Dedication

To who enlightening my path, to those who have right, offer Allah

My parent

To the one who bears with silence the hardship of my study with no much complaining, of the completion, of my scientific journey.

Acknowledgements

I am grateful to my supervisor Dr. Ibrahim Mohammed Elfaki for his guidance, unlimited help and valuable discussions during the implementation of this work.

Thanks to Prof . Dr . Mubarak Dirar Abd-Allah for his guidance,

unlimited help and valuable discussions during the implementation of this work.

Thanks extended also Sudan University of Science and Technology, college of Graduate Studies, Faculty of Science, Department of Physics

Thanks for University of Holy Quran and Tassel of Science, Faculty of Education Department of Physics and Mathematics.

My thanks are also extended to all those who have helped me in one way or another to present this work.

Abstract

The study was focused on some heavy metals which are Mn, Zn, Cu and Pb that are known as the most toxic and contaminate to human health.

In this study XRF and AAS techniques were used to determine concentrations of Mn, Zn, Cu and Pb in soils and vegetables (Onion, Jew Mallow, Watercress, Marrow and Cucumber).

The mean value of concentrations of Copper in this vegetables by XRF technique (ppm), was found to be in Onion (11.32), Jew Mallow (6.18), Watercress (5.90), Marrow (7.05) and Cucumber (7.53), while the mean value of concentrations of Copper in soils (20.48), (19.01), (21.30), (19.40) and (19.56) respectively.

The mean value of concentrations of Copper in this vegetables by AAS technique $(\mu g/g)$, was found to be in Onion (19.04), Jew Mallow (10.89), Watercress (9.95), Marrow (11.44) and Cucumber (9.89), while the mean value of concentrations of Copper in soils (35.28), (52.15), (51.32), (43.49) and (41.15) respectively.

The mean value of concentrations of Lead in this vegetables by XRF technique (ppm), was founds the concentrations to be in onion (1.43), Jew Mallow (0.87), Watercress (0.84), Marrow (0.98) and Cucumber (0.97), while the mean value of concentrations of Manganese in soils (15.13), (14.30), (13.36), (16.27) and (13.58) respectively.

However the AAS technique can not at all detect existence of Lead.

The mean value of concentrations of Zinc in this vegetables by XRF technique (ppm), was found to be in Onion (13.33), Jew Mallow (7.61), Watercress (13.58), Marrow (13.58) and Cucumber (15.67), while the mean value of concentrations of Zinc in soils (26.63), (22.34), (23.71), (22.93) and (24.40) respectively.

The mean value of concentrations of Zinc in this vegetables by AAS technique (μ g/g), was found to be in Onion (13.33), Jew Mallow (23.92), Watercress (22.63), Marrow (30.56) and Cucumber (28.80), while the mean value of concentrations of Zinc in soils (49.18), (76.01), (72.12), (62.02) and (57.96) respectively.

The mean value of concentrations of manganese in this vegetables by XRF technique (ppm), was found to be in onion (41.67), Jew Mallow (41.72), Watercress (51.06),

Marrow (17.70) and Cucumber (Non-Detect), while the mean value of concentrations of Manganese in soils (350.59), (432.14), (423.75), (421.50) and (396.62) respectively.

The mean value of concentrations of manganese in this vegetables by AAS technique (μ g/g), was found to be in onion (37.36), Jew Mallow (88.25), Watercress (89.84), Marrow (12.74) and Cucumber (10.9), while the mean value of concentrations of Manganese in soils (780.01), (106.09), (1012.90), (854.94) and (788.49) respectively.

It is very interesting to note that the concentrations of Copper, Zinc and Manganese found by AAS technique is higher than that of XRF technique, this may results from the fact that light element emits more visible photons than x-ray photons.

It is also very striking to note that XRF technique gives higher concentrations for Lead compared to AAS technique, this means that XRF spectrometer is better for Lead detection.

This sensitivity of XRF spectrometer may be attributed to fact that heavy elements such as lead emit x-ray energetic photons more than light visible ones, since the photon energy is proportional to the square of the atomic number.

المستخلص

تركزت هذه الدراسة حول بعض المعادن الثقيلة المنجنيز والزنك والنحاس والرصاص ذات التأثير الملوث والسمي العالي على صحة الإنسان.

في هذه الدراسة تم استخدام تقنيات الأشعة السينية المتوهجة ومطياف الامتصاص الذري لتحديد تركيزات المنجنيز والزنك والنحاس والرصاص في التربة والخضروات (البصل والملوخية والجرجير والكوسا والخيار).

