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Abstract  
Quantum temperature dependence Schrodinger equation is 

used to describe copper oxide phase diagram for superconducting 

material. The equation for quantum resistance is used to find a 

useful equation for critical temperature which is shown to be 

dependent on ionic field and charges concentrations. It was shown 

that superconductivity is destroyed when charge carriers 

concentration is below or above a certain critical concentration 

value.          

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 المستخلص
علѧѧѧى درجѧѧѧة الحѧѧѧرارة لوصѧѧѧف اسѧѧѧتخدمت معادلѧѧѧة شѧѧѧرودنجر الكمیѧѧѧة المعتمѧѧѧدة 

منحنѧѧѧѧى الطѧѧѧѧور لأكسѧѧѧѧید النحѧѧѧѧاس ذو التوصѧѧѧѧیل الفѧѧѧѧائق. اسѧѧѧѧتخدمت معادلѧѧѧѧة المقاومѧѧѧѧة 
الكمیѧѧة للحصѧѧول علѧѧى معادلѧѧة مفیѧѧدة لدرجѧѧة الحѧѧرارة الحرجѧѧة التѧѧي وجѧѧد أنھѧѧا تعتمѧѧد 
علѧѧѧѧى المجѧѧѧѧѧال الأیѧѧѧѧѧوني وتركیѧѧѧѧѧز الشѧѧѧѧحنات . ووجѧѧѧѧѧد ان التوصѧѧѧѧѧیل الفѧѧѧѧѧائق یتلاشѧѧѧѧѧى 

  حنات أقل أو أكبر من قیمة حرجة معینة .عندما یصبح تركیز حاملات الش
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 Chapter One 

Introduction 



 

1.1 Superconductivity: 
 Superconductivity (Sc) was discovered in 1911 in the Lieden 

laboratory of Kamer lingh Onnes when a so called “blue boy” (local High 

School Student recruited for the tedious Job of monitoring experiments” 

noticed that the resistivity of Hg metal vanished abruptly at about 4 K [1]. 

Al though phenomenological models with predictive power ware developed 

in the 30.5 watt and 40.5 watt of the last [1]. 

F and H London developed the successful phenomenological 

approach in 1935 describing the behavior of supper conductors in the 

external magnetic field [2, 3]. 

Ogg Jr proposed a root to high-temperature super conductivity (HTSC) 

introducing electron pairs in 1946 ad Ginzburg and Lanau proposed the 

phenomenological theory of the super conducting phase transition in 1950 

providing a comprehensive under Stan ducting of the electromagnetic 

properties below Tc [4]. 

The microscopic mechanism underlying superconductivity was not 

discovered until 1957 by Bordeen coopor and Schrieffer (BCS) [1]. 

Superconductors have been studied intensively far their fundamental 

interstand for the promise of technological applications which would be 

possible if a material which super conducts at room temperature were 

discovered. 

Until 1986, critical temperatures (Tc’S) at which resistance disappears were 

always less than about 23 K [5]. 

In 1986, Bednors and wueller published a paper, subsequently recognized 

with the 1987 Nobel Prize, for the discovery of a new class of materials 

called (HTSC) which currently include members with Tc’S of about 135 k 

or more. 



 

Enormous numbers of studies have been carried out to clarify the 

mechanism of the high temperature superconductivity (HTSC) beyond the 

conventional BCS theory Fig (1.1) [6]. 

 
Fig 1.1: Superconductivity 

One of the important HTSC is the cuprate compounds.  

The cuprate systems show not only high temperature superconductivity but 

also show various unusual behaviors when developed with holes where it is 

converted from an insulator to a superconductor [7].     

1.2 Research Problem: 
Recently scientists discovered that same materials, like Cuo, have 

high critical temperature above 130 k. These are called high temperature 

super conductors (HTSC). The behavior of these HTSC materials cannot be 

explained on the basis of ordinary physical theory. 

1.3 Literature Review:  



 

 Different attempts were made to construct theoretical model to 

explain HTSC in the work done by Rashid a she utilize quantum 

Schrödinger equation in finding Joseph on effect equation [8]. 

The paper of Mubarak Dirar concerned with the effect of magnetic field and 

its role in destroying Sc [9]. 

While the theoretical model constructed by Asim Fadol shows the conditions 

which cause the material to act as a diode critical temperature [10]. 

