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Chapter One 

Introduction 

1.1 Zinc Oxide 

Recently, zinc oxide (ZnO) has attracted much attention within the 

scientific community as a ‘future material’. This is however, somewhat of a 

misnomer, as ZnO has been widely studied since 1935 [1], with much of our 

current industry and day-to-day lives critically reliant upon this compound. The 

renewed interest in this material has arisen out of the development of growth 

technologies for the fabrication of high quality single crystals and epitaxial 

layers, allowing for the realization of ZnO-based electronic and optoelectronic 

devices.  

ZnO crystallises in three forms: zincblende, wurtzite, and rocksalt crystals 

[2]. The two common crystal structures of ZnO are the wurtzite and zincblende 

structures, whereas the rocksalt structure can be formed at high pressures at 

about 10 GPa [3]. 

1.2 objectives 
      The main objective of this project was to explore the effect of substitution of 

Zinc atoms by Strontium atoms in Zinc oxide compound. The Structure and 

electronic behaviors of Strontium Zinc Oxide have been studied as predict that 

this new compound will have many optical applications.  

1.3 Literature review 

Wurtzite ZnO can be represented by a hexagonal unit cell with two lattice 

parameters a and c as shown in Figure 1.1. Within the unit cell, the structure 

comprises two interpenetrating hexagonal closed-packed (hcp) sublattices, each 
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of which contains four atoms in a unit cell. Here, each atom of one kind is 

surrounded by four atoms of the other kind (i.e. tetrahedral coordination), in 

other words, each sublattice consists of one type of atom displaced from the 

other along the threefold c-axis by an amount u = b/c (the internal parameter u is 

defined as the length of the bond parallel to the c-axis divided by the c lattice 

parameter). The u parameter has been defined as 0.375 for an ideal wurtzite 

structure [4]. However, as real wurtzite ZnO crystals tend to deviate from the 

ideal conformation, the u parameter  

 

Figure (1.1): Unit cell of wurtzite ZnO[4] 

 

may deviate from the ideal value, giving an increased value when the c/a ratio 

decreases. 

The lattice parameters for wurtzite ZnO are commonly measured via x-ray 

diffraction (XRD) based methods experimentally and using first principles 

calculations theoretically . The lattice parameters (a, b and c) of the wurtzite ZnO 
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with an internal parameter (u), that have been reported previously and obtained 

experimentally and theoretically, show that the a and c values range from 3.166 

to 3.298 Å, and from 5.070 to 5.294 Å, respectively . The c/a ratio and the u 

parameter range from 1.572 to 1.617, and from 0.376 to 0.389, respectively. 

 3d-transition-metal-doped ZnO film ~n-type Zn12MxO (x50.05): M5Co, Mn, 

Cr, Ni! Are formed on sapphire substrates using a pulsed-laser deposition 

technique, and their magnetic and electric properties are examined. The Co-

doped ZnO films showed the maximum solubility limit. 

Some of the Co-doped ZnO films exhibit ferromagnetic behaviors with the Curie 

temperature higher than room temperature. The magnetic properties of Co-doped 

ZnO films depend on the concentration of Co ions and carriers [5].  

1.4 Problem 

      The problem of this project long time was to explore the effect of 

substitution of Zinc atoms by Strontium atoms in Zinc oxide compound. The 

Structure and electronic behaviors of Strontium Zinc Oxide have been studied as 

predict that this new compound will have many optical applications. 

1.5 Outline of the thesis 
 Thesis content four chapters:   

The chapter one introduction, the chapter two Density Functional Theory (DFT), 

 The chapter three Defect in Solid, the four Results and Discussion. 
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Chapter two 

Density functional theory (DFT) 

2.1 Introduction 

The motivation of density functional theory (DFT) is to avoid trying to solve the  

many electron wave function  as in the Hartree-Fock  

method, by instead solving for the electron density distribution ρ(r).  

Density functional theory is based on the 1964 theorem of Hohenberg and Kohn 

[6] and the computational scheme by Kohn and Sham [7]. It is based on the idea 

that every ground state observable property of a quantum mechanical system can 

be calculated from the charge density, and that a given ground state electron 

density cannot arise from two different external potentials, unless the two differ 

by a constant, i.e. the ground state electronic structure is uniquely  determined by 

the electron density.   