أوجدت القيم المتوسطة لتركيزات النحاس في هذه الخضروات المحسوبة بتقنية الأشعة السينية المتوهجة (جزء لكل مليون) كالأتي: البصل (11,30) والملوخية (6,18) والجرجير (5,90) والكوسا (7,05) والخيار (7,53)، في حين بلغت القيم المتوسطة لتركيزات النحاس في التربة (20,48) و(19,01) و(21,30) و(19,40) و(19,56) على الترتيب. اما القيم المتوسطة لتركيزات النحاس في هذه الخضروات المحسوبة بتقنية مطياف الامتصاص الذري (ميكروجرام/جرام) كالأتي: البصل (19.04) والملوخية (10.89) والجرجير (9.59) والكوسا (11.44) والخيار (9.89)، في حين بلغت قيمة متوسط تركيز ات النحاس في التربة (35,28) و(52,15) و(51,32) و(43,49) و(41,15) على الترتيب. وبلغت القيم المتوسطة لتركيز ات الرصاص في هذه الخضروات المحسوبة بتقنية الاشعة السينية المتوهجة (جزء لكل مليون) كالأتي: البصل (1,43) والملوخية (0,87) والجرجير (0,84) والكوسا (0,98) والخيار (0,97)، في حين بلغت القيم المتوسطة لتركيزات الرصاص في التربة (15.13) و(14.30) و(13.36) و(16.27) و(16.27) على الترتيب. أما تقنية مطياف الامتصاص الذري لم تتمكن من الكشف عن تركيز ات الرصاص في هذه الخضروات والتربة. وبلغت القيم المتوسطة لتركيزات الزنك في هذه الخضروات المحسوبة بتقنية الاشعة السينية المتوهجة (جزء لكل مليون) كالأتي: البصل (13,33) والملوخية (7,61) والجرجير (13,58) والكوسا (13,58) والخيار (15,67)، في حين بلغت القيم المتوسطة لتركيزات الزنك في التربة (26,63) و(22,34) و(23,71) و(22,93) و(22,93) و(24,40) على الترتيب. أما القيم المتوسطة لتركيزات الزنك في هذه الخضروات المحسوبة بتقنية مطياف الامتصاص الذري (ميكروجرام/جرام) كالأتي: البصل (13,33) والملوخية (23,92) والجرجير (22,63) والكوسا (30,56) والخيار (28,80)، في حين بلغت القيمة المتوسط لتركيزات الزنك في التربة (49,18) و(76,01) و(72,12) و(62,02) و(62,02) على الترتيب. وكانت القيم المتوسطة لتركيزات المنجنيز في هذه الخضروات بتقنية الأشعة السينية المتوهجة (جزء لكل مليون) كالأتي: البصل (41,67) والملوخية (41,72) والجرجير (51.06) والكوسا (17.70) والخيار (لم يتم الكشف عنه)، في حين بلغت القيم المتوسطة لتركيزات المنجنيز في التربة (350,59) و(432,14) و(423,75) و(421,50) و(396,62) على الترتيب.

أما القيم المتوسطة لتركيزات المنجنيز في هذه الخضار المحسوبة بتقنية مطياف الامتصاص الذري (ميكروجرام/جرام) كالأتي: البصل (37,36) والملوخية (88,25) والجرجير (89,84) والكوسا (12,74) والخيار (10,98) في حين بلغت القيم المتوسطة لتركيزات المنجنيز في التربة (780,01) و(780,09) و(1012,90) و(1012,90) و(788,49) على الترتيب.

ومن المثير للاهتمام ملاحظة أن تركيزات الزنك والمنجنيز والنحاس المحسوبة بتقنية مطياف الامتصاص الذري أعلى من التركيزات المحسوبة بتقنية مطياف الاشعة السينية المتوهجة وهذا قد ينتج من حقيقة أن العناصر الخفيفة تنبعث منها فوتونات أكثر فوتونات الأشعة السينية.

ومن المدهش أيضا ملاحظته أن تقنية الأشعة السينية المتوهجة تعطي تركيزات للرصاص مقارنة مع تقنية مطياف الامتصاص الذري وهذا يعني أن تقنية الأشعة السينية المتوهجة هي أفضل تقنية تستخدم للكشف عن الرصاص. ويمكن أن يعزى هذه الحساسية لتقنية الأشعة السينية المتوهجة لحقيقة أن العناصر الثقيلة مثل الرصاص تنبعث منها فوتونات الأشعة السينية ذات الطاقة العالية أكثر من فوتونات الضؤ المرئي ، لأن طاقة الفوتون تتناسب مع مربع العدد الذري.

