𝜋(𝑣)))  =  𝜋(𝑣) . 
On the other hand, by definition of 𝑞(𝑢) we have 

𝜋(𝑠(𝜋(𝑣)))  =  𝜋(𝑠(𝛽(𝑢𝐵2𝑢
∗ ∩ 𝐵1)))  =  𝜋(𝑞(𝑢)). 

As a consequence, 𝜋(𝑣)  =  𝜋(𝑞(𝑢)) i.e. 𝑣∗𝑞(𝑢) belongs to 𝑆𝑡𝑎𝑏(𝐵1, 𝐵) which is just 

another way to say (8) holds. At last we are ready to find 𝑟. Continuity of the map 𝑢 ⟼

𝑞(𝑢) gives a positive 𝛿3, less that 𝛿2, such that ‖𝑞(𝑢) − 1‖ <
𝛿1

2
 whenever 𝑢 lies in 

𝑍(𝐵1, 𝐵2; [𝐵]𝐵1) ∩𝒩𝛿3(𝑢0). Define 𝑟 = min{
𝛿1

2
 , 𝛿3}. The first thing we notice is that 

𝑞(𝑢)∗𝑢 belongs to 𝑌(𝐵2;  𝐶(𝐵))  ∩𝒩𝛿1(𝑢0) whenever 𝑢 lies in 𝑍(𝐵1, 𝐵2; [𝐵]𝐵1) ∩

𝒩𝛿(𝑢0). Indeed, from 

𝑞(𝑢)𝑐(𝐵)𝑞(𝑢)∗  =  𝑐(𝑢𝐵2𝑢
∗ ∩ 𝐵1)  ⊆  𝑢𝐵2𝑢

∗ 

we obtain 𝑞(𝑢)∗𝑢 ∈ 𝑌(𝐵2;  𝑐(𝐵)) and a standard computation, using ‖𝑞(𝑢) − 1‖ <
𝛿2

2
 , 

shows ‖𝑞(𝑢)∗𝑢 − 𝑢0‖ < 𝛿1. Hence we are allowed to take 𝛹2(𝑞(𝑢)
∗𝑢). Lastly, for 𝑢 in 

𝑍(𝐵1, 𝐵2; [𝐵]𝐵1) ∩𝒩𝛿(𝑢0) define 

𝛹(𝑢) ∶=  (𝛹1(𝛽(𝑐(𝑢𝐵2𝑢
∗ ∩ 𝐵1))), 𝛹2(𝑞(𝑢)

∗𝑢)). 
It is clear that 𝛹 is continuous. 

Now we show 𝛹 is injective. If 𝛹(𝑢1)  =  𝛹(𝑢2), for two element 𝑢1 and 𝑢2 in 

𝑍(𝐵1, 𝐵2; [𝐵]𝐵1), then 

𝛹1 (𝛽(𝑐(𝑢1𝐵2𝑢1
∗ ∩ 𝐵1))) = 𝛹1 (𝛽 (𝑐((𝑢2𝐵2𝑢2

∗ ∩ 𝐵1)))),                            (9) 

𝛹2(𝑞(𝑢1)𝑢1
∗) = 𝛹2(𝑞(𝑢2)𝑢2

∗)).                                   (10) 
From (9) and definition of 𝑞(𝑢) it follows that 𝑞(𝑢1) = 𝑞(𝑢2) and from equation (10) we 

conclude 𝑢1 = 𝑢2. 
Proposition (1.1.24)[30]: Take 𝐵 a unital 𝐶∗-subalgebra of 𝐵1 such that it is unitarily 

equivalent to a 𝐶∗-subalgebra of 𝐵2. Fix an element 𝑢0in 𝑍(𝐵1, 𝐵2; [𝐵]𝐵1). 

There is a positive number 𝑟 and a continuous injective function 

𝛹 ∶ 𝒩𝑟(𝑢0)  ∩ 𝑍(𝐵1, 𝐵2; [𝐵]𝐵1) → ℝ
𝑑(𝐵) 

The proof of Proposition (1.1.24) is similar to that of Proposition (1.1.23), so we omit it. 

We now begin showing density in 𝕌(𝑀𝑁) of certain sets of unitaries. 
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Lemma (1.1.25)[30]: Assume 𝐵1 and 𝐵2 are simple. If 𝐵 ≠ 𝐶 is a unital 𝐶∗-subalgebra of 

𝐵1 and it is unitarily equivalent to a 𝐶∗-subalgebra of 𝐵2 then 𝑍(𝐵1, 𝐵2; [𝐵]𝐵1)
𝑐 is dense. 

Proof: Firstly we notice that dim𝕌(𝐵1)  + dim𝕌(𝐵2) < 𝑁
2. Indeed, if 𝐵𝑖 is ∗–isomorphic 

to 𝑀𝑘𝑖  , 𝑖 =  1, 2 and 𝑚𝑖 =  µ(𝑀𝑁 , 𝐵𝑖) then dim𝕌(𝐵1)  + dim𝕌(𝐵2) =  𝑁
2(1/𝑚2

2 +

 1/𝑚2
2)  < 𝑁2. Secondly we will prove that for any𝑢 in 𝑍(𝐵1, 𝐵2; [𝐵]𝐵1) there is a natural 

number 𝑑𝑢, with 𝑑𝑢 < 𝑁
2, a positive number ru and a continuous injective function 𝛹𝑢 ∶

𝒩𝑟𝑢(𝑢)  ∩ 𝑍(𝐵1, 𝐵2; [𝐵]𝐵1) →  ℝ𝑑𝑢. We will consider two cases. 

Case (i): 𝐵 is not simple. Take 𝑑𝑢 =  𝑑(𝐶(𝐵)). Since 𝐶(𝐵) ≠ ℂ, Proposition (1.1.14) 

implies 𝑑(𝐶(𝐵))  < 𝑁2. Take 𝑟𝑢 and 𝛹𝑢 as required to exist by Proposition (1.1.23) 

Case (ii): 𝐵 is simple. Take 𝑑𝑢 =  𝑑(𝐵). Since 𝐵 ≠ ℂ,𝐵 contains a unital 𝐶∗-subalgebra 

isomorphic to ℂ2, call it 𝐶. Lemma (1.1.12) implies 𝑑(𝐵)  ≤  𝑑(𝐶) and implies 𝑑(𝐶) <
𝑁2. Take 𝑟𝑢 and 𝛹𝑢 the positive number and continuous injective function from 

Proposition (1.1.24) 

We will show that 𝑈 ∩ 𝑍(𝐵1, 𝐵2; [𝐵]𝐵1)
𝑐 ≠ ∅, for any nonempty open subset 𝑈 ⊆

𝕌(𝑀𝑁).First notice that if the intersection 𝑈 ∩ (⋃ 𝒩𝑟𝑢𝑢∈𝑍(𝐵1,𝐵2;[𝐵]𝐵1)
(𝑢))𝑐 is nonempty 

then we are done. Thus we may assume 𝑈 ⊆ (⋃ 𝒩𝑟𝑢𝑢∈𝑍(𝐵1,𝐵2;[𝐵]𝐵1)
(𝑢)) . Furthermore, 

by making 𝑈 smaller, if necessary, we may assume there is 𝑢 in 𝑍(𝐵1, 𝐵2; [𝐵]𝐵1)  such 

that 𝑈 ⊆ 𝒩𝑟𝑢(𝑢).    

For sake of contradiction assume 𝑈 ⊆ 𝑍(𝐵1, 𝐵2; [𝐵]𝐵1). We may take an open subset 𝑉, 

contained in 𝑈, small enough so that 𝑉 is diffeomorphic to an open connected set 𝒪 of 

ℝ𝑁
2
.Let 𝜑 ∶ 𝒪 →  𝑉 be a diffeomorphism. It follows we have a continuous injective 

function 

ℝ𝑁
2
⊇ 𝒪

𝜑
→ 𝑉

𝜓𝑢
→ ℝ𝑑𝑢 ↪ ℝ𝑁

2
 

By the Invariance of Domain Theorem, the image of this map must be open in ℝ𝑁
2
. But 

this is a contradiction since the image is contained in ℝ𝑑𝑢and 𝑑𝑢 < 𝑁
2. We conclude 𝑈 ∩

𝑍(𝐵1, 𝐵2; [𝐵]𝐵1)
𝑐 ≠ ∅  

Lemma (1.1.26)[30] :Suppose dim 𝐶(𝐵1) ≥ 2 and 𝐵1 is ∗–isomorphic to  

𝑀𝑁/dim 𝐶(𝐵1)⊕…⊕𝑀𝑁/dim 𝐶(𝐵1). 

Assume one of the following cases holds:  

(i) dim 𝐶(𝐵2) =  1,  

(ii) 𝐵1is∗–isomorphic to  

𝑀𝑁/2⊕𝑀𝑁/2 

and 𝐵2 is ∗–isomorphic to  

𝑀𝑁/2⊕𝑀𝑁/(2𝑘) 

where 𝑘 ≥  2.  

(i)  dim 𝐶(𝐵2)  ≥  3and𝐵2 is ∗–isomorphic to  

(ii𝑖)𝑀𝑁/dim 𝐶(𝐵2)⊕…⊕𝑀𝑁/dim 𝐶(𝐵2). 

Then for any 𝐵 ≠ ℂ unital i-subalgebra of 𝐵1 such that it is unitarily equivalent to a i-
subalgebra of 𝐵2, 𝑍(𝐵1, 𝐵2; [𝐵]𝐵1)

𝑐 is dense. 

Proof: The proof of Lemma (1.1.26) is exactly as the proof of (1.1.25) but using Lemma 

(1.1.17) instead of Lemma (1.1.14) 

At this point if the sets 𝑍(𝐵1, 𝐵2; [𝐵]𝐵1) were closed one could conclude immediately that 

𝛥(𝐵1, 𝐵2) is dense. Unfortunately they may not be closed. What saves the day is the fact 
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that we can control the closure of 𝑍(𝐵1, 𝐵2; [𝐵]𝐵1) with sets of the same form i.e. sets like 

𝑍(𝐵1, 𝐵2; [𝐶]𝐵1) for a suitable finite family of subalgebras 𝐶.We make this statement 

clearer with the definition of an order on ∗-SubAlg(𝐵1). 
Definition (1.1.27)[30]: On ∗-SubAlg(𝐵1)/∼𝐵1 we define a partial order as follows: 

[𝐵]𝐵1 ≤ [𝐶]𝐵1 ⇔ ∃𝐷 ∈∗ −𝑆𝑢𝑏𝐴𝑙𝑔(𝐶) ∶ 𝐷 ∼𝐵1 𝐵. 

Lemma (1.1.28)[30]: Assume one of the conditions (i)–(iiii). Then for any 𝐵 ≠ ℂ, unital 

𝐶∗-subalgebra of 𝐵1 that is unitarily equivalent to a 𝐶∗-subalgebra of 𝐵2, the set 

𝑍(𝐵1, 𝐵2;  [𝐵]𝐵1  )
𝑐
  is dense. 

Proof: Assume 𝑍(𝐵1, 𝐵2;  [𝐵]𝐵1  )
𝑐
 is not dense. There is [𝐶]𝐵1 > [𝐵]𝐵1 such that 

𝑍(𝐵1, 𝐵2;  [𝐵]𝐵1  )
𝑐
 is not dense. We notice that again we are in the same condition to 

apply, since [𝐶]𝐵1 > [𝐵]𝐵1 > [ℂ]𝐵1 . In this way we can construct chains, in ∗-

SubAlg(𝐵1)/∼𝐵1  , of length arbitrarily large, but this cannot be since it is finite. 

   At last we can give a proof of Theorem (1.1.29) 

Theorem (1.1.29)[30]: Assume one of the following conditions holds: 

(i) dim 𝐶(𝐵1) =  1 =  dim 𝐶(𝐵2), 
(ii)dim 𝐶(𝐵1) ≥  2, dim 𝐶(𝐵2)  =  1 and 𝐵1 is ∗–isomorphic to 

𝑀𝑁/ 𝑑𝑖𝑚 𝐶(𝐵1)⊕…⊕𝑀𝑁/ 𝑑𝑖𝑚 𝐶(𝐵1), 

(iii) dim 𝐶(𝐵1) =  2 =  dim 𝐶(𝐵2), 𝐵1is ∗–isomorphic to 

𝑀𝑁/2⊕𝑀𝑁/2, 

and 𝐵2 is ∗–isomorphic to 

𝑀𝑁/2⊕𝑀𝑁/(2𝑘). 

Where 𝑘 ≥  2, 
(iiii)dim 𝐶(𝐵1)  ≥  2, dim 𝐶(𝐵2)  ≥  3and, for 𝑖 =  1, 2, 𝐵𝑖 is ∗– isomorphic to 

𝑀𝑁/ dim 𝐶(𝐵𝑖)⊕…⊕𝑀𝑁/ dim 𝐶(𝐵𝑖). 

Then 

𝛥(𝐵1, 𝐵2) ∶=  {𝑢 ∈ 𝕌(𝑀𝑁) ∶ 𝐵1 ∩  𝑢𝐵2𝑢
∗  = ℂ} 

is dense in 𝕌(𝑀𝑁). 
Proof :  A direct computation shows that 

𝛥(𝐵1, 𝐵2) = ⋂ 𝑍(𝐵1, 𝐵2, [𝐵]𝐵1)
𝑐

[𝐵]𝐵1>[ℂ]𝐵1

 

Thus  

𝛥(𝐵1, 𝐵2) ⊇ ⋂ 𝑍(𝐵1, 𝐵2, [𝐵]𝐵1)
𝑐

[𝐵]𝐵1>[ℂ]𝐵1

 

Now whenever [𝐵]𝐵1 > [ℂ]𝐵1 , the set 𝑍(𝐵1, 𝐵2, [𝐵]𝐵1)
𝑐
is dense. Hence 𝛥(𝐵1, 𝐵2) is 

dense.       

We unless stated otherwise, 𝐴1 ≠ ℂ and 𝐴2 ≠ ℂ denote two nontrivial, separable, 

residually finite dimensional C∗-algebras. Our goal is to prove 𝐴1 ∗ 𝐴2 is primitive, except 

for the case 𝐴1 = ℂ
2 = 𝐴2. Two main ingredients are used. Firstly, the perturbation results 

from previous section. Secondly, the fact that 𝐴1 ∗ 𝐴2has a separating family of finite 

dimensional ∗–representations, a result due to [40]. 

Before we start proving results about primitivity, we want to consider the case ℂ2 ∗ ℂ2. 

This is a well studied𝐶∗-algebra; see for in-stance [11], [107] and [118]. It is known that 



13 
 

ℂ2 ∗ ℂ2 is ∗–isomorphic to the C∗-algebra of continuous 𝑀2-valued functions on the 

closed interval [0, 1], whose values at 0 and 1 are diagonal matrices. As a consequences its 

center is not trivial. Since the center of any primitive 𝐶∗-algebra is trivial, we conclude 

ℂ2 ∗ ℂ2 is not primitive. 

Definition (1.1.30)[30]:We denote by 𝜄𝑗 the inclusion ∗–homomorphism from 𝐴𝑗into 𝐴1 ∗

𝐴2. Given a unital∗–representation 𝜋: 𝐴1 ∗ 𝐴2 → 𝔹(𝐻), we define 𝜋(1) = 𝜋 ∘ 𝜄1 and 

𝜋(2) = 𝜋 ∘ 𝜄2. Thus, with this notation, we have 𝜋 = 𝜋(1) ∗ 𝜋(2). For a unitary 𝑢 in 𝕌(𝐻) 
we call the ∗representation 𝜋(1) ∗ (𝐴𝑑 𝑢 ∘ 𝜋(2)), a perturbation of 𝜋 by 𝑢. 

Definition (1.1.31)[30]: Assume 𝐴1 and 𝐴2 are finite dimensional and let 𝜌: 𝐴1 ∗ 𝐴2 →
𝔹(𝐻)be a unital, finite dimensional representation. We say that 𝜌 satisfies the Rank of 

Central Projections condition (or RCP condition) if for both 𝑖 =  1, 2, the rank of 𝜌(𝑝) is 

the same for all minimal projections 𝑝 of the center 𝐶(𝐴𝑖) of 𝐴𝑖, (but they need not agree 

for different values of 𝑖). 
The RCP condition for 𝜌, of course, is really about the pair of representations (𝜌(1), 𝜌(2)). 
However, it will be convenient to express it in terms of 𝐴1 ∗ 𝐴2. In any case, the following 

two lemmas are clear. 

Lemma (1.1.32)[30]: Suppose 𝐴1 and 𝐴1 are finite dimensional, 𝜌: 𝐴1 ∗ 𝐴2 → 𝔹(𝐻) is a 

finite dimensional representation that satisfies the RCP condition and 𝑢 ∈ 𝕌(𝐻). Then the 

representation 𝜌(1) ∗ (𝐴𝑑 𝑢 ∘ 𝜌(2)) of 𝐴1 ∗ 𝐴2 also satisfies the RCP condition. 

Lemma (1.1.33)[30]: Suppose 𝐴1 and 𝐴2 are finite dimensional, 𝜌: 𝐴1 ∗ 𝐴2 → 𝔹(𝐻) and 

𝜎 ∶ 𝐴1 ∗ 𝐴2 → 𝔹(𝐾) are finite dimensional representations that satisfy the RCP condition. 

Then 𝜌 ⊕ 𝜎 ∶ 𝐴1 ∗ 𝐴2 → 𝔹(𝐻⊕𝐾) also satisfies the RCP condition. 

The following is clear from Lemma (1.1.12) 

Lemma (1.1.34)[30]: Assume 𝐴 is a finite dimensional 𝐶∗-algebra ∗–isomorphic 

to⊕𝑗=1
𝑙 𝑀𝑛(𝑗)and take 𝜋: 𝐴 → 𝔹(𝐻) a unital finite dimensional ∗representation. Let 

µ (𝜋)  =  [𝑚(1), . . . , 𝑚(𝑙)] and let �̃� be the restriction of 𝜋 to the center of 𝐴. Then 

µ(�̃�)  =  [𝑚(1)𝑛(1), . . . , 𝑚(𝑙)𝑛(𝑙)]. 
The next lemma will help us to prove that the RCP condition is easy to get. 

Lemma (1.1.35)[30]: Assume 𝐴 is a finite dimensional 𝐶∗-algebra and 𝜋: 𝐴 → 𝔹(𝐻) is a 

unital finite dimensional ∗–representation. Let 

µ(𝜋)  =  [𝑚(1), . . . , 𝑚(𝑙)]. 
For any nonnegative integers 𝑞(1), . . . , 𝑞(𝑙) there is a finite dimensional unital ∗–
representation 𝜌 ∶ 𝐴 → 𝔹(𝐾)such that 

µ(𝜋 ⊕ 𝜌)  =  [𝑚(1)  +  𝑞(1), . . . , 𝑚(𝑙)  +  𝑞(𝑙)]. 
Proof: Write 𝐴 as 

𝐴 =
𝑙
⊕
𝑖 = 1

𝐴(𝑖) 

where𝐴(𝑖) = 𝔹(𝑉𝑖) for 𝑉𝑖 finite dimensional. For 1 ≤  𝑖 ≤  𝑙, let 𝑝𝑖 ∶ 𝐴 →  𝐴(𝑖) denote 

the canonical projection onto 𝐴(𝑖). Notice that 𝑝𝑖 is a unital ∗–representation of 𝐴. Define 

𝜌 ∶=
𝑙
⊕
𝑖 = 1

(𝑝𝑖⊕…⊕𝑝𝑖)⏟        
𝑞(𝑖)−𝑡𝑖𝑚𝑒𝑠

∶  𝐴 →
𝑙
⊕
𝑖 = 1

𝐴(𝑖)𝑞(𝑖) ⊆ 𝔹(𝐾). 

Where 𝐾 =
𝑙
⊕
𝑖 = 1

(𝑉𝑖
⊕𝑞𝑖). Then 𝜌 is a unital* –representation of𝐴on 𝐾and 
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µ(𝜋 ⊕ 𝜌)  =  [𝑚(1)  +  𝑞(1), . . . , 𝑚(𝑙)  +  𝑞(𝑙)]. 
The next lemma takes slightly more work and is essential to our construction. 

Lemma (1.1.36)[30]: Assume 𝐴1 and 𝐴2 are finite dimensional. Given a unital finite 

dimensional ∗–representation 𝜋 ∶ 𝐴1 ∗ 𝐴2 → 𝔹(𝐻), there is a finite dimensional Hilbert 

space �̂� and a unital ∗–representation 

�̂� ∶ 𝐴1 ∗ 𝐴2 → 𝔹(�̂�) 
such that 𝜋 ⊕ �̂� satisfies the RCP condition. 

Proof:  For 𝑖 =  1, 2, let 𝑙𝑖 =  𝑑𝑖𝑚 𝐶(𝐴𝑖), let 𝐴𝑖 be ∗–isomorphic to 

⊕𝑗=1
𝑙𝑖 𝑀𝑛𝑖(𝑗)and write 

µ(𝜋(𝑖))  =  [𝑚𝑖(1), . . . , 𝑚𝑖(𝑙𝑖)]. 
Take 𝑛𝑖 =  𝑙𝑐𝑚(𝑛𝑖(1), . . . , 𝑛𝑖(𝑙𝑖)) and integers 𝑟𝑖(𝑗), such that 𝑟𝑖(𝑗)𝑛𝑖(𝑗) = 𝑛𝑖, for 1 ≤
𝑗 ≤ 𝑙𝑖. Take a positive integer 𝑠 such that 𝑠𝑟𝑖(𝑗) ≥ 𝑚𝑖(𝑗)for all 𝑖 =  1, 2and 1 ≤ 𝑗 ≤ 𝑙𝑖. 
Use Lemma (1.1.36) to find a unital finite dimensional ∗–representation 𝜌𝑖 ∶ 𝐴𝑖 →
 𝔹(𝐾𝑖), 𝑖 =  1, 2 such that 

µ(𝜋(𝑖)⊕𝜌𝑖) = [𝑠𝑟𝑖(1), . . . , 𝑠𝑟𝑖(𝑙𝑖)]. 
Letting 𝜅𝑖 denote the restriction of 𝜋(𝑖)⊕𝜌𝑖to 𝐶(𝐴𝑖), from Lemma (1.1.36) we have 

µ(𝜅𝑖) = [𝑠𝑟𝑖(1)𝑛𝑖(1), . . . , 𝑠𝑟𝑖(𝑙𝑖)𝑛𝑖(𝑙𝑖)]  =  [𝑠𝑛𝑖 , 𝑠𝑛𝑖 , . . . , 𝑠𝑛𝑖]. 
The ∗–representations (𝜋(1)⊕𝜌1) and (𝜋(2)⊕𝜌2) are almost what we want, but they 

may take values in Hilbert spaces with different dimensions. To take care of this, we take 

multiples of them. Let 𝑁 = lcm(dim(𝐻⊕𝐾1), dim(𝐻⊕𝐾2)), find positive integers 𝑘1 

and 𝑘2 such that 

𝑁 = 𝐾1dim(𝐻⊕𝐾1) = 𝐾2 dim(𝐻⊕𝐾2) 
and consider the Hilbert spaces (𝐻 ⊕𝐾𝑖)

⊕𝑘𝑖 , whose dimensions agree for 𝑖 =  1, 2. 

Then 

dim(𝐾1⊕ (𝐻⊕𝐾1)
⊕(𝐾1−1))  = dim(𝐾2⊕ (𝐻⊕𝐾2)

⊕(𝐾2−1)) 
and there is a unitary operator 

𝑈 ∶ 𝐾2⊕ (𝐻⊕𝐾2)
⊕(𝐾2−1) → 𝐾1⊕ (𝐻⊕𝐾1)

⊕(𝐾1−1) . 
Take 

�̂� ∶= 𝐾1⊕ (𝐻 + 𝐾1)
⊕(𝐾1−1) 

�̂�1: = 𝜌1⊕ (𝜋(1)⊕𝜌)⊕(𝐾1−1), 
𝜎1: = 𝜋

(1)⊕ �̂�1, 
�̂�2: = 𝐴𝑑 𝑈 ∘ (𝜌2⊕ (𝜋(2)⊕𝜌)⊕(𝐾2−1)), 
𝜎2: = 𝜋

(2)⊕ �̂�2, 
�̂�: = �̂�1 ∗ �̂�2. 
Then 𝜎1 ∗ 𝜎2 = (𝜋

(1)⊕ �̂�1) ∗ (𝜋
(2)⊕ �̂�2) = 𝜋 ⊕ �̂�. We have µ(𝜎𝑖) =

[𝑘𝑖𝑠𝑟𝑖(1), . . . , 𝑘𝑖𝑠𝑟𝑖(𝑙𝑖)]. Let �̃�𝑖 denote the restriction of 𝜎𝑖to 𝐶(𝐴𝑖). 
From Lemma (1.1.35) we have 

µ(�̃�𝑖) = [𝑘𝑖𝑠𝑟𝑖(1)𝑛𝑖(1), . . . , 𝑘𝑖𝑠𝑟𝑖(𝑙𝑖)𝑛𝑖(𝑙𝑖)]  =  [𝑘𝑖𝑠𝑛𝑖 , . . . , 𝑘𝑖𝑠𝑛𝑖]. 
The purpose of the next definition and lemma is to emphasize an important property about 

∗–representations satisfying the RCP. 

Definition (1.1.37)[30]: A ∗–representation 𝜋: 𝐴1 ∗ 𝐴2 → 𝔹(𝐻) is said to be densely 

perturbable to an irreducible ∗-representation, abbreviated DPI, if the set 

𝛥(𝜋) ∶=  {𝑢 ∈ 𝕌(𝐻) ∶  𝜋(1)(𝐴1)′ ∩ (𝑢𝜋
(2)(𝐴2)′𝑢 ∗) = ℂ} 

is norm dense in 𝕌(𝐻). Here the commutants are taken with respect to 𝔹(𝐻). 
The next lemma shows that any ∗∗–representation satisfying the R.C.P is DPI. 
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Lemma (1.1.38)[30]: Assume 𝐴1 and 𝐴2 are finite dimensional 𝐶∗-algebras and 

(𝑑𝑖𝑚(𝐴1) − 1)(𝑑𝑖𝑚(𝐴2)  −  1)  ≥  2. If 𝜌: 𝐴1 ∗ 𝐴2 → 𝔹(𝐻), with 𝐻finite dimensional, 

satisfies the Rank of Central Projections condition, then 𝜌 is DPI. 

Proof: Since (dim(𝐴1) − 1)(dim(𝐴2)  −  1)  ≥  2, and after interchanging 𝐴1 and 𝐴2, if 

necessary, one of the following must hold: 

(i) 𝐴1and 𝐴2 are simple, 

(ii) dim 𝐶(𝐴1)  ≥  2 and𝐴2 is simple, 

(iii) for 𝑖 =  1, 2, 𝐴𝑖 = 𝑀𝑛𝑖(1)⊕𝑀𝑛𝑖(2), with 𝑛2(2)  ≥  2, 

(iiii) dim 𝐶(𝐴1)  ≥  2, dim 𝐶(𝐴2)  ≥  3. 
In case (1), take 𝐵𝑖 = 𝜌

(𝑖)(𝐴𝑖)′, 𝑖 =  1, 2. 
In case (2), let 𝐵1 = 𝜌

(1)(𝐶(𝐴1))′and 𝐵2 = 𝜌
(2)(𝐴2)′. Notice that dim 𝐶(𝐵2) =

1, dim 𝐶(𝐵1)  = dim 𝐶(𝐴1)  ≥  2 and, by the R.C.P assumption, 𝐵1 is ∗–isomorphic to 

𝑀𝑑𝑖𝑚 𝐻/ 𝑑𝑖𝑚 𝐶(𝐵1)⊕…⊕𝑀𝑑𝑖𝑚 𝐻/ 𝑑𝑖𝑚 𝐶(𝐵1).  

In case (iii), let 𝐵1 = 𝜌
(1)(𝐶(𝐴1))′and 𝐵2 = 𝜌

(2)(ℂ⊕𝑀𝑛2(2))′. By the RCP assumption, 

𝐵1 is ∗–isomorphic to  

𝑀𝑑𝑖𝑚 𝐻/2⊕𝑀𝑑𝑖𝑚 𝐻/2 

and𝐵2 is ∗–isomorphic to 

𝑀𝑑𝑖𝑚 𝐻/2⊕𝑀𝑑𝑖𝑚 𝐻/(2𝑛2(2)). 

In case (iiii), let 𝐵𝑖 = 𝜌
(𝑖)(𝐶(𝐴𝑖))′ for 𝑖 =  1, 2. Then dim 𝐶(𝐵1) = dim 𝐶(𝐴1)  ≥

 2, dim 𝐶(𝐵2) = dim 𝐶(𝐴2) ≥ 3 and, for 𝑖 =  1, 2, RCP implies Bi is ∗–isomorphic to 

𝑀𝑑𝑖𝑚 𝐻/ 𝑑𝑖𝑚 𝐶(𝐵𝑖)⊕…⊕𝑀𝑑𝑖𝑚 𝐻/ 𝑑𝑖𝑚 𝐶(𝐵𝑖) 

Now define 

𝛥(𝐵1, 𝐵2) ∶=  {𝑢 ∈ 𝕌(𝐻) ∶ 𝐵1 ∩  𝐴𝑑 𝑢(𝐵2) = ℂ}. 
and notice that in all four cases 𝛥(𝐵1, 𝐵2) ⊆ 𝛥(𝜌). By Theorem (1.1.29), the set 𝛥(𝐵1, 𝐵2) 
is dense in all the four cases. 