2.2 Hohenberg-Kohn theorem  

 Hohenberg and Kohn [8, 9, 10] formulated two basic theorems of the DFT:   

The first theorem states that the ground-state density  of a bound system of 

interacting electrons in an external potential  (r) determines this potential 

uniquely. In other words there exist a one-to-one correspondence between the 

electron density of a systems and the energy and hence all properties of the 

system can be considered to be unique functionals of ground state density. They 

consider a potential  that gives an electron density . Now assume 
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another potential  that gives the same density. These potentials would give 

two Hamiltonians  

that have the same 1ܪand2ܪ ground state density where, 

ଵܪ = Τ + ܷ + ߭ଵ(ݎ)       ;       ܪଶ = Τ + ܷ + ߭ଶ(ݎ)


                   (2.1) 

Where 

                            Τ = − ଵ
ଶ

 ∑ ∇ଶ ே
       and ܷ = ଵ

ଶ
∑ ଵ

หିೕหஷ  

with the corresponding Schrödinger equation, 1ܪΨ1 = 1ܧΨ1and 2ܪΨ2 = 2ܧΨ  , 

and we assume that the two wave function Ψ and Ψ  yield that same density as,  

(ݎ)ߩ        = ܰනΨ∗( ,ଵݎ ,ଶݎ . . , ,ଵݎ)ே)Ψݎ ,ଶݎ . . , .ଷݎଶ݀ݎ݀(ேݎ .  ே               (2.2)ݎ݀

Now, by variational method,  

ଵܧ = ⟨Ψଵ|ܪଵ|Ψଵ⟩ 

< ⟨Ψଶ|ܪଵ|Ψଶ⟩ 

< ⟨Ψଶ|ܪଶ|Ψଶ⟩ +  ⟨Ψଶ|ܪଵ −  ⟨ଶ|Ψଶܪ

 

ଵܧ       ≤ ଶܧ + ∫ (ݎ)ଵ߭](ݎ)ߩ − ߭ଶ(ݎ)] ݀(2.3)                                                 ݎ 

Similarly,  

ଶܧ = ⟨Ψଶ|ܪଶ|Ψଶ⟩ 

< ⟨Ψଵ|ܪଶ|Ψଵ⟩ 

< ⟨Ψଵ|ܪଵ|Ψଵ⟩ + ⟨Ψଵ|ܪଶ −  ⟨ଵ|Ψଵܪ
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ଶܧ        ≤ ଵܧ − (ݎ)ଵ߭](ݎ)ߩ∫ − ߭ଶ(ݎ)]݀(2.4)                                                        ݎ 

Adding the above two inequalities (2.3) and (2.4) gives the contradiction   

ଵܧ         + ଶܧ < ଶܧ +  ଵ                                                                                       (2.5)ܧ

 

Therefore, it can be deduced that there cannot be two different potentials that 

yield the same ground state electron density. Moreover, the external potential 

is a unique functional of density . This shows that it is possible to 

rewrite the Schrödinger equation in term of the density.  

2.3 Periodic Supercell and K- point sampling  

    In a periodic crystal, the fundamental unit cell is repeated to form an infinite 

system. Even though the periodicity can be in one, two or three dimensions, the 

later one is far more common and is characterized by three vectors , a1, a2, and a3 

spanning a vector space. Any single point in this direct lattice space is 

characterized by a vector r(i.e., a linear combination of a1, a2, and a3). In the same 

manner there exists a unique reciprocal space, corresponding to each direct cell, 

defined by the reciprocal vectors ,b1, b2, and b3derived from a1, a2, and a3 obeying 

the orthonormality relation aibj=2πδij. In reciprocal space the fundamental 

building block is called the first Brillouin zone. As in the case of direct lattice 

space, each point in the reciprocal space is uniquely represented by a vector k 

(usually designated as the wave vector). Since the lattice is periodic in nature, the 

potential energy of the crystal must also be periodic in nature, such that for a 

translation by any direct lattice vector  the potential energy does not change,  
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ݎ)ܸ         − ݃) =  (2.6)                                                                                           (ݎ)ܸ