1.4 Thesis Layout: 
 The thesis of consists three chapters. Chapter one and two are devoted 

for Introduction and superconductivity. The contribution Explanation of Cu 

phase Diagram is in chapter three.   

 

 

 

 

 

 

 

 

 

 

Chapter Two 



 

Superconductivity 
2.1 Introduction: 

In this chapter, London equation are derived, where the ordinary 

expression  for the electron equation of motion and for the current density 

are utilized to find the magnetic flux density inside a superconductor. The 

production and destruction for conventional Sc is also present here. 

2.2 Properties of superconductor: 
Superconducting materials exhibit the following unusual behaviors. 

2.2.1 Zero resistance: 
All superconductor materials are characterized by zero resistance at 

below a certain critical temperature Tc. 

This change in resistance and resistance drop happens abruptly or gradually 

as shown in Fig 2.2. 

Till how there is no satisfactory expression that gives a full mathematic 

relation to explain these phenomena. 
Below a materials Tc, the DC electrical resistivity is really zero. This leads 

to the possibility of related effects. 

R 

 

 

  

0 k                         Tc                                 Temperature   

Fig 2.2: Resistance in normal metals and in superconductors 
2.2.2 Persistent Current: 

Superconductor 
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If a current is set up in superconductor with multiply connected 

topology a torus it will now forever without any driving voltage practice, 

experiments have been performed in which persistent currents flow for 

several years  without signs of degrading. 

2.2.3 Perfect diamagnetism: 
A superconductor expels a week magnetic field nearly completely 

from its interior screening current flow to compensate the field within a 

surface layer of few 100 or 1000 A, and the field at the sample surface drops 

to zero over this layer. 

2.2.4 Energy Gap: 
An energy gap is observed in electromagnetism spectrum. It is visible 

in the absorption spectrum. For if one send in a photon at low temperature 

(strictly speaking T = 0), no absorption is possible until the photon energy 

reaches 2∆. 

The value of the energy gap at T = 0, denoted by ∆0, is found to be 

proportional to Tc, when 2∆ = 3.53 KB, Tc, 4.51 KB is Boltizman constant. 

 

 

 

 

 

 
 

Fig 2.3: (a) condition gap in the normal state (b) energy gap at Fermi level in 

superconducting state 
2.3 London Equation: 



 

The London brother proposed a simple theory to explain the Meissnor 

effect.  

The London equation provided a Carly simple model for describing 

experimental results.  

The 1935 theory of London brother provide the first and second London 

equations, which relate the electric and magnetic field E and B, respectively, 

inside a superconductor to the current density J 

ܧ             = ଵଶߣ଴ߤ
݀
ݐ݀
 (2.1)                                                                           ܬ

ܤ             = ∇ ଵଶߣ ଴ߤ− ×  (2.2)                                                                   ܬ

Where ߤ଴ the permeability of vacuum the constant of proportionality in 

these expressions is the London penetration depth ߣଵ, 

ଵߣ            = ൬
݉

଴ ݊௦ߤ
ଶ൰ܥ

ଵ
ଶ

                                                                           (2.3) 

Where ݊௦ is density superconducting electrons, m is electron mass. 

2.3.1 Derivation of first London equation: 
London equation for one electrons moves in a non-resistive Medium its 

equation of motion is given. 

    ݉ ௗ୴
ௗ௧

=   (2.4)                                                                                ܧ݁

  -                   e E                              
                        n                                     
      

ݒ݀
ݐ݀

=
ܧ݁
݉

                          

But from the definition of current density “J” 



 

            J = n e v                                                                       (2.5) 

Where n is the density of electrons  

                     
dJ
dt

= ne
dv
dt

                                                                                       (2.6) 

From (2.6) and (2.4)  

                                   
ܬ݀
ݐ݀

= ݊݁ ൬
ܧ݁
݉
൰ =  

݊ ݁ଶ

݉
 (2.7)                                                  ܧ

The term   Λ = ݉
݊݁2                                                                                               (2.8)  

Where, A is a phenomenological parameter equation (2.7) can this be 

rewritten as: 

ܧ                       = Λ
ܬ݀
ݐ݀

                                                                                          (2.9) 

ܧ          ݎ݋ =
݀
ݐ݀

(Λ ܬ) =  Λ 
ܬ݀
ݐ݀

 

This equation is known as the first London equation. 

