الآية

قال تعالى:

" الله أَ انْ زَلَا الْهُوْرِيْلَ اللهُ الله مَاءً فَأَخْرَجْنَا بِهِ ثَمَرَاتٍ مُخْ تَلِفًا أَلْوَ النَّهَا وَمِنَ الله أَ الله أَ الله وَ الله و الله وَ الله وَا الله وَ الله وَا الله وَا الله وَ الله وَ الله وَالله وَالله وَالله وَالله وَالله وَالله

سورةفاطر

Dedication

To my mother.....My first teacher

To my father.....My hero

To my brothers, sisters

To my friends

To all those unbelievable persons

I am trying to say thank you

Acknowledgments

I would like to express my gratitude to the supervision Assistant Profess. Dr. Abdalla Abdelrahman Mohamed for kind supervision and fruitful suggestions.

Thanks also extended to Sudan University of Sciences and Technology, Graduate college, faculty of science and department of physics for enabling me to use their facilities to do this research.

Special thank also Prof. Mubarak Dirar,..., and Dr.Ali Dr.Abdaltif...Dr.Nadr... and Dr.Gamar ... Mr. Aiman,...Mr.Mohamed and Mr.Sami

...my colleagues in (SUST), for the special atmosphere of team work and all friendly collaboration and wonderful coffee sessions every morning especially boys and girls.

Abstract

The studies of zinc oxide doped by strontium were carried out using first principles calculations under the density functional theory(DFT), including the hybrid functional Beck's B3LYP functional and was performed using CRYSTAL06 program.

Initial investigation were made on the parent ZnO with supercell 2x2x1. The results calculations were found to agree with experimental data.

Calculations have been made to study the electrical properties of zinc oxide when it doped with different percentage of strontium atoms.

On substitution one Zn by Sr, we found that the band energy decreased to the value 3.28 eV which means improve in the electrical conductivity of the compound. We found also that when the dopant increases the band energy increases too.

Finally, accordingly, we predict that this new compound will have many optical applications.

المستخلص

لقد أجريت الدراسة علي مادة أكسيد الزنك عندالتشويب بالمادة الاسترانيشومبالنسبة تشويب مختلفة مكونة المركب $Sr_XZn_{X-8}O_8$ باستخدام حسابات المبادئ الأولية التي تعتمد علي نظرية الكثافة الدالية متضمنة الدالية المهجنة B3LYPبإستخدام برنامج

الدراسات الأولية علي المركب الرئيسي ZnO أظهرت أن النتائج الحاسوبية متوافقة مع النتائج التجريبية مع هذا المركب.

أجريت الحسابات لدراسة خواص الكهربائية ولقد وجد أن عند نسبة التشويب 12.5% تقل فجوة الطاقة إلى قيمة 3.28 eV وتزداد بزياد نسبه التشويب تدريجيا مما يدل علي زيادة مقاومه المادة عند أضافه التزايد لمادة الاسترانيشوممع التنبؤ بتغير في الخواص البصرية للمركب المشويب.

Table of content

Subject	Page No	
الاية	I	
Dedication	II	
Acknowledgments	III	
Abstract	IV	
المستخلص	V	
Chapter One		
Introduction		
1-1 Zinc Oxide	1	
1-2 Objectives	1	
1-3 Literature review	1	
1-4 Problem	3	
1-5 Outline of the thesis	3	
Chapter two		
Density functional theory (DFT))	
2.1 Introduction	4	
2.2 Hohenberg-Kohn theorem	4	
2.3 Periodic Supercell and K- point sampling	6	
2.4 The CRYSTAL06 Code	8	
2.5 Implementation of hybrid functionals	10	
Chapter three		
Defect in solid		
3.1 Introduction	12	
3.2 Point defects	13	
3.2.1 Vacancy defects	14	
3.2.2 Interstitial defects	14	
3.2.3 Frenkel defect	15	
3.2.4 Impurity	15	
3.4 lineDefect	16	
3.5 surfacesDefect	17	
3.7 Volume Defect	18	
Chapter Four	I	
Results and Discussion		
4.1 Introduction	20	
4.2 Computational Details	20	
4.3 Mothod	21	

4.4 Results	22
4.4.1 12.5% doping amount of Sr in ZnO	22
4.4.2 25% doping amount of Sr in ZnO	23
4.4.3 37.5% doping amount of Sr in ZnO	25
4.4.450% doping amount of Sr in ZnO	26
4.4.562.5% doping amount of Sr in ZnO	27
4.4.6 75% doping amount of Sr in ZnO	28
4.4.787.5% doping amount of Sr in ZnO	29
4.4.8 100% doping amount of Sr in ZnO	30
4.5Conclusion	31
4.6 Recommendations	31
References	32