Because of the symmetry constraints, the Schrödinger equation given in equation 

(2.1) should also be translation invariant; indicating that for a translation of the 

whole crystal by a lattice vector , the solution of the equation,  

ݎ)ܪ         + ݎ)߰(݃ + ݃) = ݎ)߰ܧ + ݃)                                                           (2.7) 

agree with those of equation (2.1). According to Bloch theorem [11,12], the 

eigenfunctions with the correct symmetry relative to a potential of the form in 

equation. (2.7) has the form of a plane wave times function with the periodicity 

of the lattice,  

         Φ(ݎ + ݇;݃) = exp[݅݇.݃] Φ(ݎ; ݇)                                                           (2.8) 

Here  is called the Bloch function(BF) and they span an infinite crystal. 

The wave vector k labels the different solutions to the Schrödinger equation 

given in equation (2.1). The BF has the following form,  

       Φ(ݎ; ݇) = exp[݅݇. ,ݎ)ݑ[ݎ ݇)                                                                       (2.9) 

 Here u(r, k) has the same periodicity of the lattice. Alternatively, Bloch theorem 

indicates that a crystalline orbital (CO), corresponding to the nth band in 

the unit cell can be written as a wave like part and a cell periodic part 

called the “Bloch orbital”:  

       ߰,(ݎ) = exp[݅݇.  (2.10)                                                                         .(ݎ)߮[ݎ

The beauty of BFs is that they have interesting translational properties in 

reciprocal space. Consider a point k 'in the reciprocal lattice obtained by the 

translation of k by any reciprocal lattice vector K. If we apply Bloch theorem to 

the corresponding BF, , it is evident that  exhibits the same 

translational properties  
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as ,  

  Φ(ݎ + ݃; ݇ ′) = exp [݅(݇ + ;ݎ)Φ݃.(ܭ ݇ +    (ܭ

                         = exp[݅݇.݃] Φ(ݎ; ݇ ′)                                                            (2.11) 

and one would immediately see not only that  and  can be referred  

to the same k, but also that both of them are acceptable eigenfunctions of that k 

in equation (2.1). This behavior of BF allows us to restrict our analysis only to 

the first Brillouin zone. In fact the use of BFs has to be associated with the 

integration over the first Brillouin zone and would require a priori compute 

different quantities at a large number of k-points. In principle, the electronic 

wave functions at k points which are close to each other are almost identical, 

hence they are solved at a finite set of k points and the results can be 

interpolated.  

 Several methods for k point sampling have been proposed in the literature. In 

our calculations we use the scheme proposed by Monkhorst and Pack [13] for 

calculating the electronic states at a set of k points in the Brillouin zone. Other 

methods for the k points sampling were developed by Chadi and Cohen [14], and 

Joannopoulos and Cohen [15]. Using these methods one can obtain an accurate 

approximation for the electronic potential and the total energy of an insulator or 

a semi-conductor by calculating the electronic states at a very small number of k 

points.  

2.4 The CRYSTAL06 Code  

The CRYSTAL package performs ab initio calculations of the ground state 

energy, electronic wave function and properties of periodic systems. Hartree-
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Fock and Kohn-Sham Hamiltonians can be used. Systems that are periodic in 

zero  

(molecules, 0D), one (polymers, ID), two (slabs, 2D) and three dimensions 

(crystals, 3D) can be treated [58]. In each case, the fundamental approximation 

made is the expansion of the single particle wave functions ߰݅(r; k) ("Crystalline 

orbital", CO) as a linear combination of Bloch functions (BF), defined in terms 

of local functions (hereafter called as "Atomic orbitals", AOs) [16,17]. The AOs 

are contracted linear spherical harmonic Gaussian Type Functions (GTFs), 

optimized for the crystalline environments. Analytically the GTF has the 

following form, 

        ܺఈீ்ி = exp(−ݎߙଶ)                                                                        (2.12)ݖݕݔ

where α is the exponent and the l, m, and n are simply powers of the Cartesian 

coordinates. With the increase in the size of the basis set, the CPU time and the 

amount of disk space needed to store the temporary integrals increases 

dramatically. Thus one has to expand the orbital with less number of basis set 

without losing the accuracy. In most applications this is achieved by expanding 

the Gaussian functions as a contraction of individually normalized Gaussian 

primitives g j (r). They are characterized by the same center and angular quantum 

numbers but with different exponents:  

