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ABSTRACT

Dynamical Systems is the study of the long-term behavior of evolving systems.

In this research we studied Lagrangian and Hamiltonian Dynamical systems
using Clifford Kdhler manifolds. The Clifford Kdhler analogue of Lagrangian
and Hamilton Dynamical systems is introduced. In fact a new dynamics on
Clifford Kdhler manifold has been constructed via some local canonical basis.
This construction provides wide applications to Physical equations and their
geometrical interpretation.
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INTRODUCTION

It is well-known that modern differential geometry expresses explicitly the
dynamics of Lagrangians.

Therefore we explain that if M is an m-dimensional configuration manifold and
L : TM — R is aregular Lagrangian function , then there is a unique vector field &
on TM such that dynamics equations is determined by:

Where @, indicates the Symplectic form.
The Triple(TM, ®;, ) is named Lagrangian system on tangent bundle TM.

It is known, there are many studies about Lagrangian mechanics, formalisms,
system and equations such as real, complex, paracomplex and other analogues. So,
it may be possible to produced different analogues in different spaces.

The goal of finding new dynamics equations is both a new expansion and
contribution to science to explain physical events.

Also modern differential geometry explains explicitly the dynamics of Hamilton's.
so, if Q is an m-dimensional configuration manifold and H : T*Q — R is regular
Hamilton function , then there is a unique vector field X on T*Q such that dynamic
equations are determined by:

ix® = dH - (2)
Where & indicates the symplectic form.
The triple (T*Q, @, X) is called Hamilton system on cotangent bundle T*Q.

Al last time, there are many studies and books about Hamilton mechanics,
formalisms, systems and equations such as real , complex , paracomplex and other
analogues.

Therefore it is possible to obtain different analogues in different spaces.
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It is know that quaternion's were invented by sir William Rowan Hamilton as an
extension to the complex numbers Hamilton's defining relation is most succinctly
written as:

i2=j2=k*=ijk=-1 - (3)

If it is compared to the calculus of vectors, quaternion's have slipped in to the
realm of obscurity.

They do however still fined use in the computation of rotations.

A lot of physical laws in classical, relativistic, and quantum mechanics can be
written pleasantly by means of quaternion’'s. some physicists hope they will fined
deeper understanding of the universe by restating basic principles in terms of
quaternion algebra.

It is well-know that quaternion’s are useful for representing rotations in both
guantum and classical mechanics. It is well-know that Clifford manifold is a
quaternion manifold.

So, all properties defined on quaternion manifold of dimension 8n also is valid for
Clifford manifold. Hence we may construct mechanical equations on Clifford
Kdhler manifold.

This is going to be our objective. We need to generalize all the physical concepts
treated in quaternionic manifold. The most appropriate set up will be the Clifford
Kdhler manifold.

This research consists of five chapters as follows:-

Chapter One: Review of differential geometry (revise important concepts in
differential geometry that are related to dynamical systems. the applied
concepts include Manifolds, vector fields, tensors).

Chapter Two: Calculus on manifolds (differential forms and derivatives on
manifolds such as covariant derivative, Lie derivative and exterior derivatives.
Grassman algebra for differential forms and the related algebraic operations will
be considered. The chapter closes with integration theory on manifolds).
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Chapter Three: Clifford Kdhler manifolds (complex manifolds, Clifford algebra,
Almost Clifford structure, Almost Cliffordian manifolds, connection on almost
Cliffordian manifolds, some formula, some theorems, Clifford K dhler manifolds).

Chapter Four: Lagrangian Dynamical systems on Clifford K dhler manifolds.

Chapter Five: Hamiltonian Dynamical systems on Clifford K dhler manifolds.



Chapter One

Review of Differential Geometry
1.1 Topological Spaces and Smooth Manifolds:
Definition 1.1.1

1- A topological space (X,7) consists of a set X together with a collection of
subsets, referred to as open sets, such that the following conditions are satisfied:-

(i) the empty set @ and the whole set X are open sets .

(i) the union of any collection of open sets is itself an open set .

(iii) the intersection of any finite collection of open sets is itself an open set.

2- A function f: X — Y from a topological space X to topological space Y is said

to be continuous if f~1(v) is an open set in X for every open set Vin'Y , where :
fFTlw) ={xeX:f(x) eV} - (1.1.1)

Definition 1.1.2

A topological space (X,7") is said to be a Hausdorff space if and only if it
satisfies the following Hausdorff Axiom: if x andy are distinct points of X then
there existopensets U and V suchthatx e U,y e VandU n V = 0.
Definition 1.1.3

A topological space (X,7) is second countable if there exists a countable sub

collection 7" of 7 and any open set U € T is a union of open sets in T .

Definition 1.1.4

1-let (X,7) and (Y,T) be topological spaces. A function f: X — Y is said to be
a homeomorphism if and only if the following conditions are satisfied:
(i) the function f: X — Y is invertible.

(ii) the function f: X — Y is continuous.

(iii) the inverse function f~1: X — Y is also continuous .
2 - A function f: X — Y between topological spaces (X,7) and (Y,T) is
homeomorphism if it a one — to — one, onto map and both fand f~* are continuous.
Two topological spaces (X,7) and (Y,7) are homeomorphic if there
homeomorphism f: X - Yor X =Y .
3 - A patch(chart) on a topological space (X, T") is a pair (x,U), where U is an
open subset of R™ and x: U — x(U) < (X,T) is a homeomorphism of U onto an
open set x(U) of (X, 7).