The contents

No	Subject	Page
1	Dedication	I
2	Acknowledgement	II
3	Abstract	III
4	Abstract (Arabic)	V
5	The contents	VII
6	The list of figures	X
7	The list of tables	XII
Chapter One		
	Introduction	
1.1	Environmental pollution	1
1.2	Toxic effects	3
1.2.1	Lead	4
1.2.2	Zinc	5

1.2.3	Copper	5
1.2.4	Manganese	6
1.3	Heavy Metals in plant	6
1.4	Research problem	6
1.5	Objectives of study	7
1.6	Materials and Methods Thesis layout	7
1.7	Thesis out line	7
	Chapter two	
	Theoretical background	_
2.1	Introduction	8
2.2	X-Ray Spectrometry	8
2.2.1	Moseley's law	10
2.2.2	Characteristic x-rays	10
2.2.3	Selection rules	11
2.2.4	Properties of x-rays	12
2.2.4.1	X-ray Absorption	12
2.2.4.2	Photoelectric Effect	15
2.2.4.3	Auger Effect	17
2.2.4.4	Pair production	18
2.2.4.5	EDXRF technique	18
2.2.5	EDXRF set up	19
2.2.6	Quantitative analysis in EDXRF and WDXRF	20
2.2.7	Matrix effects and matrix correction model	21
2.2.8	Fundamental parameter (FP) matrix correction models	21
2.2.9	Compton matrix correction models	22
2.2.10	Line overlap correction	22
2.3	Atomic Absorption Spectroscopy	23
2.3.1	General principles of Atomic Absorption Spectrometry	25
2.3.2	Beer-Lambert's Law	26
2.3.3	Source of Radiation	27
2.3.3.1	Hollow Cathode Lamps	27
2.3.3.2	Burner Types	28
2.3.3.3	Monochromatic	28
2.3.3.4	Detector and Readout	29
2.3.3.5	Limit of detection	29
2.3.4	Instrumental principles of AAS	29
2.3.4.1	Radiation source	30
2.3.4.2	Atomization System	30

2.3.4.3	Signal processors	30
2.3.5	Interferences	32
2.3.5.1	Spectral interferences	32
2.3.5.2	Chemical interferences	32
	Chapter three	•
	Literature Review	
3.1	The importance of vegetables as foods	34
3.2	Heavy metals	34
3.3	The Context of Heavy Metal Problem	37
3.4	Biological Role and Toxic Effect of Specific Heavy	38
	Metals	
3.4.1	Copper (Cu)	38
3.4.2	Zinc (Zn)	38
3.4.3	Lead (Pb)	39
3.4.4	Manganese (Mn)	40
3.5	Metal Sources	40
3.5.1	Air and Water Pollution	40
3.5.2	Sources of heavy metals in vegetables	41
3.6	Studies of Heavy Metal in Plants	43
3.7	Studies on Measurement Methods of Heavy Metals in	47
	Plants	
3.8	Effects of Heavy Metal on Plants	49
3.8.1	Nature of heavy metals	49
3.8.2	Essential heavy metals	49
3.8.3	Effect of heavy metals	50
3.8.3.1	Effects of copper on plants	51
3.8.3.2	Effect of zinc on plants	52
3.8.3.3	Effects of lead on plants	53
3.8.3.4	Effects of manganese on plants	54
	Chapter four	
	Material and Methods	
4.1	Study area	56
4.2	Samples Collection	57
4.3	Samples preparation	57
4.4	Samples measurements	59
44.1	XRF technique	59
4.4.1.1	Experimental set-up	59
4.4.1.2	Samples Analysis	60

4.4.2	AAS technique	61
4.4.2.1	Samples Treatment	61
4.4.2.2	Experimental set up	62
4.4.2.3	Samples Analysis	62
4.5	Statistical Analysis	64
4.5.1	T-Test Analysis	64
4.5.2	Correlation Analysis	64
	Chapter five	
	Results and Discussion	
5.1	Quality Control of the Obtained Data	65
5.2	Summary of Statistics	70
5.3	Comparison between concentrations measured by two	75
	Techniques	
5.3.1	compare the means of concentration heavy metals	75
	measured by two techniques and control samples	
5.3.2	Independent T-Test	79
5.4	Correlation Analysis of Heavy-Metal Concentrations	80
5.5	Discussions	81
5.6	Conclusion	84
5.7	Recommendations	85
5.8	Appendixes	86
5.9	REFERENCES	96