(ݎ)ݔ         = ∑ ݀݃(ݎ)                                                                               (2.13)௦
ୀଵ  

where  

      ݃(ݎ) = ݎ)݃ ,ߙ,. ݈,݉) = ܰ(ߙ)ݎ ܻ(ߠ,߶) exp൫−ߙݎଶ൯                (2.14) 

where s is the length of the contraction, ݆ߙ is a  contraction exponent, dj is a 

contraction coefficient. The Gaussian primitives are written in terms of real 

spherical harmonics including normalization constant. The exponents and the 
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contraction coefficients are normally chosen on the basis of relative cheap 

atomic SCF calculations so as to give basis functions suitable for describing the 

exact Hartree-Fock atomic orbitals (CRYSTAL06 code).  

By proper choice of these quantities, the resulting contracted Gaussians can be 

used to mimic any functional form. Therefore one has to choose the exponents 

and the contraction coefficients of the primitives so as to lead the basis functions 

towards the desired properties. A typical basis set will have certain core 

functions with a large number of primitives and relatively large exponents. On 

the other hand the valence functions will have only few primitives with lower 

exponents. Basically, the core states are not in general affected by changes in 

chemical bonding. Hence, in order to reduce the computational expenses, 

especially for heavier atoms, the core states can be replaced by Pseudopotentials. 

The idea behind the Pseudopotentials is to treat the core electrons by their effect 

on the potential filled by the electrons in the valence shell by slightly modifying 

the Hamiltonians and moreover it is easier to incorporate relativistic effects in 

Pseudopotentials formalism. High quality Gaussian basis sets are adopted for the 

present study. For heavier atom like strontium, Pseudopotentials are used to treat 

the core electrons. 

2.5 Implementation of hybrid functionals 

In a series of papers [18,19] Becke examined the effects of exchange and 

correlation in DFT on the computation of thermo chemical properties. In 

examining the role of exact exchange, he demonstrated the inclusion of a small 

component of exact-exchange within the DFT exchange-correlation 

approximation lead to more accurate molecular energetic.  

The exchange-correlation approximation proposed by Becke was:  

௫ܧ = (1 − ௫ܧ(ܣ + ௫ா்ܧܣ + ௫଼଼ܧ∆ܤ + ܧ +  ௐଽଵ                  (2.15)ܧ∆ܥ
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where exact  is the exact exchange energy, is Becke’s gradient 

correction to the exchange functional, and is the Perdew and Wang 

gradient corrected correlation. The parameters A, B, and C are semi-empirical 

coefficients that were determined by a least-squares fit to atomization energies, 

ionization potentials, and electron and proton affinities in Pople’s test set [20,21] 

of atomic and molecular species, and Becke suggested values of A = 0.2, B = 

0.72, and C =  

0.81.  

When this method was implemented in the Gaussian 92 code, the Perdew and 

Wang correlation was replaced by the Lee-Yang-Parr [22] (LYP) correlation and 

this hybrid functional was called B3LYP. As the LYP functional does not have 

an easily separable local component, it was proposed the use of the exact form of 

Vosko-Wilk-Nusair (VWN) [23] correlation potential corresponding to a fit to 

the Ceperley-Alder Monte Carlo simulation data is used for the correlation 

correction and The B3LYP functional takes the following explicit form:  

௫ଷܧ       = (1 − ௫ܧ(ܣ + ௫ுிܧܣ + ௫଼଼ܧ∆ܤ + ܧܥ + (1 −

 ௐே   (2.16)ܧ(ܥ

This functional is the implementation of B3LYP within the CRYSTAL package, 

and consequently the implementation used in this thesis.  
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Chapter three 

Defect in solid 
 

3.1 Introduction 
It is useful to classify crystal lattice defects by their dimension. The 0-

dimensional defects affect isolated sites in the crystal structure, and are hence 

called point defects. an example is a solute or impurity atom, which alters the 

crystal pattern at a single point. The 1-dimensional defects are called 

dislocations. They are lines along which the crystal pattern is broken. The 2-

dimensional defects are surfaces, such as the external surface and the grain 

boundaries along which distinct crystallites are joined together. The 3-

dimensional defects change the crystal pattern over a finite volume. 

