



#### Sudan University of Science and Technology

College of Graduate Studies

# Determining Field Line Resonance Frequency Recorded at Low Latitude during Onset of Global Magnetohydrodynamic Wave

تحديد تردد رنين خطوط المجال المغاطيسي اثناء حدوث موجات هيدروديناميكيه مرصوده عند خطوط العرض المنخفض

A dissertation submitted in partial fulfillment for the requirements of a master degree (M. Sc.) in physics

Prepared by: Magzoob Hassan Naser Abobakr

Supervised by: Dr. Magdi Elfadil Yousif Suliman

قَالَ اللهُ عَزَّوَجَلَّ: ﴿ أَلَمْ تَرَ أَنَّ ٱللَّهَ أَنزَلَ مِنَ ٱلسَّمَآءِ مَآءُ فَأَخْرَجْنَا بِهِ مُمَرَّتٍ تُخْلَفًا أَلْوَانُهَا وَعَرَابِيثِ سُودٌ ﴿ مُخْلَفًا أَلُوانُهَا وَعَرَابِيثِ سُودٌ ﴿ مُخْلَفًا أَلُوانُهَا وَعَرَابِيثِ سُودٌ ﴿ اللَّهُ الْوَانُهَا وَعَرَابِيثِ سُودٌ ﴿ اللَّهُ اللَّهُ اللَّهُ اللَّهُ الْوَانُهَا وَعَرَابِيثِ سُودٌ ﴾ .

فاطر الايه 27

I would like to express my special appreciation and thanks to my advisor Dr. MAGDI ELFADIL YOUSIF SULIMAN of the Physics Department, Sudan University of Science and Technology (SUST); especial thanks extended to all members in the Department of physics.

Moreover, I would like to thank my family for the great support and encouragement. Words cannot express how grateful to my mother and father for all of the sacrifices that they've made for me. Their prayer for me was what sustained me thus so far. I would also like to thank all my friends who supported me in writing, and encouraged me to strive towards my goal. At the end I would like to express appreciation to my beloved sisters and brothers.

#### **ABSTRACT**

In this research, characteristics of magnetospheric hydrodynamic pulsations and their effect on the field line resonance (FLR) phenomenon were discussed, whence it was stated that the FLR is generated when the frequency of hydromagnetic waves in Earth's magnetosphere matches the eigenfrequency of the field line. Data from a ground magnetometer station (HERMANUS), at low latitude and belongs to the Magnetic Data Acquisition System (MAGDAS) project of Kyushu University, Japan, have been used to estimate the FLR.

Power spectrum of both magnetic components H and D were calculated from data of the station with magnetic coordinates (GM Lat: -42.29, GM Long: 82.20).

Single station (H\D) technique was used to estimate an eigenfrequency of the FLR and it was found to be:  $2.5 \ mHz$ .

#### TABLE OF CONTENTS

| Contents       | Page |
|----------------|------|
| الايه          | II   |
| Acknowledgment | III  |
| Abstract       | IV   |

| مستخلص البحث      | V  |
|-------------------|----|
| Table of contents | VI |

## Chapter I

| Number | Contents                          | Page |
|--------|-----------------------------------|------|
| 1.1.   | Introduction                      | 1    |
| 1.2.   | Objectives of the research        | 2    |
| 1.3.   | Research Methodology              | 2    |
| 1.4.   | Statement of The Research Problem | 2    |
| 1.5.   | Outline of the research           | 2    |

# Chapter II

| 2.1.       | Definition of a Plasma    | 4  |
|------------|---------------------------|----|
| 2.2.       | Solar wind plasma         | 5  |
| 2.2.<br>1. | Electrons                 | 5  |
| 2.2.2.     | Ions                      | 6  |
| 2.3.       | Geophysical plasma        | 7  |
| 2.4.       | Magnetosphere             | 7  |
| 2.5.       | Ionosphere                | 8  |
| 2.6.       | Magnetohydrodynamic waves | 9  |
| 2.7.       | Alfven Wave               | 10 |
| 2.8.       | Geomagnetic field         | 10 |
| 2.9.       | Previous Studies          | 14 |

# Chapter III

| 3.1. | Field line resonance         | 15 |
|------|------------------------------|----|
| 3.2. | Techniques for detecting FLR | 17 |

| 3.2.1. | Variation in Spectral Power with       | 17 |
|--------|----------------------------------------|----|
| 3.2.1. | Latitude                               | 17 |
| 3.2.2. | Variation of Phase with Latitude       | 18 |
| 3.2.3. | Spectral Power Difference and Division | 18 |
| 3.3.   | Single station(H\D)                    | 19 |

## Chapter IV

| 4.1. | Results        | 20 |
|------|----------------|----|
| 4.2. | Discussion     | 22 |
| 4.3. | Conclusion     | 22 |
| 4.4. | Recommendation | 22 |
|      | References     | 23 |

# List of figures

| S.NO    | Figure                                                                                                                                                                                                                           |    |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|         |                                                                                                                                                                                                                                  |    |
| Fig.2.1 | Plasma population in Earth's magnetosphere                                                                                                                                                                                       | 8  |
| Fig2.2  | Components of the geomagnetic field                                                                                                                                                                                              | 12 |
| Fig.3.1 | The field lines of a dipole (middle panels) may be approximated as stretched strings panels. The dipole lines may be displaced and oscillate in two orthogonal directions – radial (center panels) and azimuthal (right panels). | 16 |
| Fig4.1  | H component of HERMINAS station                                                                                                                                                                                                  | 20 |
| Fig4.2  | D component of HERMINAS station                                                                                                                                                                                                  | 21 |
| Fig4.3  | H\D of HERMINAS station                                                                                                                                                                                                          | 21 |

## Appendices

| appendix | Page no |
|----------|---------|
|          |         |

| A | MATLAB code to plot power spectrum (D) and(H) OF HER- | 24 |
|---|-------------------------------------------------------|----|
| В | MATLAB code to plot power spectrum (H/ D) of HER-     | 28 |
| С | Text file sample of data                              | 29 |