Here x is called the local homeomorphism of the patch, and X(U) the coordinate
neighborhood. Frequently, we refer to ‘the patch x when the domain U is
understood. Let

Xi= ujo x 1: x(U) >R — (1.1.2)
fori = 1,...,n. Then x; is called the i*! coordinate function and (x4, ..., ;) is
called a system of local coordinates for (X, 7). The coordinate functions x4,...,X,
contain the same information as the local homeomorphism x. Often, we write
x 1 = (xyq,...,%,), With the meaning that

x 1(p) = (x,(p),...,x,(p)), forall p € X(U).

Definition (Topological Manifolds) 1.1.5
1- A topological manifold of dimension n is a Hausdorff topological space M
which is the union of a countable collection of open sets, where each of the open
sets in the collection is homeomorphic to an open set in n —dimensional Euclidean
space R™.
2- A topological space in which every point has a neighborhood homeomorphic to
(topological disc) is called an n-dimensional (or n — manifold) .

2-manifold Not a manifold

Fig (1.1)
Example 1.1.6

Earth is an example of a 2-manifold

Definition (Smoothness) 1.1.7

1- A real-valued function f: U — R defined on an open subset U of a Euclidean
space R™ is said to be smooth if the partial derivatives of f of all orders are defined
throughout U.

A function ¢: U — R™ mapping an open subset U of R™ into R™ is said to be
smooth if its components are smooth functions.

2- A regular parameterized manifold ¢: U — R™ which is A homeomorphism
U - o(U), is called an embedded parameterized manifold .



Definition (Coordinate Charts and Atlas) 1.1.8

1 — A coordinate chart on aset X is asubset U € X together with a bijection
¢: U —oU)cR"

onto an open set ¢(U) in R,

2- A homeomorphism a : u, — R™ for neighborhood u,of x € X to R" is called

a chart.

Fig (1.2)
3 — An n-dimensional atlas on X is collection of coordinate charts {U,, ¢_}qer

such that:

* X is covered by the {U,, }yer1-

* foreach o, € I, 0 (U, N Vp) is open in R".

* the map (pa(pB_l: ¢, (Us N Up) = 9,(U, N Up) is C* with C* inverse.

4 — A collection of charts whose domains cover the manifold is called an atlas .

Fig (1.3)



Fig (1.4) chart and Atlases L 1"

Definition 1.1.9

1- An atlas 2 on a topological space M is a collection of patches on M such that
all the patches map from open subsets of the same Euclidean space R"into M, and
Mis the union of all the x(U) such that (x,U) € A.

A topological space M equipped with an atlas is called a topological manifold.

Let A be an atlas on a topological space M. Notice that if (x, U) and (y, V)
are two patches in A such that x(U) N y(V) = W is a nonempty subset of M,
then the map
x7toy:y (W) —» x~ (W) — (1.1.3)

Is a homeomorphism between open subset of R™. We call x~1 o y a change of
coordinate.
2- Two atlases {(U,, ¢ )}, {(V, "’B)} are compatible if their union is an atlas.

3- A differentiable structure on X is an equivalence class of atlases.
4- An n-dimensional differentiable manifold is aspace X with a differentiable
structure.
Definition (Smooth Atlases) 1.1.10
1-Let (V,@)and (W, y)be continuous charts on a topological manifold M of
dimension n, and let 6 : (VN W) = y(V N W) be the Homeomorphism from
o(V N W) to y(VN W) characterized by the requirement that 6(p(m)) = (m)
form eVnWw,.
The continuous charts (V,¢) and (W, y) are said to be smoothly compatible if
and only if this transition function:
0: o(VNW) - y(Vn W) isadiffeomorphism.

¢(m) = (y*(m),y?(m), ..., y"(m)) forall me V
And

y(m) = (z'(m),z%(m), ...,z"(m)) forall me W
2- Let M be a topological manifold of dimension n. A smooth atlas on M is a
collection of continuous charts on M where the domains of the charts cover M,
and where any two charts belonging to the atlas are smoothly compatible.
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3 - Let M be a manifold of dimension n that is provided with some smooth atlas A,
let f: U — R be a real-valued function defined over some open set U in M, and let
p € U. The function f is said to be smooth around p with respect to the smooth
atlas A if and only if there is a chart ¢(V n W) belonging to this smooth atlas and a
smooth function F: ¢(UNV) - R such that p € V and f(m) = F(p(m))

for all m eUNV.

1.2 Differentiable Manifolds

Definition (Chart and Local Coordinates) 1.2.1

1-A local chart on M is the pair (U;, @) consist of

(i) An open U; of M.

(i) A homeomorphism ¢ of U; onto an open subset ¢ (U; ) of R"™ the open U; is
called domain of the chart .

2- The local chart X* of a point p belonging to the domain U of a chart (U, ¢) of
M are coordinates of point we denote by ¢(p) of R*  ¢(p) = (X', ..., X").

Definition (Differentiable Manifold Structure) 1.2.2
1- An atlas of class C? on M is the family of chart (U;, ¢;) such that:
(i) The domain U; of charts make up a covering of:
UietU; 2 M
(ii) Any two chart (U;, ¢;) , (U;, ¢;) of A with U; N U; # @ are C9 compatible .
2- Suppose M is a Hausdorff space if for any X € M there exists a neighborhood
U of X such that U is homeomorphism to an open set in R™ . Suppose the
homeomorphism is given by :
o, =U-d,(u) cR™
Where @, (u) is open in R™ we call (U, ®,,) a coordinate chart of M .
Since @, is a homeomorphism , then for any yeU , we define the coordinates of
U=ao,(y) e R™ ie.
Ut = (0,()’ i=12,..m
TheUt,i=1,2,.. .,mare called the local coordinate of pointy € U .
Suppose (U, ®,,) and (V,®,,) are two coordinates charts M .
IfUNV # @ then ®,(UNV)and ®,(U N V) are two non-empty sets in R™ .
And the map
O, 0, : d,UNV) - D,UNV) - (1.2.1)
Define homeomorphism between these two open sets with inverse given by :
@, °0; "

These are maps between one set in Euclidean space.