2.3.2 Second London equation:  

For particle in electromagnetic field the momentum p is given by: 

݌                              = ݒ݉ −
ܣ ݁
ܥ

                                                                       (2.10) 

Where: 

A ≡ Magnetic potential  

C ≡ speed of light 

For second London equation the momentum p vanishes thus: 

                           0 = ݒ݉ −
ܣ ݁
ܥ

                                                                   (2.11) 

ݒ݉ =
ܣ ݁
ܥ

 



 

ݒ =
ܣ ݁
ܥ ݉

                                                                                                           (2.12) 

ܬ = ݒ ݁ ݊ =
݊ ݁ଶܣ
ܥ ݉

                                                                                         (2.13) 

Thus: 

∇ × ܬ =
݊ ݁ଶ

ܥ ݉
∇ ×  (2.14)                                                                                         ܣ

 But from Maxwell’s equation: 

∇ × ܤ =  (2.15)                                                                                                         ܬ ߤ

B = ∇ ×  (2.16)                                                                                                            ܣ

Sub (2.16) in (2.14) to get: 

∇ × ܬ =
݊ ݁ଶ

ܥ ߤ
B                                                                                                    (2.17) 

From (2.15): 

∇ × ∇ × ܤ = ∇ ߤ ×  (2.18)                                                                                         ܬ

Sub (2.18) in (2.17) 
1
ߤ
∇ × ∇ × ܤ =  ∇ ×    ܬ

        
1
ߤ
∇ × ∇ × ܤ =

݊ ݁ଶ

ܥ 
B                                                                              (2.19) 

Form mathematics: 

∇ × ∇ × ܤ = (ܤ.∇)∇ − ∇ଶ(2.20)                                                                           ܤ 

From Maxwell’s equation: 

ܤ.∇        = 0                                                                                                       (2.21) 

From (2.21) and (2.20) and (2.19) 

−∇ଶܤ = −
ଶ݁ ݊ ߤ

ܥ 
B = C଴B                                                                           (2.22) 

∂ଶB
∂xଶ

= C଴B 



 

This solution is: 

B =  ଴݁ି஼బ௫ܤ−

∂B
∂x

= ݔ0ܥ−0݁ܤ0ܥ− = C଴B                                                                            (2.24) 

∂ଶB
∂xଶ

=
∂
∂x
൬
∂B
∂x
൰ = C଴ ൬

∂B
∂x
൰                                                                             (2.25) 

∴ ܤ(଴ܥ−)଴ܥ =  (2.26)                                                                     ܤ଴ଶܥ−

2.4 Flux quantization in superconductor: 
The total momentum of electromagnetic field is d find by: 

P = [mv + 
ୣ
ୡ

 A]                     

mv = [p - 
ୣ
ୡ

 A]      

v = 
ଵ
୫

 [p - 
ୣ
ୡ

 A]                                                                                      (2.27) 

The current density is thus given by: 

J = n e v                                                                                                 (2.28) 

From (2.27): 

J = 
୬ ୣ
୫

 [p - 
ୣ
ୡ

 A]                                                                                    (2.29) 

   n = ߰∗߰                                                                                                      (2.30) 

 

Equation (2.30) can be satisfied when: 

                     ߰ = ݊
ଵ
ଶ ݁݅(2.31)                                                                          ߠ 

߰∗ = ݊
ଵ
ଶ ݁−݅ߠ   

Where: 

(ݎ)ߠ = ,ݔ)ߠ  ,ݕ  (ݖ



 

From (2.29) 

J = 
 ୣ
୫
߰∗߰ [p - 

ୣ
ୡ

 A] 

       J = 
 ୣ
୫
߰∗ [p - 

ୣ
ୡ

 

A] ߰                                                           (2.32)                       

Sub (2.31) in (2.32) 

   J =   e
m߰∗  ቂp −  e

c  Aቃ ݊
1
2 ݁௜ఏ                                (2.33)                       

In quantum mech 

            ܲ =
ℏ
i
∇ሬሬ⃗                                                                                                (2.34) 

Thus equation (2.33) becomes J  

J =  
 e
m߰∗  ൤

ℏ
i
∇ሬሬ⃗  −  

e
c  A൨  ݊

1
2 ݁௜ఏ                                                           (2.35) 