They include precipitates, which are small volumes of different crystal structure, 

and also include large voids or inclusions of second-phase particles. 

Any deviation from the perfect atomic arrangement in a crystal is said to contain 

imperfections or defects. In fact, using the term “defect” is sort of a misnomer 

since these features are commonly intentionally used to manipulate the 

mechanical properties of a material. Adding alloying elements to a metal is one 

way of introducing a crystal defect. Crystal imperfections have strong influence 

upon many properties of crystals, such as strength, electrical conductivity and 

hysteresis loss of ferromagnetism. Thus some important properties of crystals are 

controlled by as much as by imperfections and by the nature of the host crystals. 

1- The conductivity of some semiconductors is due entirely to trace amount of 

chemical impurities. 

2- Color, luminescence of many crystals arise from impurities and 

imperfections. 
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3- Atomic diffusion may be accelerated enormously by impurities or 

imperfections 

Mechanical and plastic properties are usually controlled by imperfections[24]. 

 
Figure(3.1) shows defect in solid[24]. 

3.2  Point defects  

A point defect disturbs the crystal pattern at an isolated site. It is useful to 

distinguish intrinsic defects, which can appear in a pure material, from extrinsic 

defects, which are caused by solute or impurity atoms. 

Point defects are defects that occur only at or around a single lattice point. They 

are not extended in space in any dimension. Strict limits for how small a point 

defect is are generally not defined explicitly, typically, however, these defects 

involve at most a few extra or missing atoms. Larger defects in an ordered 

structure are usually considered dislocation loops. For historical reasons, many 

point defects, especially in ionic crystals, are called centers: for example a 

vacancy in many ionic solids is called a luminescence center, a color center, or 
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F-center. These dislocations permit ionic transport through crystals leading to 

electrochemical reactions. These are frequently specified using Kröger–Vink 

Notation. 

3.2.1 Vacancy defects 

 are lattice sites which would be occupied in a perfect crystal, but are vacant. If a 

neighboring atom moves to occupy the vacant site, the vacancy moves in the 

opposite direction to the site which used to be occupied by the moving atom. The 

stability of the surrounding crystal structure guarantees that the neighboring 

atoms will not simply collapse around the vacancy. In some materials, 

neighboring atoms actually move away from a vacancy, because they experience 

attraction from atoms in the surroundings. A vacancy (or pair of vacancies in an 

ionic solid) is sometimes called a Schottky defect. 

3.2.2 Interstitial defects 

are atoms that occupy a site in the crystal structure at which there is usually not 

an atom. They are generally high energy configurations. Small atoms in some 

crystals can occupy interstices without high energy, such as hydrogen in 

palladium. 
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Figure(3.2)Schematic illustration of some simple point defect types in a 

monatomic solid [25]. 

3.2.3 Frenkel defect 

A nearby pair of a vacancy and an interstitial is often called a Frenkel defect or 

Frenkel pair. This is caused when an ion moves into an interstitial site and 

creates a vacancy. 

3.2.4 Impurity 

Due to fundamental limitations of material purification methods, materials are 

never 100% pure, which by definition induces defects in crystal structure. In the 

case of an impurity, the atom is often incorporated at a regular atomic site in the 

crystal structure. This is neither a vacant site nor is the atom on an interstitial 

site and it is called a substitutional defect. The atom is not supposed to be 

anywhere in the crystal, and is thus an impurity. In some cases where the radius 

of the substitutional atom (ion) is substantially smaller than that of the atom 

(ion) it is replacing, its equilibrium position can be shifted away from the lattice 

site. These types of substitutional defects are often referred to as off-center 

ions. There are two different types of substitutional defects: Isovalent 
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substitution and aliovalent substitution. Isovalent substitution is where the ion 

that is substituting the original ion is of the same oxidation state as the ion it is 

replacing. Aliovalent substitution is . Aliovalent substitutions change the 

overall charge within the ionic compound, but the ionic compound must be 

neutral. Therefore, a charge compensation mechanism is required. Hence either 

one of the metals is partially or fully oxidized or reduced, or ion vacancies are 

created[25]. 