Expressed in coordinate ®,,°®,* and @, °®,* each represent m-real valued
functions on an open set of Euclidean space . We may write



yi=FIXL X2 L X™) = 0,°0, (X1 X2, L, X™)

Xt =gl (X4, X2, ..., X™) = ®,°0; (X1, X2, ..., X™)
Say that the coordinate chart(U, ®,,) and (V, ®,,) are C" — compatible.
This means that @, °®,,* and @, °®,* are diffeomorphism

Fig (1.5)

3- Let M be a Hausdorff space. A differentiable structure of dimension mis a
collection of open charts (U;, d;)iea , Where A is index set, on M and ¢;(U;) is an
open subset of R™ such that the following conditions are satisfied :

(D) M = Uiea U;

(i) The mapping ¢; o ¢; * is a differentiable mapping of ¢;(U;NU;) onto
$;(UiNU;) # @ for each pairi,j € A .

(iii) The collection(U;, d;);ex Is @ maximal family of open charts which satisfy the
condition (i) and (ii).
The Housdorff topological space M with differentiable structure is called
differentiable manifold ( or manifold or smooth manifold) of dimension m In order
to define complex manifold of (complex) dimension m, we replace R™ in the
definition of differentiable manifold by m-dimensional complex number space C™.
The condition (ii) is replaced by the condition that the m-coordinates of ¢; o ¢;(p)
should be holomorphic functions of the coordinate of p.

Definition (Differentiable Manifolds) 1.2.3

A differentiable manifold is a pair consisting Hausdorff space with countable
basis and every point of space there exists and admissible local chart

(U, @) such that (U, ) € R™ .

Examples 1.2.4

1-The set M,,,,, of n X m matrices is a differentiable manifold .

Let ¢: M,,»,, = R™ be defined by :
@(A) = (a11, A12) o) A1y A21y Ap2y ey Aoy oo} A1y Ay wees Ay ) € R™
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Where

a11 a12 alm

a a ans a
A= G2 2m

ap1 4n2 - Apm

The map ¢ is differentiable and ¢! is also differentiable manifold thus {M, G} is
differentiable structure.

2- The set GL(n, R) of all n X n matrices which are non-singular (det(A) #

0,V GL(n, R))called the general linear group is a differentiable manifold , we need
to proof that GL(n, R) is open in M,,,,,. For let f: M,,,, — R be define by f(A) =
det (A4) is continuous function and therefore f~1(0) is closed in M,,,,, . Since M,,,,,
is already a differentiable manifold.

Definition 1.2.5

A differentiable manifold is orientable if there is one atlas (U;, ¢;);e; Such as the
Jacobein of every coordinate transformation ®; °®;_, is positive at every point .

1.3 Differentiable Functions on Manifolds

Definition 1.3.1

Letf: W — R be a function defined on an open subset W of a differentiable
manifold M. We say that f is differentiable at p € W, provided that for some
patch x : U - M with Uc R" andp € x(U) c W, the composition

f ox:U— R"is differentiable (in the ordinary Euclidean sense) at x~1(p). If fis
differentiable at all points of W, we say that f is differentiable on W.

Lemma 1.3.2
The definition of differentiability of a real-valued function on a differentiable
manifold does not depend on choice of patch .

Definition 1.3.3
Let M be a differentiable manifold. We put
C®*=3WM)={f: M - R| fisdifferentiable }
We call 3(M) the algebra of real valued differentiable functions M.
Fora,b € Rand f,g € 3(M) the functions af + bg and fg are defined by :
(af + bg)(x) = af(x) + bg(x) and FP ) = f(x)g(x)
forx e M.
Also, we identify any a € R with the constant function a given by
a(x)=a forx€e M.
Let us note some of the algebraic properties of J(M).



Lemma 1.3.4

1- Let M be a differentiable manifold. Then J(M) is a commutative ring with
identity and an algebra over the real numbers R.

2- LetW < M be an open neighborhood of p € M, and suppose that f € J(M).
Then there exist f € I(M). and an open set P with p € P € W such that

f1P = f|P.Wecall f aglobalization of f.

Definition 1.3.5

Let M, V', be differentiable manifolds, and let: ¥ : M - " be a map. We say
that W is differentiable provided y~ o W o x is differentiable for every patch

(x, W) in the atlas of M and every patch (y, V) in the atlas of V', where the
compositions are defined. A diffeomorphism between manifolds Mand V is a
differentiable map ® : M — N which has a differentiable inverse @1 : ¥ - M.,
If such a map @ exists, M and JV are said to be diffeomorphic.

AmapW¥: M — IV is called a local diffeomorphism provided each p € M has a
neighborhood W such that W|W: W — W(W) is a diffeomorphism.

Lemma 1.3.6

Suppose M c—I)> N L—P> P are differentiable maps between differentiable manifolds.
Then the composition ¥ o ®: M — P is differentiable. If & and W are
diffeomorphisms, then so is W o &

(Wod) 1= loy?

The coordinates (5) are examples of differentiable functions x(U) — R. Moreover.

Lemma 1.3.7

(i) Let M be an n-dimensional differentiable manifold, and let x: U - M be a
patch. Write x™1 = (x4, x,,...,x,): Then

(i) x is a differentiable mapping between the manifolds U and M;

(i) x~1: x(U) - R"is differentiable;

(ii) Let @ : M — IV be a differentiable mapping between manifolds. Then
feJI(V). implies fo d € J(M).