A downside of the DPI property is that it is not stable under direct sums. However, it is 

stable under perturbations. 

We obtain the following. 

Lemma (1.1.39)[30]: For any unital finite dimensional ∗-representation 𝜋: 𝐴1 ∗ 𝐴2 →
𝔹(𝐻), there is a unital finite dimensional ∗-representation�̂�: 𝐴1 ∗ 𝐴2 → 𝔹(�̂�) such that 

𝜋 ⊕ �̂� is DPI. 

Proof:  The assumption (dim(𝐴1) − 1)(dim(𝐴2) − 1)  ≥  2 implies there is a unital finite 

dimensional ∗-representation 𝜗 ∶ 𝐴1 ∗ 𝐴2 → 𝔹(𝐻0), such that (dim(𝜗(1)(𝐴1))  −
 1)(dim(𝜗(2)(𝐴2))  −  1)  ≥  2. Consider the unital𝐶∗-subalgebras of 𝔹(𝐻⊕𝐻0), 𝐷𝑖 =

 (𝜋 ⊕ 𝜗)(𝑖)(𝐴𝑖), 𝑖 = 1, 2, and notice that (dim(𝐷1)  −  1)(dim(𝐷2)  −  1)  ≥  2. Let 

𝜃: 𝐷1 ∗ 𝐷2 → 𝔹(𝐻⊕𝐻0) be the unital ∗-representation induced by the universal property 

of 𝐷1 ∗ 𝐷2via the unitalinclusions 𝐷𝑖 ⊆ 𝔹(𝐻⊕𝐻0). Lemma 5.8 implies there is a unital 

finite dimensional ∗-representation 𝜌: 𝐷1 ∗ 𝐷2 → 𝔹(𝐾) such that 𝜃 ⊕ 𝜌 satisfies the RCP 

condition, so by is DPI. 

   Let 𝑗𝑖: 𝐷𝑖 → 𝐷1 ∗ 𝐷2, 𝑖 =  1, 2, be the inclusion ∗-homomorphism from the definition of 

unital full free product. Now consider the unital∗-homomorphism 𝜎 = (𝑗1 ∘ (𝜋 ⊕ 𝜗)(1)) ∗

(𝑗2 ∘ (𝜋 ⊕ 𝜗)(2))) ∶ 𝐴1 ∗ 𝐴2 → 𝐷1 ∗ 𝐷2.  
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Now just take �̂� = 𝐻0⊕  𝐾and �̂� =  𝜗 ⊕ (𝜌 ∘ 𝜎).  In order to show𝜋⊕ �̂� is DPI we 

just need to show that, for 𝑖 =  1, 2, (𝜋 ⊕ �̂�)(𝑖)(𝐴𝑖) = (𝜃 ⊕ 𝜌)(𝑖)(𝐷𝑖), but this is a direct 

computation. 

The proof of next lemma is a standard approximation argument and we omit it. 

Proposition (1.1.40)[30]: Let 𝐴1 and 𝐴2 be two unital 𝐶∗-algebras. Given a non zero 

element 𝑥 in 𝐴1 ∗ 𝐴2 and a positive number 𝜀, there is a positive number 𝛿 =  𝛿(𝑥, 𝜀) 
such that for any 𝑢 and 𝑣 in 𝕌(𝐻) satisfying ‖𝑢 −  𝑣‖ <  𝛿 and any unital∗-
representations 𝜋 ∶ 𝐴1 ∗ 𝐴2 → 𝔹(𝐻), we have 

‖(𝜋(1) ∗  (𝐴𝑑 𝑢 ∘ 𝜋(2)))(𝑥)  − (𝜋(1) ∗  (𝐴𝑑 𝑢 ∘ 𝜋(2)))(𝑥)‖ < 𝜀. 
Here is our main theorem. 

Theorem (1.1.41)[30]: Assume 𝐴1 and 𝐴2 are unital, separable, residually finite 

dimensional 𝐶∗-algebras with (dim(𝐴1) − 1)(dim(𝐴2) − 1) ≥ 2. Then 𝐴1 ∗ 𝐴2 is 

primitive. 

Proof: By the result of [40], there is a separating sequence (𝜋𝑗: 𝐴1 ∗ 𝐴2 → 𝔹(𝐻𝑗))𝑗≥1, of 

finite dimensional unital∗-representations. For later use in constructing an essential 

representation of 𝐴1 ∗ 𝐴2, i.e., a ∗-representation with the property that zero is the only 

compact operator in its image, we modify (𝜋𝑗)𝑗≥1, if necessary, so that that each ∗-

representation is repeated infinitely many times. 

By recursion and using Lemma (1.1.39), we define a sequence 

�̂�𝑗 ∶ 𝐴1 ∗ 𝐴2 → 𝔹(�̂�𝑗), (𝑗 ≥ 1) 

of finite dimensional unital∗-representations such that, for all 𝑘 ≥  1, ⊕𝑗=1
𝑘 (𝜋𝑗⊕ �̂�𝑗) is 

D.P.I. Let 𝜋 ∶= ⊕𝑗≥1 𝜋𝑗⊕ �̂�𝑗and 𝐻:= ⊕𝑗≥1 𝐻𝑗⊕ �̂�𝑗. To ease notation, for 𝑘 ≥  1, let 

𝜋[𝑘] =⊕𝑗=1
𝑘 𝜋 ⊕ �̂�. Note that we have 𝜋(𝐴1 ∗ 𝐴2) ∩ 𝕂(𝐻)  =  {0}. Indeed, if 𝜋(𝑥) is 

compact then lim𝑗‖(𝜋𝑗⊕ �̂�𝑗)(𝑥)‖ =  0, since each representation is repeated infinitely 

many times and we are considering a separating family we get 𝑥 =  0. 
We will show that given any positive number 𝜀, there is a unitary 𝑢 on 𝕌(𝐻) such that 

‖𝑢 − id𝐻‖ <  𝜀 and 𝜋(1) ∗  (𝐴𝑑 𝑢 ∘ 𝜋(2)) is both irreducible and faithful. To do this, we 

will to construct a sequence (𝑢𝑘, 𝜃𝑘 , 𝐹𝑘)𝑘≥1 where: 

(i) For all 𝑘, 𝑢𝑘 is a unitary in 𝕌(⊕𝑗=1
𝑘 (𝐻𝑗⊕ �̂�𝑗)) satisfying 

‖𝑢 − id⊕𝑗=1
𝑘 𝐻𝑗⊕�̂�𝑗

‖ <
𝜀

2𝑘+1
                                                (11) 

(ii) Letting             

𝑢(𝑗,𝑘) = 𝑢𝑗⊕ id𝐻𝑗+1⊕�̂�𝑗+1⊕…⊕ id𝐻𝑘⊕�̂�𝑘 

and             

𝑈𝑘 = 𝑢𝑘𝑢(𝑘−1,𝑘)𝑢(𝑘−2,𝑘)…𝑢(1,𝑘),                                    (12) 

theunital∗-representation of 𝐴1 ∗ 𝐴2onto 𝔹(⊕𝑗=1
𝑘 𝐻𝑗⊕ �̂�𝑗), given by   

𝜃𝑘 = 𝜋[𝑘]
(1)
∗ (Ad𝑈𝑘 ∘ 𝜋[𝑘]

(2)
),                                                (13) 

is irreducible. 

(iii) 𝐹𝑘 is a finite subset of the closed unit ball of 𝐴1 ∗ 𝐴2 and for all 𝑦 in the closed unit 

ball of 𝐴1 ∗ 𝐴2 there is an element 𝑥 in 𝐹𝑘 such that 

‖𝜃𝑘(𝑥) − 𝜃𝑘(𝑦)‖ <
1

2𝑘+1
.                                    (14) 

(iv) If 𝑘 ≥  2, then for any element 𝑥 in the union ∪𝑗=1
𝑘−1 𝐹𝑗 , , we have   
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‖𝜃𝑘(𝑥) − (𝜃𝑘−1⊕𝜋𝑘⊕ �̂�𝑘(𝑥)‖ <
1

2𝑘+1
.                                       (14) 

We construct such a sequence by recursion.        

Step 1:  Construction of (𝑢1, 𝜃1, 𝐹1). Since 𝜋 ⊕ �̂�  is DPI, there is a unitary 𝑢1 in 

𝐻1⊕ �̂�1 such that ‖𝑢1 − id𝐻⊕�̂� ‖ <
𝜀

22
and 𝜋[1]

(1)
∗ Ad𝑢1 ∘ 𝜋[1]

(2)
is irreducible.Hence 

condition (11) and (13) trivially hold. Since 𝐻1⊕ �̂�1is finite dimensional, there is a finite 

set 𝐹1 contained in the closed unit ball of 𝐴1 ∗ 𝐴2 satisfying condition (14). At this stage 

there is no condition (15). 

Step 2: Construction of (𝑢𝑘+1, 𝜃𝑘+1, 𝐹𝑘+1) from (𝑢𝑗 , 𝜃𝑗 , 𝐹𝑗), 1 ≤  𝑗 ≤  𝑘.First, we are 

prove there exists a unitary 𝑢𝑘+1 in 𝕌(⊕𝑗=1
𝑘+1 𝐻𝑗⊕ �̂�𝑗) such that ‖𝑢𝑘+1 −

id⊕𝑗=1
𝑘+1𝐻𝑗⊕�̂�𝑗

‖ <
𝜀

2𝑘+2
, the unital ∗-representation of 𝐴1 ∗ 𝐴2 into 𝔹(⊕𝑗=1

𝑘+1 𝐻𝑗⊕ �̂�𝑗) 

defined by       

𝜃𝑘+1 ≔ (𝜃𝑘⊕𝜋𝑘+1⊕ �̂�𝑘+1)
(1) ∗ (Ad 𝑢𝑘+1) ∘ (𝜃𝑘⊕𝜋𝑘+1⊕ �̂�𝑘+1)

(2)   (16) 
is irreducible and for any element 𝑥 in the union ∪𝑗=1

𝑘 𝐹𝑗  , the inequality 

‖𝜃𝑘+1(𝑥) − (𝜃𝑘⊕𝜋𝑘+1⊕ �̂�𝑘+1(𝑥)‖ <
1

2𝑘+1
, holds , 𝜃𝑘⊕𝜋𝑘+1⊕ �̂�𝑘+1 is D.P.I so 

Proposition (1.1.40) assures the existence of suchunitary 𝑢𝑘+1. Notice that, from 

construction, conditions (11) and (15) are satisfied. A consequence of (13) and (12) is 

𝜃𝑘+1 = 𝜋[𝑘+1]
(1)

∗ (Ad𝑈𝑘+1 ∘ 𝜋[𝑘+1]
(2)

),. 

Finite dimensionality of ⊕𝑗=1
𝑘+1 𝐻𝑗⊕ �̂�𝑗 guarantees the existence of a finite set 𝐹𝑘+1 

contained in the closed unit ball of 𝐴1 ∗ 𝐴2 satisfying condition (14). This completes Step 

2. 

Now consider the ∗-representations 

𝜎𝑘 = 𝜃𝑘
⊕

𝑗 ≥ 𝑘 + 1
𝜋𝑗⊕ �̂�𝑗 .                                       (17) 

We now show there is a unital ∗-representation of 𝜎 ∶ 𝐴1 ∗ 𝐴2 → 𝔹(𝐻), such that for all 𝑥 

in 𝐴1 ∗ 𝐴2, lim𝑘‖𝜎𝑘(𝑥)  − 𝜎(𝑥)‖ =  0. If we extend the unitaries𝑢𝑘 to all of 𝐻 via �̃�𝑘 =
𝑢𝑘⊕𝑗≥𝑘+1 id𝐻𝑗⊕�̂�𝑗  , then we obtain  

𝜎𝑘 = 𝜋
(1)
∗ (𝐴𝑑 �̃�𝑘 ∘ 𝜋

(2)
),                                                (18) 

Where �̃�𝑘 = �̃�𝑘 … �̃�1. Thanks to condition (11), we have 

‖�̃�𝑘 − id𝐻‖ ≤∑‖�̃�𝑘 − id𝐻‖

𝑘

𝑗=1

<∑
𝜀

2𝑘+1

𝑘

𝑗=1

 

    , 

and for 𝑙 ≥  1 

‖�̃�𝑘+𝑙 − �̃�𝑘‖ = ‖�̃�𝑘+𝑙 … �̃�𝑘+1 − id𝐻‖ ≤ ∑
𝜀

2𝑗+1

𝑘+𝑙

𝑗=𝑘+1

. 

Hence, Cauchy’s criterion implies there is a unitary 𝑢 in 𝕌(𝐻) such that the sequence 

(�̃�𝑘)𝑘≥1 converges in norm to 𝑢 and ‖𝑢 −  id𝐻‖ <
𝜀

2
 . 

Define  

𝜎 = 𝜋(1) ∗ (𝐴𝑑 𝑢 ∘ 𝜋(2)).                                       (19) 
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From Proposition (1.1.40) we have that for all 𝑥 in 𝐴1 ∗ 𝐴2, 
lim
𝑘
‖𝜎𝑘(𝑥)  −  𝜎(𝑥)‖ =  0.                                            (20) 

Our next goal is to show σ is irreducible. To ease notation let 𝐴 = 𝐴1 ∗ 𝐴2. We will show 

𝜎(𝐴)
𝑆𝑂𝑇

= 𝔹(𝐻). Take 𝑇in 𝔹(𝐻). With no loss of generality we may assume ‖𝑇‖ ≤
1

2
. 

Recall that a neighborhood basis for the SOT topology around 𝑇 is given by the sets 

𝒩𝑇(𝜉1, . . . , 𝜉𝑛;  𝜀)  =  {𝑆 ∈ 𝔹(𝐻) ∶ ‖𝑆𝜉𝑖 − 𝑇𝜉𝑖‖ < 𝜀, 𝑖 =  1, . . . , 𝑛} 
where 𝜀 >  0, 𝑛 ∈ ℕ, and 𝜉1, . . . , 𝜉𝑛 ∈  𝐻 are unit vectors. We show that for any 𝜀 >  0 

and any unit vectors 𝜉1, . . . , 𝜉𝑛,𝒩𝑇(𝜉1, . . . , 𝜉𝑛;  𝜀) ∩  𝜎(𝐴) is nonempty. Let 𝑃𝑘 denote the 

orthogonal projection from 𝐻 onto ⊕𝑗=1
𝑘 𝐻𝑗⊕ �̂�𝑗 . Take 𝑘1 ≥ 1 such  

∑
1

2𝑘
𝑘≥𝑘1

<
𝜀

23
 

and for 𝑘 ≥ 𝑘1, 1 ≤  𝑖 ≤  𝑛, 

‖(id𝐻 − 𝑃𝑘)(𝜉𝑖)‖ <
𝜀

23
 ,                                                 (21) 

‖(id𝐻 − 𝑃𝑘)(𝑇𝜉𝑖)‖ <
𝜀

23
 ,                                                 (22) 

Since 𝑃𝑘 has finite rank and 𝜃𝑘 is irreducible, there is 𝑎 in 𝐴, with ‖𝑎‖  ≤  1 such that 

𝑃𝑘1𝑇 𝑃𝑘1(𝜉𝑖) = 𝜃𝑘1(𝑎) (𝑃𝑘1(𝜉𝑖))                                        (23) 

for𝑖 =  1, . . . , 𝑛. We have 

𝜃𝑘1(𝑎) (𝑃𝑘1(𝜉𝑖)) =  𝜎𝑘1(𝑎) (𝑃𝑘1(𝜉𝑖)).                                (24) 

Take 𝑥 in 𝐹𝑘1 such that 

‖𝜃𝑘1(𝑎) − 𝜃𝑘1(𝑥)‖ <
1

2𝑘1+1
.                                              (25) 

We will show 𝜎(𝑥) ∈ 𝒩𝑇(𝜉1, . . . , 𝜉𝑛;  𝜀). To ease notation let 𝜉𝑖 =  𝜉. From (21), (22), (23) 

and (24), we deduce  

‖𝑇𝜉 −  𝜎(𝑥)𝜉‖ ≤ ‖𝑇𝜉 − 𝑃𝑘1  𝑇𝑃𝑘1  𝜉‖  + ‖𝑃𝑘1  𝑇 𝑃𝑘1  𝜉 − 𝜎𝑘1(𝑎)𝜉‖

<
3𝜀

2𝜀
+ ‖𝜎𝑘1(𝑎)𝜉 −  𝜎(𝑥)𝜉‖ + ‖𝜎𝑘1(𝑎)𝜉 −  𝜎(𝑥)𝜉‖. 

For any 𝑝 ≥  1 we have   

𝜎𝑘1(𝑎)𝜉 −  𝜎(𝑥)𝜉

= 𝜎𝑘1(𝑎)𝜉 − 𝜎𝑘1(𝑥)𝜉 + ∑ (𝜎𝑗  (𝑥)𝜉 − 𝜎𝑗+1(𝑥)𝜉)

𝑘1+𝑝

𝑗=𝑘1

+ 𝜎𝑘1+𝑝+1(𝑥)𝜉 

−  𝜎(𝑥)𝜉. 
Thus, from (21), (24), (25), (17) and (15) we deduce 

‖𝜎𝑘1(𝑎)𝜉 −  𝜎(𝑥)𝜉‖ <
𝜀

2
 + ‖𝜎𝑘1+𝑝+1(𝑥)𝜉 −  𝜎(𝑥)𝜉‖ 

hence 

‖𝜎𝑘1(𝑎)𝜉 −  𝜎(𝑥)𝜉‖ ≤
𝜀

2
 

We conclude 𝜎(𝑥) lies in 𝒩𝑇(𝜉1, . . . , 𝜉𝑛;  𝜀). 
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An application of Choi’s technique will give us faithfulness of 𝜎. Indeed, from 

construction, for all 𝑥 in 𝐴, 𝜎(𝑥)  =  lim𝑘𝜎𝑘(𝑥). Thus if each 𝜎𝑘 is faithful then so is 𝜎. 

But faithfulness of 𝜎𝑘follows from the commutativity of the following diagram 

𝐴
𝜋
→ 𝔹(𝐻)

𝜋 ↓ ↓ 𝜋𝐶

𝔹(𝐻)
𝜋𝐶
→ 𝔹(𝐻)/𝕂(𝐻)

 

(where𝜋𝐶 denotes the quotient map onto the Calkin algebra), which in turn is implied by 

(17). 

   To obtain the following corollary, see  [2]. 

Corollary (1.1.42)[30]: Assume 𝐴1 and 𝐴2 are nontrivial residually finite dimensional 𝐶∗-
algebraswith (𝑑𝑖𝑚(𝐴1) − 1)(𝑑𝑖𝑚(𝐴2)  − 1) ≥ 2. Then 𝐴1 ∗ 𝐴2 is antiliminal and has an 

uncountable family of pairwise in-equivalent irreducible faithful ∗representations. 

We finish with a corollary derived  in [28]. 

Corollary (1.1.43)[30]: Assume 𝐴1 and 𝐴2 are nontrivial residually finite dimensional 𝐶∗-
algebras with (𝑑𝑖𝑚(𝐴1) − 1)(𝑑𝑖𝑚(𝐴2) − 1)  ≥ 2. Then pure states of 𝐴1 ∗ 𝐴2 are 𝑊∗-

dense in the state space. 

 

Section (1.2): Homomorphisms into 𝒁-Stable 𝐂∗-Algebra 

      Let 𝑋 and 𝑌 be two compact Hausdorff spaces, and denote by 𝐶(𝑋) (or 𝐶(𝑌)) the 𝐶∗-
algebra of complex-valued continuous functions on 𝑋 (or 𝑌). Any continuous map 𝜆: 𝑌 →
 𝑋 induces a homomorphism 𝜙 from the commutative 𝐶∗-algebra 𝐶(𝑋) into the 

commutative 𝐶∗-algebra 𝐶(𝑌) by 𝜙(𝑓) = 𝑓𝜆, and any homomorphism from 𝐶(𝑋) to 𝐶(𝑌) 
arises this way (by homomorphisms or isomorphisms between 𝐶∗-algebras, we mean ∗-
homomorphismsn or ∗-isomorphisms). It should be noted that, by the Gelfand-Naimark 

theorem, every unital commutative 𝐶∗-algebra has the form 𝐶(𝑋) as above. 

   For non-commutative 𝐶∗-algebras, one also studies homomorphisms. Let 𝐴 and 𝐵 be 

two unital 𝐶∗-algebras and let 𝜙,𝜓 ∶  𝐴 →  𝐵 be two homomorphisms. 𝐴 fundamental 

problem in the study of 𝐶∗-algebras is to determine when 𝜙 and 𝜓 are (approximately) 

unitarily equivalent. 

   The last two decades saw the rapid development of classification of amenable 𝐶∗-
algebras, or otherwise known the Elliott program. For instance, all unital simple AH-

algebras with slow dimension growth are classified by their Elliott invariant ([36]). In fact, 

the class of classifiable simple 𝐶∗-algebras includes all unital separable amenable simple 

𝐶∗-algebras with the tracial rank at most one which satisfy the Universal Coefficient 

Theorem (the 𝑈𝐶𝑇) (see [88]). One of the crucial problems in the Elliott program is the so-

called uniqueness theorem which usually asserts that two monomorphisms are 

approximately unitarily equivalent if they induce the same 𝐾-theory related maps under 

certain assumptions on 𝐶∗-algebras involved. 

   Recently, W. Winter’s method ([141]) greatly advances the Elliott classification 

program. The class of amenable separable simple 𝐶∗-algebras that can be classified by the 

Elliott invariant has been enlarged so that it contains simple 𝐶∗-algebras which no longer 

are assumed to have finite tracial rank. In fact, with [141], [86], [99] and [73], the 

classifiable 𝐶∗-algebras now include any unital separable simple 𝑍-stable 𝐶∗-algebra A 

satisfying the 𝑈𝐶𝑇 such that 𝐴 ⊗  𝑈 has the tracial rank no more than one for some 𝑈𝐻𝐹-

algebra 𝑈 (it has recently been shown, for example, 𝐴 ⊗  𝑈 has tracial rank at most one 
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for all 𝑈𝐻𝐹-algebras 𝑈 of infinite type, if 𝐴 ⊗  𝐶 has tracial rank at most one for one of 

infinite dimensional unital simple 𝐴𝐹-algebra (see [95])). This class of 𝐶∗-algebras is 

strictly larger than the class of 𝐴𝐻-algebras without dimension growth. For example, it 

contains the Jiang-Su algebra 𝑍 itself which is projectionless and all simple unital 

inductive limits of so-called generalized dimension drop algebras (see [85]). 

   Recall that the Elliott invariant for a stably finite unital simple separable 𝐶∗-algebra 𝐴 is 

𝐸𝑙𝑙(𝐴) ≔ ((𝐾0(𝐴),𝐾0(𝐴)+, [1𝐴], 𝑇(𝐴)),𝐾1(𝐴)), 

where (𝐾0(𝐴),𝐾0(𝐴)+, [1𝐴], 𝑇(𝐴)) is the quadruple consisting of the 𝐾0-group, its 

positive cone, the order unit and tracial simplex together with their pairing, and 𝐾1(𝐴) is 

the 𝐾1-group. 

   Denote by 𝐶 the class of all unital simple 𝐶∗-algebras 𝐴 for which 𝐴 ⊗  𝑈 has tracial 

rank no more than one for some 𝑈𝐻𝐹-algebra 𝑈 of infinite type. Suppose that 𝐴 and 𝐵 are 

two unital separable amenable 𝐶∗-algebras in 𝐶 which satisfy the 𝑈𝐶𝑇. The classification 

theorem in [73] states that if the Elliott invariants of 𝐴 and 𝐵 are isomorphic, i.e. 

𝐸𝑙𝑙(𝐴) ≅ 𝐸𝑙𝑙(𝐵), 
then there is an isomorphism 𝜙: 𝐴 → 𝐵 which carries the isomorphism above. 

    However, the question when two isomorphisms are approximately unitarily equivalent 

was still left open. A more general question is: for any two such 𝐶∗-algebras 𝐴 and 𝐵, and, 

for any two homomorphisms 𝜙,𝜓 ∶  𝐴 →  𝐵, when are they approximately unitarily 

equivalent? 

    If 𝜙 and 𝜓 are approximately unitarily equivalent, then one must have, 

[𝜙] = [𝜓] 𝑖𝑛 𝐾𝐿(𝐴, 𝐵)  𝑎𝑛𝑑  𝜙# = 𝜓#, 
where 𝜙#, 𝜓#: Aff(𝑇(𝐴))  →  Aff(𝑇(𝐵))  are the affine maps induced by 𝜙 and 𝜓, 

respectively. Moreover, as shown in [71], one also has 

𝜙‡ = 𝜓‡, 
where 𝜙‡, 𝜓‡ ∶  𝑈(𝐴)/𝐶𝑈(𝐴)  →  𝑈(𝐵)/𝐶𝑈(𝐵) are homomorphisms induced by 𝜙, 𝜓, 

and 𝐶𝑈(𝐴) and 𝐶𝑈(𝐵) are the closures of the commutator subgroups of the unitary groups 

of 𝐴 and 𝐵, respectively. 

    We will show that the above conditions are also sufficient, that is, the maps 𝜙 and 𝜓 are 

approximately unitarily equivalent if and only if [𝜙]  =  [𝜓] in 𝐾𝐿(𝐴, 𝐵), 𝜙# = 𝜓# and 

𝜙‡ = 𝜓‡. 
The proof of this uniqueness theorem is based on the methods developed in the 

proof of the classification result mentioned above, which can be found in [73], [82], [71], 

[99] and [74]. Most technical tools are developed in this research, either directly or 

implicitly. We will collect them and then assemble them into production. 

     In [103], it is shown that, for any partially ordered simple weakly unperforated 

rationally Riesz group 𝐺0 with order unit 𝑢, any countable abelian group 𝐺1, any 

metrizable Choquet simple S, and any surjective affine continuous map r : S → 𝑆𝑢(𝐺1) 
(the state space of 𝐺0) which preserves extremal points, there exists one (and only one up 

to isomorphism) unital separable simple amenable 𝐶∗-algebra 𝐴 ∈  𝐶 which satisfies the 

𝑈𝐶𝑇 so that 𝐸𝑙𝑙(𝐴)  =  (𝐺0, (𝐺0)+, 𝑢, 𝐺1, 𝑆, 𝑟). 
Then a natural question is: Given two unital separable simple amenable 𝐶∗-algebras  

𝐴, 𝐵 ∈  𝐶 which satisfy the 𝑈𝐶𝑇, and a homomorphism Γ from 𝐸𝑙𝑙(𝐴) to 𝐸𝑙𝑙(𝐵), does 

there exist a unital homomorphism 𝜙 ∶  𝐴 →  𝐵 which induces Γ? We will give an answer 

to this question. Related to the uniqueness theorem discussed earlier and also related to the 



21 
 

question above, one may also ask the following: Given an element 𝜅 ∈  𝐾𝐿(𝐴, 𝐵) which 

preserves the unit and order, an affine map 

𝜆 ∶  𝐴𝑓𝑓(𝑇(𝐴))  →  𝐴𝑓𝑓(𝑇(𝐵)) and a homomorphism 𝛾 ∶  𝑈(𝐴)/𝐶𝑈(𝐴)  →  𝑈(𝐵)/
𝐶𝑈(𝐵) which are compatible, does there exist a unital homomorphism 𝜙 ∶  𝐴 →  𝐵 so that 

[𝜑]  =  𝜅, 𝜙# =  𝜆 and 𝜙‡ =  𝛾? We will, at least, partially answer this question. 

    Let 𝐴 be a unital stably finite 𝐶∗-algebra. Denote by 𝑇(𝐴) the simplex of tracial states 

of A and denote by 𝐴𝑓𝑓(𝑇(𝐴)) the space of all real affine continuous functions on 𝑇(𝐴). 
Suppose that 𝜏 ∈  𝑇(𝐴) is a tracial state. We will also denote by 𝜏 the trace 𝜏 ⊗ 𝑇𝑟 on 

𝑀𝑘(𝐴) = 𝐴⊗𝑀𝑘(ℂ) (for every integer 𝑘 ≥  1), where 𝑇𝑟 is the standard trace on 

𝑀𝑘(ℂ). A trace τ is faithful if 𝜏(𝑎)  >  0 for any 𝑎 ∈  𝐴+ \{0}. Denote by 𝑇𝑓(𝐴) the 

convex subset of 𝑇(𝐴) consisting of all faithful tracial states. 