3.4 Defect line: 

 
Figure(3.3)show defect line [25]. 

 

edge dislocation in a simple cubic structure is drawn in Fig. which shows both a 

two-dimensional view and a three-dimensional section along the dislocation line. 

The dislocation can be created by making a cut in the crystal on the dashed plane 

the left of the dislocation by one lattice spacing, and allowing the atoms to re-

bond across the slip plane. This recipe recreates the simple cubic unit cell 

everywhere except on the dislocation line itself (ignoring the small elastic 

distortion of the cells that border the dislocation line).  
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3.5 Defect surfaces 
The two-dimensional defects that appear in crystals can be usefully divided into 

three types: free surfaces, which are the external surfaces at which the solid 

terminates at a vapor or liquid, inter crystalline boundaries, which separate grains 

or distinct phases within the solid, and internal defects that disrupt the crystalline 

pattern over a surface within a crystal. All of these defects have two important 

characteristics. First, since they are surfaces in a crystal they have particular 

atomic structures that depend on orientation. 

Second, they have a positive energy. The energy per unit area is ordinarily equal 

to the surface tension. 

The interface between a crystalline solid and a vapor or liquid governs the 

interaction between the two phases, and influences the behavior of the solid in 

many important ways that we shall discuss later in the course. It also affects the 

shape of the solid. The shape and properties of the free surface are determined by 

a combination of its structure and its energy. These two parameters are related to 

one another. 

 
Figure(3.4) :defect in surface [26]. 

perfect vacuum, the atoms in the free surface are bonded on only one side and 

the spacing and the configuration of the atoms in the first few planes at the 

interface adjusts to accommodate the asymmetry of the bonding in the bast 

possible way. The structure of a real interface is further complicated by bonding 
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interactions across the interface and by chemical changes in the interfacial plane. 

The dangling bonds at the interface provide favorable sites for the adsorption of 

atoms that do not fit well into the bulk lattice. Then interface is often enriched in 

solute species (surfactants). Oxygen, sulfur and phosphorous are common 

surfactants in engineering solids[26]. 

3.6  VOLUME DEFECTS  
Volume defects in crystals are three-dimensional aggregates of atoms or 

vacancies. It is common to divide them into four classes in an imprecise 

classification that is based on a combination of the size and effect of the particle. 

The four categories are: precipitates, which are a fraction of a micron in size and 

decorate the crystal; second phase particles or dispersants, which vary in size 

from a fraction of a micron to the normal grain size (10-100μm), but are 

intentionally introduced into the microstructure; inclusions, which vary in size 

from a few microns to macroscopic dimensions, and are relatively large, 

undesirable particles that entered the system as dirt or formed by precipitation; 

and voids, which are holes in the solid formed by trapped gases or by the 

accumulation of vacancies. Precipitates are small particles that are introduced 

into the matrix by solid state reactions. While precipitates are used for several 

purposes, their most common purpose is to increase the strength of structural 

alloys by acting as obstacles to the motion of dislocations. Their efficiency in 

doing this depends on their size, their internal properties, and their distribution 

through the lattice. However, their role in the microstructure is to modify the 

behavior of the matrix rather than to act as separate phases in their own right. 

Dispersants are larger particles that behave as a second phase as well as 

influencing the behavior of the primary phase. They may be large precipitates, 

grains, or poly granular particles distributed through the microstructure. When a 

microstructure contains dispersants such properties as mechanical strength and 

electrical conductivity are some average of the properties of the dispersant phase 
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and the parent. Inclusions are foreign particles or large precipitate particles. They 

are usually undesirable constituents in the microstructure[27]. 
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Chapter Four 

Results and Discussion  

 

4.1 Introduction 
       This chapter describes first principles calculations for SrZnO. Study based 

on DFT method is performed to evaluate structural and electronic properties of 

Sr doped into ZnO. Because such properties are depends on composition the 

compound, we performed the calculations with different percentage of Sr dopant.  