Definition (Maximal Atlases) 1.3.8

Let M be a manifold and ‘U a smooth atlas on . then we define D(U) as the

following set of charts on M
for all charts x: u; — 04 in the maps

D(U) = {charty:V -V onM [x o Y My@uy) and y e x 'y, are smooth



Lemma 1.3.9
Let M be a manifold and ‘U a smooth atlas on M. Then D(U) is a differentiable
atlas.

Definition 1.3.10

A smooth structure on a topological manifold is a maximal smooth atlas. a smooth
manifold (M, U) is a topological manifold M equipped with a smooth structure
U. A differentiable manifold is a topological manifold for which there exist
differential structures.

1.4 Smooth Manifolds

Definition 1.4.1

A smooth or C* manifold is a topological manifold M together with a maximal
atlas. The maximal atlas is also called a differentiable structure on M. A manifold
Is said to have dimension n if all of its connected components have dimension n. A
manifold of dimension n is also called an n-manifold.

Proposition 1.4.2

Any atlas & = {U,, ¢} on a locally Euclidean space is contained in a unique
maximal atlas.

Examples (of Smooth Manifolds) 1.4.3
Example 1

The Euclidean spaceR"™ is a smooth manifold with a single chart
(R™, 1, r?, ..., r™) where rl, r?, ..., r® are the standard coordinates on R™

Example 2

Any open subset V of a manifold M is also a manifold. If {(U,, ,)} is an atlas
for M, then {(U, NV, p,|U, NV }is an atlas for ,where ¢p,|U, NV : U, NV >
R" denotes the restriction of ¢, to the subset U, NV .



1.5 Smooth Maps on a Manifold
Smooth Functions and Maps 1.5.1

Let M be a smooth manifold of dimension n. A function f : M — R s said to be
C® or smooth at a point p in M if there is a chart (U, ¢) containing p in the atlas
of M such that f o =1, which is defined on the open subset ¢(U) of R",is C* at

@ (p) -
Definition 1.5.2

Let F:N - M amap and h a function on M the pull-back of h by F , denoted by
F*h , is the composite function h o F be in this terminology, a function f on M is
C* on achart (U, @) if its pullback by ®~1is C* on the subset ¢(U) of a Euclidean
space.

Definition 1.5.3
The pull-back of the function h by fis :
f*h=hof  where hofiscomposite function.

The mapping f* is so defined :

C*(N,,,R) » C*°(Mp,R):h —» f*h
Therefore from a mapping f: M,N,, we have constructed an induced
Mapping f*:C*(N,,,R) - C*(Mp,R) .
1.6 The Tangent Structure
Rough Ideas 11 1.6.1

Let us suppose that we have two coordinate systems x = ( x1,x?,...,x™) and
y = (y1, 2 ...,y") defined on some common open set of a differentiable
Manifold M .

Let us also suppose that we have two lists of numbers v1,v?,...,v" and
v1, 72, ..., o™ somehow coming from the respective coordinate systems and

10



associated to a point p in the common domain of the two coordinate systems .
Suppose that the lists are related to each other by :

n 9x

v = k=155 7 -  (1.6.1)

Where the derivatives % are evaluated at the coordinates y1(p), y2(p), ..., v (p).

Now if f is a function also defined in a neighborhood of p then the representative
functions for f in the respective systems are related by:

of _wn 0x* of
axt — “k=1gxi ggk - (162)
The chain rule then implies that :
of  _ of
il =oaY - (1.6.3)

Thus if we had a list v1,v?, ..., v"™ for every coordinate chart on the manifold
whose domains contain the point p and related to each other as above then we say
that we have a tangent vector v at p € M . It then follows that if we define the
directional derivative of a function f at p in the direction of v by:

vf = %vi - (1.6.4)

A differentiable curve though p € M isamap c: (—a, a) —» M with ¢(0) = p such
that the coordinate expressions for the curve x'(t) = (xtoc)(t) areall
differentiable.

We then take :
i dxi
V= — (0) - (1.6.5)

For each coordinate system X = (x1,x?2,...,x™) with p in its domain .

This gives a well defined tangent vector v at p called the velocity of ¢ att =0.

We denote this by ¢(0) or by == (0) .

11



Of course we could have done this for each t € (—a, a) by defining v' == ax (t)
dt

and we would get a smoothly varying family of velocity vectors ¢(t) defined at the
points c(t) € M.

Definition (Tangent Vectors) 1.6.2

1-We define the Tangent vector via charts as follows : consider the set of all
admissible charts (x4, u,)q4e4 01 M indexed by some set A for convenience .

Next consider the set T of all triples (p, v, a) such that pe U, . Define an
equivalence relation so that (p, v, @)~(q,w,B) iff p = q and

D(xp o X;1)|X(p).v =w - (1.6.6)

o

In other words ,the derivative at X(p) of the coordinate change x5 o x;*

b

identifies ’° v with w .

Tangent Vectors are then equivalence classes with the tangent vector at a point p
being those equivalence classes represented by triples with first slot occupied by p
The set of all tangent vectors at p is written as T,M .

The tangent bundle TM is the disjoint union of all the tangent spaces for all points
in M.

™ := U,em T,M - (1.6.7)

This viewpoint take son a more familiar appearance in finite dimensions if we use
a more classical notation ; let (x,u )and (y,v) two charts containing p in there
domains . If an n-tuple (v1,v?, ..., v™) represents a tangent vector at p from the
point of view of (x,u) and if the n-tuple (w1, w?, ..., w™) represents the same
vector from the point of view of (y,v) then:

i _\n a_yl i
wt = Zi=1axi - v - (1.6.8)

Where we write the change of coordinates as y* = y*(x%, .., x™)with1 <i<n .
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We can get a similar expression in the infinite dimensional case by just letting

then we write ;
x(p)

D(y © x™1)lx(p) be denoted by =

dy
w=_=
ox

\%
x(p)

2- We define the Tangent Vector Via curves as follows : Let p be a pointin a
C" manifold with k > 1.