     Denote by 𝑀∞(𝐴) the set ⋃ 𝑀𝑘
∞
𝑘=1 (𝐴), where Mk(A) is regarded as a 𝐶∗-subalgebra of 

𝑀𝑘+1(𝐴) by the embedding 𝑎 ↦ (
𝑎 0
0 𝑎

) . For any projection 𝑝 ∈ 𝑀∞(𝐴), the restriction 

𝜏 ↦ 𝜏(𝑝) defines a positive affine function on 𝑇(𝐴). This induces a canonical positive 

homomorphism 𝜌𝐴: 𝐾0(𝐴) → 𝐴𝑓𝑓(𝑇(𝐴)). 
Denote by 𝑈(𝐴) the unitary group of 𝐴, and denote by 𝑈(𝐴)+ the connected component of 

𝑈(𝐴) containing the identity. Let 𝐶 be another unital 𝐶∗-algebra and let 𝜙: 𝐶 →  𝐴 be a 

unital ∗-homomorphism. Denote by 𝜙𝑇: 𝑇(𝐴)  →  𝑇(𝐶) the continuous affine map induced 

by 𝜙, i.e., 

𝜙𝑇(𝜏)(𝑐) = 𝜏 ∘ 𝜙(𝑐) 
for all 𝑐 ∈ 𝐶 and 𝜏 ∈ 𝑇(𝐴). Denote by 𝜙#: 𝐴𝑓𝑓(𝑇(𝐶))  →  𝐴𝑓𝑓(𝑇(𝐴)) the map defined by 

ϕ#(f)(τ) = f(ϕT(τ))   for all τ ∈ T(A). 
Definition (1.2.1)[98]: 

     Let 𝐴 be a unital 𝐶∗-algebra. Denote by 𝐶𝑈(𝐴) the closure of the subgroup 

generated by commutators of 𝑈(𝐴). If 𝑢 ∈  𝑈(𝐴), its image in the quotient 𝑈(𝐴)/𝐶𝑈(𝐴) 
will be denoted by 𝑢. Let 𝐵 be another unital 𝐶∗-algebra and let 𝜙 ∶  𝐴 →  𝐵 be a unital 

homomorphism. it is clear that 𝜙 maps 𝐶𝑈(𝐴) into 𝐶𝑈(𝐵). Let 𝜙‡ denote the induced 

homomorphism from 𝑈(𝐴)/𝐶𝑈(𝐴) into 𝑈(𝐵)/𝐶𝑈(𝐵). 
Let 𝑛 ≥  1 be any integer. Denote by 𝑈𝑛(𝐴) the unitary group of 𝑀𝑛(𝐴), and 

denote by 𝐶𝑈(𝐴)𝑛 the closure of commutator subgroup of 𝑈𝑛(𝐴). Regard 𝑈𝑛(𝐴) as a 

subgroup of 𝑈𝑛+1(𝐴) via the embedding 𝑢 ⟼ (
𝑢 0
0 1

) and denote by 𝑈∞(𝐴) the union of 

all 𝑈𝑛(𝐴). Consider the union 𝐶𝑈∞(𝐴) ∶=  ⋃ 𝐶 𝑛 𝑈𝑛(𝐴). It is then a normal subgroup of 

𝑈∞(𝐴), and the quotient 𝑈(𝐴)∞/𝐶𝑈∞(𝐴) is in fact isomorphic to the inductive limit of 

𝑈𝑛(𝐴)/𝐶𝑈𝑛(𝐴) (as abelian groups). We will use 𝜙‡ for the homomorphism induced by 𝜙 

from 𝑈∞(𝐴)/𝐶𝑈∞(𝐴) into 𝑈∞(𝐵)/𝐶𝑈∞(𝐵). 
Definition (1.2.2)[98]: 

   Let 𝐴 be a unital 𝐶∗-algebra, and let 𝑢 ∈ 𝑈(𝐴)0. Let 𝑢(𝑡) ∈ 𝐶([0, 1], 𝐴) be a piecewise-

smooth path of unitaries such that 𝑢(0)  =  𝑢 and 𝑢(1)  =  1. Then the de la Harpe–

Skandalis determinant of 𝑢(𝑡) is defined by 

𝐷𝑒𝑡 (𝑢(𝑡))(𝜏) =
1

2𝜋𝑖
∫ 𝜏
1

0

(
𝑑𝑢(𝑡)

𝑑𝑡
𝑢(𝑡)∗) 𝑑𝑡   𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈ 𝑇(𝐴), 

which induces a homomorphism 

𝐷𝑒𝑡: 𝑈(𝐴)0 → 𝐴𝑓𝑓 (𝑇(𝐴))/𝜌𝐴(𝐾0(𝐴))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 
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     The determinant 𝐷𝑒𝑡 can be extended to a map from 𝑈∞(𝐴)0 into 𝐴𝑓𝑓(𝑇(𝐴))/
𝜌𝐴(𝐾0(𝐴)). It is easy to see that the determinant vanishes on the closure of commutator 

subgroup of 𝑈∞(𝐴). In fact, by a result of 𝐾. Thomsen ([133]), the closure of the 

commutator subgroup is exactly the kernel of this map, that is, it induces an isomorphism 

𝐷𝑒𝑡: 𝑈∞(𝐴)0/𝐶𝑈∞(𝐴) → 𝐴𝑓𝑓(𝑇(𝐴))/𝜌𝐴(𝐾0(𝐴)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ). Moreover, by ([133]), one has the 

following short exact sequence 

                0 → 𝐴𝑓𝑓(𝑇(𝐴))/𝜌𝐴(𝐾0(𝐴)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) → 𝑈∞(𝐴)/𝐶𝑈∞(𝐴)
𝛱
→𝐾1(𝐴) → 0              (26) 

which splits (with the embedding of 𝐴𝑓𝑓(𝑇(𝐴))/𝜌𝐴(𝐾0(𝐴)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) induced by (𝐷𝑒𝑡̅̅ ̅̅ ̅)−1). We 

will fix a splitting map 𝑠1: 𝐾1(𝐴)  → 𝑈∞(𝐴)/𝐶𝑈∞(𝐴). The notation 𝛱 and 𝑠1 will be used 

late without further warning.  

      For each �̅� ∈ 𝑠1(𝐾1(𝐴)), select and fix one element 𝑢𝑐 ∈ ⋃ 𝑀𝑛
∞
𝑛=1 (𝐴) such that 𝑢𝑐 =

�̅�. Denote this set by 𝑈𝑐(𝐴).                                                                    
In the case that 𝐴 has tracial rank at most one . 

𝑈∞(𝐴)0/𝐶𝑈∞(𝐴) = 𝑈(𝐴)0/𝐶𝑈(𝐴) 
and thus the following splitting short exact sequence: 

                0 → 𝐴𝑓𝑓(𝑇(𝐴))/𝜌𝐴(𝐾0(𝐴)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) → 𝑈(𝐴)/𝐶𝑈(𝐴) → 𝐾1(𝐴) → 0.                  (27) 
Definition (1.2.3)[98]: 

    Let 𝐴 be a unital 𝐶∗-algebra and let 𝐶 be a separable 𝐶∗-algebra which satisfies 

the Universal Coefficient Theorem. Recall that 𝐾𝐿(𝐶, 𝐴) is the quotient of 𝐾(𝐶, 𝐴) 
modulo pure extensions. By a result of D˘ad˘arlat and Loring in [82], one has 

                          𝐾𝐿(𝐶, 𝐴) = 𝐻𝑜𝑚𝐴 (𝐾(𝐶),𝐾(𝐴)),                                                        (28) 

where 

𝐾(𝐵) = (𝐾0(𝐵, 𝐾1(𝐵)))⊕
∞
⊕
𝑛 = 2

(K0(B, ℤ/nℤ))⊕ 𝐾1(𝐵, 𝐾1(𝐵)) 

for any 𝐶∗-algebra 𝐵. Then, we will identify 𝐾𝐿(𝐶, 𝐴) with 𝐻𝑜𝑚𝐴 (𝐾(𝐶), 𝐾(𝐴)). Denote 

by 𝜅𝑖: 𝐾𝑖(𝐶) → 𝐾𝑖(𝐴) the homomorphism given by 𝜅 with 𝑖 =  0, 1, and denote by 

𝐾𝐿(𝐶, 𝐴)++ the set of those 𝜅 ∈ 𝐻𝑜𝑚𝐴 (𝐾(𝐶),𝐾(𝐴)) such that 

𝑘0(𝐾0
+(𝐶){0}) ⊆ 𝐾0

+(𝐴)\{0}. 
Denote by 𝐾𝐿𝑒(𝐶, 𝐴)

++ the set of those elements 𝜅 ∈ 𝐾𝐿(𝐶, 𝐴)++ such that 𝜅0([1𝐶])  =
 [1𝐴]. Suppose that both 𝐴 and 𝐶 are unital, 𝑇(𝐶) ≠ Ø and 𝑇(𝐴) ≠ Ø. Let 𝜆𝑇: 𝑇(𝐴) →
𝑇(𝐶) be a continuous affine map. Let ℎ0: 𝐾0(𝐶) → 𝐾0(𝐴) be a positive homomorphism. 

We say 𝜆𝑇 is compatible with ℎ0 if for any projection 𝑝 ∈ 𝑀∞(𝐶), 𝜆𝑇(𝜏)(𝑝) = 𝜏(ℎ0([𝑝])) 
for all 𝜏 ∈ 𝑇(𝐴). Let 𝜆: 𝐴𝑓𝑓(𝑇𝑓(𝐶))  →  𝐴𝑓𝑓(𝑇(𝐴)) be an affine continuous map. We say 

𝜆 and ℎ0 are compatible if ℎ0 is compatible to 𝜆𝑇, where 𝜆𝑇: 𝑇(𝐴)  →  𝑇𝑓(𝐶) is the map 

𝜆𝑇(𝜏)(𝑎) = 𝜆(𝑎
∗)(𝜏), ∀𝑎 ∈ 𝐶+ and 𝜏 ∈ 𝑇(𝐴), where 𝑎∗ ∈ 𝐴𝑓𝑓(𝑇𝑓(𝐶)) is the affine 

function induced by 𝑎. We say 𝜅 and 𝜆 (or 𝜆𝑇) are compatible, if 𝜅 is positive and 𝜅0 and 

𝜆 are compatible. 

   Denote by 𝐾𝐿𝑇𝑒(𝐶, 𝐴)
++ the set of those pairs (𝜅, 𝜆𝑇) (or, (𝜅, 𝜆)), where 𝜅 ∈

 𝐾𝐿𝑒(𝐶, 𝐴)
++ and 𝜆𝑇: 𝑇(𝐴)  → 𝑇𝑓(𝐶) (or, 𝜆: 𝐴𝑓𝑓(𝑇𝑓(𝐶))  → 𝐴𝑓𝑓(𝑇(𝐴))) is a continuous 

affine map which is compatible with 𝜅. If 𝜆 is compatible with 𝜅, then 𝜆 maps 

𝜌𝐶(𝐾0(𝐶)) 𝑖𝑛𝑡𝑜 𝜌𝐴(𝐾0(𝐴)). Therefore 𝜆 induces a continuous homomorphism 

�̅�: 𝐴𝑓𝑓(𝑇𝑓(𝐶))/𝜌𝐶(𝐾0(𝐶))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ → 𝐴𝑓𝑓(𝑇(𝐴))/𝜌𝐴(𝐾0(𝐴))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . Suppose that 𝛾: 𝑈∞(𝐶)/

𝐶𝑈∞(𝐶) → 𝑈∞(𝐴)/𝐶𝑈∞(𝐴) is a continuous homomorphism and ℎ𝑖: 𝐾𝑖(𝐶) → 𝐾𝑖(𝐴) are 
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homomorphisms for which ℎ0 is positive. We say that 𝛾 and ℎ1 are compatible if 

𝛾(𝑈∞(𝐶)0/𝐶𝑈∞(𝐶)) ⊂ 𝑣(𝐴)0/𝐶𝑈∞(𝐴) and 𝛾 ∘ 𝑠1 = 𝑠1 ∘ ℎ1, we say that ℎ0, ℎ1, 𝜆 and 𝛾 

are compatible, if 𝜆 and ℎ1 are compatible, 𝛾 and ℎ1 are compatible and 

𝐷𝑒𝑡̅̅ ̅̅ ̅
𝐴 ∘ 𝛾|𝑈∞(𝐶)0/𝐶𝑈∞(𝐶) = �̅� ∘ 𝐷𝑒𝑡

̅̅ ̅̅ ̅
𝐶 , 

and we also say that 𝜅, 𝜆 and 𝛾 are compatible, if 𝜅0, 𝜅1, 𝜆 and 𝛾 are compatible. 

      For each prime number 𝑝, let 𝜖𝑝 be a number in {0, 1, 2, . . . , +∞}. Then a supernatural 

number is the formal product 𝑝 = ∏ 𝑝𝜖𝑝 
𝑝 . Here we insist that there are either infinitely 

many 𝑝 in the product, or, one of 𝜖𝑝 is infinite. Two supernatural numbers 𝑝 = ∏ 𝑝𝜖𝑝(𝑝) 
𝑝  

and 𝑞 = ∏ 𝑝𝜖𝑝(𝑞) 
𝑝  are relatively prime if for any prime number p, at most one of 𝜖𝑝(𝑝) 

and 𝜖𝑝(𝑞) is nonzero. A supernatural number 𝑝 is called of infinite type if for any prime 

number, either 𝜖𝑝(𝑝) =  0 or 𝜖𝑝(𝑝) = +∞. For each supernatural number 𝑝, there is a 

𝑈𝐻𝐹-algebra 𝑀𝑝 associated to it, and the 𝑈𝐻𝐹-algebra is unique up to isomorphism (see 

[124]). 

      Denote by 𝑄 the 𝑈𝐻𝐹-algebra with (𝐾0(𝑄), 𝐾0(𝑄)+, [1𝐴]) = (ℚ,ℚ+, 1) (the 

supernatural number associated to 𝑄 is ∏ 𝑝+∞ 
𝑝 ), and let 𝑀𝑝 and 𝑀𝑞 be two 𝑈𝐻𝐹-algebras 

with 𝑀𝑝⊗𝑀𝑝 ≅ 𝑄 and 𝑝 = ∏ 𝑝𝜖𝑝(𝑝) 
𝑝  and 𝑞 = ∏ 𝑝𝜖𝑝(𝑞) 

𝑝  relatively prime. Then it 

follows that 𝑝 and 𝑞 are of infinite type. Denote by 

ℚ𝑝 = ℤ [
1

𝑝1
, … ,

1

𝑝𝑛
, … ] ⊆ ℚ,   𝑤ℎ𝑒𝑟𝑒 𝜖𝑝𝑛(𝑝) = +∞  𝑎𝑛𝑑 

ℚ𝑞 = ℤ [
1

𝑝1
, … ,

1

𝑝𝑛
, … ] ⊆ ℚ,   𝑤ℎ𝑒𝑟𝑒 𝜖𝑝𝑛(𝑞) = +∞. 

   Note that (𝐾0(𝑀𝑝), 𝐾0(𝑀𝑝)+, [1𝑀𝑝])  =  (ℚ𝑝, (ℚ𝑝)+, 1) and (𝐾0(𝑀𝑞),

𝐾0(𝑀𝑞)+ , [1𝑀𝑝]) = (ℚ𝑞 , (ℚ𝑞)+, 1). Moreover, ℚ𝑝 ∩ℚ𝑞 =  ℤ 𝑎𝑛𝑑 ℚ = ℚ𝑞 +ℚ𝑞 

   For any pair of relatively prime supernatural numbers 𝑝 and 𝑞, define the 𝐶∗-algebra 

𝒵𝑝,𝑞 by 

𝒵𝑝,𝑞 = {𝑓: [0,1] → 𝑀𝑝⊗𝑀𝑞; 𝑓(0) ∈ 𝑀𝑝⊗1𝑀𝑞   𝑎𝑛𝑑   𝑓(1) ∈ 1𝑀𝑞⊗𝑀𝑞}. 

   The Jiang-Su algebra 𝒵 is the unital inductive limit of dimension drop interval algebras 

with unique trace, and (𝐾0(𝒵),𝐾0(𝒵), [82])  =  (ℤ, ℤ
+, 1) (see [55]). For any pair of 

relatively prime supernatural numbers 𝑝 and 𝑞 of infinite type, the Jiang-Su algebra 𝒵 has 

a stationary inductive limit decomposition: 

𝒵𝑝,𝑞 → 𝒵𝑝,𝑞 → ⋯ → 𝒵𝑝,𝑞 → ⋯ → 𝒵. 

The 𝐶∗-algebra 𝒵𝑝,𝑞 absorbs the Jiang-Su algebra: 𝒵𝑝,𝑞⊗  𝒵 ≅ 𝒵𝑝,𝑞. A 𝐶∗-algebra 𝐴 is 

said to be 𝒵 -stable if 𝐴⊗𝒵 ≅ 𝐴. 

Definition (1.2.4)[98]: 

  A unital simple 𝐶∗-algebra 𝐴 has tracial rank at most one, denoted by 𝑇𝑅(𝐴) ≤ 1, if for 

any finite subset ℱ ⊂ 𝐴, any 𝜖 > 0, and any nonzero 𝑎 ∈ 𝐴+, there exist a nonzero 

projection 𝑝 ∈  𝐴 and a 𝐶∗-subalgebra 𝐼 ≅⊕𝑖=1
𝑚 𝐶(𝑋𝑖) ⊗𝑀𝑟(𝑖) with 1𝐼 = 𝑝 for some 

finite 𝐶𝑊 complexes 𝑋𝑖 with dimension at most one such that 

(i) ‖[𝑥, 𝑝]‖ ≤ 𝜖  𝑓𝑜𝑟 𝑎𝑛𝑦 𝑥 ∈ ℱ, 

(ii) for any 𝑥 ∈ ℱ, there is 𝑥′ ∈ 𝐼 such that ‖𝑝𝑥𝑝 − 𝑥′‖ ≤ 𝜖, and 

(iii) 1 −  𝑝 is Murray-von Neumann equivalent to a projection in 𝑎𝐴𝑎̅̅ ̅̅ ̅. 
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Moreover, if the 𝐶∗-subalgebra 𝐼 above can be chosen to be a finite dimensional 𝐶∗-
algebra, then 𝐴 is said to have tracial rank zero, and in such case, we write 𝑇𝑅(𝐴)  =  0. It 

is a theorem of Guihua Gong [51] that every unital simple 𝐴𝐻-algebra with no dimension 

growth has tracial rank at most one. It has been proved in [73] that every 𝒵 -stable unital 

simple 𝐴𝐻-algebra has tracial rank at most one. 

Definition (1.2.5)[98]: 

   Denote by 𝒩 the class of all separable amenable 𝐶∗-algebras which satisfy the 

Universal Coefficient Theorem (𝑈𝐶𝑇). Denote by 𝐶 the class of all simple 𝐶∗-algebras 𝐴 

for which 𝑇𝑅(𝐴⊗𝑀𝑝) ≤ 1 for some 𝑈𝐻𝐹-algebra 𝑀𝑝, where 𝑝 is a supernatural number 

of infinite type. Note, by [103], that, if 𝑇𝑅(𝐴⊗𝑀𝑝) ≤ 1 for some supernatural number p 

then 𝑇𝑅(𝐴⊗𝑀𝑝) ≤ 1 for all supernatural number 𝑝. 

  Denote by 𝐶0 the class of all simple 𝐶∗-algebras 𝐴 for which 𝑇𝑅(𝐴⊗𝑀𝑝) = 0 for some 

supernatural number 𝑝 of infinite type (and hence for all supernatural number 𝑝 of infinite 

type).   

Theorem (1.2.6)[98]: 

 Let 𝐶 be a unital 𝐴𝐻-algebra and let 𝐴 be a unital simple 𝐶∗-algebra with 𝑇𝑅(𝐴) ≤ 1. 

Suppose that 𝜙,𝜓: 𝐶 → 𝐴 are two unital monomorphisms. Then 𝜙 and 𝜓 are 

approximately unitarily equivalent if and only if 

[𝜙] = [𝜓]  𝑖𝑛 𝐾𝐿(𝐶, 𝐴), 
𝜙# = 𝜓#  𝑎𝑛𝑑  𝜙

‡ = 𝜓‡. 
   Let 𝐴 and B be two  unital 𝐶∗-algebras. Let ℎ: 𝐴 → 𝐵 be a homomorphism and 𝑣 ∈
𝑈(𝐵) be such that 

[ℎ(𝑔), 𝑣] = 0  𝑓𝑜𝑟 𝑎𝑛𝑦 𝑔 ∈ 𝐴. 
We then have a homomorphism ℎ̅: 𝐴 ⊗ 𝐶(𝕋) → 𝐵 defined by 𝑓 ⊗ 𝑔 ↦ ℎ(𝑓)𝑔(𝑣) for any 

𝑓 ∈ 𝐴 and 𝑔 ∈ 𝐶(𝕋). The tensor product induces two injective homomorphisms: 

𝛽(0): 𝐾0(𝐴) → 𝐾1(𝐴⊗ 𝐶(𝕋))  𝑎𝑛𝑑  𝛽(1): 𝐾1(𝐴) → 𝐾0(𝐴⊗ 𝐶(𝕋)). 
The second one is the usual Bott map. Note that, in this way, one writes 

𝐾𝑖(𝐴⊗ 𝐶(𝕋)) = 𝐾𝑖(𝐴)⊕ 𝛽(𝑖−1)(𝐾𝑖−1(𝐴)). 
Let us use �̂�(𝑖): 𝐾𝑖(𝐴 ⊗  𝐶(𝕋)) → 𝛽(𝑖−1)(𝐾𝑖−1(𝐴)) to denote the quotient map. 

   For each integer 𝑘 ≥  2, one also has the following injective homomorphisms: 

βk
(i)
: Ki(A, kℤ) → Ki−1(A⊗ C(𝕋), ℤ/kℤ), i = 0,1. 

Thus, we write 

𝐾𝑖(𝐴⊗ 𝐶(𝕋), ℤ/𝑘ℤ) = 𝐾𝑖(𝐴, ℤ/𝑘ℤ)⊗ 𝛽(𝑖−1)(𝐾𝑖−1(𝐴), ℤ/𝑘ℤ). 

Denote by �̂�𝑘
(𝑖)
: 𝐾𝑖  (𝐴 ⊗ 𝐶(𝕋),

ℤ

𝑘ℤ
) →  𝛽(𝑖−1) (𝐾𝑖−1(𝐴), ℤ/𝑘ℤ) the map analogous to �̂�(𝑖). 

If 𝑥 ∈  𝐾(𝐴), we use 𝛽(𝑥) for 𝛽(𝑖)(𝑥) if 𝑥 ∈ 𝐾𝑖(𝐴) and for 𝛽𝑘
(𝑖)
(𝑥) if 𝑥 ∈ 𝐾𝑖(𝐴, ℤ/𝑘ℤ). 

Thus we have a map 𝛽 ∶  𝐾(𝐴)  →  𝐾(𝐴 ⊗  𝐶(𝕋)) as well as �̂�: 𝐾(𝐴⊗ 𝐶(𝕋)) → 𝛽(𝐾). 

Therefore, we may write 𝐾(𝐴⊗ 𝐶(𝕋)) = 𝐾(𝐴)  ⊕ 𝛽(𝐾(𝐴)). On the other hand, ℎ 

induces homomorphisms 

ℎ∗𝑖,𝑘: 𝐾𝑖(𝐴⊗ 𝐶(𝕋), ℤ/𝑘ℤ) → 𝐾𝑖(𝐵, ℤ/𝑘ℤ), 

𝑘 =  0, 2, . . . , 𝑎𝑛𝑑 𝑖 =  0, 1. 

     We use 𝐵𝑜𝑡𝑡(ℎ, 𝑣) for all homomorphisms ℎ∗𝑖,𝑘 ∘ 𝛽𝑘
(𝑖)

, and we use 𝑏𝑜𝑡𝑡1(ℎ, 𝑣) for the 

homomorphism ℎ1,0 ∘ 𝛽
(1): 𝐾1(𝐴) → 𝐾0(𝐵), and 𝑏𝑜𝑡𝑡0(ℎ, 𝑣) for the homomorphism 

ℎ0,0 𝛽
(0): 𝐾0(𝐴) → 𝐾1(𝐵). 𝐵𝑜𝑡𝑡(ℎ, 𝑣) as well as 𝑏𝑜𝑡𝑡𝑖(ℎ, 𝑣)(𝑖 = 0, 1) may be defined for 



25 
 

a unitary 𝑣 which only approximately commutes with ℎ. In fact, given a finite subset 𝒫 ⊂
𝐾(𝐴), there exists a finite subset ℱ ⊂ 𝐴 and 𝛿0 > 0 such that 

𝐵𝑜𝑡𝑡 (ℎ, 𝑣)|𝒫 
is well defined if 

‖[ℎ(𝑎), 𝑣]‖ < 𝛿0 
for all 𝑎 ∈ ℱ.  

    We have the following generalized Exel’s formula for the traces of Bott elements. 

Theorem (1.2.7)[98]: 

     There is 𝛿 > 0 satisfying the following: Let A be a unital separable simple 𝐶∗-algebra 

with 𝑇𝑅(𝐴)  ≤  1 and let 𝑢, 𝑣 ∈  𝑈(𝐴) be two unitaries such that ‖𝑢𝑣 − 𝑣𝑢‖ < 𝛿. Then 

𝑏𝑜𝑡𝑡1(𝑢, 𝑣) is well defined and 

𝜏(𝑏𝑜𝑡𝑡1(𝑢, 𝑣)) =
1

2𝜋𝑖
(𝜏(log(𝑣𝑢𝑣∗𝑢∗))) 

for all 𝜏 ∈  𝑇(𝐴). 
    we collect several facts on the rotation map which are going to be used frequently in this 

essay. Most of them can be found in the literature. 

Definition (1.2.8)[98]: 

       Let 𝐴 and 𝐵 be two unital 𝐶∗-algebras, and let 𝜓 and 𝜙 be two unital monomorphisms 

from 𝐵 to 𝐴. Then the mapping torus 𝑀𝜙,𝜓 is the 𝐶∗-algebra defined by 

𝑀𝜙,𝜓 ≔ {𝑓 ∈ 𝐶([0,1]); 𝑓(0) = 𝜙(𝑏)  𝑎𝑛𝑑  𝑓(1) = 𝜓(𝑏)  𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑏 ∈ 𝐵}. 

For any 𝜓,𝜙 ∈ 𝐻𝑜𝑚(𝐵, 𝐴), denoting by 𝜋0 the evaluation of 𝑀𝜙,𝜓 at 0, we have the short 

exact sequence 

0 ⟶ 𝑆(𝐴)
𝑖
→𝑀𝜙,𝜓

𝜋0
→ 𝐵 ⟶ 0, 

where 𝑆(𝐴) = 𝐶0((0, 1), 𝐴). If 𝜙∗𝑖 = 𝜓∗𝑖(𝑖 = 0,1), then the corresponding six-term exact 

sequence breaks down to the following two extensions: 

𝜂𝑖(𝑀𝜙,𝜓): 0 ⟶ 𝐾𝑖+1(𝐴) ⟶ 𝐾𝑖(𝑀𝜙,𝜓) ⟶ 𝐾𝑖(𝐵) ⟶ 0, (𝑖 = 0,1). 

   Suppose that, in addition, 

                                              𝜏 ∘ 𝜙 = 𝜏 ∘ 𝜓  𝑓𝑜𝑟 𝑎𝑙𝑙  𝜏 ∈ 𝑇(𝐴).                                       (29) 
For any continuous piecewise smooth path of unitaries 𝑢(𝑡) ∈ 𝑀𝜙,𝜓, consider the path of 

unitaries 𝑤(𝑡) = 𝑢∗(0)𝑢(𝑡) in 𝐴. Then it is a continuous and piecewise smooth path with 

𝑤(0) = 1 and 𝑤(1) = 𝑢∗(0)𝑢(1). Denote by 𝑅𝜙,𝜓(𝑢) = 𝐷𝑒𝑡(𝑤) the determinant of 

𝑤(𝑡). It is clear with the assumption that 𝑅𝜙,𝜓(𝑢) depends only on the homotopy class of 

𝑢(𝑡). Therefore, it induces a homomorphism, denoted by 𝑅𝜙,𝜓, from 𝐾1(𝑀𝜙,𝜓) to 

𝐴𝑓𝑓(𝑇(𝐴)). 
Definition (1.2.9)[98]: 

    Fix two unital 𝐶∗-algebras 𝐴 and 𝐵 with 𝑇(𝐴) ≠ Ø. Define ℛ0 to be the subset 

of 𝐻𝑜𝑚(𝐾1(𝐵), 𝐴𝑓𝑓(𝑇(𝐴))) consisting of those homomorphisms ℎ ∈
𝐻𝑜𝑚(𝐾1(𝐵), 𝐴𝑓𝑓(𝑇(𝐴))) for which there exists a homomorphism 𝑑:𝐾1(𝐵) → 𝐾0(𝐴) 
such that 

ℎ = 𝜌𝐴 ∘ 𝑑. 
It is clear that R0 is a subgroup of 𝐻𝑜𝑚(𝐾1(𝐵), 𝐴𝑓𝑓(𝑇(𝐴))). 
    If [𝜙]  =  [𝜓] in 𝐾𝐾(𝐵, 𝐴), then the exact sequences 𝜂𝑖(𝑀𝜙,𝜓) (𝑖 = 0,1) above split. In 

particular, there is a lifting 𝜃:𝐾1(𝐵) → 𝐾1(𝑀𝜙,𝜓). Consider the map 

𝑅𝜙,𝜓 ∘ 𝜃: 𝐾1(𝐵) → 𝐴𝑓𝑓(𝑇(𝐴)). 
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If a different lifting 𝜃′ is chosen, then, 𝜃 −  𝜃′ maps 𝐾1(𝐵) into 𝐾0(𝐴). Therefore 

𝑅𝜙,𝜓 ∘ 𝜃 − 𝑅𝜙,𝜓 ∘ 𝜃
′ ∈ ℛ0. 