4.2 Computational Details 

The performed a periodic structure calculations of a perfect and doped cubic 

perovskite SrMnO3 within the framework of density functional theory method 

[28] using CRYSTAL06 [29] with the hybrid functional  B3LYP exchange 

correlation functionals which consists of the mixture of the non-local exact 

Hartree-Fock exchange [30] and Generalized Gradient Approximation (GGA) 

exchange functionals as proposed by Becke’s three parameter method combined 

with the non-local correlation potential of Lee et al. [31]. CRYSTAL06 employs 

atom-centered Gaussian-type function as basis sets. The basis sets used were all-

electron sets on Zn (86-411d31G) [32], O (8-411-d1) [ 33] and a pseudopotential 

basis set (HAYWSC-31(3d)) [34] was used for Sr to reduce computational 

effort.  

 The XCrysden Software was used for the structural analysis. Moldraw was used 

for structure visualization. Debian 8.3 Linux were used in all simulations. 
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4.3 Mothod 

The XCrysden Software was used for the structural analysis. Moldraw was used 

for structure visualization. Debian 8.3 Linux were used in all simulations. The 

starting point for calculation was to optimize the ZnO geometry. We use 

supercell 2×2×1 crystal structure of ZnO compound containing 8 zinc atoms and 

8oxygen atoms as shown in figure 4.1.  The experimentally measured Wurtzite 

ZnO lattice parameters are a=b=3.249 Å, c=5.204 Å  and space group P63mc 

(186)[35,36] Optimization of lattice parameters was performed. Our calculation 

gave the optimized lattice constants structure a=3.289 Å, b=3.289 Å, c=5.280Å, 

which is in agreement with experimental data. 

On substitution one Zn by Sr, we found that the band energy decreased to the 

value 3.28 eV which means improve in the electrical conductivity of the 

compound. We found also that when the dopant increases the band energy 

increases too. 

 A Sr-doped model (Sr:ZnO) was developed from unit cell expansion in the 

direction of axes a, b and c, resulting at 12.5-100% doping as shown in Table 

4.1.  

Table 4.1. Description of the unit cells used for simulating the Sr-doping on 

ZnO.                                                                                                                                             
. 

Zn atoms replaced Unit cell expansion Doped amount(%) 

0 2x2x1 0 

1 2x2x1 12.5 

2 2x2x1 25.0 

3 2x2x1 37.5 
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4 2x2x1 50.0 

5 2x2x1 62.5 

6 2x2x1 75.0 

7 2x2x1 87.5 

8 2x2x1 100 

 

4.4 Results 

Band structure is electronic band structure and energy scheme to describe the 

conductivity of conductor, insulator and semiconductors. 

4.4.1 12.5% doping amount of Sr in ZnO 

Table 4 .2:  SrZn7O8 optimized cell parameters  

GAMMA BETA ALPHA C B A parameters 

120 90 90 5.2803 6.5782 6.5782 Before 

optimized 

120.2892 90.0372 89.9627 5.4019 6.7569 6.7569 After 

optimized 

 

 

Figure 4.1 SrZn7O8 crystal structure. 
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Figure 4.2: Electronic band structure for SrZn7O8 .The band gap between the top of the  

valence band and the bottom of the conduction band ≈3.46 electron Volt. 

 

4.4.2 25% doping amount of Sr in ZnO  

Table 4 .3:  Sr2Zn6O8 optimized cell parameters  

GAMMA BETA ALPHA C B A parameters 

120 90 90 5.2803 6.5726 6.5726 Before 

optimized 

120.0021 87.7061 90 5.5296 6.9258 6.9258 After 

optimized 
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Figure 4.3 Sr2Zn6O8 crystal structure. 