Suppose that we have C" curves ¢, and ¢, mapping into manifold M, each with
open domains containing 0 € R and with ¢;(0) = c,(0) =p.

We say that c; tangent to c, at p if for all C" functions f: M — R we have

d

da
E o f °oCcy = E o f °Cy - (169)

This is an equivalence relation on the set of all such curves. Define a tangent
vector at p to be an equivalence class X,, = [c]under this relation. In this case we

will also write ¢(0) = X,, .

The tangent space T,,M is defined to be the set of all tangent vectors at p € M.

The tangent bundle TM is the disjoint union of all the tangent spaces for all points
in M . in equation (1.6.7)

The tangent bundle is actually a differentiable manifold itself as we shall soon see.
If X, € T,M for p in the domain of an admissible chart (U, ,X,) .

In this chart X,, is represented by a triple (p, v, a) . We denote by [X,,], the
principle part v of the representative of X, .

Equivalence, [X,], = D(Xq o c)|o forany c¢ with ¢(0) =X, i.e.X, = [c].

3- Let f be the germ of a function f :: M — R. let us define the differential of f
at p to be amap df (p): T,M - R by simply composing a curve ¢ representing a
given vector X, = [c] with f to get the

foc::R->R - (1.6.10)

13



Then definedf (p). X, = % foc ER.
t=0

Clearly we get the same answer if we use another function with the same germ at
p-The differential at p is also often written as df|,.More generally , if f:: M — E

for some Euclidean space E then df(p): T,M — E is defined by same formula .

It is easy to check that df (p): T,M — E the composition of the tangent map T,,f
defined below and the canonical map T,E = E where y = f(p) .

Diagrammatically we have :

Tf pr1
df (p):T,M > TE=EXE— E - (1.6.11)
4- A derivation of the algebra F, isamap D : F, - R such that
D(fg) = f(P)DJ + J(p)Df for all f,§ €F, .

We note that the set of all derivations on F, is easily seen to be a real vector
space and we will denote this by Der(F,) .

5- Let DX,,: F, — R be given by the rule DX, f = df (p).X, .

6- We define the tangent vectors as derivations : Let M be a smooth manifold
of dimension n < oo .

Consider the set of all ( germs of ) smooth functions 7, at p € M..

A tangent vector at p is linear map X,,: F — R which is also a derivation in the
sense that for f, g € F,

X,(fg) = g@X,f + f(0)Xpg .

Once again the tangent space at p is the set of all tangent vectors at p and the
tangent bundle is define by disjoint union as before .

In any event , even in the general case of a C" Banach manifold withr > 1 a
tangent vector determines a unique derivation written X,,: f - X, f .

14



Remark (Very Useful Notation) 1.6.3

This use of the ““ differential ” notation for maps into vector spaces is useful for
coordinates expressions .

Let p € U where (X, U) is a chart and consider again a tangent vector v at p .
then the local representative of v in this chart is exactly dX (v).

Interpretations 1.6.4
For simplicity let us assume that M is a smooth (¢*®) n-manifold .

1- Suppose that we think of a tangent vector X,, as an equivalence class of curves
represented by: I - M with c(0) = p .

We obtain a derivation by defining

d
dtlt=0

Xpf = foc
2-If X, isaderivationat p and U,, X, = (x',x?,...,x™) an admissible

chart with domain containing p , then X,, as a tangent vector ,is represented by the
triple (p,v,a) where v = (v, v?, ..., v") is given by

vt = X,x" (acting as a derivation )

3-avector X,, at p € M represented by (p, v, «) where v € R™ and a name's the
chart (X,,U,) .

We obtain a derivation by defining :

Xpf =D(f o XzHx ) -V

In case the manifold if modeled on R™ then we have more traditional notation :

_ ; 0 (a1 2
pr—Zv‘ﬁpf . for v = (v, v5, ..., v")

15



Definition 1.6.5

For a chart x = (x1,x2, ..., x™) with domain U containing a point p we define a
g :
tangent vector EL) € T,M by:

0
dxt

pf = D;(f e x™ ) (x(p)) - (1.612)

Alternatively, we may take %L to be the equivalence class of a coordinate

d
curve. In other words, —

Fril is the velocity at x(p) of the curve

t > x1(x(p), ..., x'(p) + t, ..., x™(p)) defined for sufficiently small t.

We may also identify %| as the vector represented by the triple (p, e;, @)
p
where e; is the i® member of the standard basis for RN and o refers to the
current chart x = x,,.

Definition (The Tangent Map) 1.6.6

The first definition of the tangent map of a mapf: M,, —» Nf (p) will be

considered our main definition but the others are actually equivalent at
least for finite dimensional manifolds. Given f and p as above wish to define a

linear map T, f: T,M — T¢p)N.

_f_____Tiﬂ__ |F B
|| oo T o
e WA
. o
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Fig (1.6) The Tangent map as understood via curve transfer.
We have three definition of the Tangent map as the following :

1- Definition of Tangent Map I: If we have a smooth function between
manifolds :

f:M->N

and we consider a point p € M and its image g = f(p) € N then we define
the tangent map at p by choosing any chart (x, U) containing p and a
chart (y,v) containing g = f(p) and then for any v € T,M we have the

representative dx(v) with respect to (x,U ).
Then the representative of Tpf - v is given by :
dy(Tpf-v) =D(yo fox 1y dx(w) - (1.6.13)

This uniquely determines Tpf - v and the chain rule guarantees that this is
well defined (independent of the choice of charts).