Then define 

�̅�𝜙,𝜓 = [𝑅𝜙,𝜓 ∘ 𝜃] ∈ 𝐻𝑜𝑚(𝐾1(𝐵), 𝐴𝑓𝑓(𝑇(𝐴)))/ℛ0. 

   If [𝜙]  =  [𝜓] in 𝐾𝐿(𝐵, 𝐴), then the exact sequences 𝜂𝑖(𝑀𝜙,𝜓)(𝑖 = 0,1) are pure, i.e., 

any finitely generated subgroup in the quotient groups has a lifting. In particular, for any 

finitely generated subgroup 𝐺 ⊆ 𝐾1(𝐵), one has a map 

𝑅𝜙,𝜓 ∘ 𝜃𝐺: 𝐺 → 𝐴𝑓𝑓(𝑇(𝐴)), 

where 𝜃𝐺: 𝐺 → 𝐾1(𝑀𝜙,𝜓) is a lifting. Let 𝐺 ⊂ 𝐾1(𝐵) be a finitely generated subgroup. 

Denote by ℛ0,𝐺 the set of those elements ℎ in 𝐻𝑜𝑚(𝐺, 𝐴𝑓𝑓(𝑇 (𝐴))) such that there exists 

a homomorphism 𝑑𝐺: 𝐺 → 𝐾0(𝐴) such that ℎ|𝐺 = 𝜌𝐴 ∘ 𝑑𝐺. 

   If [𝜙]  =  [𝜓] in 𝐾𝐿(𝐵, 𝐴) and 𝑅𝜙,𝜓(𝐾1(𝑀𝜙,𝜓)) ⊂ 𝜌𝐴(𝐾0(𝐴)), then 𝜃𝐺 ∈ ℛ0,𝐺 for any 

finitely generated subgroup 𝐺 ⊂ 𝐾1(𝐵) and any lifting 𝜃𝐺. In this case, we will also write 

�̅�𝜙,𝜓 = 0. 

Lemma (1.2.10)[98]: 

   Let 𝐶 and 𝐴 be unital 𝐶∗-algebras with 𝑇(𝐴) ≠ Ø. Suppose that 𝜙,𝜓: 𝐶 → 𝐴 are two 

unital homomorphisms such that 

[𝜙] = [𝜓]  𝑖𝑛 𝐾𝐿(𝐶, 𝐴),   𝜙# = 𝜓#,   𝑎𝑛𝑑 𝜙
‡ = 𝜓‡. 

Then the image of 𝑅𝜙,𝜓 is in the 𝜌𝐴(𝐾0(𝐴))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ⊆ 𝐴𝑓𝑓(𝑇(𝐴)). 

Proof: 

     Let 𝑧 ∈ 𝐾1(𝐶). Suppose that 𝑢 ∈ 𝑈𝑛(𝐶) for some integer 𝑛 ≥ 1 such that [𝑢] = 𝑧. Note 

that 𝜓(𝑢)∗𝜙(𝑢) ∈ 𝐶𝑈𝑛(𝐴). Thus, by (28), for any continuous and piecewise smooth path 

of unitaries {𝑤(𝑡): 𝑡 ∈ [0, 1]} ⊂ 𝑈(𝐴) 𝑤𝑖𝑡ℎ 𝑤(0) = 𝜓(𝑢)∗𝜙(𝑢) 𝑎𝑛𝑑 𝑤(1) = 1, 

                𝐷𝑒𝑡(𝑤)(𝜏) = ∫ 𝜏
1

0

(
𝑑𝑤(𝑡)

𝑑𝑡
𝑤(𝑡)∗)𝑑𝑡 ∈ 𝜌𝐴(𝐾0(𝐴))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅.                                   (30) 

Suppose that {(𝑣)(𝑡): 𝑡 ∈ [0,1]} is a continuous and piecewise smooth path of unitaries in 

𝑈𝑛(𝐴) with 𝑣(0) = 𝜙(𝑢) and 𝑣(1) = 𝜓(𝑢). Define 𝑤(𝑡) = 𝜓(𝑢)∗𝑣(𝑡). Then 𝑤(0) =
𝜓∗(𝑢)𝜙(𝑢) and 𝑤(1)  =  1. Thus, by (3), 

                         𝑅𝜙,𝜓(𝑧)(𝜏) = ∫ 𝜏
1

0

(
𝑑𝑣(𝑡)

𝑑𝑡
𝑣(𝑡)∗)𝑑𝑡                                                     (31) 

                                              = ∫ 𝜏
1

0

(𝜓(𝑢)∗
𝑑𝑣(𝑡)

𝑑𝑡
𝑣(𝑡)∗𝜓(𝑢))𝑑𝑡                                (32) 

                                              = ∫ 𝜏
1

0

(
𝑑𝑤(𝑡)

𝑑𝑡
𝑤(𝑡)∗)𝑑𝑡 ∈ 𝜌𝐴(𝐾0(𝐴))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅.                          (33) 

  Let 𝐴 be a unital 𝐶∗-algebra and let 𝑢 and 𝑣 be two unitaries with ‖𝑢∗𝑣 − 1‖ < 2. Then 

ℎ =
1

2𝜋𝑖
 𝑙𝑜𝑔(𝑢∗𝑣) is a well-defined self-adjoint element of 𝐴, and 𝑤(𝑡):= 𝑢𝑒𝑥𝑝(2𝜋𝑖ℎ𝑡) is 

a smooth path of unitaries connecting 𝑢 and 𝑣. It is a straightforward calculation that for 

any 𝜏 ∈  𝑇(𝐴),    

𝐷𝑒𝑡(𝑤(𝑡))(𝜏) =
1

2𝜋𝑖
𝜏 (𝑙𝑜𝑔(𝑢∗𝑣)). 

    Let 𝐴 be a unital 𝐶∗-algebra, and let 𝑢 and 𝑤 be two unitaries. Suppose that 𝑤 ∈ 𝑈0(𝐴). 
Then 𝑤 = ∏ 𝑒𝑥𝑝𝑚

𝑘=0 (2𝜋𝑖ℎ𝑘) for some self-adjoint elements ℎ0, . . . , ℎ𝑚. Define the path 
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𝑤(𝑡) = (∏𝑒𝑥𝑝

𝑙−1

𝑘=0

(2𝜋𝑖ℎ𝑘)) exp(2𝜋𝑖ℎ𝑙𝑚𝑡) ,   𝑖𝑓 𝑡 ∈ [(𝑙 − 1)/𝑚, 𝑙/𝑚], 

and define 𝑢(𝑡) = 𝑤∗(𝑡)𝑢𝑤(𝑡) for 𝑡 ∈ [0,1]. Then, 𝑢(𝑡) is continuous and piecewise 

smooth, and 𝑢(0)  =  𝑢 and 𝑢(1)  =  𝑤 ∗ 𝑢𝑤. A straightforward calculation shows that 

𝐷𝑒𝑡(𝑢(𝑡)) = 0.                                                                            
    In general, if 𝑤 is not in the path-connected component containing the identity, one can 

consider unitaries 𝑑𝑖𝑎𝑔(𝑢, 1) and 𝑑𝑖𝑎𝑔(𝑤,𝑤∗). Then, the same argument as above shows 

that there is a piecewise smooth path 𝑢(𝑡) of unitaries in 𝑀2(𝐴) such that 𝑢(0)  =
 𝑑𝑖𝑎𝑔(𝑢, 1), 𝑢(1)  = 𝑑𝑖𝑎𝑔(𝑤∗𝑢𝑤, 1), and 

𝐷𝑒𝑡(𝑢(𝑡)) = 0. 
Lemma (1.2.11)[98]: 

    Let 𝐵 and 𝐶 be two unital 𝐶∗-algebras with 𝑇(𝐵) ≠ Ø. Suppose that 𝜙,𝜓: 𝐶 → 𝐵 are 

two unital monomorphisms such that [𝜙]  =  [𝜓] in 𝐾𝐿(𝐶, 𝐵) and 

𝜏 ∘ 𝜙 = 𝜏 ∘ 𝜓 

for all 𝜏 ∈ 𝑇(𝐵). Suppose that 𝑢 ∈ 𝑈𝑙(𝐶) is a unitary and 𝑤 ∈  𝑈𝑙(𝐵) such that 

‖(𝜙⊗ 𝑖𝑑𝑀𝑙)(𝑢)𝑤
∗(𝜓⊗ 𝑖𝑑𝑀𝑙)(𝑢

∗)𝑤 − 1‖ < 2. 

Then, for any unitary 𝑈 ∈ 𝑈𝑙(𝑀𝜙,𝜓) with 𝑈(0) = (𝜙⊗ 𝑖𝑑𝑀𝑙)(𝑢) 𝑎𝑛𝑑 𝑈(1) = (𝜓⊗

𝑖𝑑𝑀𝑙)(𝑢), one has that 

1

2𝜋𝑖
𝜏 (log ((𝜙⊗ 𝑖𝑑𝑀𝑙)(𝑢

∗)𝑤∗(𝜓⊗ 𝑖𝑑𝑀𝑙)(𝑢)𝑤)) − 𝑅𝜙,𝜓([𝑈])(𝜏)

∈ 𝜌𝐵(𝐾0(𝐵)).                                                                                                (34) 
Proof: 

    Without loss of generality, one may assume that 𝑢 ∈ 𝐶. Moreover, to prove the lemma, 

it is enough to show that (34) holds for one path of unitaries 𝑈(𝑡) in 𝑀2(𝐵) with 𝑈(0) =
𝑑𝑖𝑎𝑔(𝜙(𝑢), 1) and 𝑈(1) =  𝑑𝑖𝑎𝑔(𝜓(𝑢), 1).  
Let 𝑈1 be the path of unitaries specified with 𝑈1(0) = 𝑑𝑖𝑎𝑔(𝜙(𝑢),1) and 𝑈1(1/2)  =
𝑑𝑖𝑎𝑔(𝑤∗𝜓(𝑢)𝑤, 1), and let 𝑈2 be the path specified with 𝑈2(1/2)  =  𝑑𝑖𝑎𝑔(𝑤

∗𝜓(𝑢)𝑤, 1) 
and 𝑈2(1) = 𝑑𝑖𝑎𝑔(𝜓(𝑢), 1).                                                            
     Set 𝑈 the path of unitaries by connecting 𝑈1 and 𝑈2. Then 𝑈(0) = 𝑑𝑖𝑎𝑔(𝜙(𝑢),1) and 

𝑈(1)  = 𝑑𝑖𝑎𝑔(𝜓(𝑢),1), for any 𝜏 ∈  𝑇(𝐵), one computes that 

𝑅𝜙,𝜓([𝑈]) = 𝐷𝑒𝑡(𝑈(𝑡))(𝜏) = 𝐷𝑒𝑡(𝑈1(𝑡))(𝜏) + 𝐷𝑒𝑡(𝑈2(𝑡))(𝜏)

=
1

2𝜋𝑖
𝜏(𝜙(𝑢∗)𝑤∗𝜓(𝑢)𝑤), 

as desired. 

Definition (1.2.12)[98]: 

    Let 𝐴 be a unital 𝐶∗-algebra. In the following, for any invertible element 𝑥 ∈ 𝐴, 

let 〈𝑥〉 denote the unitary 𝑥(𝑥∗𝑥)−
1

2, and let �̅� denote the element 〈�̅�〉 in 𝑈(𝐴)/𝐶𝑈(𝐴). 
Consider a subgroup ℤ𝑘 ⊆ 𝐾1(𝐴), and write the unitary {𝑢1, . . . , 𝑢𝑘} ⊆ 𝑈𝑐(𝐴) the unitary 

corresponding to the standard generators {𝑒1, 𝑒2, . . . , 𝑒𝑘} of ℤ𝑘. Suppose that 

{𝑢1, 𝑢2, . . . , 𝑢𝑘} ⊂ 𝑀𝑛(𝐴) for some integer 𝑛 ≥ 1. Let 𝛷:𝐴 → 𝐵 be a unital positive linear 

map and Φ⊗ 𝑖𝑑𝑀𝑛 is at least {𝑢1, 𝑢2, . . . , 𝑢𝑘} − 1/4-multiplicative (hence each Φ⊗

𝑖𝑑𝑀𝑛(𝑢𝑖) is invertible), then the map Φ‡|𝑠1(ℤ𝑘) ∶ ℤ
𝑘 →  𝑈(𝐵)/𝐶𝑈(𝐵) is defined by 

Φ‡|𝑠1(ℤ𝑘)(𝑒𝑖) = 〈Φ⊗ 𝑖𝑑𝑀𝑛(𝑢𝑖)〉
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ,   1 ≤ 𝑖 ≤ 𝑘. 
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Thus, for any finitely generated subgroup 𝐺 ⊂ 𝑈𝑐(𝐴), there exists 𝛿 > 0 and a finite 

subset 𝒢 ⊂ 𝐴 such that, for any unital 𝛿 − 𝒢-multiplicative completely positive linear map 

𝐿: 𝐴 → 𝐵 (for any unital 𝐶∗-algebra 𝐵), the map 𝐿‡ is well defined on 𝑠1(𝐺). (Please see 

2.1 for 𝑈𝑐(𝐴) and 𝑠1.) 

    The following theorems are taken from [97]. 

Theorem (1.2.13)[98]: 

    Let = 𝑃𝑀𝑛(𝐶(𝑋))𝑃, where 𝑋 is a compact subset of a finite 𝐶𝑊-complex and 𝑃 a 

projection in 𝑀𝑛(𝐶(𝑋)) with an integer 𝑛 ≥ 1. Let ∆∶ (0,1) → (0,1) be a non-decreasing 

map. For any 𝜖 > 0 and any finite subset ℱ ⊆ 𝐶, there exists 𝛿 > 0, 𝜂 >  0, 𝛾 >  0, a 

finite subsets 𝒢 ⊆ 𝐶, 𝒫 ⊆ 𝐾(𝐶), a finite subset 𝑄 = {𝑥1, 𝑥2, . . . , 𝑥𝑘} ⊂ 𝐾0(𝐶) which 

generates a free subgroup and 𝑥𝑖 = [𝒫𝑖] − [𝑞𝑖], where 𝑝𝑖 , 𝑞𝑖 ∈ 𝑀𝑚(𝐶) (for some integer 

𝑚 ≥  1) are projections, satisfying the following: 

   Suppose that 𝐴 is a unital simple 𝐶∗-algebra with 𝑇𝑅(𝐴) ≤ 1, 𝜙: 𝐶 → 𝐴 is a unital 

homomorphism and 𝑢 ∈ 𝐴 is a unitary, and suppose that 

‖[𝜙(𝑐), 𝑢]‖ < 𝛿,   ∀𝑐 ∈ 𝒢  𝑎𝑛𝑑   𝐵𝑜𝑡𝑡(𝜙, 𝑢)|𝒫 = 0, 
and 

𝜇𝜏∘𝜙(𝑂𝑎) ≥ ∆(𝑎)  ∀𝜏 ∈ 𝑇(𝐴⊗𝐷), 

where 𝑂𝑎 is any open ball in 𝑋 with radius 𝜂 ≤ 𝑎 < 1 and 𝜇𝜏∘𝜙 is the Borel probability 

measure defined by 𝜏 ∘ 𝜙. Moreover, for each 1 ≤ 𝑖 ≤ 𝑘, there is 𝑣𝑖 ∈ 𝐶𝑈(𝑀𝑚(𝐴)) such 

that 

‖〈(1𝑚 − 𝜙(𝑝𝑖) + 𝜙(𝑝𝑖)𝑢)(1𝑚 − 𝜙(𝑞𝑖) + 𝜙(𝑞𝑖)𝑢
∗)〉 − 𝑣𝑖‖ < 𝛾. 

Then there is a continuous path of unitaries {𝑢(𝑡) ∶  𝑡 ∈  [0,1]} in 𝐴 such that 

𝑢(0) = 𝑢, 𝑢(1) = 1,   𝑎𝑛𝑑   ‖[𝜙(𝑐), 𝑢(𝑡)]‖ < 𝜖 
for any 𝑐 ∈ ℱ and for any 𝑡 ∈  [0,1]. 
Theorem (1.2.14)[98]: 

    Let 𝐶 = 𝑃𝑀𝑛(𝐶(𝑋))𝑃, where 𝑋 is a compact subset of a finite 𝐶𝑊-complex and 𝑃 a 

projection in 𝑀𝑛(𝐶(𝑋)) for some integer 𝑛 ≥ 1. Let 𝐺 ⊂ 𝐾0(𝐶) be a 

finitely generated subgroup. Write 𝐺 = ℤ𝑘⊕  𝑇𝑜𝑟(𝐺) with ℤ𝑘 generated by 

{𝑥1 = [𝑝1] − [𝑞1], 𝑥2 = [𝑝2] − [𝑞2],… , 𝑥𝑘 = [𝑝𝑘] − [𝑞𝑘]}, 
where 𝑝𝑖 , 𝑞𝑖 ∈ 𝑀𝑚(𝐶) (for some integer 𝑚 ≥ 1) are projections, 𝑖 = 1, . . . , 𝑘. 
    Let A be a simple 𝐶∗-algebra with 𝑇𝑅(𝐴) ≤ 1. Suppose that 𝜙: 𝐶 → 𝐴 is a 

monomorphism. Then, for any finite subsets ℱ ⊆ 𝐶 and 𝑃 ⊆ 𝐾(𝐶), any 𝜖 > 0 and 𝛾 >  0, 

any homomorphism 

Γ: ℤ𝑘 → 𝑈0(𝐴)/𝐶𝑈(𝐴), 
there is a unitary 𝑤 ∈  𝐴 such that 

‖[𝜙(𝑐),𝑤]‖ < 𝜖   ∀𝑓 ∈ ℱ 

𝐵𝑜𝑡𝑡(𝜙,𝑤)|𝑝 = 0, 
and 

𝑑𝑖𝑠𝑡 (〈(1𝑚 − 𝜙(𝑝𝑖) + 𝜙(𝑝𝑖)𝑤)(1𝑚 − 𝜙(𝑞𝑖) + 𝜙(𝑞𝑖)𝑤
∗)〉, Γ(𝑥𝑖)) < 𝛾, ∀1 ≤ 𝑖 ≤ 𝑘, 

where 𝑈0(𝐴)/𝐶𝑈(𝐴) is identified as 𝑈0(𝑀𝑚(𝐴))/𝐶𝑈(𝑀𝑚(𝐴)), and the distance above is 

understood as the distance in 𝑈0(𝑀𝑚(𝐴))/𝐶𝑈(𝑀𝑚(𝐴)). 
Lemma (1.2.15)[98]: 

      Let 𝐴 be a simple 𝐶∗-algebra with 𝑇𝑅(𝐴)  ≤  1, and let 𝐶 be a unital 𝐴𝐻-algebra. If 

there are monomorphisms 𝜙,𝜓: 𝐶 → 𝐴 such that 
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[𝜙] = [𝜓] 𝑖𝑛 𝐾𝐿(𝐶, 𝐴),     𝜙# = 𝜓#,   𝑎𝑛𝑑   𝜙
‡ = 𝜓‡, 

then, for any 2 >  𝜖 > 0, any finite subset ℱ ⊆ 𝐶, any finite subset of unitaries 𝒫 ⊂
𝑈𝑛(𝐶) for some 𝑛 ≥ 1, there exist a finite subset 𝒢 ⊂ 𝐾1(𝐶) with �̅� ⊆ 𝒢 (where �̅� is the 

image of 𝒫 in 𝐾1(𝐶)) and 𝛿 >  0 such that, for any map 𝜂 ∶  𝐺(𝒢) → 𝐴𝑓𝑓(𝑇(𝐴)) with 

|𝜂(𝑥)(𝜏 )|  <  𝛿 for all 𝜏 ∈  𝑇(𝐴) and 𝜂(𝑥)  − �̅�𝜙,𝜓(𝑥) ∈ 𝜌𝐴(𝐾0(𝐴)) for all 𝑥 ∈ 𝒢, there 

is a unitary 𝑢 ∈  𝐴 such that 

‖𝜙(𝑓) − 𝑢∗𝜓(𝑓)‖ < 𝜖     ∀𝑓 ∈ ℱ, 
and  

𝜏 (
1

2𝜋𝑖
  𝑙𝑜𝑔 ((𝜙 ⊗ 𝑖𝑑𝑀𝑛(𝑥

∗)) (𝑢 ⊗ 1𝑀𝑛)
∗
 (𝜓 ⊗  𝑖𝑑𝑀𝑛(𝑥)) (𝑢 ⊗  1𝑀𝑛))) = 𝜏(𝜂([𝑥]))  

for all 𝑥 ∈ 𝒫 and for all 𝜏 ∈  𝑇(𝐴) 
Proof: 

    Without loss of generality, one may assume that any element in ℱ has norm at most 

one.  Let 𝜖 > 0. Choose 𝜖 > 𝜃 > 0 and a finite subset ℱ ⊂ ℱ0 ⊂ 𝐶 satisfying the 

following: For all 𝑥 ∈ 𝒫, 𝜏 (
1

2𝜋𝑖
𝑙𝑜𝑔(𝜙(𝑥∗)𝑤𝑗

∗𝜓(𝑥)𝑤𝑗)) is well defined and 

𝜏 (
1

2𝜋𝑖
𝑙𝑜𝑔(𝜙(𝑥∗)𝑤𝑗

∗𝜓(𝑥)𝑤𝑗))                                                                                    (35)

= 𝜏 (
1

2𝜋𝑖
𝑙𝑜𝑔(𝜙(𝑥∗)𝑣1

∗𝜓(𝑥)𝑣1)) +⋯

+ 𝜏 (
1

2𝜋𝑖
𝑙𝑜𝑔(𝜙(𝑥∗)𝑣𝑗

∗𝜓(𝑥)𝑣𝑗))     𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈ 𝑇(𝐴),                                   (36) 

whenever 

‖𝜙(𝑓) − 𝑣𝑗
∗𝜓(𝑓)𝑣𝑗‖ < 𝜃   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈ ℱ0, 

 

where 𝑣𝑗 are unitaries in 𝐴 and 𝑤𝑗 = 𝑣1,· · · , 𝑣𝑗 , 𝑗 =  1, 2, 3. In the above, if 𝑥 ∈ 𝑈𝑛(𝐶), 

we denote by 𝜙 and 𝜓 the extended maps 𝜙⊗ 𝑖𝑑𝑀𝑛 and 𝜓⊗ 𝑖𝑑𝑀𝑛 , and replace 𝑤𝑗, and 

𝑣𝑗 by 𝑑𝑖𝑎𝑔(𝑤𝑗 , . . . , 𝑤𝑗) and 𝑑𝑖𝑎𝑔(𝑣𝑗 , . . . , 𝑣𝑗), respectively. 

   Let 𝐶′, 𝑙: 𝐶′ → 𝐶, 𝛿′ > 0 (in the place of 𝛿) and 𝒢′ ⊆ 𝐾1(𝐶′) (in the place of 𝑄) the 

constant and finite subset with respect to 𝐶 (in the place of 𝐶), ℱ0 (in the place of ℱ), 𝒫 

(in the place of 𝒫), and 𝜓 (in the place of ℎ). Put 𝛿 = 𝛿′/2. 

    Fix a decomposition (𝑙)∗1(𝐶
′) = ℤ𝑘⊕𝑇𝑜𝑟((𝑙)∗1(𝐶′)) (for some integer 𝑘 ≥ 0), and 

let 𝒢 be a set of standard generators of ℤ𝑘. Let 𝒢′′ ⊂ 𝑈𝑚(𝐶) be a finite subset containing a 

representative for each element of 𝒢. Without loss of generality, one may assume that 𝒫 ⊆
𝒢′′, the maps 𝜙 and 𝜓 are approximately unitary equivalent. Hence, for any finite subset 𝑄 

and any 𝛿1, there is a unitary 𝑣 ∈  𝐴 such that 

 

‖𝜙(𝑓) − 𝑣∗𝜓(𝑓)𝑣‖ < 𝛿1,   ∀𝑓 ∈ 𝑄. 
 

By choosing 𝑄 ⊇ ℱ0 sufficiently large and 𝛿1 < 𝜂/2 sufficiently small, the map 

 

[𝑥] ↦ 𝜏 (
1

2𝜋𝑖
log(𝜙∗(𝑥)𝑣∗𝜓(𝑥)𝑣)) , 𝑥 ∈ 𝒢′′, 
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induces a homomorphism 𝜂1 ∶  (𝑙)∗1 (𝐾1 (𝐶
′))  →  𝐴𝑓𝑓( 𝑇 ( 𝐴)) (note that 

𝜂1(𝑇𝑜𝑟(((𝑙)∗1(𝐾1(𝐶′)))) = {0}), and moreover, ‖𝜂1(𝑥)‖ <  𝛿 for all 𝑥 ∈ 𝒢. 

By Lemma (1.2.11), the image of 𝜂1 − �̅�𝜙,𝜓 𝑖𝑠 𝑖𝑛 𝜌(𝐾0(𝐴)). Since 𝜂(𝑥) − �̅�𝜙,𝜓(𝑥) ∈

𝜌𝐴(𝐾0(𝐴)) for all 𝑥 ∈ 𝒢, the image (𝜂 − 𝜂1) ((𝑙)∗1(𝐾1(𝐶
′))) is also in 𝜌𝐴(𝐾0(𝐴)). Since 

𝜂 − 𝜂1 factors through ℤ𝑘, there is a map ℎ: (𝑙)∗1(𝐾1(𝐶
′)) → 𝐾0(𝐴) such that 𝜂 − 𝜂1 =

𝜌𝐴 ∘ ℎ. Note that |𝜏 (ℎ(𝑥))| < 2𝛿 = 𝛿′ for all 𝜏 ∈  𝑇(𝐴) and 𝑥 ∈ 𝒢. 

    By the universal multi-coefficient theorem, there is 𝜅 ∈ 𝐻𝑜𝑚Λ(𝐾(𝐶′ ⊗ 𝐶(𝕋)), 𝐾(𝐴)) 
with 

 

𝑘 ∘ 𝛽|𝐾1(𝐶′) = ℎ ∘ ((𝑙)∗1. 

 

Applying, there is a unitary w such that 

 

‖[𝑤,𝜓(𝑓)]‖ < 𝜃/2, ∀𝑓 ∈ ℱ0, 
 

and 𝐵𝑜𝑡𝑡(𝑤, 𝜓 ∘  𝜄)  =  𝜅. In particular, 𝑏𝑜𝑡𝑡1(𝑤,𝜓)(𝑥) = ℎ(𝑥) for all 𝑥 ∈ 𝒫. 

   Set 𝑢 = 𝑤𝑣. One then has 

 

‖𝜙(𝑓) − 𝑢∗𝜓(𝑓)𝑢‖ < 𝜃, ∀𝑓 ∈ ℱ0, 
 

and for any 𝑥 ∈ 𝒫 and any 𝜏 ∈  𝑇(𝐴), 
 

𝜏 (
1

2𝜋𝑖
log(𝜙(𝑥∗)𝑢∗𝜓(𝑥)𝑢)) = 𝜏 (

1

2𝜋𝑖
log(𝜙(𝑥)𝑣∗𝑤∗𝜓(𝑧)𝑤𝑣))

= 𝜏 (
1

2𝜋𝑖
log(𝜙(𝑥∗)𝑣∗𝜓(𝑥)𝑣𝑣∗𝜓(𝑥∗)𝑤∗𝜓(𝑥)𝑤𝑣))

= 𝜏 (
1

2𝜋𝑖
log(𝜙(𝑥∗)𝑣∗𝜓(𝑥)𝑣)) + 𝜏 (

1

2𝜋𝑖
log𝜓(𝑥∗)𝑤∗𝜓(𝑥)𝑤)

= 𝜂1([𝑥])(𝜏) + ℎ([𝑥])(𝜏) = 𝜂([𝑥])(𝜏). 
Corollary (1.2.16)[98]: 

    Let 𝐶 be a unital 𝐴𝐻-algebra and let 𝐴 be a unital separable simple 𝑍-stable 𝐶∗-algebra 

in 𝐶. Let 𝜙,𝜓 ∶ 𝐶 → 𝐴 be two unital monomorphisms. Then there exists a sequence of 

unitaries {𝑢𝑛} ⊂ 𝐴 such that 

lim
𝑛→∞

𝑢𝑛
∗ 𝜓(𝑐)𝑢𝑛 = 𝜙(𝑐)   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐 ∈ 𝐶, 

if and only if 

[𝜙] = [𝜓]    𝑖𝑛 𝐾𝐿(𝐶, 𝐴),    𝜙# = 𝜓#  𝑎𝑛𝑑  𝜙
‡ = 𝜓‡. 