But  

∇ ൬݊
ଵ
ଶ ݁݅ߠ൰ = ݊

ଵ
ଶ ∇ ݁݅ߠ =  ݊

ଵ
ଶ  

d
dr

     ߠ݅݁ 

= ݊
ଵ
ଶ  

d݁݅ߠ

dߠ
dߠ
dr

=  ݊
ଵ
ଶ  [݅ ݁݅ߠ]∇ߠ 

= ݅ ݊
ଵ
ଶ ݁݅ߠ∇ ߠ 

∇߰ =   (2.36)                                                                                                ߠ ∇ ߰ ݅

Sub (2.36) in (2.35) 

J =  
 e
μ ߰

∗  ൤
ℏ
i
− ߠ ∇  ݅  

e
c  A൨  ߰   

J =  
 e
μ ߰

∗ ߰ ൤ℏ ∇ ߠ −  
e
c  A൨ 

J =  
 e n
μ  ൤ℏ ∇ ߠ −  

e
c  A൨                                                                       (2.37) 



 

But in side Sc: 

J = 0 

From (2.37)  

ℏ ∇ ߠ −  
e
c  A = 0 

ℏ ∇ ߠ =  
e
c  A                                                                                                       (2.38) 

ℏ න∇ ܮ݀ ߠ  −  
e
c  නA . ܮ݀ = 0                                                                       (2.39) 

ܮ݀ = .ߠ∇, ݎ݀ ܮ݀ =
ߠ݀
ݎ݀

ݎ݀ =  (2.40)                                                                    ߠ݀

From vector algebra  

නA .݀ܮ = න∇ሬሬ⃗  ×  A݀ߪ    

නB . ߪ݀ = න d∅ =  ∅                                                                                    (2.41)   

Where 

B = ∇ሬሬ⃗  ×  A 

B ≡ magnetic flux density 

dσ ≡  Area (small)  

∇ሬሬ⃗  ×  A ≡ Magnetic potential  

∅ ≡  Magnetic flux 

Sub (2.40) and (2.41) in (2.39) field  

ℏ ර d ߠ =  
e
c  න d∅          

ℏ(ߠଶ − (ଵߠ =
݁
ܥ
∅                                                                                             (2.42) 

But ߠ is single raved  

ଶߠ − ଵߠ =   ߨ2



 

ଶߠ − ଵߠ =   ߨ4

ଶߠ − ଵߠ =   ߨ6

ଶߠ − ଵߠ =   ݏߨ2

S = 1, 2, 3, …. 

 

 

 

Sub (2.40) in (2.42) to get: 

݁
ܥ
∅ = ݏ ℏ ߨ 2 =  

ߨ2
ߨ2

 ℎ ݏ 

߶ =
ܿ
݁  ℎ (2.43)                                                                                          ݏ 

S = 1, 2, 3  For electrons thus the flux is quantized.  

2.5 Bardeen – Cooper – Sheiver (BCS) Theory suffers from 

some noticeable setbacks. These defects include: 

2.5.1 Zero resistance a problem:    

R 

 

   R = 0 

 

0 k                         Tc                                         T  

 ߠ
 ଶߠ

Superconductor 

Re
sis

ta
nc

e 
 



 

Fig 2.4: Zero resistance 

In most popular “Sc” models there is a lack of a full theoretical 

expression which explain why the resistance drops abruptly to zero at Tc and 

remain zero for all values of T below the critical temperature this is very. 

Important and essential since it is the most important feature that 

differentiate between superconducting and non-superconducting material 

some recent model proposed by Mubarak Dirar and other shows how R 

drops to zero for all T < Tc. Thus cannot be explained using Bardeen – 

cooper Sheiver theory B.c.s 

2.5.2 Isotope effect: 

The oxygen isotope substitutions play an important role in Sc. The 

replacement of one isotope by other effect the critical Temperature Tc.  

The pseudo gap Temperature T*beside the London penetration depth ߣ௟, all 

begin of function of hole doping. 

The pseudo gap Temperature T*for La 1.94 Sr 0.06 Cuo4 increases from T* 

 k when replacing 0.16 by 180. The isotope effecting La 2 180~ ݋ݐ ݇ 100 ≈

– x Srx Cuo4 and La 2 – x Srx Cuo4 due to oxygen substitution is small at 

optimal doping. 

But it becomes longer and becomes significant with reduced doping.  

In particular near ≈ x 0.12m ቀଵ
଼
ቁ doping level, the isotope effect is 

anomalously strong. 