2- Definition of Tangent Map Il : If we have a smooth function between
manifolds :

f:M-N

and we consider a pointp € M and its image g = f(p) € N then we define the
tangent map at p :

Tpf: TpM - Tg N > (1.6.14)

in the following way: Suppose that v € Tp M and we pick a curve ¢ with
c(0) = pso that v = [c], then by definition :
Tpf - v=1[f oc] €TyN

where[ f o c] € TyN is the vector represented by the curve f o c.

An alternative definition for finite dimensional smooth manifolds in terms
of derivations is the following.

17



3- Definition of Tangent Map 11l : Let M be a smooth n-manifold. View
tangent vectors as derivation as explained above. Then continuing our set up
above and letting g be a smooth germ at ¢ = f(p) € N we define the
derivation Tpf - v by :

(Tpf-v)g =v(f °9) - (1.6.15)

Thus we get a map Tpf called the tangent map (at p).

1.7 The Tangent Bundle
We have defined the tangent bundle of a manifold as the disjoint union of
the tangent spaces TM = Ll,emT,M .

Definition 1.7.1

Give a smooth map f:M — N as above then the tangent maps on the
individual tangent spaces combine to give amapTf: TM — TN

On the tangent bundles that is linear on each fiber called the tangent lift.

Definition 1.7.2

Themapt™M : TM - Mdefined by tm (v)=p forevery p € Tp M
is called the (tangent bundle) projection map. The TM together with
themap t™M : TM — M s an example of a vector bundle.

Propositionl1.7.3
TM is a differentiable manifoldand t™ : TM — M s asmooth map.

Furthermore, for a smooth map f: M — N the tangent map is smooth and the
following diagram commutes.

Tf
TM - TN
™ | l TN
f
M - N

Now for every chart (x,U) let TU = tM~-1(U). The charts on TM are
defined using charts from M are as follows :

Tx: TU - Tx(TU) = x(U) x R® - (1.7.1)

Tx: & = (x 0o TM(),V) -  (1.7.2)
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Where v = dx(€) is the principal part of ¢ in the xchart. The chart Tx, TU
Is then described by the composition

g (TM(9),9 » (xoTM(Y),dx(§) ~— (1.7.3)

but x o T™M(¥) It is usually abbreviated to just x so we may write the chartin
the handy form (x, dx).

TU - x(U)xR"
l l
Uu - x(U)

For a finite dimensional manifold and with and a chart x=(x1,..., xMN), any vector
£ e TM~1(U) can be written :

&= Zv(E)aXL e > (1.74)

for some v'(¥) € R depending on g . So in the finite dimensional case the chart is
just written (X1 LLoxn o pl yee, UTL),

1.8 The Cotangent Bundle

Each T,M has a dual space T *M. In case M is modeled on a Euclidean R™ we
have T,M =~ R" and so we want to assume that T,M ~ R™ .

Definition 1.8.1
Let us define the cotangent bundle of a manifold M to be the set

T"M= IJPEMT M - (1.8.1)
And define the map Tt := tM: LI,,EMT M — M to be the obvious
projection taking elements in each space T » M to the corresponding
pomt Let {U,x},c4 be an atlas of adm|SS|bIe charts on M . Now endow
T * M with the smooth structure given by the charts:
T*U=nM"1(U) -» T*x(T " U) = x(U) x (R")* - (1.8.2)
where the map (T x 1)t the contragradient of Tx.

If M is a smooth n-dimensional manifold and x1,... x™ are coordinate
functions coming from some chart on M then the “differentials”
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1 n - * - o0 i
dx*|p,...,dx™|, are abasis of T ;, M basis dual to —— ) ""axn|p :
Leta € T*U . Then we can write :

a =) ai(oc)dxi| - (1.8.3)

M ()
For some numbers a;(a) depending on .
In fact a;(a) = a(aal.| ) . So if U,x = (x1,...,x™) is a chart on
Xl (a)
an n-manifold M , then the natural chart (TU, T*x) defined above is
given by :
aw- (xten(a),..,x"on(a),a (), ...,an(a))
And abbreviated to (x1, ...,x", a4, ...,a,,) .
Suppose that (x1,...,x",a4,...,a,) and (x1%,..,x",a,,..,a,) are
two such charts constructed in this way from two charts on U and
U’ respectively with U\U = @ . Then T*U\T*U = @ and on the
overlap we have the coordinate transitions
(T 1" o (Tx)* : x(U\U) x R™ - %(U\U) x (R™)* - (1.8.4)
Or write equation (1.8.4) by :
(Txo T 1)* : x(U\U) x R™ - %(U\U) x (R™)* - (1.8.5)

Notation 1.8.2
The contra-gradient of D(x o x~1) at x € x(U\U) is the map

X% (RM* - (RY

Defined by
0*x , _ *
—- ().a= (D(xe%x™ 1)) .a - (18.6)
When convenient we also write 6*,X| .a.
0% Ix(p)
With this notation we can write coordinate change maps as

a*

(x,2) .—>((5< o x 1) (x), a—;{(x)) S (1.8.7)
Write (kox 1) :=pr;o(kox~1) and then

nOT[)

¥t = (kox Di(xtom,...,x
, , k
a; =X 1(D(xeox% 1))i a, — (1.8.8)
And classically abbreviated even further to

Xt =x'(xt, ... x™)
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k
bi = Pi 527 - (1.89)
This is the called “index notation” and does not generalize well to
infinite dimensions. The following version is index free and makes
sense even in the infinite dimensional case:

X=%0ox"1(x)
6*X|
% Ixp)

1-9 Lie Groups and Fiber Bundles:

4=

Definition(The Lie Groups)1.9.1
A nonempty subset G < R™*" is called a Lie group ifitis a
submanifold of R™*™ and a subgroup of GL(n,R) , i.e.

g.,-h €a = gheag
(where gh denotes the product of the matrices g and h) and

gEG =det(g)#0and g lea
(since G # @ it follows from these conditions that the identity

matrixll is an element of G)

Definition1.9.2

A C® differentiable manifold G is called a Lie group if it is a group (abstract
group) such that the multiplication map u: G X G — G and the inverse map
v:G > G given by u(g,h) = ghand v(g) = g~ are C* functions.