Proof: 

    We only show the “if” part. Suppose that 𝜙 and 𝜓 satisfy the condition. Let 𝜖 > 0, and 

let ℱ ⊂ 𝐶 be a finite subset. Then exists a unitary 𝑣 ∈  𝐴⊗  Z such that 

                 ‖𝑣∗(𝜓(𝑎)⊗ 1)𝑣 − 𝜙(𝑎) ⊗ 1‖ <
𝜖

3
   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈ ℱ.                            (37) 

Let 𝑙: 𝐴 → 𝐴⊗ 𝑍 be defined by 𝑙(𝑎) = 𝑎 ⊗ 1 for 𝑎 ∈ 𝐴. There exists an isomorphism 𝑗 ∶
 𝐴 ⊗ 𝑍 →  𝐴 such that 𝑗 ∘ 𝑙 is approximately inner. So there is a unitaries 𝑤 ∈  𝐴 such 

that 
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‖𝑗(𝜓(𝑎)⊗ 1) − 𝑤∗𝜓(𝑎)𝑤‖ <
𝜖

3
   𝑎𝑛𝑑  ‖𝑤∗𝜙(𝑎)𝑤 − 𝑗(𝜙(𝑎)⊗ 1)‖ <

𝜖

3
     (38) 

for all 𝑎 ∈ ℱ. Let 𝑢 =  𝑤𝑗(𝑣)𝑤∗ ∈ 𝐴; then, for 𝑎 ∈ ℱ, 

‖𝑢∗𝜓(𝑎)𝑢 − 𝜙(𝑎)‖ = ‖𝑤𝑗(𝑣)∗𝜓(𝑎)𝑤𝑗(𝑣)𝑤∗ − 𝜙(𝑎)‖                                     (39)
≤ ‖𝑤𝑗(𝑣)∗𝑤∗𝜓(𝑎)𝑤𝑗(𝑣)𝑤∗ −𝑤𝑗(𝑣)∗𝑗(𝜓(𝑎)⊗ 1)𝑗(𝑣)𝑤∗‖      (40)
+ ‖𝑤𝑗(𝑣)∗(𝑗(𝜓(𝑎))⊗ 1)𝑗(𝑣)𝑤∗ −𝑤(𝑗(𝜙(𝑎)⊗ 1))𝑤∗‖          (41)

+ ‖𝑤(𝑗(𝜙(𝑎)⊗ 1))𝑤∗ − 𝜙(𝑎)‖                                                        (42)

<
𝜖

3
+
𝜖

3

𝜖

3
= 𝜖  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈ ℱ.                                                              (43) 

A version of the following is also obtained by H. Matui. 

Corollary (1.2.17)[98]: 

    Let 𝐶 be a unital 𝐴𝐻-algebra and let 𝐴 be a unital separable simple 𝐶∗-algebra in 𝐶0 

which is 𝑍-stable. Suppose that 𝜙,𝜓: 𝐶 → 𝐴 are two unital monomorphisms. Then there 

exists a sequence of unitaries {𝑢𝑛} ⊂ 𝐴 such that 

lim
𝑛→∞

𝑢𝑛
∗ 𝜙(𝑐)𝑢𝑛 = 𝜓(𝑐)   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐 ∈ 𝐶, 

if and only if 

[𝜙] = [𝜓]    𝑖𝑛 𝐾𝐿(𝐶, 𝐴),    𝜙# = 𝜓#  𝑎𝑛𝑑  𝜙
‡ = 𝜓‡. 

 

 

Lemma (1.2.18)[98]: 

    Let A be a unital C∗-algebra such that A⊗Mr is an AH-algebra for any supernatural 

number r of infinite type. Let B ∈ C be a unital separable C∗-algebra, and let ϕ,ψ: A → B 

be two unital monomorphisms. Suppose that 

                                                     [𝜙] = [𝜓]    𝑖𝑛 𝐾𝐿(𝐴, 𝐵),                                            (44) 
                                                      𝜙# = 𝜓#  𝑎𝑛𝑑  𝜙

‡ = 𝜓‡.                                           (45) 
Let p and q be two relatively prime supernatural numbers of infinite type with Mp⊗

Mq = Q. Then, for any ϵ > 0 and any finite subset ℱ ⊂ A⊗ Zp,q, there exists a unitary 

v ∈ B⊗ Zp,q such that 

          ‖𝑣∗((𝜙⊗ 𝑖𝑑)(𝑎))𝑣 − (𝜓⊗ 𝑖𝑑)(𝑎)‖ < 𝜖    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈ ℱ          (46) 
    The proof of this lemma will be lengthy and technical in nature. Using homotopy 

lemmas, one could find a certain path of unitaries in 𝐵 ⊗𝑄 such that it implements the 

approximate equivalence above when it is regarded as a unitary in 𝐵 ⊗ 𝑍𝑝,𝑞. But since the 

domain 𝐶∗-algebra A is only assumed to be rational tracial rank at most one, in order to 

apply the homotopy lemmas, one also needs to interpolate paths in 𝐴⊗ 𝑍𝑝,𝑞, and this 

increases the technical difficulty of the proof. 

Proof: 

    Let 𝑟 be a supernatural number. Denote by 𝑙𝑟: 𝐴 → 𝐴⊗𝑀𝑟 the embedding defined by 

𝑙𝑟(𝑎) = 𝑎 ⊗ 1 for all 𝑎 ∈ 𝐴. Denote by 𝑗𝑟: 𝐵 → 𝐵⊗𝑀𝑟 the embedding defined by 

𝑗𝑟(𝑏) = 𝑏 ⊗ 1 for all 𝑏 ∈ 𝐵. Without loss of generality, one may assume that ℱ = ℱ1⊗
ℱ2, where ℱ1 ⊆ 𝐴 and ℱ2 ⊆ 𝑍𝑝,𝑞 are finite subsets and 1𝐴 ∈ ℱ and 1𝑍𝑝,𝑞 ∈ ℱ2. Moreover, 

one may assume that any element in ℱ1 or ℱ2has norm at most one. 

    Let 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑚 = 1 be a partition of [0, 1] such that 

              ‖𝑏(𝑡) − 𝑏(𝑡𝑖)‖ <
𝜖

4
    ∀𝑏 ∈ ℱ2, ∀𝑡 ∈ [𝑡𝑖−1, 𝑡𝑖], 𝑖 = 1,… ,𝑚.                    (47) 

Consider 
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𝜀 = {𝑎⨂𝑏(𝑡𝑖); 𝑎 ∈ ℱ1, 𝑏 ∈ ℱ2, 𝑖 = 0,… ,𝑚} ⊆ 𝐴⊗𝑄, 
                   𝜀𝑝 = {𝑎⨂𝑏(𝑡0); 𝑎 ∈ ℱ1, 𝑏 ∈ ℱ2} ⊆ 𝐴⊗𝑀𝑝 ⊂ 𝐴⊗𝑄  𝑎𝑛𝑑              (48) 

                  𝜀𝑞 = {𝑎⨂𝑏(𝑡𝑚); 𝑎 ∈ ℱ1, 𝑏 ∈ ℱ2} ⊆ 𝐴⊗𝑀𝑞 ⊂ 𝐴⊗𝑄.                       (49) 

 

Since 𝐴⊗𝑄 is an 𝐴𝐻-algebra, without loss of generality, one may assume that the finite 

subset 𝐸 is in a 𝐶∗-subalgebra of 𝐴⊗𝑄 which is isomorphic to 𝐶 ∶=  𝑃𝑀𝑛(𝐶(𝑋))𝑃 (for 

some 𝑛 ≥  1) for some compact metric space 𝑋. Since 𝑃𝑀𝑛(𝐶(𝑋))𝑃 =
𝑙𝑖𝑚𝑚→∞(𝑃𝑚𝑀𝑛(𝐶(𝑋𝑚))𝑃𝑚), where 𝑋𝑚 are closed subspaces of finite 𝐶𝑊-complexes, 

then, without loss of generality, one may assume further that 𝑋 is a closed subset of a 

finite 𝐶𝑊-complex. 

   Fix a metric on 𝑋, and for any 𝑎 ∈  (0, 1), denote by 

 ∆(𝑎) = inf{𝜇𝜏∘(𝜙⨂𝑖𝑑)(𝑂𝑎); 𝜏 ∈ 𝑇(𝐵), 𝑂𝑎 𝑎𝑛 𝑜𝑝𝑒𝑛 𝑏𝑎𝑙𝑙 𝑜𝑓 𝑟𝑎𝑑𝑖𝑢𝑠 𝑎 𝑖𝑛 𝑋}. 

Since 𝐵 is simple, one has that 0 < ∆(𝑎) ≤ 1. 

 Let ℋ ⊂ 𝐶, 𝒫 ⊆ 𝐾(𝐶), 𝑄 = {𝑥1, 𝑥2, . . . , 𝑥𝑚} ⊂ 𝐾0(𝐶) which generates a free subgroup of 

𝐾0(𝐶), 𝛿 > 0, 𝛾 > 0, and 𝑑 > 0 (in the place of 𝜂) be the constants of Theorem (1.2.13) 

with respect to 𝐸, 𝜖/8, and ∆. We may assume that 𝑥𝑖 = [𝑝𝑖] − [𝑞𝑖], where 𝑝𝑖 , 𝑞𝑖 ∈ 𝑀𝑛(𝐶) 
are projections (for some integer 𝑛 ≥ 1), 𝑖 = 1,2, . . . , 𝑚. Moreover, we may assume that 

𝛾 <  1. Denote by ∞ the supernatural number associated with ℚ. Let 𝑃𝑖 = 𝑃 ∩ 𝐾𝑖(𝐴⊗
𝑄), 𝑖 = 0, 1. There is a finitely generated free subgroup 𝐺(𝒫)𝑖,0 ⊂ 𝐾𝑖(𝐴) such that if one 

sets 

             𝐺(𝒫)𝑖,∞,0 = 𝐺({𝑔𝑟: 𝑔 ∈ (𝑙∞)∗𝑖(𝐺(𝒫)𝑖,0)  𝑎𝑛𝑑 𝑟 ∈ 𝐷0}),                          (50) 

where 1 ∈ 𝐷0 ⊂ ℚ is a finite  subset, then 𝐺(𝒫)𝑖,∞,0 contains the subgroup generated by 

𝒫𝑖 , 𝑖 = 0,1. Moreover, we may assume that, if 𝑟 = 𝑘/𝑚, where k and m are nonzero 

integers, and 𝑟 ∈ 𝐷0, then 1/𝑚 ∈ 𝐷0. Let 𝒫𝑖
′ ⊂ 𝐾𝑖(𝐴) be a finite subset which generates 

𝐺(𝒫)𝑖,0, 𝑖 =  0, 1.Also denote by 𝒫′ = 𝒫0
′ ∪ 𝒫1

′. 

    Denote by 𝑗: 𝐶 → 𝐴⊗𝑄 the embedding.  

    Write the subgroup generated by the image of 𝑄 in 𝐾0(𝐴⊗ 𝑄) as ℤ𝑘 (for some integer 

𝑘 ≥  1). Choose {𝑥1
′ , . . . , 𝑥𝑘

′ } ⊆ 𝐾0(𝐴) and {𝑟𝑖𝑗; 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑘} ⊆ ℚ such that 

𝑗∗0(𝑥𝑖) =∑𝑟𝑖𝑗

𝑘

𝑗=1

𝑥𝑗
′,   1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑘, 

and moreover, {𝑥1
′ , . . . , 𝑥𝑘

′ } generates a free subgroup of 𝐾0(𝐴) of 𝑟𝑎𝑛𝑘 𝑘. Choose 

projections 𝑝𝑗
′ , 𝑞𝑗

′ ∈ 𝑀𝑛(𝐴) such that 𝑥𝑗
′ = [𝑝𝑗

′] − [𝑞𝑗
′], 1 ≤ 𝑗 ≤ 𝑘. Choose an integer 𝑀 

such that 𝑀𝑟𝑖𝑗 are integers for 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑘. In particular 𝑀𝑥𝑖 is the linear 

combination of 𝑥𝑗
′ with integer coefficients. 

   Also noting that the subgroup of 𝐾0(𝐴⊗ 𝑄) generated by {(𝑙∞)∗𝑖(𝑥1
′), . . . , (𝑙∞)∗𝑖(𝑥𝑘

′ )} 
is isomorphic to  ℤ𝑘 and the subgroup of 𝐾0(𝐴⊗𝑀𝑟) generated by {(𝑙𝑟)∗𝑖(𝑥1

′),
. . . , (𝑙𝑟)∗𝑖(𝑥𝑘

′ )} has to be isomorphic to ℤ𝑘, where 𝑟 = 𝑝 𝑜𝑟 𝑟 = 𝑞. 

   Since 𝐴⊗𝑀𝑟 is an 𝐴𝐻-algebra, one can choose a 𝐶∗-subalgebra 𝐶𝑟 of 𝐴⊗𝑀𝑟 which is 

isomorphic to 𝑃𝑟𝑀𝑛𝑟(𝐶(𝑋𝑟))𝑃𝑟 (for some 𝑛𝑟 ≥ 1) such that 𝐸𝑟 ⊆ 𝐶𝑟 and projections 

{𝑝1,𝑟
′ , . . . , 𝑝𝑘,𝑟

′ , 𝑞1,𝑟
′ , . . . , 𝑞𝑘,𝑟

′ } ⊆ 𝑀𝑛(𝐶𝑟) such that for any 1 ≤ 𝑗 ≤ 𝑘, 
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       ‖𝑝𝑗
′ ⊗1𝑀𝑟 − 𝑝𝑗,𝑟

′ ‖ < 𝛾/(32(1 +∑|𝑀𝑟𝑖,𝑗′|

 

𝑖,𝑗′

)) < 1,                                  (51) 

and 

       ‖𝑞𝑗
′ ⊗1𝑀𝑟 − 𝑞𝑗,𝑟

′ ‖ < 𝛾/(32(1 +∑|𝑀𝑟𝑖,𝑗′|

 

𝑖,𝑗′

)) < 1,                                  (52) 

where 𝑋𝑟 is a closed subset of a finite 𝐶𝑊-complex, and 𝑟 = 𝑝 𝑜𝑟 𝑟 = 𝑞. 

 Denote by 𝑥𝑗,𝑟
′ = [𝑝𝑗,𝜏

′ ] − [𝑞𝑗,𝑟
′ ], 1 ≤ 𝑗 ≤ 𝑘, and denote by 𝐺𝑟 the subgroup of 𝐾0(𝐶𝑟) 

generated by {𝑥1,𝑟
′ , . . . , 𝑥𝑘,𝑟

′ }, and write 𝐺𝑟 = ℤ
𝑘⊕𝑇𝑜𝑟(𝐺𝑟). Since 𝐺𝑟 is generated by k 

elements, one has that 𝑟 ≤ 𝑘 and 𝑟 = 𝑘 if and only if 𝐺𝑟 is torsion free. Note that the 

image of 𝐺𝑟 in 𝐾0(𝐴⊗𝑀𝑟) is the group generated by {[𝑝1
′ ⊗1𝑀𝑟] − [𝑞1

′ ⊗

1𝑀𝑟], . . . , [𝑝𝑘
′ ⊗1𝑀𝑟] − [𝑞𝑘

′ ⊗1𝑀𝑟}, which is isomorphic to ℤ𝑘 (with {[𝑝𝑗
′ ⊗1𝑀𝑟] −

[𝑞𝑗
′ ⊗1𝑀𝑟];  1 ≤ 𝑗 ≤ 𝑘} as the standard generators). Hence 𝐺𝑟 is torsion free and 𝑟 =  𝑘. 

   Without loss of generality, one may assume that 𝑙𝑟(𝒫′) ⊆ 𝐾(𝐶𝑟). Assume that ℋ is 

sufficiently large and 𝛿 is sufficiently small such that for any homomorphism ℎ from 𝐴⊗
𝑄 to 𝐵 ⊗𝑄 and any unitary 𝑧𝑗(𝑗 =  1, 2, 3, 4), the map 𝐵𝑜𝑡𝑡(ℎ, 𝑧𝑗) and 𝐵𝑜𝑡𝑡(ℎ, 𝑤𝑗) are 

well defined on the subgroup generated by 𝒫 and 

𝐵𝑜𝑡𝑡(ℎ, 𝑧𝑗) = 𝐵𝑜𝑡𝑡(ℎ, 𝑧1) + ⋯+ 𝐵𝑜𝑡𝑡(ℎ, 𝑧𝑗) 

on the subgroup generated by 𝒫, if ‖[ℎ(𝑥), 𝑧𝑗]‖ < 𝛿 for any 𝑥 ∈ ℋ, where 𝑤𝑗 =

𝑧1, … , 𝑧𝑗 , 𝑗 =  1, 2, 3, 4. 

   By choosing larger ℋ and smaller 𝛿, one may also assume that 

       ‖ℎ(𝑝𝑖), 𝑧𝑗‖ <
1

16
  𝑎𝑛𝑑  ‖ℎ(𝑞𝑖), 𝑧𝑗‖ <

1

16
,   1 ≤ 𝑖 ≤ 𝑚, 𝑗 = 1,2,3,4,             (53) 

and for any 1 ≤  𝑖 ≤  𝑚, 

                                           𝑑𝑖𝑠𝑡 (𝜁𝑖,𝑧1
𝑀 ,∏(𝜁𝑖,𝑧1

′ )
𝑀𝑟𝑖,𝑗

𝑘

𝑗=1

) < 𝛾/8,                                  (54) 

where 

𝜁𝑖,,𝑧1 = 〈(1𝑛 − ℎ(𝑝𝑖) + ℎ(𝑝𝑖))𝑧1)(1𝑛 − ℎ(𝑝𝑖) + ℎ(𝑝𝑖))𝑧1
∗)〉, 

and 

𝜁𝑖,𝑧1
′

= 〈(1𝑛 − ℎ(𝑝𝑗
′ ⊗1𝐴⨂𝑄) + ℎ(𝑝𝑗

′ ⊗1𝐴⨂𝑄))𝑧1)(1𝑛 − ℎ(𝑞𝑗
′ ⊗1𝐴⨂𝑄) + ℎ(𝑞𝑗

′ ⊗1𝐴⨂𝑄))𝑧1
∗)〉. 

 

    By choosing even smaller 𝛿, without loss of generality, we may assume that 

 

ℋ = ℋ0⊗ℋ𝑝⊗ℋ𝑞 , 
where ℋ0 ⊂ 𝐴, ℋ𝑝 ⊂ 𝑀𝑝 and ℋ𝑞 ⊂ 𝑀𝑞 are finite subsets, and 1 ∈ ℋ0, 1 ∈ ℋ𝑝 and 1 ∈

ℋ𝑞. 

    Moreover, choose ℋ0, ℋ𝑝 and ℋ𝑞 even larger and 𝛿 even smaller so that for any 

homomorphism ℎ𝑟: 𝐴 ⊗𝑀𝑟 → 𝐵⊗𝑀𝑟 and unitaries 𝑧1, 𝑧2 ∈ 𝐵 ⊗𝑀𝑟 with ‖ℎ𝑟(𝑥), 𝑧𝑖‖ <
𝛿 for any 𝑥 ∈ ℋ0⊗ℋ𝑟, one has 



34 
 

       ‖ℎ𝑟(𝑝𝑖,𝑟
′ ), 𝑧𝑗‖ <

1

16
  𝑎𝑛𝑑  ‖ℎ𝑟(𝑞𝑖,𝑟

′ ), 𝑧𝑗‖ <
1

16
,   1 ≤ 𝑖 ≤ 𝑘, 𝑗 = 1,2,            (55) 

and 

𝑑𝑖𝑠𝑡 (𝜁𝑖,𝑧1,𝑧2 , (1𝐵⊗𝑀𝑟)𝑛)
< 𝑑𝑖𝑠𝑡(𝜁𝑖,𝑧1∗ , 𝜁𝑖,𝑧2) + 𝛾/(32(1 +∑|𝑀𝑟𝑖′,𝑗|

 

𝑖′,𝑗

)), 

where 

𝜁𝑖,,𝑧′ = 〈(1𝑛 − ℎ𝑟(𝑝𝑖,𝑟
′ ) + ℎ𝑟(𝑝𝑖,𝑟

′ ))𝑧′)(1𝑛 − ℎ𝑟(𝑞𝑖,𝑟
′ ) + ℎ(𝑞𝑖,𝑟

′ ))(𝑧′)∗)〉, 𝑧′ = 𝑧1𝑧2, 𝑧1
∗, 𝑧2. 

   Denote by 𝐶′ = 𝑃′𝑀𝑛(𝐶(�̃�))𝑃′, 𝑙: 𝐶′ → 𝐴⊗𝑄, 𝛿2 (in the place of 𝛿) the constant, 𝐺 ⊆
𝐾1(𝐶(�̃�)) (in the place of 𝑄) the finite subset with respect to 𝐴 ⊗  𝑄 (in the place of 𝐶), 

𝐵 ⊗𝑄 (in the place of 𝐴), 𝜙⊗ 𝑖𝑑𝑄 (in the place of ℎ), 𝛿/4 (in the place of 𝜖), ℋ (in the 

place of ℱ) and 𝒫. Note that �̃� is a finite 𝐶𝑊-complex. 

   Let ℋ′ ⊆ 𝐴⊗𝑄 be a finite subset and assume that 𝛿2 is small enough such that for any 

homomorphism h from 𝐴⊗𝑄 to 𝐵 ⊗𝑄 and any unitary 𝑧𝑗(𝑗 = 1, 2, 3, 4), the map 

𝐵𝑜𝑡𝑡(ℎ, 𝑧𝑗) and 𝐵𝑜𝑡𝑡(ℎ, 𝑤𝑗) is well defined on the subgroup [𝑙](𝐾(𝐶′)) and 

𝐵𝑜𝑡𝑡(ℎ,𝑤𝑗) = 𝐵𝑜𝑡𝑡(ℎ, 𝑧1) + ⋯+ 𝐵𝑜𝑡𝑡(ℎ, 𝑧𝑗) 

on the subgroup [𝑙](𝐾(𝐶′)), if ‖[ℎ(𝑥), 𝑧𝑗]‖ < 𝛿2 for any 𝑥 ∈ 𝐻′, where 𝑤𝑗 = 𝑧1, 𝑧𝑗 , 𝑗 =

1, 2, 3, 4. Furthermore, as above, one may assume, without loss of generality, that 

ℋ′ = ℋ0′⊗ℋ𝑝′⊗ℋ𝑞′, 
where ℋ0 ⊆ ℋ0′ ⊂ 𝐴,ℋ𝑝 ⊆ ℋ𝑝′ ∈ 𝑀𝑞 and ℋ𝑞 ⊆ ℋ𝑞′ ⊂ 𝑀𝑞 are finite subsets. 

    Let 𝛿2
′ > 0 be a constant such that for any unitary with ‖𝑢 − 1‖ < 𝛿2

′ , one has that 

‖𝑙𝑜𝑔 𝑢‖ < 𝛿2/4. Without loss of generality, one may assume that 𝛿2
′ < 𝛿2/4 < 𝜖/4 and 

𝛿2
′ < 𝛿. 

  Let 𝐶𝑟
′: = 𝑃𝑟𝑀𝑛𝐶(𝑋𝑟

′)𝑃𝑟 (in the place of 𝐶′), 𝑙𝑟
′ : 𝐶𝑟 → 𝐴⊗𝑀𝑟 (in the place of 𝑙), 𝑅𝑟 ⊂

𝐾1(𝐶𝑟
′)) (in the place of 𝑄) and 𝛿𝑟 (in the place of 𝛿) be the finite subset and constant with 

respect to 𝐴⊗𝑀𝑟 (in the place of 𝐶), 𝐵⊗𝑀𝑟 (in the place of 𝐴), 𝜙⊗ 𝑖𝑑𝑀𝑟 (in the place 

of ℎ), ℋ0′⊗ ℋ𝑟′ (in place of ℱ) and (𝑙𝑟)∗0(𝒫0
′) ∪ (𝑙𝑟)∗1(𝒫1

′) (in the place of 𝒫) and 

𝛿2
′/8 (in place of 𝜖) (𝑟 = 𝑝 or 𝑟 = 𝑞). Note that 𝑋𝑟

′  is a finite 𝐶𝑊-complex with 𝐾1(𝐶1
′)  =

ℤ𝑘𝑟  ⊕ 𝑇𝑜𝑟(𝐾1(𝐶𝑟
′)). Let 𝑅𝑟

(𝑖)
= (𝑙𝑟

′ )∗𝑖(𝐾𝑖(𝐶𝑟
′)), 𝑖 = 0, 1. There is a finitely generated 

subgroup 𝐺𝑖,0,𝑟 ⊂ 𝐾𝑖(𝐴) and a finitely generated subgroup 𝐷0,𝑟 ⊆ ℚ𝑟 so that 

𝐺𝑖,0,𝑟
′ ≔ 𝐺({𝑔𝑟: 𝑔 ∈ (𝑙𝑟)∗𝑖(𝐺𝑖,0,𝑟) 𝑎𝑛𝑑 𝑟 ∈ 𝐷0,𝑟}) 

contains the subgroup 𝑅𝑟
(𝑖)
, 𝑖 = 0, 1. Without loss of generality, one may assume that 

𝐷0,𝑝 = { 
𝑘

𝑚𝑝
; 𝑘 ∈ 𝑍} and 𝐷0,𝑞 = { 

𝑘

𝑚𝑞
; 𝑘 ∈ 𝑍} for an integer 𝑚𝑝 divides 𝑝 and an integer 

𝑚𝑞 divides 𝑞. Let 𝑅 ⊂ 𝐾(𝐴⊗𝑄) be a finite subset which generates a subgroup 

containing 
1

𝑚𝑝𝑚𝑞
((𝑙𝑝,∞)∗(𝐺0,0,𝑝

′ ∪ 𝐺1,0,𝑝
′ ) ∪ (𝑙𝑞,∞)∗(𝐺0,0,𝑞

′ ∪ 𝐺1,0,𝑞
′ )) 

in 𝐾(𝐴⊗𝑄), where 𝑙𝑟,∞ is the canonical embedding 𝐴⊗𝑀𝑟 → 𝐴⊗𝑄, 𝑟 = 𝑝, 𝑞. 

Without loss of generality, one may also assume that 𝑅 ⊇ 𝑙/1(𝒢). 𝐿𝑒𝑡 ℋ𝑟 ⊂ 𝐴⊗𝑀𝑟 be a 

finite subset and 𝛿3 > 0 such that for any homomorphism h from 𝐴⊗𝑀𝑟 to 𝐵⊗
𝑀𝑟  (𝑟 = 𝑝 𝑜𝑟 𝑟 = 𝑞) any unitary 𝑧𝑗  (𝑗 =  1, 2, 3, 4), the map 𝐵𝑜𝑡𝑡(ℎ, 𝑧𝑗) and 𝐵𝑜𝑡𝑡(ℎ, 𝑤𝑗) 

are well defined on the subgroup [𝑙𝑟
′ ](𝐾(𝐶𝑟

′)) and 
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𝐵𝑜𝑡𝑡(ℎ,𝑤𝑗) = 𝐵𝑜𝑡𝑡(ℎ, 𝑧1) + ⋯+ 𝐵𝑜𝑡𝑡(ℎ, 𝑧𝑗) 

on the subgroup generated by [𝑙𝑟
′ ](𝐾(𝐶𝑟

′)), if ‖[ℎ(𝑥), 𝑧𝑗]‖ < 𝛿3 for any 𝑥 ∈ ℋ𝑟, where 

𝑤𝑗 = 𝑧1, … , 𝑧𝑗  , 𝑗 = 1, 2, 3, 4. Without loss of generality, we assume that ℋ0⊗ℋ𝑝 ⊂ ℋ𝑝 

and ℋ0⊗ℋ𝑞 ⊂ ℋ𝑞. Furthermore, we may also assume that 

ℋ𝑟 = ℋ0,0⊗ℋ0,𝑟 

for some finite subsets ℋ0,0 and ℋ0,𝑟 with ℋ0′ ⊂ ℋ0,0 ⊂  𝐴,ℋ
𝑝′ ⊂ ℋ0,𝑝 ⊂

𝑀𝑝 𝑎𝑛𝑑 ℋ
𝑞′ ⊂ ℋ0,𝑞. In addition, we may also assume that 𝛿3 < 𝛿2/2. 