List of figures

No	Subject	Page
2.1	X-Ray Fluorescence Process Example: Titanium Atom	9
2.2	Relationship between atomic number and square root of	11
	frequency	
2.3	Auger electrons	12
2.4	Schematic representation of attenuation	13
2.5	Partial energy level diagram showing the origin of the	16
	main lines in the K and L spectra	
2.6	Hypothetical x-ray energy-level diagram	17
2.7	Schematic representation of modified (Compton scatter)	18
	of an x-ray photon by an atom	
2.8	Schematic representation absorption of radiation by	25
	atomic population N	
2.9	Atomic absorption cell of length b The transmittance	26
2.10	Schematic representation of atomic absorption	31

	spectrometer	
2.11	Schematic diagram of atomic absorption spectroscopy	33
3.1	Diagram Sources of heavy metals and their cycling in the	43
	soil-water-air organism ecosystem	
4.1	A map showing the area from which plants and soil	56
	samples have been collected	
4.2	Oven	57
4.3	sensitive scale	58
4.4	SPECAC manual hydraulic press pressing machine	58
4.5	X-Ray Fluorescence machine	61
4.6	Atomic Absorption Spectrometer	64
5.1	Compare Manganese Concentrations in Vegetables	66
5.2	Compare Zinc Concentrations in Vegetables	66
5.3	Compare Copper Concentrations in Vegetables	67
5.4	Compare Lead Concentrations in Vegetables	67
5.5	Compare Manganese Concentrations in Vegetables	68
5.6	Compare Zinc Concentrations in Vegetables	69
5.7	Compare Copper Concentrations in Vegetables	69
5.8	Compare Lead Concentrations in Vegetables	70
5.9	plot show concentration metals in Onion	75
5.10	plot show concentration metals in Onion soil	76
5.11	plot show concentration metals in Jew Mallow	76
5.12	plot show concentration metals in Jew Mallow soil	76
5.13	plot show concentration metals in Jew Water cress	77
5.14	plot show concentration metals in Jew Water cress soil	77
5.15	plot show concentration metals in Jew Marrow	77
5.16	plot show concentration metals in Jew Marrow soil	78
5.17	plot show concentration metals in Jew Cucumber	78
5.18	plot show concentration metals in Jew Cucumber soil	78

List of Tables

No	Subject	Page
4.1	Instrumental settings for the determination of Cu, Zn, Pb,	62
	and Mn by AAS	
5.1	Concentration of heavy metal of analytical Hay powder	65
	compare with certificate value (IAEA)	
5.2	Concentration of heavy metal of analytical Hay powder	68
	compare with certificate value (IAEA)	
5.3	Summary of the statistics for the Metals concentration	70
	except Mn, Zn, Cu and pb in Onion and soil samples using	
	XRF technique	
5.4	Summary of the statistics for the Metals concentration	71
	(μg/g) except Mn, Zn, Cu and pb in Onion and soil	
	samples using AAS technique	
5.5	Summary of the statistics for the Metals concentration	71
	except Mn, Zn, Cu and pb in Mallow and soil samples	
	using XRF technique	

5.6	Summary of the statistics for the Metals concentration	72
	except Mn, Zn, Cu and pb in Mallow and soil samples	
	using AAS technique	
5.7	Summary of the statistics for the Metals concentration	72
	except Mn, Zn, Cu and pb in Watercress and soil samples	
	using XRF technique	
5.8	Summary of the statistics for the Metals concentration	72
	except Mn, Zn, Cu and pb in Watercress and soil samples	
	using AAS technique	
5.9	Summary of the statistics for the Metals concentration	73
	except Mn, Zn, Cu and pb in Marrow and soil samples	
	using XRF technique	
5.10	Summary of the statistics for the Metals concentration	73
	except Mn, Zn, Cu and pb in Marrow and soil samples	
	using AAS technique	
5.11	Summary of the statistics for the Metals concentration	74
	except Mn, Zn, Cu and pb in Cucumber and soil samples	
	using XRF technique	
5.12	Summary of the statistics for the Metals concentration	74
	except Mn, Zn, Cu and pb in Cucumber and soil samples	
	using AAS technique	
5.13	The statistical data for parametric independent t-test in	79
	Concentration of heavy metal in vegetables measured by	
	two techniques	
5.14	The statistical data for parametric independent t-test in	79
	concentration of heavy metal in vegetables measured by	
	two techniques	
5.15	Correlations Analysis of Heavy-Metal Concentrations in	80
	vegetables measured by AAS and XRF techniques	
5.16	Correlations Analysis of Heavy-Metal Concentrations in	80
	soils measured by AAS and XRF techniques	