 

 

 

 

  

 

  

Figure 4.4: Electronic band structure for Sr2Zn6O8 .The band gap between the top of the 

valence band and the bottom of the conduction band ≈3.84 electron Volt 

4.4.3 37.5% doping amount of Sr in ZnO 

Table 4 .4:  Sr3Zn5O8 optimized cell parameters 

GAMMA BETA ALPHA C B A parameters 

120 90 90 5.2803 6.5782 6.5782 Before 

optimized 

120.0021 90 90 5.5630 7.1882 7.1882 After 

optimized 



25 
 

 

 

Figure 4.5 Sr3Zn5O8 crystal structure. 

 

 

 

 

 

 

 

 

Figure 4.6: Electronic band structure for Sr3Zn5O8 .The band gap between the top of the 

valence band and the bottom of the conduction band ≈3.94 electron Volt. 

4.4.4 50% doping amount of Sr in ZnO 

Table 4 .5:  Sr4Zn4O8 optimized cell parameters  

 

 

GAMMA BETA ALPHA C B A Parameters 

120 90 90 5.2803 6.5782 6.5782 Before 

optimized 

120.9421 89.8043 89.9995 5.1954 7.9184 7.9184 After 

optimized 
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Figure 4.7 Sr4Zn4O8 crystal structure. 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: Electronic band structure for Sr4Zn4O8 .The band gap between the top of the      

valence band and the bottom of the conduction band ≈4.78 electron Volt. 
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4.4.5 62.5% doping amount of Sr in ZnO 

Table 4 .6:  Sr5Zn3O8 optimized cell parameters  

GAMMA BETA ALPHA C B A Parameters 

120 90 90 5.2803 6.5782 6.5782 Before 

optimized 

118.8183 90 90 5.5570 7.2862 7.2862 After 

optimized 

 

 

 

Figure 4.9 Sr5Zn3O8 crystal structure. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: Electronic band structure for Sr5Zn3O8 .The band gap between the top of the 

valence band and the bottom of the conduction band ≈4.81 electron Volt. 
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4.4.6 75% doping amount of Sr in ZnO 

Table 4 .7:  Sr6Zn2O8 optimized cell parameters  

GAMMA BETA ALPHA C B A Parameters 

120 90 90 5.2803 6.5782 6.5782 Before 

optimized 

119.9689 89.3712 90 5.8753 7.7447 7.7447 After 

optimized 

 

 

 

Figure 4.11 Sr6Zn2O8 crystal structure. 
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Figure 4.12: Electronic band structure for Sr6Zn2O8 .The band gap between the top of the 

valence band and the bottom of the conduction band ≈5.64 electron Volt. 

4.4.7 87.5% doping amount of Sr in ZnO. 

Table 4 .8:  Sr7ZnO8 optimized cell parameters  

GAMMA BETA ALPHA C B A Parameters 

120   90 90 5.2803 6.5782 6.5782 Before 

optimized 

120 90 90 5.1509 8.4354 8.4354 After 

optimized 

 

Figure 4.13 Sr7ZnO8 crystal structure 
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Figure 4.14: Electronic band structure for Sr7ZnO8 .The band gap between the top of the 

valence band and the bottom of the conduction band ≈7.12 electron Volt. 

4.4.8 100% doping amount of Sr in ZnO 

Table 4 .9:  Sr8O8 optimized cell parameters  

GAMMA BETA ALPHA C B A Parameters 

120 90 90 5.2803 6.5782 6.5782 Before 

optimized 

120 90 90 5.8761 7.9119 7.9119 After 

optimized 

 

 

Figure 4.15 Sr8O8 crystal structure. 
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Figure 4.16: Electronic band structure for Sr8O8 .The band gap between the top of the valence 

band and the bottom of the conduction band ≈9.79 electron Volt. 

4.5 Conclusion 

We used (DFT) with periodic model to discuss electronic structure properties  for 

Sr in ZnO. Once the band gap decrease changes Sr doped ZnO materials have 

showed as potential energy. 

4.6 Recommendations 

 We recommended that the study properties electronic ,optical, 

Solid state, material and semiconductor. 

 It can be minimize by the modern technology and nonotechology. 
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