   Furthermore, one may assume that 𝛿3 is sufficiently small such that, for any unitaries 

𝑧1, 𝑧2, 𝑧3 in a 𝐶∗-algebra with tracial states, 𝜏 ( 
1

2𝜋𝑖
 𝑙𝑜𝑔(𝑧𝑖𝑧𝑗

∗)) (𝑖, 𝑗 =  1, 2, 3) is well 

defined and 

𝜏 ( 
1

2𝜋𝑖
 𝑙𝑜𝑔(𝑧1𝑧2

∗)) = 𝜏 ( 
1

2𝜋𝑖
 𝑙𝑜𝑔(𝑧1𝑧3

∗)) + 𝜏 ( 
1

2𝜋𝑖
 𝑙𝑜𝑔(𝑧3𝑧2

∗)) 

for any tracial state 𝜏 , whenever ‖𝑧1 − 𝑧3‖ < 𝛿3 and ‖𝑧2 − 𝑧3‖ < 𝛿3. 

   To simply notation, we also assume that, for any unitary 𝑧𝑗 , (𝑗 =  1, 2, 3, 4) the map 

𝐵𝑜𝑡𝑡(ℎ, 𝑧𝑗) and 𝐵𝑜𝑡𝑡(ℎ, 𝑤𝑗) are well defined on the subgroup generated by ℛ and 

𝐵𝑜𝑡𝑡(ℎ,𝑤𝑗) = 𝐵𝑜𝑡𝑡(ℎ, 𝑧1) + ⋯+ 𝐵𝑜𝑡𝑡(ℎ, 𝑧𝑗) 

on the subgroup generated by ℛ, if ‖[ℎ(𝑥), 𝑧𝑗]‖ < 𝛿3 for any 𝑥 ∈ ℋ′′, where 𝑤𝑗 =

𝑧1, … , 𝑧𝑗  , 𝑗 = 1, 2, . . . , 4, and assume that 

ℋ′′ = ℋ0,0⊗ℋ0,𝑝⊗ℋ0,𝑞 . 

   Let 𝑅𝑖 = 𝑅 ∩ 𝐾𝑖(𝐴⊗ 𝑄). There is a finitely generated subgroup 𝐺𝑖,0 of 𝐾𝑖(𝐴) and there 

is a finite subset 𝐷0
′ ⊂ ℚ such that 

𝐺𝑖,∞ ≔ 𝐺({𝑔𝑟: 𝑔 ∈ (𝑙𝑟)∗𝑖(𝐺𝑖,0) 𝑎𝑛𝑑 𝑟 ∈ 𝐷0
′}) 

contains the subgroup generated by 𝑅𝑖 , 𝑖 = 0, 1. Without loss of generality, we may 

assume that 𝐺𝑖,∞ is the subgroup generated by 𝑅𝑖. Note that we may also assume that 

𝐺𝑖,0 ⊃ 𝐺(𝒫)𝑖,0 and 1 ∈ 𝐷0
′ ⊃ 𝐷0. Moreover, we may assume that, if 𝑟 = 𝑘/𝑚, where 𝑚, 𝑘 

are relatively prime non-zero integers, and 𝑟 ∈ 𝐷0
′ , then 1/𝑚 ∈ 𝐷0

′  . We may also assume 

that 𝐺𝑖,0,𝑟 ⊆ 𝐺𝑖,0 for 𝑟 = 𝑝, 𝑞 and 𝑖 = 0,1. Let 𝑅𝑖
′
⊂ 𝐾𝑖(𝐴) be a finite subset which 

generates 𝐺𝑖,0, 𝑖 = 0,1. Choose a finite subset 𝑈 ⊂ 𝑈𝑛(𝐴) for some 𝑛 such that for any 

element of 𝑅1
′
, there is a representative in 𝑈. Let 𝑆 be a finite subset of 𝐴 such that if 

(𝑧𝑖,𝑗) ∈ 𝑈, then 𝑧𝑖,𝑗 ∈  𝑆. 

   Denote by 𝛿4 and 𝑄𝑟 ⊂ 𝐾1(𝐴⊗𝑀𝑟) ≅  𝐾1(𝐴)⊗ 𝑄𝑟the constant and finite subset of 

Lemma (1.2.15) corresponding to ℰ𝑟 ∪ℋ𝑟⊗1∪ 𝑙𝑟(𝑆) (in the place of ℱ), 𝑙𝑟(𝒰) (in the 

place of 𝒫) and 
1

𝑛2
𝑚𝑖𝑛{𝛿2

′/8, 𝛿3/4} (in the place of 𝜖) (𝑟 = 𝑝 𝑜𝑟 𝑟 = 𝑞). We may assume 

that 𝑄𝑟 = {𝑥 ⊗ 𝑟: 𝑥 ∈ 𝑄′ 𝑎𝑛𝑑 𝑟 ∈ 𝐷𝑟
′′}, where 𝑄′ ⊂ 𝐾1(𝐴) is a finite subset and 𝐷𝑟

′′ ⊂ ℚ𝑟 
is also a finite subset. Let 𝐾 = 𝑚𝑎𝑥{|𝑟|: 𝑟 ∈ 𝐷𝑝

′′ ∪ 𝐷𝑞
′′}. Since [𝜙]  =  [𝜓] in 𝐾𝐿(𝐴, 𝐵), 

𝜙# = 𝜓# and 𝜙‡ = 𝜓‡ , by Lemma (1.2.10), �̅�𝜙,𝜓(𝐾1(𝐴)) ⊆ 𝜌𝐵(𝐾0(𝐵))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ⊂ 𝐴𝑓𝑓(𝑇(𝐵)). 

Therefore, there is a map 𝜂 ∶  𝐺(𝑄′)  → 
𝜌𝐵(𝐾0(𝐵))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ⊂  𝐴𝑓𝑓(𝑇(𝐵)) such that 

     (𝜂 − �̅�𝜙,𝜓)([𝑧]) ∈ 𝜌𝐵(𝐾0(𝐵))   𝑎𝑛𝑑  ‖𝜂(𝑧)‖ <
𝛿4
1 + 𝐾

 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑧 ∈ 𝑄′         (56) 
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   Consider the map 𝜙𝑟 = 𝜙⊗ 𝑖𝑑𝑀𝑟 and 𝜓𝑟 = 𝜓⊗ 𝑖𝑑𝑀𝑟 (𝑟 = 𝑝 𝑜𝑟 𝑟 = 𝑞). Since 𝜂 

vanishes on the torsion part of 𝐺(𝑄′), there is a homomorphism 𝜂𝑟: 𝐺((𝑙𝑟)∗1(𝑄′))  →
𝜌𝐵⊗𝑀𝑟(𝐾0(𝐵 ⊗𝑀𝑟))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  ⊂ 𝐴𝑓𝑓(𝑇(𝐵 ⊗𝑀𝑟)) such that 

                                                 𝜂𝑟 ∘ (𝑙𝑟)∗1 = 𝜂.                                                                 (57) 
Since 𝜌𝐵⊗𝑀𝑟(𝐾0(𝐵 ⊗𝑀𝑟))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = ℝ𝜌𝐵(𝐾0(𝐵))

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is divisible, one can extend 𝜂𝑟 so it defines on 

𝐾1(𝐴)⊗ℚ𝑟. We will continue to use 𝜂𝑟 for the extension. It follows from (50) that 

𝜂𝑟(𝑧) − �̅�𝜙,𝜓(𝑧) ∈ 𝜌𝐵⊗𝑀𝑟(𝐾0(𝐵 ⊗𝑀𝑟)) and ‖𝜂𝑟(𝑧)‖ < 𝛿4 for all 𝑧 ∈ 𝑄𝑟. By Lemma 

1.2.17, there exists a unitary 𝑢𝑝 ∈ 𝐵⊗𝑀𝑝 such that  

‖𝑢𝑝
∗ (𝜙 ⊗ 𝑖𝑑𝑀𝑝) (𝑧)𝑢𝑝 − (𝜓⊗ 𝑖𝑑𝑀𝑝) (𝑧)‖ <

1

𝑛2
min
 
{𝛿2
′/8, 𝛿3/4} , ∀𝑐

∈ ℰ𝑝 ∪ℋ𝑝 ∪ 𝑙𝑝(𝑆).                                                                            (58) 
Note that 

‖𝑢𝑝
∗ (𝜙 ⊗ 𝑖𝑑𝑀𝑝) (𝑧)𝑢𝑝 − (𝜓⊗ 𝑖𝑑𝑀𝑝) (𝑧)‖ < 𝛿3   𝑓𝑜𝑟 𝑎𝑛𝑦 𝑧 ∈ 𝒰. 

Therefore 𝜏( 
1

2𝜋𝑖
 𝑙𝑜𝑔(𝑢𝑝

∗ (𝜙⊗ 𝑖𝑑𝑝)(𝑧)𝑢𝑝(𝜓⊗ 𝑖𝑑𝑝)(𝑧))) = 𝜂𝑝([𝑧
∗])(𝜏) for all 𝑧 ∈ 𝑙𝑝(𝑈), 

where we identify 𝜙 and 𝜓 with 𝜙⊗ 𝑖𝑑𝑀𝑛 and 𝜓⊗ 𝑖𝑑𝑀𝑛 , and up with 𝑢𝑝⊗

 1𝑀𝑛 , respectively. 

   The same argument shows that there is a unitary 𝑢𝑞 ∈ 𝐵 ⊗𝑀𝑞 such that 

 

‖𝑢𝑞
∗ (𝜙 ⊗ 𝑖𝑑𝑀𝑞) (𝑧)𝑢𝑞 − (𝜓⊗ 𝑖𝑑𝑀𝑞) (𝑧)‖ <

1

𝑛2
min
 
{𝛿2
′/8, 𝛿3/4} , ∀𝑐

∈ ℰ𝑞 ∪ℋ𝑞 ∪ 𝑙𝑞(𝑆).                                                                              (59) 

and 𝜏( 
1

2𝜋𝑖
 𝑙𝑜𝑔(𝑢𝑞

∗(𝜙⊗ 𝑖𝑑𝑞)(𝑧)𝑢𝑞(𝜓⊗ 𝑖𝑑𝑞)(𝑧))) = 𝜂𝑞([𝑧
∗])(𝜏) for all 𝑧 ∈ 𝑙𝑞(𝑈), 

where we identify 𝜙 and 𝜓 with 𝜙⊗ 𝑖𝑑𝑀𝑛  and 𝜓⊗ 𝑖𝑑𝑀𝑛 , and uq with 𝑢𝑞⊗ 1𝑀𝑛 , 

respectively. We will also identify 𝑢𝑝 with 𝑢𝑝⊗ 1𝑀𝑞  and 𝑢𝑞 with 𝑢𝑞⊗ 1𝑀𝑞 

respectively. Then 𝑢𝑝𝑢𝑞
∗ ∈ 𝐴⊗𝑄 and one estimates that for any 𝑐 ∈ ℋ00⊗ℋ0,𝑝⊗ℋ𝑞, 

             ‖𝑢𝑞𝑢𝑝
∗(𝜙⊗ 1𝑄(𝑐))(𝑧)𝑢𝑝𝑢𝑞

∗ − (𝜙⊗ 1𝑄)(𝑐)‖ < 𝛿3,                                (60) 

and hence 𝐵𝑜𝑡𝑡(𝜙 ⊗ 𝑖𝑑𝑄, 𝑢𝑝𝑢𝑞
∗ )(𝑧) is well defined on the subgroup generated by 𝑅. 

Moreover, for any 𝑧 ∈  𝑈, by the Exel formula by applying (83), 

𝜏(𝑏𝑜𝑡𝑡1(𝜙 ⊗ 𝑖𝑑𝑄, 𝑢𝑝𝑢𝑞
∗ )(𝑙∞)∗1([𝑧]))                                                                        (61)  

= 𝜏 (𝑏𝑜𝑡𝑡1(𝜙 ⊗ 𝑖𝑑𝑄, 𝑢𝑝𝑢𝑞
∗)(𝑙∞(𝑧)))                                                (62)

= 𝜏 ( 
1

2𝜋𝑖
 𝑙𝑜𝑔(𝑢𝑝𝑢𝑞

∗(𝜙⊗ 𝑖𝑑𝑞)(𝑙∞(𝑧))𝑢𝑞𝑢𝑝
∗(𝜓

⊗ 𝑖𝑑𝑞)(𝑙∞(𝑧))
∗
))                                                                                 (63)

= 𝜏 ( 
1

2𝜋𝑖
 𝑙𝑜𝑔 (𝑢𝑞

∗(𝜙⊗ 𝑖𝑑𝑞)(𝑙∞(𝑧))𝑢𝑞(𝜓⊗ 𝑖𝑑𝑞)(𝑙∞(𝑧
∗)))) (64)

− 𝜏 ( 
1

2𝜋𝑖
 𝑙𝑜𝑔 (𝑢𝑝

∗(𝜙 ⊗ 𝑖𝑑𝑞)(𝑙∞(𝑧))𝑢𝑝(𝜓⊗ 𝑖𝑑𝑞)(𝑙∞(𝑧
∗)))) (65)

= 𝜂𝑞 ((𝑙𝑞)∗1
([𝑧])) (𝜏) − 𝜂𝑝 ((𝑙𝑝)∗1

([𝑧])) (𝜏)                                (66)

= 𝜂([𝑧])(𝜏) − 𝜂([𝑧])(𝜏) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜏 ∈ 𝑇(𝐵),                           (67) 
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where we identify 𝜙 and 𝜓 with 𝜙⊗ 𝑖𝑑𝑀𝑛 and 𝜓⊗ 𝑖𝑑𝑀𝑛 , and 𝑢𝑝 and 𝑢𝑞 with 𝑢𝑝⊗

1𝑀𝑛  and 𝑢𝑞  with 𝑢𝑞⊗1𝑀𝑛 , respectively. 

      Now suppose that 𝑔 ∈ 𝐺1,∞. Then 𝑔 = (𝑘/𝑚)(𝑙∞)∗1([𝑧]) for some 𝑧 ∈ 𝑈, where 𝑘,𝑚 

are non-zero integers. It follows that 

   𝜏(𝑏𝑜𝑡𝑡1(𝜙 ⊗ 𝑖𝑑𝑄, 𝑢𝑝𝑢𝑞
∗ )(𝑚𝑔)) = 𝑘𝜏(𝑏𝑜𝑡𝑡1(𝜙⊗ 𝑖𝑑𝑄, 𝑢𝑝𝑢𝑞

∗ )([𝑧])) = 0       (68) 

for all 𝜏 ∈  𝑇(𝐵). Since 𝐴𝑓𝑓(𝑇(𝐵)) is torsion free, it follows that 

                                  𝜏(𝑏𝑜𝑡𝑡1(𝜙 ⊗ 𝑖𝑑𝑄, 𝑢𝑝𝑢𝑞
∗ )(𝑔)) = 0                                             (69) 

for all 𝑔 ∈ 𝐺1,∞ and 𝜏 ∈ 𝑇(𝐵). Therefore, the image of 𝑅1 under 𝑏𝑜𝑡𝑡1(𝜙 ⊗ 𝑖𝑑𝑄, 𝑢𝑝𝑢𝑞
∗ ) is 

in 𝑘𝑒𝑟 𝜌𝐵⊗𝑄. One may write 

𝐺1,0 = ℤ
𝑟⨁ℤ/𝑝1ℤ⨁… ⨁ℤ/𝑝𝑠ℤ. 

where 𝑟 is a non-negative integer and 𝑝1, . . . , 𝑝𝑠 are powers of primes numbers. Since 𝑝 

and 𝑞 are relatively prime, one then has the decomposition 

 

𝐺1,0 = ℤ
𝑟⨁𝑇𝑜𝑟𝑝(𝐺1,0)⨁𝑇𝑜𝑟𝑞(𝐺1,0) ⊆ 𝐾1(𝐴), 

where 𝑇𝑜𝑟𝑝(𝐺1,0) consists of the torsion-elements with their orders divide 𝑝 and 

𝑇𝑜𝑟𝑞(𝐺1,0) consists of the torsion-elements with their orders divide 𝑞. Fix this 

decomposition. Note that the restriction of (𝑙𝑝)∗1 𝑡𝑜 ℤ
𝑟⊕𝑇𝑜𝑟𝑞(𝐺1,0) is injective and the 

restriction to 𝑇𝑜𝑟𝑝(𝐺1,0) is zero, and the restriction of (𝑙𝑞)∗1 𝑡𝑜 ℤ
𝑟⊕𝑇𝑜𝑟𝑝(𝐺1,0) is 

injective and the restriction to 𝑇𝑜𝑟𝑞(𝐺1,0) is zero.                               
    Moreover, using the assumption that p and q are relatively prime again, for any element 

𝑘 ∈ (𝑙𝑞)∗1 𝑡𝑜 ℤ
𝑟⊕𝑇𝑜𝑟𝑝(𝐺1,0) and any nonzero integer 𝑞 which divides 𝑞, the element 

𝑘

𝑞
 

is well defined in 𝐾1(𝐴 ⊗ 𝑀𝑞); that is, there is a unique element 𝑠 ∈ 𝐾1(𝐴 ⊗ 𝑀𝑞) such 

that 𝑞𝑠 =  𝑘. 
    Denote by 𝑒1, . . . , 𝑒𝑟 the standard generators of ℤ𝑟. It is also clear that 

(𝑙∞)∗1 (𝑇𝑜𝑟𝑝(𝐺1,0)) = (𝑙∞)∗1 (𝑇𝑜𝑟𝑝(𝐺1,0)) 

   Recall that 𝐷0,𝑝 = {𝑘/𝑚𝑝; 𝑘 ∈ ℤ}  ⊂ ℚ𝑝 and 𝐷0,𝑞 = {𝑘/𝑚𝑞; 𝑘 ∈ ℤ}  ⊂ ℚ𝑞𝑞𝑝 for an 

integer 𝑚𝑝 dividing 𝑝 and an integer 𝑚𝑞 dividing 𝑞. Put 𝑚∞  =  𝑚𝑝𝑚𝑞 . 

   Consider  
1

𝑚∞
ℤ𝑟 ∈ 𝐾1(𝐴⊗ 𝑄), and for each 𝑒𝑖 , 1 ≤  𝑖 ≤  𝑟, consider 

1

𝑚∞
𝑏𝑜𝑡𝑡1(𝜙⊗ 𝑖𝑑𝑄, 𝑢𝑝𝑢𝑞

∗)((𝑙∞)∗1(𝑒𝑖)) ∈ ker 𝜌𝐵⊗𝑄. 

Since 𝑘𝑒𝑟 𝜌𝐵⊗𝑄 ≅ (𝑘𝑒𝑟 𝜌𝐵) ⊗ℚ, ker 𝑘𝑒𝑟 𝜌𝐵⊗𝑀𝑝 ≅ (𝑘𝑒𝑟 𝜌𝐵) ⊗ ℚ𝑝, and 𝑘𝑒𝑟 𝜌𝐵⊗𝑀𝑞 ≅

(𝑘𝑒𝑟 𝜌𝐵) ⊗ℚ𝑞, there are 𝑔𝑖,𝑝 ∈ 𝑘𝑒𝑟  𝜌𝐵⊗𝑀𝑝  and 𝑔𝑖,𝑞 ∈ 𝑘𝑒𝑟  𝜌𝐵⊗𝑀𝑞  such that 

𝑏𝑜𝑡𝑡1(𝜙⊗ 𝑖𝑑𝑄, 𝑢𝑝𝑢𝑞
∗) (

1

𝑚∞
(𝑙∞)∗1(𝑒𝑖)) = (𝑗𝑝)∗0(𝑔𝑖,𝑝) + (𝑗𝑞)∗0(𝑔𝑖,𝑞), 

where 𝑔𝑖,𝑝 and 𝑔𝑖,𝑞 are identified as their images in 𝐾0(𝐴⊗ 𝑄).             

   Note that the subgroup (𝑙𝑝)∗1(𝐺1,0) 𝑖𝑛 𝐾0(𝐴⊗𝑀𝑝) is isomorphic to ℤ𝑟⊕𝑇𝑜𝑟𝑞 and 
1

𝑚𝑞
(ℤ𝑟⊕𝑇𝑜𝑟𝑞) is well defined in 𝐾0(𝐴⊗𝑀𝑝), and the subgroup (𝑙𝑞)∗1(𝐺1,0) in 𝐾0(𝐵 ⊗

𝑀𝑝) is isomorphic to ℤ𝑟⊕𝑇𝑜𝑟𝑝 and 
1

𝑚𝑞
(ℤ𝑟⊕𝑇𝑜𝑟𝑝)  is well defined in 𝐾0(𝐴⊗𝑀𝑞). 
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One then defines the maps 𝜃𝑝 : 
1

𝑚𝑝
 (𝑙𝑝)∗1(𝐺1,0) → 𝑘𝑒𝑟 𝜌𝐵⊗𝑀𝑝  and 𝜃𝑞 : 

1

𝑚𝑞
 (𝑙𝑞)∗1(𝐺1,0) →

𝑘𝑒𝑟 𝜌𝐵⊗𝑀𝑞  by 

𝜃𝑝  (
1

𝑚𝑝
 (𝑙𝑝)∗1(𝑒𝑖)) = 𝑚𝑞𝑔𝑖,𝑝  𝑎𝑛𝑑  𝜃𝑞  (

1

𝑚𝑞
 (𝑙𝑞)∗1(𝑒𝑖)) = 𝑚𝑝𝑔𝑖,𝑞 

for 1 ≤  𝑖 ≤  𝑟 and 

 

𝜃𝑝|𝑇𝑜𝑟((𝑙𝑝)∗1(𝐺1,0)) = 0  𝑎𝑛𝑑  𝜃𝑞|𝑇𝑜𝑟((𝑙𝑞)∗1(𝐺1,0)) = 0. 

 

Then, for each 𝑒𝑖, one has 

 

(𝑗𝑝)∗0 ∘ 𝜃𝑝 ∘ (𝑙𝑝)∗1
(𝑒𝑖) + (𝑗𝑞)∗0 ∘ 𝜃𝑞 ∘ (𝑙𝑞)∗1

(𝑒𝑖)

= 𝑚𝑝 (
1

𝑚𝑝
(𝑗𝑝)∗0 ∘ 𝜃𝑝 ∘ (𝑙𝑝)∗1

(𝑒𝑖)) +𝑚𝑞 (
1

𝑚𝑞
(𝑗𝑞)∗0 ∘ 𝜃𝑞 ∘ (𝑙𝑞)∗1

(𝑒𝑖))

= 𝑚𝑝𝑚𝑞 ((𝑗𝑝)∗0(𝑔𝑖,𝑝) + (𝑗𝑞)∗0(𝑔𝑖,𝑞))

= 𝑚∞𝑏𝑜𝑡𝑡1(𝜙⊗ 𝑖𝑑𝑄, 𝑢𝑝𝑢𝑞
∗) ∘ ((𝑙∞)∗1(𝑒𝑖/𝑚∞))

= 𝑏𝑜𝑡𝑡1(𝜙 ⊗ 𝑖𝑑𝑄, 𝑢𝑝𝑢𝑞
∗) ∘ ((𝑙∞)∗1(𝑒𝑖)). 

Since the restriction of 𝜃𝑝 ∘ (𝑙𝑝)∗1, 𝜃𝑞 ∘ (𝑙𝑞)∗1 and 𝑏𝑜𝑡𝑡1(𝜙 ⊗ 𝑖𝑑𝑄 , 𝑢𝑝𝑢𝑞
∗) ∘ ((𝑙∞)∗1) to 

the torsion part of 𝐺1,0 is zero, one has 

𝑏𝑜𝑡𝑡1(𝜙 ⊗ 𝑖𝑑𝑄, 𝑢𝑝𝑢𝑞
∗) ∘ ((𝑙∞)∗1) = (𝑗𝑝)∗1 ∘ 𝛼𝑝 ∘ (𝑙𝑝)∗0 + (𝑗𝑞)∗1 ∘ 𝛼𝑞 ∘ (𝑙𝑞)∗0. 

    The same argument shows that there also exist maps 𝛼𝑝 ∶  
1

𝑚𝑝
((𝑙𝑝)∗1(𝐺0,0))  →

 𝐾1(𝐵 ⊗𝑀𝑝) and 𝛼𝑞 ∶  
1

𝑚𝑞
((𝑙𝑞)∗1(𝐺0,0))  →  𝐾1(𝐵 ⊗𝑀𝑞) such that 

𝑏𝑜𝑡𝑡0(𝜙⊗ 𝑖𝑑𝑄, 𝑢𝑝𝑢𝑞
∗) ∘ ((𝑙∞)∗0) = (𝑗𝑝)∗1 ∘ 𝛼𝑝 ∘ (𝑙𝑝)∗0 + (𝑗𝑞)∗1 ∘ 𝛼𝑞 ∘ (𝑙𝑞)∗0. 

On 𝐺0,0. 

        Note that 𝐺𝑖,0,𝑟 ⊆ 𝐺𝑖,0, 𝑖 = 0, 1, 𝑟 = 𝑝, 𝑞. In particular, one has that (𝑙𝑟)∗𝑖  (𝐺𝑖,0,𝑟) ⊆

(𝑙𝑟)∗𝑖  (𝐺𝑖,0), and therefore 𝐺1,0,𝑝
′ ⊆

1

𝑚𝑝
(𝑙𝑝)∗𝑖  (𝐺1,0) and 𝐺1,0,𝑞

′ ⊆
1

𝑚𝑞
(𝑙𝑞)∗𝑖  (𝐺1,0). Then 

the maps 𝜃𝑝 and 𝜃𝑞 can be restricted to 𝐺1,0,𝑝
′  and 𝐺1,0,𝑞

′  respectively. Since the group 𝐺𝑖,0,𝑟
′  

contains (𝑙𝑟
′ )∗𝑖(𝐾𝑖(𝐶𝑟

′)), the maps 𝜃𝑝 and 𝜃𝑞 can be restricted further to (𝑙𝑝
′ )
∗1
(𝐾1(𝐶𝑝

′)) 

and (𝑙𝑞
′ )
∗1
(𝐾1(𝐶𝑞

′)) respectively. 

      For the same reason, the maps 𝛼𝑝 and 𝛼𝑞 can be restricted to (𝑙𝑝
′ )
∗0
(𝐾0(𝐶𝑝

′)) and 

(𝑙𝑞
′ )
∗0
(𝐾0(𝐶𝑞

′)) respectively. We keep the same notation for the restrictions of these maps 

𝛼𝑝, 𝛼𝑞, 𝜃𝑝, and 𝜃𝑞 . 

     By the universal multi-coefficient theorem, there is 𝑘𝑝 ∈  𝐻𝑜𝑚𝛬(𝐾(𝐶𝑝
′ ⊗

 𝐶(𝕋)),𝐾(𝐵⊗𝑀𝑝)) such that 

𝑘𝑝|𝛽(𝐾1(𝐶𝑝′))
= −𝜃𝑝 ∘ (𝑙𝑝

′ )
∗1
∘ 𝛽−1 𝑎𝑛𝑑  𝑘𝑝|𝛽(𝐾1(𝐶𝑝′))

= −𝛼𝑝 ∘ (𝑙𝑝
′ )
∗0
∘ 𝛽−1. 

Similarly, there exists 𝑘𝑞 ∈  𝐻𝑜𝑚𝛬(𝐾(𝐶𝑞
′ ⊗  𝐶(𝕋)), 𝐾(𝐵 ⊗𝑀𝑞)) such that 
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𝑘𝑞|𝛽(𝐾1(𝐶𝑞′))
= −𝜃𝑞 ∘ (𝑙𝑞

′ )
∗1
∘ 𝛽−1 𝑎𝑛𝑑  𝑘𝑞|𝛽(𝐾1(𝐶𝑞′))

= −𝛼𝑞 ∘ (𝑙𝑞
′ )
∗0
∘ 𝛽−1. 

     Note that since 𝑔𝑖,𝑟 ∈  𝑘𝑒𝑟𝜌𝐴⊗𝑀𝑟 , 𝑘𝑟(𝛽(𝐾1(𝐶𝑟
′))) ⊆ 𝑘𝑒𝑟𝜌𝐵⊗𝑀𝑟 , 𝑟 = 𝑝 𝑜𝑟 𝑟 = 𝑞. By 

Theorem (1.2.15), there exist unitaries 𝑤𝑝 ∈ 𝐵 ⊗𝑀𝑝 and 𝑤𝑞 ∈ 𝐵 ⊗𝑀𝑞 such that 

‖[𝑤𝑝, (𝜙 ⊗ 𝑖𝑑𝑀𝑝) (𝑥)]‖ < 𝛿2
′/8, ‖[𝑤𝑝, (𝜙 ⊗ 𝑖𝑑𝑀𝑞) (𝑦)]‖ < 𝛿2

′/8, 

for any 𝑥 ∈ ℋ0′⊗ℋ𝑝′ and 𝑦 ∈ ℋ0′⊗ℋ𝑞′, and 

𝐵𝑜𝑡𝑡 (𝜙 ⊗ 𝑖𝑑𝑀𝑝 , 𝑤𝑝) ∘ [𝑙𝑝
′ ] = 𝑘𝑝 ∘ 𝛽  𝑎𝑛𝑑   𝐵𝑜𝑡𝑡 (𝜙 ⊗ 𝑖𝑑𝑀𝑞 , 𝑤𝑞) ∘ [𝑙𝑞

′ ] = 𝑘𝑞 ∘ 𝛽. 