Far conventional Sc the isotope effect assumes inverse relation between Tc 

and isotope mass, i.e 

௖ܶ ∝ ݉ି ଵ ଶ 

For HT Sc, especially that are depended on hole doping the relation between 

Tc and in becomes. 



 

∝ =  ܯ ݊ ℎ ߜ/஼ܶ ݊ܮܵ−

2.5.3 High pressure effect: 

Superconducting property of a material is shown to be effected by the 

pressure for the majority of superconductors Tc decreases as pressure 

increases. 

However, the situation is different for cu prate oxides (Cuo), where Tc 

increases upon increasing pressure. Uniaxial pressure studies give evidence 

that this increase results mainly for in the reduction in the med A of the Cuo2 

planes, i.e  

௖ܶ ∝  ଶ ିܣ

Rather than the reduction in the separation planes. 

This indicates that superconductivity result for intra-planar pairing inter 

action for some compounds. 

݊ܮ݀
݀ܲ ௖ܶ = = ݋ܥ −   ݌ܩ 0.005−,0.13−,0.24− 

݌ߛ =
݊ܮ݀
݀ܲ ௖ܶ 

2.5.4 Pseudo gap: 

In high Temperature (Sc) an energy gap appear well above Tc. 

This gap is called pseudo gap. This gap exists up much higher crossover 

Temperature T* > Tc the pseudo gap results from the reduction Tc < T < T*  

This pseudo pag (Eg*) results from reduction of density of states near Fermi 

energy Ef  

 

      Conduction 

    Sc               b            Ef 

         Vdlence  



 

      b  

 

c.b 

T < Tc 

V. b 

 

Tc < T < T* 

 

                                           Ef                                   Ef 

 

This highest Tc value exist when doping concentration. 

X = n = 0.15 

(La2-x  ,   Srx   , Cuo4) 

The Eg* = ∆ p           (pseudo) 

Is gives by 

Eg = ∆ p = 1.15 T* 

 

T* = pseudo gap Temperature  

This pseudo gap disappear by increasing density of states which causes gap 

narrowing.    

2.5.5 Phase diagram: 

For Cuo, when we have one electron per unit cell  

n0  = 1 



 

The material is ant-Ferro magnet (Af) as: 

                 Af 

 

 

 

 

Fig 2.5: The material is ant-Ferro magnet 
Well as insulator at half filling  

nf  = 0.5   ,   n0  = 1    ,   nf = 0.5 

 
 

 

Who n doing can centration is  nd = 0.15 hole per unit 

Tc = max 

                              T 

                                                                     T * 

                                                                                Tc 

                                      Af                                Sc           

                                   insulator   

Fig 2.6: Phase diagram  



 

(M insulator) When doping is increased the insulator is can rated to Sc.  

This cannot be explained on the basis of BCS theory.               

Chapter Three 

Explanation of Cu Phase Transition 
3.1 Introduction: 

The change of martial from insulator to super conductor when the 

carrier’s concentration change is explained in this work. 

3.2 Plasma equation: 
Plasma equation describes ionized particles in a gaseous or liquid 

form. This equation can thus describe the electron motion easily. This is 

since the electrons be behaves as ionized particles inside matter. 

 For pressure exerted by the gas plasma equation becomes: 

݉ ݊ 
dv
dt

= −∇ܲ +  (3.2.1)                                                                                        ܨ

Where:  

m is mass of electron 

n is number of particles 

But for pressure exerted by medium on the gas, the equation become: 

݉ ݊ 
dv
dt

= ∇ܲ + ܨ = ∇ܲ − ∇ V                                                                     (3.2.2) 

In on dimensions, the equation become: 

݉ ݊ 
dv
dx

dx
dt

=
d nkT

dx
−

d n ܸ
dx

    

݉ ݊ v
dv
dx

=
d 
dx

[݊݇ܶ − ݊Ѵ]                                                                            (3.2.3) 

Where v is the potential for one particles  



 

݉ ݊ 
d

dx
൬

1
2

v ଶ൰ =
d 
dx

[݊݇ܶ − ݊Ѵ]       

Thus in integrating both sides by assuming n to be constant or independent 

of k fields. 
݊
2
݉vଶ = ݊݇ܶ − ݊V + ܿ 

1
2
݉v ଶ + V − ݇ܶ =

ܿ
݊

= ݐ݊ܽݐݏ݊݋ܿ =  ܧ

This constant of motion stands for energy thus  

ܧ =
ܲଶ

2݉
+ V − ݇ܶ                                                                                     (3.2.4) 