If G and H are Lie groups then so is the product group G X H where
multiplication is (g4, hy). (g2, hy) = (9192, h1hy). Also, if H is a subgroup of a
Lie group G that is also a regular closed sub-manifold then H is a Lie group itself
and we refer to H as a (regular) Lie subgroup.

Definition1.9.3
A left action of a Lie group G on a manifold M is a smooth map

A:G x M > M such thatA( gy, A(go,m)) = A(g1g2, m)for all g1, g; € G
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Define the partial map 1,: M —» M by A,(m) = A(g,m) and then the requirement
is that 1: g — Ag is a group homomorphism G — Dif f (M). We often write
A(g,m)as g.m.

Definition (Lie Group Homomorphism)1.9.4

A smooth map f: G — H is called a lie group homomorphism if

f(9192) = f(g1)f(g2) forallg,,g, € G and
flgH=f(g)™? forall g €aG.

and an isomorphism in case it has an inverse which is also a lie group
homomorphism. A Lie group isomorphism G — G is called a Lie group
automorphism.

Definition (Fiber Bundles)1.9.5

A general C" — bundle is a triple ¢ = (E,m,X) where m: E = M is a surjective
C" —map of C" — spaces (called the bundle projection).

For each p € X the subgroup E, == m~*(p) is called the fiber over p. The space
E is called the total space and X is the base space. If S © X is a subspace we can
always form the restricted bundle (Es , 5, S) where Es = n71(S) and ng = m|; is
the restriction.

Definition1.9.6

A (C"—) section of a general bundle z: E - M is a (C"—) map s: M — E such
that m; o s = id,,. In other words, the following diagram must commute:

S E
2 ng
M — M
id

The set of all C" — sections of a general bundle : E — M is denoted by
I'*(M, E). We also define the notion of a section over an open set U in M is the
obvious way and these are denoted by I'*(U, E).

22



Notation1.9.7

We shall often abbreviate to just I'(U, E)or even I'(E) whenever confusion is
unlikely. This is especially true in case k = oo (smooth case) or k = 0 (continuous
case).

Now there are two different ways to treat bundles as a category:

The Category Bundle.1.9.8

Actually, we should define the Categories Bun,, ; k = 0,1, ..., co and then
abbreviate to just "Bun" in cases where a context has been establish and confusion
is unlikely. The objects of Buny are C" — fiber bundles

Definition1.9.9

A morphism from Homg,,, ($1,¢2), also called a bundle map froma C" —
fiber bundle &, = (E; ,m, ,X;) to another fiber bundle &, := (E, ,m, ,X,) isa
pair of C™ — maps(f, f) such that the following diagram commutes:

f
E, - E,
l l
X 1) X,

If both maps are C" — isomorphisms we call the map a (C"—) bundle
isomorphism.

Definition1.9.10

Two fiber bundle &; = (E; ,my ,X;) and &, == (E, ,m,, X;) are equivalent in
Bun,, or isomorphic if there exists a bundle isomorphism from &; to &,.

Definition1.9.11

A morphism from Hompgy,, (x)(§1,¢2), also called a bundle map over X from
a C" — fiber bundle &, = (E,,m;,X;) to another fiber bundle &, :=
(E,,m,,X,) isa C” —map f such that the following diagram commutes:
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If both maps are C" — isomorphisms we call the map a (C"—) bundle
isomorphism over X (also called a bundle equivalence).

Definition1.9.12

Two fiber bundles &, :== (E; ,m; ,X;) and &, == (E, ,m, ,X,) are equivalent in
Bun,, (X) or isomorphic if there exists a (C™ —) bundle isomorphism over
X fromé& toé,.

1-10 Vector Fields and 1-Forms
Definition of (Vector Fields and 1-Forms)1.10.1

1- A smooth vector field is a smooth map X: M — TM such that X(p) €
T,M for all p € M. We often write X(p) = X,,. In other words, a vector
field on M is a smooth section of the tangent bundle 73,: TM — M.

The map X being smooth is equivalent to the requirement that Xf: M —
R given by p — X, f is smooth whenever f: M — R is smooth.

If (x,U)is a chart and X a vector field defined on U then the local
representation of X is x — (x, X(x)) where the principal representative(or
principal part) X is given by projecting Tx o X o x~1 onto the second factor
iINTE = E XE:

x — x~1(x) = p — X(p) — Tx.X(p)
= (x@). X(x@) ) = (% X(9) = X(®)
In finite dimensions one can write X (x) = (v1(x), ..., v,(X)).
2- Let f: M — R be a smooth function withr > 1. Themap df:M - T*M

defined by p — df (p) where df (p) is differential at p as defined in 3.3. is
a 1-form called the differential of f.
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Notation1.10.2

The set of all smooth vector fields on M is denoted by I'(M, TM) or by the
common notation X(M). Smooth vector fields may at times be defined only on
some open set so we also have the notation X(U) = X,,(U) for these fields. The
map U » X,,(U) is a presheaf (in fact a sheaf).