For 𝑟 =  𝑝 or 𝑟 =  𝑞 and each 1 ≤  𝑗 ≤  𝑘, define 
𝜁𝑗,𝑤𝑟𝑢𝑟

= 〈(1𝑛 − (𝜙⊗ 𝑖𝑑𝑀𝑟)(𝑝𝑗,𝑟
′ ) + ((𝜙 ⊗ 𝑖𝑑𝑀𝑟)(𝑝𝑗,𝑟

′ ))𝑤𝑟𝑢𝑟) (1𝑛 − (𝜙⊗ 𝑖𝑑𝑀𝑟)(𝑞𝑗,𝑟
′ ) + ((𝜙 ⊗ 𝑖𝑑𝑀𝑟)(𝑞𝑗,𝑟

′ )) 𝑢𝑟
∗𝑤𝑟

∗)〉. 

It is element in 𝑈(𝐵 ⊗𝑀𝔯) 𝐶𝑈(𝐵 ⊗𝑀𝔯)⁄ . 
    Define the map Γ𝔯: ℤ

𝐾 → 𝑈(𝐵⊗𝑀𝑃) 𝐶𝑈(𝐵 ⊗𝑀𝑃)⁄  by  

Γ𝔯(𝑥
′
𝑗,𝔯) = 𝜁𝑗,w𝔯,u𝔯 ,         1 ≤ 𝑗 ≤ 𝑘. 

C𝔯 (in the place of 𝐶), 𝐺(𝑥 ′1,𝔯, . . . , 𝑥
′
𝐾,𝔯) (in the place of 𝐺), 𝐵⊗𝑀𝔯 (in the place of 𝐴), and 

(𝜙 ⊗ id𝑀𝔯)|C𝔯
 (in the place of 𝜙), there is a unitary c𝔯 ∈ 𝐵 ⊗𝑀𝔯  such that 

‖c𝔯, (𝜙 ⊗ id𝑀𝔯)(𝑥)‖ < 𝛿2
′ 16     ⁄  

for any 𝑥 ∈ ℋ0′⊗ℋ𝔯′ , 

Bott(𝜙⊗ id𝑀𝔯 , c𝔯)|ι𝔯
(𝒫′) = 0, 

dist (𝜁𝑗,𝑐𝔯∗ , Γ𝔯(𝑥𝑗,𝔯)) ≤ 𝛾 (32(1 +∑|𝑀𝑟𝑖𝑗|)),   

𝑖,𝑗

  1 ≤ 𝑗 ≤ 𝑘⁄            (70) 

where  

𝜁𝑗,𝑐𝔯∗ = 〈(1𝑛 − (𝜙⊗ id𝑀𝔯) (𝑝
′
𝑗,𝔯
) + ((𝜙⊗ id𝑀𝔯) (𝑝

′
𝑗,𝔯
)) 𝑐𝔯

∗)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 

                                                 (1𝑛 − (𝜙⊗ id𝑀𝔯) (𝑞
′
𝑗,𝔯
) + ((𝜙⊗ id𝑀𝔯)(𝑞

′
𝑗,𝔯
))𝑐𝔯

∗)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

〉 

Put 𝑣𝑟 = 𝑐𝑟𝑤𝑟𝑢𝑟 . Then, by (81) and (70), for 1 ≤  𝑗 ≤ 𝑘 

dist(𝜁𝑗,𝑣𝑟 , (1𝐵⊗𝑀𝔯)𝑛
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) < dist(𝜁𝑗,𝑐𝔯∗ , 𝜁𝑗,𝑤𝑟𝑢𝑟) + 𝛾 (32(1 +∑|𝑀𝑟𝑖𝑗|)) 

𝑖,𝑗

⁄  

< 𝛾 (16(1 +∑|𝑀𝑟𝑖𝑗|)),

𝑖,𝑗

⁄                                         (71) 

where 

𝜁𝑗,𝑣𝑟 = 〈(1𝑛 − (𝜙⊗ id𝑀𝔯) (𝑝
′
𝑗,𝔯
) + ((𝜙⊗ id𝑀𝔯) (𝑝

′
𝑗,𝔯
)) 𝑣𝑟)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 

(1𝑛 − (𝜙⊗ id𝑀𝔯) (𝑞
′
𝑗,𝔯
) + ((𝜙⊗ id𝑀𝔯)(𝑞

′
𝑗,𝔯
))𝑣𝑟)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
〉. 

Recall that [𝑥′𝑗  ]  =  [𝑝′𝑗]  − [𝑞′𝑗]. Define 

𝜁𝑥′𝑗 ,𝑣𝑟 = 〈(1𝑛 − 𝜙(𝑝
′
𝑗
) ⊗ 1𝑀𝔯 + (𝜙(𝑝

′
𝑗
) ⊗ 1𝑀𝔯)𝑣𝑟)(1𝑛 − 𝜙 (𝑞

′
𝑗
)⊗ 1𝑀𝔯 + 

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 

(𝜙 (𝑞′
𝑗
)⊗ 1𝑀𝔯) 𝑣𝔯

∗)〉.
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 

one has 

dist (𝜁𝑥′𝑗,𝑣𝑟 , 𝜁𝑗,𝑣𝑟) < 𝛾 (16(1 +∑|𝑀𝑟𝑖𝑗′|)),

𝑖,𝑗′

⁄  
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and hence by (39), 

dist (𝜁𝑥′𝑗,𝑣𝑟 , (1𝐵⊗𝑀𝔯)𝑛)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) < 𝛾 (8(1 +∑|𝑀𝑟𝑖𝑗′|)).

𝑖,𝑗′

⁄  

Regard 𝜁𝑥′𝑗,𝑣𝑟as its image in 𝐵 ⊗ 𝑄, one has 

dist (𝜁𝑥′𝑗,𝑣𝑟 , (1𝐵⊗𝑄)𝑛)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) < 𝛾 (8(1 +∑|𝑀𝑟𝑖𝑗′|))

𝑖,𝑗′

⁄ , 

and hence for any 1 ≤  𝑖 ≤  𝑚, 

dist(∏(𝜁𝑥′𝑗,𝑣𝑟)
𝑀𝑟𝑖𝑗 ,

𝑘

𝑗=1

(1𝐵⊗𝑄)𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ < 𝛾 8.⁄  

One has 

dist(〈(1 − (𝜙⊗ idQ)(pi) + (𝜙 ⊗ idQ)(pi)𝑣𝑟)(1 − (𝜙⊗ idQ)(qi)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) 

+(𝜙⊗ idQ)(qi)𝑣𝔯
∗)〉M̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , (1𝐵⊗𝑄)𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ < 𝛾 4,⁄  

 

dist(〈(1 − (𝜙⊗ idQ)(pi) + (𝜙 ⊗ idQ)(pi)𝑣𝑟)(1 − (𝜙⊗ idQ)(qi)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) 

+(𝜙⊗ idQ)(qi)𝑣𝔯
∗)〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , (1𝐵⊗𝑄)𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ < 𝛾 (4𝑀) < 𝛾 4.      ⁄⁄  

In particular, 

dist(〈(1 − (𝜙⊗ idQ)(pi) + (𝜙 ⊗ idQ)(pi)𝑣𝑞𝑣𝑝
∗)(1 − (𝜙⊗ idQ)(qi)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) 

+(𝜙⊗ idQ)(qi)𝑣𝑝𝑣𝑞
∗)〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, (1𝐵⊗𝑄)𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

≤ dist(〈(1 − (𝜙⊗ idQ)(pi) + (𝜙 ⊗ idQ)(pi)𝑣𝑞)(1 − (𝜙⊗ idQ)(qi)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) 

+(𝜙⊗ idQ)(qi)𝑣𝑞
∗)〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , (1𝐵⊗𝑄)𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + dist(〈(1 − (𝜙⊗ idQ)(pi) +

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

(𝜙 ⊗ idQ)(pi)𝑣𝑝)(1 − (𝜙⊗ idQ)(qi) + (𝜙 ⊗ idQ)(qi)𝑣𝑝
∗)〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, (1𝐵⊗𝑄)𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ < 𝛾 2⁄  

That is  

dist (𝜁𝑖,𝑣𝑞𝑣𝑝∗ , 1𝑛
̅̅ ̅) < 𝛾 2⁄ ,                                                   (72) 

where 

𝜁𝑖,𝑣𝑞𝑣𝑝∗ = dist(〈(1 − (𝜙 ⊗ idQ)(pi) + (𝜙 ⊗ idQ)(pi)𝑣𝑞𝑣𝑝
∗)(1 − (𝜙⊗ idQ)(qi)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) 

+(𝜙⊗ idQ)(qi)𝑣𝑝𝑣𝑞
∗)〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

Moreover, one also has 

‖𝜓⊗ idQ(𝑥) − 𝑣𝑝
∗(𝜙⊗ idQ(𝑥))𝑣𝑝‖ < 𝛿2

′ 4⁄ ,     ∀ 𝑥 ∈ ℋ0′⊗ℋ𝑝′⊗ℋ𝑞′  and 

‖𝜓⊗ idQ(𝑥) − 𝑣𝑞
∗(𝜙⊗ idQ(𝑥))𝑣𝑞‖ < 𝛿2

′ 4⁄ ,     ∀ 𝑥 ∈ ℋ0′⊗ℋ𝑝′⊗ℋ𝑞′ 

Hence 

‖𝑣𝑝𝑣𝑞
∗, 𝜙(𝑥) ⊗ 1𝑄‖ < 𝛿2

′ 2⁄ ,     ∀ 𝑥 ∈ ℋ′ 

Thus Bott(𝜙 ⊗ idQ, 𝑣𝑝𝑣𝑞
∗)is well defined on the subgroup generated by 𝒫.  

Moreover, a direct calculation shows that 

bott(𝜙 ⊗ idQ, 𝑣𝑝𝑣𝑞
∗) ○ (ℓ∞)∗1(𝑧) 

= bott1(𝜙⊗ idQ, 𝒸𝑝) ○ (ℓ∞)∗1(𝑧) + bott1(𝜙 ⊗ idQ, 𝑤𝑝) ○ (ℓ∞)∗1(𝑧) 

+bott(𝜙 ⊗ idQ, 𝑢𝑝𝑢𝑞
∗ ) ○ (ℓ∞)∗1(𝑧) + bott1(𝜙⊗ idQ, 𝑤𝑞

∗) ○ (ℓ∞)∗1(𝑧) 

+bott1(𝜙⊗ idQ, 𝒸𝑞
∗) ○ (ℓ∞)∗1(𝑧) 
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= (j𝑝)∗0 ○ bott1(𝜙⊗ id𝑀𝑝 , 𝒸𝑝) ○ (ℓ𝑝)∗1
(𝑧) + (j𝑝)∗0 ○ bott1(𝜙 ⊗ id𝑀𝑝 , 𝑤𝑝) ○

(ℓ𝑝)∗1
(𝑧)+bott1(𝜙 ⊗ idQ, 𝑢𝑝𝑢𝑞

∗ ) ○ (ℓ∞)∗1(𝑧) + (j𝑝)∗0 ○ bott1(𝜙⊗ id𝑀𝑞 , 𝑤𝑞
∗) ○

(ℓ𝑝)∗1
(𝑧) + (j𝑝)∗0 ○ bott1(𝜙⊗ id𝑀𝑞 , 𝒸𝑞

∗) ○ (ℓ𝑝)∗1
(𝑧) 

= (j𝑝)∗0 ○ bott1(𝜙⊗ id𝑀𝑝 , 𝑤𝑝) ○ (ℓ𝑝)∗1
(𝑧) + bott(𝜙 ⊗ idQ, 𝑢𝑝𝑢𝑞

∗ ) ○ (ℓ∞)∗1(𝑧) 

+(j𝑝)∗0 ○ bott1(𝜙⊗ id𝑀𝑞 , 𝑤𝑞
∗) ○ (ℓ𝑞)∗1

(𝑧) 

= −(j𝑝)∗0 ○ 𝜃𝑝 ○ (ℓ𝑝)∗1
(𝑧) + ((j𝑝)∗0 ○ 𝜃𝑝 ○ (ℓ𝑝)∗1 + (j𝑞)∗0 ○ 𝜃𝑞 ○ (ℓ𝑞)∗1) − 

(j𝑞)∗0 ○ 𝜃𝑞 ○ (ℓ𝑞)∗1(𝑧) 

= 0    for all          z ∈ G(𝒫)1,0. 

The same argument shows that bott0(𝜙⊗ idQ, 𝑣𝑝𝑣𝑞
∗) = 0  on  G(𝒫)0,0 Now, for any 𝑔 ∈

G(𝒫)1,∞,0 there is z ∈ G(𝒫)1,0 and integers 𝑘,𝑚 such that (𝑘/𝑚)𝑧 =  𝑔. From the above, 

bott1(𝜙⊗ idQ, 𝑣𝑝𝑣𝑞
∗)(𝑚𝑔) = 𝑘bott1(𝜙⊗ idQ, 𝑣𝑝𝑣𝑞

∗)(𝑧) = 0.                     (73)   

Since 𝐾0(𝐵 ⊗ 𝑄) is torsion free, it follows that bott1(𝜙⊗ idQ, 𝑣𝑝𝑣𝑞
∗)(𝑔) = 0. 

for all 𝑔 ∈ G(𝒫)1,∞,0 So it vanishes on 𝒫 ∩ 𝐾1(𝐴⊗ 𝑄). Similarly, 

bott1(𝜙⊗ idQ, 𝑣𝑝𝑣𝑞
∗)|

𝒫∩𝐾1(𝐴⊗𝑄)
= 0 on 𝒫 ∩ 𝐾0(𝐴⊗ 𝑄). 

Since 𝐾𝑖(𝐵 ⊗ 𝑄, ℤ/𝑚ℤ) = {0} for all 𝑚 ≥ 2, we conclude that Bott(𝜙 ⊗ idQ, 

𝑣𝑝𝑣𝑞
∗) |

𝒫
= 0 on the subgroup generated by 𝒫 

   Since [𝜙] =  [𝜓]  in 𝐾𝐿(𝐴, 𝐵), 𝜙♯ = 𝜓♯ 𝑎𝑛𝑑 𝜙
‡  =  𝜓‡, one has that 

[𝜙 ⊗ idQ] =  [𝜓⊗ idQ] in  𝐾𝐿(𝐴⊗ 𝑄,𝐵 ⊗ 𝑄),                 (74) 

(𝜙 ⊗ idQ)♯ = (𝜓⊗ idQ)♯   𝑎𝑛𝑑  (𝜙 ⊗ idQ)
‡  =  (𝜓⊗ idQ)

‡       (75) 

   Therefore, 𝜙⊗ idQ and 𝜓⊗ idQ are approximately unitarily equivalent. Thus there 

exists a unitary 𝑢 ∈ 𝐵 ⊗𝑄 such that 

 

‖𝑢∗(𝜙⊗ idQ)(𝑐)𝑢 − (𝜓⊗ idQ)(𝑐)‖ < 𝛿2
′ 8    ⁄ 𝑓𝑜𝑟 𝑎𝑙𝑙  𝑐 ∈ 𝜀 ⋃ℋ′    (76) 

It follows that  

‖𝑢𝑣𝑞
∗(𝜙(𝑐) ⊗ 1Q)𝑣𝑝𝑢

∗ − 𝜓(𝑐) ⊗ 1Q‖ < 𝛿2
′ 2 ⁄ +< 𝛿2

′ 8   ⁄ ∀ 𝑐 ∈ 𝒢 ′ 

By the choice of 𝛿2
′  and ℋ ′, Bott(𝜙 ⊗ idQ, 𝑣𝑝𝑣𝑞

∗) is well defined on [𝜄](𝐾(𝐶′)), and 

|τ bott1(𝜙⊗ idQ, 𝑣𝑝𝑣𝑞
∗)(𝑧)| < 𝛿2 2 ⁄     ∀ τ ∈ T(B), ∀z ∈  𝒢.           

There exists a unitary 𝑦𝑝 ∈  𝐵 ⊗ 𝑄 such that  

‖[𝑦𝑝, (𝜙 ⊗ idQ)(ℎ)]‖ < 𝛿 2,          ⁄ ∀ℎ ∈ ℋ, 

and Bott(𝜙⊗ idQ, 𝑦𝑝) = Bott(𝜙 ⊗ idQ, 𝑣𝑝𝑢
∗) on the subgroup generated by 𝒫. 

    For each 1 ≤ 𝑖 ≤ 𝑚, define 

𝜁𝑖,𝑦𝑝,𝑢𝑣𝑝∗ = 〈(1n − (𝜙⊗ 𝑖dQ)(𝑝𝑖) + ((𝜙⊗ idQ)(𝑝𝑖)𝑦𝑝𝑢𝑣𝑝
∗)(1n − (𝜙⊗ idQ)(qi)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

+(𝜙⊗ idQ)(𝑞𝑖))𝑣𝑝𝑢
∗𝑦𝑝
∗)〉,̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

and define the map Γ ∶  𝑍𝑚  →  𝑈(𝐵 ⊗  𝑄)/𝐶𝑈(𝐵 ⊗  𝑄) by Γ(𝑥𝑖) =  𝜁𝑖,𝑦𝑝,𝑢𝑣𝑞∗ . 

    Applying Corollary (1.2.15 )to 𝐶 and 𝐺(𝒬), there is a unitary 𝑐 ∈ 𝐵 ⊗𝑄 such that 

 

‖[𝑐, (𝜙 ⊗ idQ)(ℎ)]‖ < 𝛿 4,    ⁄                                  ∀ℎ ∈ ℋ 

Bott(𝜙 ⊗ idQ, 𝑐) |𝒫 = 0 

and for any 1 ≤  𝑖 ≤ 𝑘, 
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dist(𝜁′
𝑖,𝑐∗
,Γ(𝑥𝑖)) ≤ γ 2,⁄  

𝜁′
𝑖,𝑐∗
= 〈(1n − (𝜙⊗ idQ)(𝑝𝑖) + (𝜙⊗ idQ)(𝑝𝑖)𝑐

∗)(1n − (𝜙⊗ idQ)(qi)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

+(𝜙⊗ idQ)(𝑞𝑖))𝑐)〉,
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

Consider the unitary 𝑣 =  𝑐𝑦𝑝𝑢, one has that 

‖[𝑣, (𝜙 ⊗ idQ)(ℎ)]‖ < 𝛿 4,    ⁄ for all    ℎ ∈ ℋ     Bott(𝜙 ⊗ idQ, 𝑣𝑣𝑝
∗) = 0 

on the subgroup generated by 𝒫, and for any 1 ≤ 𝑖 ≤  𝑚, 

dist (𝜁′
𝑖,𝑣𝑣𝑝

∗ , 1n̅̅ ̅) ≤ γ 2,⁄                                            (77) 

where 

𝜁′
𝑖,𝑣𝑣𝑝

∗ = 〈(1n − (𝜙⊗ 𝑖dQ)(𝑝𝑖) + (𝜙 ⊗ idQ)(𝑝𝑖)𝑣𝑣𝑝
∗)(1n − (𝜙⊗ idQ)(qi)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

+(𝜙⊗ idQ)(𝑞𝑖))𝑣𝑝𝑣
∗)〉,̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

By the construction of ∆, it is clear that 

𝜇𝜏○(𝜓⊗1)(𝑂𝑎) ≥ ∆(𝑎) 

for all a, where 𝑂𝑎 is any open ball of 𝑋 with radius a; in particular, it holds for all 𝑎 ≥  𝑑. 

Applying Theorem (1.2.13) to 𝐶 and Bott(𝜙 ⊗ idQ ) |𝑐, one obtains a continuous path of 

unitaries 𝑣(𝑡) in 𝐵 ⊗  𝑄 such that 𝑣(0)  =  1 and 𝑣(𝑡1)  =  𝑣𝑣𝑝
∗ and 

‖[𝑧𝑝(𝑡), (𝜙 ⊗ idQ)(𝑐)]‖ < 𝜖 2,    ⁄ ∀𝑥 ∈ 𝜀, ∀𝑡 ∈ [0, 𝑡1].              (78) 

Note that 

Bott(𝜙⊗ idQ, 𝑣𝑞𝑣
∗) = Bott(𝜙⊗ idQ, 𝑣𝑞𝑣𝑝

∗𝑣𝑝𝑣
∗)                                               (79) 

= Bott(𝜙⊗ idQ, 𝑣𝑞𝑣𝑝
∗) + Bott(𝜙 ⊗ idQ, 𝑣𝑝𝑣

∗)           (80) 

= 0 + 0 = 0                                                                           (81) 
 

on the subgroup generated by 𝒫, and for any 1 ≤  𝑖 ≤  𝑚, 

 

dist (𝜁′
𝑖,𝑣𝑞𝑣

∗ , 1̅)                                                    (82) 

≤ dist (𝜁′
𝑖,𝑣𝑞𝑣𝑝

∗ , 1̅) + dist (𝜁′𝑖,𝑣𝑝𝑣∗
, 1̅)                (83) 

= γ,          (by (98)and (127))                               (84) 
 

where 

𝜁′
𝑖,𝑣𝑞𝑣

∗ = 〈(1 − (𝜙⊗ 𝑖dQ)(𝑝𝑖) + (𝜙 ⊗ idQ)(𝑝𝑖)𝑣𝑞𝑣
∗)(1 − (𝜙⊗ idQ)(qi)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

+(𝜙⊗ idQ)(𝑞𝑖))𝑣𝑣𝑞
∗)〉,̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

Theorem (1.2.13) implies that there is a path of unitaries 𝑧𝑞(𝑡) ∶ [𝑡𝑚−1, 1] → 𝑈(𝐴⊗𝑄) 

such that 𝑧𝑞(𝑡𝑚−1)  =  𝑣𝑣𝑞
∗ , 𝑧𝑞(1)  =  1 and 

‖[𝑧𝑝(𝑡), 𝜙 ⊗ idQ(𝑐)]‖ < 𝜖 8,    ⁄ ∀𝑡 ∈ [𝑡𝑚−1, 1]    ∀𝑐 ∈ 𝜀.       (85) 
Consider the unitary 

𝑣(𝑡) = {

𝑧𝑝(𝑡)𝑣𝑝,          if    0 ≤ 𝑡 ≤ 𝑡1,          

𝑣,                   if    𝑡1 ≤ 𝑡 ≤ 𝑡𝑚−1, 

𝑧𝑝(𝑡)𝑣𝑝,          if    𝑡𝑚−1 ≤ 𝑡 ≤ 𝑡𝑚 .

 

Then, for any 𝑡𝑖 , 0 ≤  𝑖 ≤  𝑚, one has that 
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‖𝑣∗( 𝑡𝑖)(𝜙⊗ idQ)(𝑐)𝑣( 𝑡𝑖) − (𝜓⊗ idQ)(𝑐)‖ < 𝜖 2,    ⁄   ∀𝑐 ∈ 𝜀.       (86) 

Then for any 𝑡 ∈  [ 𝑡𝑖  ,  𝑡𝑖+1] with 1 ≤ 𝑗 ≤ 𝑚 −  2, one has 

‖𝑣∗(𝑡)(𝜙 ⊗ id(a⊗ b(t)))𝑣(𝑡) − 𝜓⊗ id(a⊗ b(t))‖                (87) 
= ‖𝑣∗(𝜙(𝑎)⊗ b(t)))𝑣 − 𝜓(𝑎)⊗ b(t))‖                                            (88) 
< ‖𝑣∗(𝜙(𝑎)⊗ b( 𝑡𝑗)))𝑣 − 𝜓(𝑎) ⊗ b( 𝑡𝑗))‖ + 𝜖 4⁄                          (89) 

< 𝜖 4⁄ + 𝜖 4⁄  = 𝜖 2.   ⁄                                                                               (90) 
For any  𝑡 ∈ [0,  𝑡1], one has that for any 𝑎 ∈ ℱ1 and 𝑏 ∈ ℱ2, 

‖𝑣∗(𝑡)(𝜙 ⊗ id(a⊗ b(t)))𝑣(𝑡) − 𝜓⊗ idQ(a⊗ b(t))‖              (91) 

= ‖𝑣𝑝
∗𝑧𝑝
∗(𝜙(𝑎)⊗ b(t)))𝑧𝑝(𝑡)𝑣𝑝 − 𝜓(𝑎)⊗ b(t))‖                           (92) 

< ‖𝑣𝑝
∗𝑧𝑝
∗(𝜙(𝑎)⊗ b( 𝑡0)))𝑧𝑝(𝑡)𝑣𝑝 − 𝜓(𝑎)⊗ b( 𝑡0))‖ + 𝜖 2⁄         (93) 

                       < ‖𝑣𝑝
∗(𝜙(𝑎)⊗ b( 𝑡0))𝑣𝑝 − 𝜓(𝑎)⊗ b( 𝑡0))‖ + 3𝜖 2⁄                     (94) 

3𝜖 2⁄ + 𝜖 4⁄ = 𝜖.                                                      (95) 
The same argument shows that for any 𝑡 ∈ [𝑡𝑚−1, 1], one has that for any 𝑎 ∈ ℱ1 and 𝑏 ∈
ℱ2  

‖𝑣∗(𝑡)(𝜙 ⊗ id(a⊗ b(t)))𝑣(𝑡) − 𝜓⊗ id(a⊗ b(t))‖ < 𝜖.               (96) 
Therefore, one has 

‖𝑣(𝜙 ⊗ id(𝑓))𝑣 − 𝜓⊗ id(𝑓)‖ < 𝜖        for all    𝑓 ∈ ℱ.  
   

                                              

[𝜙] =  [𝜓]  in 𝐾𝐿(𝐴, 𝐵), 𝜙♯ = 𝜓♯ 𝑎𝑛𝑑 𝜙
‡  =  𝜓‡.                 (97)  

 

Theorem (1.2.19)[98]: 

   Let 𝐴 be a 𝒵 −stable 𝐶∗ −algebra such that 𝐴⊗𝑀𝑅 is an 𝐴𝐻 −algebra for any 

supernatural number 𝔯 of infinite type, and let 𝐵 ∈ 𝐶 be a unital separable 𝒵-stable 

𝐶∗ −algebras. 

If 𝜙 and 𝜓 are two monomorphisms from 𝐴 to 𝐵 with 

[𝜙] =  [𝜓]  in 𝐾𝐿(𝐴, 𝐵), 𝜙♯ = 𝜓♯ 𝑎𝑛𝑑 𝜙
‡  =  𝜓‡.                                   (98) 

then, for any 𝜖 > 0 and any finite subset ℱ ⊆  𝐴, there exists a unitary 𝑢 ∈  𝐵 such that 

‖𝑢∗𝜙(𝑎) − 𝜓(𝑎)‖ < 𝜖     for all    𝑎 ∈ ℱ.                     (99) 
Proof : 

    Let 𝛼 ∶  𝐴 →  𝐴 ⊗ 𝑍 and 𝛽 ∶  𝒵 → 𝒵 ⊗𝒵 be isomorphisms. Consider the map 

ΓA: A 
α
→ A⊗𝒵

𝑖𝑑⊗𝛽
→   A⊗𝒵⊗𝒵

𝛼−⊗𝑖𝑑
→    A⊗𝒵. 

Then Γ is an isomorphism. However, since 𝛽 is approximately unitarily equivalent to the 

map 

𝒵 ∋ 𝑎 ⟼ 𝑎⊗ 1 ∈ 𝒵 ⊗𝒵, 
the map ΓA is approximately unitarily equivalent to the map 

𝐴 ∋ 𝑎 ⟼ 𝑎⊗ 1 ∈ 𝐴⊗ 𝒵. 
Hence the map ΓB ○ 𝜙 ○ ΓA is approximately unitarily equivalent to 𝜙 ⊗ id𝒵. The same 

argument shows that ΓB ○ 𝜓 ○ ΓAis approximately unitarily equivalent to 𝜓⊗ id𝒵. Thus, 

in order to prove the theorem, it is enough to show that 𝜙⊗ id𝒵 is approximately unitarily 

equivalent to 𝜓 ⊗ id𝒵. 

   Since 𝒵 is an inductive limit of 𝐶∗ −algebras 𝒵p,q,it is enough to show that 𝜙⊗ id𝒵p,q 

isapproximately unitarily equivalent to 𝜓 ⊗ id𝒵p,q, and this follows from Lemma (1.2.18). 