 

3.3 Quantum Temperature Equation: 

To find temperature depended quantum equation, multiply by ߰ to get: 

߰ܧ =
ܲଶ

2݉
߰ + V ߰ − ݇ܶ߰                                                                   (3.3.1) 

According to where nature of particles  

߰ = ݁ ܣ
݅
ℏ(ݐܧ−ݔ݌)                                                                                          (3.3.2) 

Thus  

݅ℏ
߲߰
ݐ߲

=                                                                                       ߰ܧ

−ℏଶ∇ଶ߰ = ܲଶ߰                                                                           (3.3.3) 

 

݅ℏ
߲߰
ݐ߲

=
−ℏଶ∇ଶ

2݉
߰ + V߰ − ݇ܶ߰                                                       (3.3.4) 

The time independent equation becomes: 



 

−ℏଶ∇ଶ

2݉
߰ + V ߰ − ݇ܶ߰ =  (3.3.5)                                                           ߰ܧ

Consider the case when these electrons were subjected to constant crystal 

field V0.This assumption is quite natural as far as particles are distributed 

homogenously around the moving charge carrier. 

Thus, equation (3.3.5) become:   

−ℏଶ∇ଶ

2݉
߰ + V଴߰ − ݇ܶ߰ =  (3.3.6)                                                              ߰ܧ

One can suggest the solution to be: 

                ߰ = ௜௞௫݁ܣ                                                                          (3.3.7) 
A direct substitution yields: 

ቆ
−ℏଶ∇ଶ

2݉
+ V଴ − ݇ܶቇ߰ =  ߰ܧ

There for  

ܭ =
ඥ2݉ (ܧ + ݇ܶ − Ѵ଴)  

ℏ                                                                     (3.3.8) 

This wave number k is related to momentum according to the relation: 

݌ = ݒ݉ = ℏ݇ = ඥ2݉ (ܧ + ݇ܶ − V଴)                                               (3.3.9) 

 

3.4 Quantum Resistance: 
To find the quantum resistance R of a certain low of R to 

ܴ =
V
ܫ

                                                                                                        (3.4.1) 

V = potential                     I = current  

 For electrons accelerated by the potential the work done is related to 

potential V and kinetic energy K 



 

ݓ = V =
1
2
݉ vଶ                                                                                      (3.4.2) 

But since the current I is given by: 

ܫ =  (3.4.3)                                                                                                ܣ ݒ ݁ ݊

ܴ =  
݉vଶ

ݒܣ2݊݁
=

ݒ݉
ܣ2݊݁

                                                                              (3.4.4) 

ܴ =  
ܲ

ܣ2݊݁
                                                                                                (3.4.5) 

ܴ =  
ඥ2݉ (ܧ + ݇ܶ − ଴ܸ)

ܣ2݊݁
                                                                   (3.4.6) 

Splitting R to real part Rs and imaginary Ri, one can write: 

ܴ = ܴ௦ + ܴ௜                                                                                             (3.4.7) 

According to equation (3.4.6) becomes pure imaginary 

ܧ + ݇ܶ − ଴ܸ < 0 

݇ܶ < ଴ܸ −  ܧ

ܶ < ଴ܸ − ܧ
ܭ

                                                                                             (3.4.8) 

Let the potential be related to the potential per unit ionic atom, i.e    

଴ܸ = ݊଴ ௔ܸ                                                                                                 (3.4.9) 

௔ܸ = potential of one ion  

Where ݊଴ is superconducting carrier’s concentration which is the equal to 

the crystal ions charge concentration. 

  

ܴ =  
ඥ2݉ (ܧ + ݇ܶ − ݊0ܸܽ)

ܣ2݊݁
                                                          (3.4.10) 

= ܴ௥ + ݅ ܴ௜ = ܴ௦ + ݅ ܴ௜                                                                       (3.4.11) 

 For superconducting state 

ܴ௦ = ܴ௜ = 0                                                                                              (3.4.12) 



 

Thus according to equation (3.4.10) gives:  

ܴ = ݅ ܴ௜ 

This equation  

ܧ) + ݇ܶ − ݊଴ ௔ܸ)  < 0 

݇ܶ < ݊଴ ௔ܸ −  ܧ

Hence the critical temperature is given by: 

ܶܿ =
݊଴ ௔ܸ − ܧ

݇
                                                                                       (3.4.13) 