      The range of approximate equivalence classes of homomorphisms. 
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Now let A and B be two unital 𝐶∗ −algebras in 𝑁 ∩ 𝐶. States that two unital 

monomorphisms are approximately unitarily equivalent if they induce the same element in 

𝐾𝐿𝑇𝑒(𝐴, 𝐵)
++ and the same map on 𝑈(𝐴)/𝐶𝑈(𝐴). In this section, we will discuss the 

following problem: Suppose that one has 𝑘 ∈ 𝐾𝐿𝑇𝑒(𝐴, 𝐵)
++  and a continuous 

homomorphism γ : 𝑈(𝐴)/𝐶𝑈(𝐴) → 𝑈(𝐵)/𝐶𝑈(𝐵) which is compatible with 𝑘. Is there 

always a unital monomorphism 𝜙 ∶  𝐴 →  𝐵 such that 𝜙 induces 𝑘 and 𝜙‡ =  𝛾? At least 

in the case that 𝐾1(𝐴) is free, states that such 𝜙 always exists. 

Lemma (1.2.20)[98]: 

    Let 𝐴 and 𝐵 be two unital infinite dimensional separable stably finite 𝐶∗ −algebras 

whose tracial simplexes are non-empty. 𝐿𝑒𝑡 𝛾 ∶  𝑈∞(𝐴)/𝐶𝑈∞(𝐴)  →  𝑈∞(𝐵)/𝐶𝑈∞(𝐵) be a 

continuous homomorphism, ℎ𝑖: 𝐾𝑖(𝐴)  →  𝐾𝑖(𝐵) (𝑖 =  0, 1) be homomorphisms for which 

ℎ0 is positive, and let 𝜆 ∶  Aff(T(A))  →  Aff(T(B)) be an affine map so that ( ℎ0,
ℎ1, 𝜆, 𝛾) are compatible. Let p be a supernatural number. Then γ induces a unique 

homomorphism 𝛾𝑝 ∶  𝑈∞(𝐴𝑝)/𝐶𝑈∞(𝐴𝑝)  →  𝑈∞(𝐵𝑝)/𝐶𝑈∞(𝐵𝑝) which is compatible with 

(ℎ𝑝)𝑖(𝑖 =  0, 1) and 𝛾𝑝, where 𝐴𝑝 = 𝐴⊗𝑀𝑝 and 𝐵𝑝 = 𝐵⊗𝑀𝑝, and (ℎ𝑝)𝑖: 𝐾𝑖(𝐴) ⊗

ℚ𝑝  → 𝐾𝑖(𝐵)  ⊗ ℚ𝑝 is induced by ℎ𝑖 (𝑖 =  0, 1). Moreover, the diagram 

𝑈∞(𝐴)/𝐶𝑈∞(𝐴)
   𝛾     
→   𝑈∞(𝐵)/𝐶𝑈∞(𝐵)

↓
𝜄𝑝
‡  ↓(𝜄𝑝′ )‡

𝑈∞(𝐴𝑝)/𝐶𝑈(𝐴𝑝)
   𝛾𝑃     
→   𝑈∞(𝐵𝑃)/𝐶𝑈∞(𝐵𝑃)

 

commutes, where 𝜄𝑝
 ∶  𝐴 →  𝐴𝑝 and 𝜄𝑝

 : 𝐵 → 𝐵𝑃 are the maps induced by 𝑎 ↦ 𝑎 ⊗ 1 and 

𝑏 ↦ 𝑏⊗ 1,respectively. 

Proof. Denote by 𝐴0 =  𝐴, 𝐴𝑝  = 𝐴⊗𝑀𝑝, 𝐵0 =  𝐵 and 𝐵𝑃 =  𝐵 ⊗ 𝑀𝑃. By a result 

of 𝐾. 

Thomsen ([133]), using the de la Harpe and Skandalis determinant, one has the following 

short exact sequences: 

0 →  Aff(T(Ai))/𝜌𝐴(𝐾0(Ai))  →  𝑈∞(Ai)/𝐶𝑈∞(Ai)  →  𝐾1(Ai)  →  0, 𝑖 =  0, 𝔭, 
and 

0 →  Aff(T(Bi))/𝜌𝐴(𝐾0(Bi))  →  𝑈∞(Bi)/𝐶𝑈∞(Bi)  →  𝐾1(Bi)  →  0, 𝑖 =  0, 𝔭. 

Note that, in all these cases, Aff(T(Ai))/𝜌𝐴(𝐾0(Ai)) and Aff(T(Bi))/𝜌𝐴(𝐾0(Bi)) are 

divisible groups, 𝑖 =  0, 𝔭 . Therefore the exact sequences above splits. Fix splitting maps 

 𝑠′𝑖: 𝐾1(Ai)  → 𝑈∞(A)/𝐶𝑈∞(Ai) and 𝑠′𝑖: 𝐾1𝑈∞(B)/𝐶𝑈∞(Bi), 𝑖 =  0, 𝔭, for the above two 

splitting short exact sequences. Let 𝜄𝑝
 ∶  𝐴 →  𝐴𝑝 be the homomorphism defined 

by 𝜄𝑝
 (𝑎) = 𝑎 ⊗ 1 for all 𝑎 ∈  𝐴 and 𝜄𝑝

 ∶  𝐵 →  𝐵𝑃 be the homomorphism defined 

by 𝜄𝑝
 (𝑏) = 𝑏 ⊗ 1 for all 𝑏 ∈  𝐵. Let (𝜄𝑝

′ )‡: 𝑈∞(𝐴)/𝐶𝑈∞(𝐴)  →  𝑈∞(𝐴𝑝)/𝐶𝑈∞(𝐴) 

and(𝜄𝑝
′ )‡: 𝑈∞(B)/𝐶𝑈∞(𝐵)  →  𝑈∞(𝐵𝑝)/𝐶𝑈∞(𝐵𝑝) be the induced maps. The map 𝜄𝑝

  induces 

the following commutative diagram: 

0 → 
 
 

Aff(T(A))/𝜌𝐴(𝐾0(A))

↓(𝜄𝑝 )♯

Aff(T(A𝔭))/𝜌𝐴(𝐾0(A𝔭))

→  
 
 

𝑈∞(𝐴)/𝐶𝑈∞(𝐴)

↓
𝜄𝑝
‡

𝑈∞(𝐴𝐼)/𝐶𝑈∞(A𝔭)

 
→
 
 

𝐾1(𝐴)

↓(𝜄𝑝 )∗1
𝐾1(A𝔭)

→ 0
 
 

 

    Since there is only one tracial state on 𝑀𝑝, one may identify 𝑇(𝐴) with 𝑇(A𝔭) and 𝑇(𝐵) 

with T(B𝔭). One may also identify 𝜌A𝔭(𝐾0(A𝔭)) with  ℝ𝜌A(𝐾0(A))which is the closure of 
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those elements 𝑟[𝑝]̂ with 𝑟 ∈  𝑅. Note that (ℎ𝑝)𝑖: 𝐾𝑖(𝐴⊗𝑀𝑝) → 𝐾𝑖(𝐵 ⊗𝑀𝑝) (𝑖 =

 0, 1) is given by the K¨unneth formula. Since 𝛾 is compatible with 𝜆, 𝛾 maps 

ℝ𝜌A(𝐾0(A))/𝜌A(𝐾0(A)) into ℝ𝜌B(𝐾0(B))/𝜌B(𝐾0(B)). Note that 

ker(𝜄𝑝
 )∗1 = {𝑥 ∈  𝐾1(𝐴): 𝑝𝑥 =  0 𝑓𝑜𝑟 (6.1)some factor 𝑝 𝑜𝑓 𝑝}       (100)  

and  

ker(𝜄′𝑝
 )∗1 = {𝑥 ∈  𝐾1(𝐵): 𝑝𝑥 =  0 𝑓𝑜𝑟 (6.1)some factor 𝑝 𝑜𝑓 𝑝}.      (101) 

Therefore 

       ker(𝜄𝑝
‡) = {𝑥 + 𝑠0(𝑦) ∶ 𝑥 ∈ ℝ𝜌A(𝐾0(A))/𝜌A(𝐾0(A)), 𝑦 ∈ 𝑘𝑒𝑟((𝜄𝑝

 )∗1)}  (102) 

and 

   ker(𝜄𝑝
′ )‡ = {𝑥 + 𝑠0

′ (𝑦) ∶ 𝑥 ∈ ℝ𝜌A(𝐾0(B))/𝜌B(𝐾0(B)), 𝑦 ∈ 𝑘𝑒𝑟((𝜄𝑝
 )
∗1
)}    (103) 

If 𝑦 ∈  ker((𝜄𝑝
 )∗1), then, for some factor 𝑝 of  𝑝, 𝑝𝑦 =  0. It follows that  𝑝𝛾(𝑠0(𝑦))  =  0. 

Therefore 𝛾(𝑠0(𝑦)) must be in ker((𝜄𝑝
′ )‡) It follows that 

 

𝛾(ker(𝜄𝑝
‡))   ⊂ ker(𝜄𝑝

′ )‡                                        (104) 
 
This implies that 𝛾 induces a unique homomorphism 𝛾𝑃 such that the following diagram 

commutes: 

𝑈∞(𝐴)/𝐶𝑈∞(𝐴)
   𝛾     
→   𝑈∞(𝐵)/𝐶𝑈∞(𝐵)

↓
𝜄𝑝
‡  ↓(𝜄𝑝′ )‡

𝑈∞(𝐴𝑝)/𝐶𝑈(𝐴𝑝)
   𝛾𝑝     
→   𝑈∞(𝐵𝑃)/𝐶𝑈∞(𝐵𝑃)

 

The lemma follows. 

Lemma (1.2.21)[98]: 

    Let 𝐴 and 𝐵 be two unital infinite dimensional separable stably finite 𝐶∗ −algebras 

whose tracial simplexes are non-empty. Let 𝛾 ∶ 𝑈∞(𝐴)/𝐶𝑈∞(𝐴)  →  𝑈∞(𝐵)/𝐶𝑈∞(𝐵) be a 

continuous homomorphism, ℎ𝑖: 𝐾𝑖(𝐴)  →  𝐾𝑖(𝐵) (𝑖 =  0, 1) be homomorphisms and 𝜆 ∶
 Aff(T(A))  → Aff(T(B)) be an affine homomorphism which are compatible. Let p and q 

be two relatively prime supernatural numbers such that 𝑀𝑝⊗𝑀𝑞 = 𝑄. Denote by ∞ the 

supernatural number associated with the product 𝔭 and 𝔮. Let 𝐸𝐵: 𝐵 → 𝐵 ⊗𝒵𝑝,𝑞 be the 

embedding defined by 𝐸𝐵(𝑏) =  𝑏 ⊗ 1, ∀𝑏 ∈  𝐵. Then 

(𝜋𝑡 ○ 𝐸𝐵)
‡ ○ 𝛾 = 𝛾∞ ○ 𝜄∞

‡               for all   t ∈ (0,1)               (105) 
(𝜋0 ○ 𝐸𝐵)

‡ ○ 𝛾 = 𝛾𝑝 ○ 𝜄𝑝
‡               and                                        (106) 

(𝜋1 ○ 𝐸𝐵)
‡ ○ 𝛾 = 𝛾𝑞 ○ 𝜄𝑞

‡                                                              (107) 
 

with the notation of (1.2.20) where 𝜋𝑡: 𝒵𝑝,𝑞  →  𝑄 is the point-evaluation at 𝑡. 

Proof: 

     Fix 𝑧 ∈ 𝑈∞(𝐵)/𝐶𝑈∞(𝐵). Let 𝑢 ∈ 𝑈𝑛(𝐵) for some integer 𝑛 ≥  1 such that �̅� =  𝑧 in 

𝑈∞(𝐵)/𝐶𝑈∞(𝐵). Then 

𝐸𝐵
‡(𝑧) = 𝑢 ⊗ 1̅̅ ̅̅ ̅̅ ̅̅                                                                    (108) 

 

In other words, 𝐸𝐵
‡(𝑧) is represented by 𝑤(𝑡) ∈ 𝑀𝑛(𝐵 ⊗ 𝒵𝑝,𝑞) for which 
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𝑤(𝑡) =  𝑢 ⊗ 1  for all 𝑡 ∈  [0, 1].                                         (109) 
 

Therefore, for any 𝑡 ∈  (0, 1), 𝜋𝑡 ○ 𝐸𝐵
‡(𝑧)  may be written as 

𝜋𝑡 ○ 𝐸𝐵
‡(𝑧) = 𝑢 ⊗ 1̅̅ ̅̅ ̅̅ ̅̅     in   𝑈∞(B⊗ Q)/C𝑈∞(B⊗ Q).                 (110) 

 

This implies that 

𝜋𝑡 ○ 𝐸𝐵
‡(𝑧) = (𝜄∞

 )‡(𝑧)    for all   𝑧 ∈ 𝑈∞(B )/C𝑈∞(B ).                 (111) 
 

where 𝜄∞
 ∶ 𝐵 →  𝐵 ⊗  𝑄 is defined by 𝜄∞

 (𝑏)  =  𝑏 ⊗  1 for all 𝑏 ∈  𝐵. 

(𝜋𝑡 ○ 𝐸𝐵)
‡ ○ 𝛾 = 𝛾∞ ○ 𝜄∞

‡               for all   t ∈ (0,1)               (112) 
 

The identities (106) and (107) for end points exactly follow from the same arguments.   

Lemma (1.2.22)[98]: 

     Let 𝐴 be a unital 𝐴𝐻-algebra and let 𝐵 be a unital separable simple amenable 

𝐶∗ −algebra with 𝑇𝑅(𝐵)  ≤ 1. Suppose that 𝜙1, 𝜙2 ∶  𝐴 → 𝐵 are two monomorphisms 

such that 

[𝜙1] = [𝜙2]  in 𝐾𝐾(𝐴, 𝐵), (𝜙1)♯ = (𝜙2)♯ 𝑎𝑛𝑑   𝜙1
‡ = 𝜙2

‡.            (113) 
 

Then there exists a monomorphism 𝛽: 𝜙2(𝐴) → 𝐵 such that [𝛽 ○ 𝜙2] =  [𝜙2]in 

 𝐾𝐾(𝐴, 𝐵), (𝛽 ○ 𝜙2)♯ = 𝜙2♯ , (𝛽 ○ 𝜙2)
♯ = 𝜙2

‡  and 𝛽 ○ 𝜙2 is asymptotically  unitarily 

equivalent to 𝜙1. Moreover, if 𝐻1(𝐾0(𝐴), 𝐾1(𝐵)) = 𝐾1(𝐵), they are strongly 

asymptotically unitarily equivalent, where 𝐻1(𝐾0(𝐴),𝐾1(𝐵)) 
= {𝑥 ∈ 𝐾1(𝐵): 𝜓([1𝐴]) = 𝑥 for some 𝜓 ∈ Hom(𝐾0(𝐴), 𝐾1(𝐵))}. 
Proof: 

     There is a monomorphism 𝛽 ∈ Inn̅̅̅̅̅(𝜙2(𝐴), 𝐵) such that [𝛽] = [𝜄] in 𝐾𝐾(𝜙2(𝐴), 𝐵) and 

�̅�𝜄,𝛽 = −�̅�𝜙1,𝜙2       

 

where 𝑙 is the embedding of 𝜙2(𝐴) to B and �̅�𝜄,𝛽 is viewed as a homomorphism from 

𝐾1(𝐴)  = 𝐾1(𝜙2(𝐴)) 𝑡𝑜 Aff(T(B)). In other words 

                                        �̅�𝜙2,𝛽∘𝜙2 = −�̅�𝜙1,𝜙2 .                                                             (114) 

One also has that 

 

[𝜙2] =  [𝛽 ○ 𝜙2]𝑖𝑛 𝐾𝐾(𝐴, 𝐵),                                              (115)   

(𝛽 ○ 𝜙2)♯ = (𝜙2)♯    and  (𝛽 ○ 𝜙2)
♯ = 𝜙2

‡                                 (116) 
[𝜙1] =  [𝛽 ○ 𝜙2]] 𝑖𝑛 𝐾𝐾(𝐴, 𝐵),                                            (117) 

(𝜙1)♯ = (𝛽 ○ 𝜙2)♯ 𝑎𝑛𝑑 𝜙1
‡ = (𝛽 ○ 𝜙2)

♯                             (118)  
It follows from (100) and (115) that 

𝑐 = �̅�𝜙1,𝜙2 = �̅�𝜙2,𝛽○𝜙2 = 0.                                        (119) 

 

Therefore, it follows from Theorem (1.2.13) of [97] that the map 𝜙1 and 𝛽 ○ 𝜙2 are 

asymptotically unitarily equivalent. 

  In the case that 𝐻1(𝐾0(𝐴), 𝐾1(𝐵)) = 𝐾1(𝐵) of [97] that 𝛽 ○ 𝜙2  and 𝜙1 are strongly 

asymptotically unitarily equivalent. 

Lemma (1.2.23)[98]:  
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    Let 𝐶 and 𝐴 be two unital separable stably finite 𝐶∗ −algebras. Suppose that , 𝜓 : 𝐶 →
 𝐴 are two unital monomorphisms such that 

 

[𝜙] = [𝜓]  in  𝐾𝐿(𝐶, 𝐴), 𝜙♯ = 𝜓♯   𝑎𝑛𝑑 �̅�𝜙,𝜓 =  0. 

 

Suppose that {𝑈(𝑡): 𝑡 ∈  [0, 1)} is a piecewise smooth and continuous path of unitaries in 

𝐴 with 𝑈(0) = 1 such that 

 

lim
𝑡→1
 𝑈∗(𝑡)𝜙(𝑢)𝑈(𝑡) = 𝜓(𝑢)                                              (120) 

 

for some 𝑢 ∈ 𝑈(𝐶) and suppose that there exists 𝑤 ∈ 𝑈(𝐴) such that 𝜓(𝑢) 𝑤∗ ∈ 𝑈0(𝐴). 
Let 

𝑍 = 𝑍(𝑡) =  𝑈∗(𝑡)𝜙(𝑢)𝑈(𝑡) 𝑤∗    𝑖𝑓  𝑡 ∈  [0, 1) 
 

and 𝑍(1) = 𝜓(𝑢) 𝑤∗. Suppose also that there is a piecewise smooth continuous path of 

unitaries {𝑧(𝑠): 𝑠 ∈ [0, 1]} in A such that 𝑧(0) = 𝜙(𝑢) 𝑤∗ and 𝑧(1) = 1. Then, for any 

piecewise smooth continuous path {𝑍(𝑡, 𝑠): 𝑠 ∈ [0, 1]|} ⊂ 𝐶([0, 1], 𝐴) of unitaries such 

that 𝑍(𝑡, 0) = 𝑍(𝑡) and 𝑍(𝑡, 1) = 1, there is 𝑓 ∈ 𝜌𝐴(𝐾0(𝐴)) such that 

 

1

2𝜋√−1
∫ 𝜏
1

0

(
𝑑𝑍(𝑡, 𝑠)

𝑑𝑠
𝑍(𝑡, 𝑠)∗)𝑑𝑠 =

1

2𝜋√−1
∫ 𝜏
1

0

(
𝑑𝑍(𝑠)

𝑑𝑠
𝑍(𝑠)∗)𝑑𝑠 + 𝑓(𝜏)    (121) 

 

for all 𝑡 ∈  [0, 1] and 𝜏 𝑇(𝐴). 
Proof: 

Define 

𝑍1(𝑡, 𝑠) = {

 𝑈∗(𝑡 − 2𝑠)𝜙(𝑢)𝑈(𝑡 − 2𝑠) 𝑤∗      for s ∈  [0, t/2)     

𝜙(𝑢) 𝑤∗                                              for s ∈  [t/2, 1/2)

𝑧(2𝑠 − 1)                                          for s ∈ [1/2, 1]    

        (122) 

 

For 𝑡 ∈ [0, 1) and define 

 

𝑍1(𝑡, 𝑠) = {

𝜓(𝑢) 𝑤∗                                               for s = 0         

  𝑈∗(1 − 2𝑠)𝜙(𝑢)𝑈(1 − 2𝑠) 𝑤∗         for s ∈  [0, 1/2)

𝑧(2𝑠 − 1)                                                for s ∈ [1/2, 1] 

      (123) 

 

Thus {𝑍1(𝑡, 𝑠): 𝑠 ∈ [0, 1]} ⊂ 𝐶([0, 1], 𝐴) is a piecewise smooth continuous path of 

unitaries such that 𝑍1(𝑡, 0) =  𝑍(𝑡)𝑎𝑛𝑑 𝑍1(𝑡, 1) = 1. Thus, there is an element 𝑓1  ∈
𝜌𝐴(𝑘0(𝐴)), such that 

1

2𝜋√−1
∫ 𝜏
1

0

(
𝑑𝑍(𝑡, 𝑠)

𝑑𝑠
𝑍(𝑡, 𝑠)∗)𝑑𝑠 −

1

2𝜋√−1
∫ 𝜏
1

0

(
𝑑 𝑍1(𝑡, 𝑠)

𝑑𝑠
 𝑍1(𝑡, 𝑠)

∗)𝑑𝑠 

 

for all 𝜏 ∈  𝑇(𝐴) an for all 𝑡 ∈  [0, 1]. 
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On the other hand, let 𝑉 (𝑡) =  𝑈∗(𝑡)𝜙(𝑢)𝑈(𝑡) for 𝑡 ∈ [0, 1) and  𝑉 (1) =  𝜓(𝑢). For any 

𝑠 ∈ [0, 1), since 𝑈(0) = 1, 𝑈(𝑡) ∈ 𝑈(𝐶([0, 𝑠], 𝐴))0(for 𝑡 ∈  [0, 𝑠]). There there are 

𝑎1, 𝑎2, . . . , 𝑎𝑘  ∈ 𝑈([0, 𝑠], 𝐴)𝑠.𝑎. such that 

 𝑓1(𝜏) =
1

2𝜋√−1
∫ 𝜏
1

0

(
𝑑𝑍(𝑡, 𝑠)

𝑑𝑠
𝑍(𝑡, 𝑠)∗)𝑑𝑠                  

−
1

2𝜋√−1
∫ 𝜏
1

0

(
𝑑 𝑍1(𝑡, 𝑠)

𝑑𝑠
 𝑍1(𝑡, 𝑠)

∗)𝑑𝑠                   (124) 

for all 𝜏 ∈  𝑇(𝐴) an for all 𝑡 ∈  [0, 1]. 
On the other hand, let 𝑉(𝑡) = 𝑈∗(𝑡)𝜙(𝑢)𝑈(𝑡) for 𝑡 ∈  [0, 1) and 𝑉 (1) = 𝜓(𝑢). For any 

𝑠 ∈ [0, 1), since 𝑈(0) = 1,𝑈(𝑡) ∈ 𝑈(𝐶([0, 𝑠], 𝐴))0 (for 𝑡 ∈ [0, 𝑠]). There there are 

𝑎1, 𝑎2, . . . , 𝑎𝑘 ∈ 𝑈([0, 𝑠], 𝐴)𝑠.𝑎such that 

𝑈(𝑡) =∏exp (𝑖𝑎𝑗(𝑡))

𝑘

𝑗=1

    for all   𝑡 ∈ [0, 𝑠] 

Then a straightforward calculation shows that 

∫
𝑑𝑉(𝑡)

𝑑𝑡
𝑉∗

𝑠

0

(𝑡)𝑑𝑡 = 0                                                 (125) 

we also have 

1

2𝜋√−1
∫ 𝜏
1

0

𝑑𝑉(𝑡)

𝑑𝑡
𝑉∗(𝑡)𝑑𝑡 = 𝑅𝜙,𝜓([𝑉])(𝜏) ≔ 𝑓(𝜏) ∈ 𝜌𝐴(𝑘0(𝐴)) 

for all 𝜏 ∈ 𝑇(𝐴). 
Then 

1

2𝜋√−1
∫ 𝜏
1 2⁄

0

(
𝑑 𝑍1(1, 𝑠)

𝑑𝑠
 𝑍1(1, 𝑠)

∗)𝑑𝑠 = 

1

2𝜋√−1
∫ 𝜏
1 2⁄

0

(
𝑑𝑉(2𝑠 − 1)

𝑑𝑠
𝑉(2𝑠 − 1)∗)𝑑𝑠           (126) 

𝑅𝜙,𝜓([𝑉])(𝜏) = 𝑓(𝜏)    for all          𝜏 ∈ 𝑇(𝐴).           (127) 

One computes that, for any 𝜏 ∈ 𝑇(𝐴) and for any 𝑡 ∈ [0, 1), by applying (126), 

1

2𝜋√−1
∫ 𝜏
1

0

(
𝑑 𝑍1(𝑡, 𝑠)

𝑑𝑠
 𝑍1(𝑡, 𝑠)

∗)𝑑𝑠                           (128) 

=
1

2𝜋√−1
[∫ 𝜏(

(d(𝑈∗(t − 2s)𝜙(u)U(t –  2s)𝑤∗)

𝑑𝑠
 (𝑈∗(t − 2s)𝜙(u)U(t –  2s)𝑤∗)∗)

𝑡 2⁄

0

𝑑𝑠](129) 

∫ 𝜏
1 2⁄

𝑡 2⁄

(
𝑑 𝑍1(𝑡, 𝑠)

𝑑𝑠
 𝑍1(𝑡, 𝑠)

∗)𝑑𝑠 + ∫ 𝜏
1

1 2⁄

(
𝑑𝑧(𝑠 − 1)

𝑑𝑠
𝑧(2𝑠 − 1)∗)𝑑𝑠]         (130)  

=
1

2𝜋√−1
[∫ 𝜏

𝑡 2⁄

0

(
𝑑𝑉(𝑡 − 2𝑠)

𝑑𝑠
𝑉(𝑡 − 2𝑠)∗)𝑑𝑠 

+∫ 𝜏
1

1 2⁄

(
𝑑𝑧(𝑠 − 1)

𝑑𝑠
𝑧(2𝑠 − 1)∗)𝑑𝑠]           (131) 

= 0 +
1

2𝜋√−1
∫ 𝜏
1

1 2⁄

(
𝑑𝑧(2𝑠 − 1)

𝑑𝑠
𝑧(2𝑠 − 1)∗)𝑑𝑠]               (132) 
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=
1

2𝜋√−1
∫ 𝜏
1

0

(
𝑑𝑧(𝑠)

𝑑𝑠
𝑧(𝑠)∗) 𝑑𝑠                                              (133) 

It then follows from (126) that 

=
1

2𝜋√−1
∫ 𝜏
1

0

(
𝑑 𝑍1(1, 𝑠)

𝑑𝑠
 𝑍1(1, 𝑠)

∗)𝑑𝑠                   (134) 

=
1

2𝜋√−1
[∫ 𝜏

1 2⁄

0

(
𝑑 𝑍1(1, 𝑠)

𝑑𝑠
 𝑍1(1, 𝑠)

∗)𝑑𝑠 + ∫ 𝜏
1

1 2⁄

(
𝑑𝑧(2𝑠 − 1)

𝑑𝑠
𝑧(2𝑠 − 1)∗𝑑𝑠)]  

                                     (135) 

= 𝑓(𝜏) +
1

2𝜋√−1
∫ 𝜏
1

0

(
𝑑𝑧(𝑠)

𝑑𝑠
𝑧(𝑠)∗)𝑑𝑠                               (136) 

The lemma follows. 

Lemma (1.2.24)[98]: 

     Let 𝐴 be a unital 𝐶∗ −algebra satisfying that 𝐴 ⊗𝑀𝔯 is an AH-algebra for all 

supernatural number 𝑟 with infinite type (in particular, all 𝐴𝐻-algebra satisfies this 

property), and let B be a unital simple 𝐶∗ −algebra in 𝒩 ∩  𝒞. Let 𝜅 ∈  𝐾𝐿𝑒(𝐴, 𝐵)
++ and 

𝜆 ∶  Aff(T(A))  → 𝐴𝑓𝑓(𝑇(𝐵)) be an affine homomorphism which are compatible (see 

Definition 1.2.3). Then there exists a unital homomorphism 𝜙: 𝐴 →  𝐵 such that 

[𝜙] = 𝜅 𝑎𝑛𝑑 (𝜙)♯  =  𝜆. 
Moreover, if 𝛾 ∈ 𝑈∞(𝐴)/𝐶𝑈∞(𝐴)  → 𝑈∞(𝐵)/𝐶𝑈∞(𝐵) is a continuous homomorphism 

which is compatible with 𝜅 and 𝜆, then one may also require that 

𝜙‡|𝑈∞(𝐴)0/𝐶𝑈∞(𝐴) = 𝛾|𝑈∞(𝐴)0/𝐶𝑈∞(𝐴) 𝜙
‡ ○ 𝑠1  =  𝛾 ○  𝑠1 − ℎ̅, (137) 

where 𝑠1 ∶  𝑘1(𝐴) → 𝑈∞(𝐴)/𝐶𝑈∞(𝐴) is a splitting map (see 2.3), and 

ℎ̅: 𝑘1(𝐴)  →  ℝ𝜌𝐵(𝑘0(𝐵))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ /𝜌𝐵(𝑘0(𝐵))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  
is a homomorphism. Moreover, 

 

                                                 (𝜙 ⊗ idzp,q)
‡ ○ 𝑠1 = 𝐸𝐵 ○ 𝛾 ○ 𝑠1 − ℎ̅,                   (138) 

where 𝐸𝐵is as defined in (101). 
 

 