When the charge concentration ݊ ≠ ݊଴  ,   ଴ܸ = ݊ ௔ܸ   

Equation  

ܴ =
ඥ2݉ (ܧ + ݇ܶ − ݊ ௔ܸ)

ܣ 2݊݁
                                                                  (3.4.14) 

ܴ =
ඥ2݉ ݇(ܶ − ܶܿ) − (݊ − ݊଴) ௔ܸ(2݉)

ܣ 2݊݁
 = ܴ௥ + ܴ௜ 

Where  

                 ܴ௦  =  ܴ௥                                                                                     (3.4.15) 

When Sc is destroyed  

             ܴ௦  =  ܴ௥ ≠ 0                                                                                 (3.4.16) 

In this case  

2݉ ݇(ܶ − ܶܿ) − (݊ − ݊଴) ௔ܸ(2݉) > 0 

−(݊ − ݊଴) ௔ܸ > 2݉݇ (ܶܿ − ܶ) 

(݊ − ݊଴) ௔ܸ < 2݉݇ (ܶܿ − ܶ) 

For T = 0 , one gets  

(݊ − ݊଴) ௔ܸ < 2݉݇ܶܿ 

This equation requires   

݊ < ݊଴ +
2݉݇ܶ

௔ܸ
                                                                                         (3.4.17) 



 

While for T = Tc = 0 

(݊ − ݊଴) ௔ܸ < 0 

This requires  

݊ < ݊଴                                                                                                     (3.4.18) 

݊ <
2݉݇ ௖ܶ

௔ܸ
+ ݊଴                                                                                     (3.4.19) 

This means that Sc is destroyed  

Where n is less than the optimum value ݊଴   

But when the potential is effected by attractive ion potential, beside 

repulsive electron cloud potential  

଴ܸ = −݊଴ ௔ܸ + ݊௖ ௖ܸ                  (3.4.20) 

௖ܸ  = electron cloud potential  

݊௖ = electron or hole concentration  

In this case  

ܴ =
ඥ2݉ ݇(ܶ − ܶܿ) − 2(݊ − ݊଴)݉ ௔ܸ +  2݊௖ ௖ܸ݉  

ܣ2݊݁
                           (3.4.21) 

                                 ܴ௦ ≠ 0                                                                              (3.4.22) 

2݉ ݇(ܶ − ܶܿ) − 2ܸ݉ܽ(݊ − ݊଴) + 2݊௖ ௖ܸ݉ > 0                                     (3.4.23) 

݊௖ >
2݉ ݇(ܶܿ − ܶ) +  2݉ ௔ܸ(݊ − ݊଴)

2݉ ௖ܸ
 

            0 ≤ ܶ < ௖ܶ 

When  ܶ = 0 

 ݊௖ >  
 ݇ܶܿ
 ௖ܸ

+ ௔ܸ

 ௖ܸ
(݊ − ݊଴)                                                                            (3.4.24) 

But when  ܶ = ܶܿ = 0 

 ݊௖ >  ௔ܸ

 ௖ܸ
(݊ − ݊଴)                                                                                        (3.4.25) 



 

Thus for all T such that 0 ≤ ܶ < ܶܿ 

 ݊௖ >  
 ݇ܶܿ
 ௖ܸ

+ ௔ܸ

 ௖ܸ
(݊ − ݊଴)                                                                           (3.4.26) 

3.5 Discussion: 

The contribution was made by using Schrödinger temperature 

dependent quantum equation (3.3.7). Equation (3.4.1) and (3.4.6) gives 

quantum resistance and their temperature dependence it is clear form 

equations (3.4.13) that doping concentration contribute to critical 

temperature. Equation (3.4.17) show that when the concentration of free 

charge is low the Sc is destroyed. Is this case extrinsic free charge are 

negligible. But when extrinsic free carriers become significant as equation 

(3.4.20), the Sc is destroyed when extrinsic free caries exceeds certain value 

(see (3.4.26).  

Which conforms with the phase diagram agrees with experiments. 
 

3.6 Conclusion: 
Schrödinger temperature quantum model shows its capability in 

describing the Cu phase diagram. This means that model which was simple 

mathematics agree with experiments. 
 

3.7 Recommendation: 
The quantum Schrödinger model need to be used also to describe the 

hopping process and to solve all setbacks of conventional Sc theories.     
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