A (smooth) section of the cotangent bundle is called a co-vector field or also a
smooth 1-form. The set of all C™ 1 — forms is denoted by X™ (M) with the
smooth 1-forms denoted by X*(M).

X*(M) is module over the ring of function C* (M) with a similar statement for
the C"case.

Pull back and Push Forward of Functions and 1-Forms 1.10.3

If¢p: N > MisaC" mapwithr > 1and f: M - Ra C” function we define the
pullback of f by ¢ as

pf=fod

and the pullback of a 1-form a € X*(M) by ¢*a = a o T¢. To get a clear picture
of what is going on we could view things at a point and we have ¢*a/|,.v =

alg @y (TpP-v).

The pull-back of a function or 1-form is defined whether ¢p: N — M happens to
be a diffeomorphism or not. On the other hand, when we define the pull-back of a
vector field in a later section we will only be able to do this if the map that we are
using is a diffeomorphism. Push-forward is another matter.

Definition1.10.4

If ¢: N - M is a C" diffeomorphism with r > 1. The push-forward of a function
¢ .fbyo.f(p):=f(p 1(p)). We can also define the push-forward of a 1-form
as¢p,.a=aoT¢ 1.

It should be clear that the pull-back is the more natural of two when it comes to
forms and functions but in the case of vector fields this is not true.
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Lemmal.10.5

The differential is natural with respect to pullback. In other words, if ¢ : N =

M isa C" map withr = 1and f: M = R a C" function with

r=>1thend(¢*f) = ¢*df. Consequently, differential is also natural with respect
to restrictions

Proof

Let v be a curve such that ¢(0) = v. Then

d(§ @) = 5| ¢ F(c®) = 7] F@c®)

= df | #(c) = df (T¢.v)

As for the second statement (besides being obvious from local coordinate
expressions) notice that if U isopen in M and 1: U & M is the inclusion map
(identity map id,,) restricted to U then f|, = ¢*f and df |y = (*df this part
follows from the first part.

We also have the following familiar looking formula in the finite dimensional
case

_vOf 4.
df =) Py dx
which means that at each p € U,
_vor i
df () = T3] dx'],;
In general, if we have a chart U , x then we may write
_ 9
df = ™ dx

We have seen this before. All that has happened is that p is allowed to vary so we
have a field.

For any open set U c M, the set of smooth functions defined C*(U) on U is
an algebra under the obvious linear structure (af + bg)(p) == af (p) + bg(p) and
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obvious multiplication; (fg) = f(p)g(p). When we think of C* (U) in this way
we sometimes denote it by € (U). The assignment U ~ X,,(U) is a presheaf of
modules over C*.

Frame Fields1.10.6
If U, x is a chart on a smooth n-manifold then writing x = (x?, ..., x™) we have

vector fields defined on U by

0 0

—p - —
dxt 6xlp

Such that the together the % form a basis at each tangent space at pointin U. We

call the set of fields aa?, ...,667 a holonomic frame field over U. If X is a vector

field defined on some set including this local chart domain U then for some smooth
functions X' defined on U we have

0
oxt p

X() =X X'(p)
Or in other words
_ j 0
Xy —ZXlaxl..

Notice also that dx’: p — dx* |p defines a field of co-vectors such that

dxllp, ..., dx™|,, forms a basis of T; M for each p € U. The fields form what is
called a holonomic co-frame over U. In fact, the functions X* are given by
dx'(X):p - dxi|p(Xp).

Notation1.10.7
We will not usually bother to distinguish X from its restrictions and so we just
write X = ¥ X* % or using the Einstein summation convention X= X* % :

It is important to realize that it is possible to have family of fields that are
linearly independent at each point in their mutual domain and yet are not

necessarily of the form % for any coordinate chart.
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Definition1.10.8

Let F}, F,, ..., F, be smooth vector fields defined on some open subset U of a
smooth n-manifold M. If F; (p), F,(p), ..., F,(p) from a basis for T,,M for each
p € U then we say that F;, F,, ..., E, is a (non-holonomic) frame field over U.

If Fi, F,, ..., E, is frame field over U ¢ M and X is a vector field defined on
U then we may write

X=YX'F, onU

For some functions X defined on U. Taking the dual basis in Ty M for each
p € U we get a (non-holonomic) co-frame field F1, ..., F™ and then X' = F'(X).

Definition1.10.9
A derivation on C*(U) is a linear map D: C* (U) = €= (U) such that

D(fg) =D(f)g + fD(g)

A C* vector field on U may be considered as a derivation on X(U) where we view
X(U) as a module over the ring of smooth functions € (U).

Definition1.10.10

To a vector field X on U we associate the map Ly: X,,(U) — X,,(U) defined by
Lxf)p) = Xp. f

and called the Lie derivative on functions.

It is easy to see, based on the Leibnitz rule established for vector X, in individual
tangent spaces, that Ly is a derivation on C* (U). We also define the symbolism
"Xf", where X € X(U), to be an abbreviation for the function Ly f. We often leave
out parentheses and just write Xf (p) instead of the more careful (Xf)(p) and so,
for example the derivation law (Leibnitz rule) reads.

X(fg) = fXg + gXf.
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1.11 Vectors Fields and Flows

Definition (Vector Field) 1.11.1

1- Let M c RK be a smooth m-manifold. A (smooth) vector field on M
Isasmooth mapX: M — RK such that X (p) € TpM for every p € M. The
set of smooth vector fields on M will be denoted by :

Vect(M) := {X: M — R¥| X is smooth ,X(p) € T,M Vp € M} - (1.11.1)

2- A vector field on a smooth manifold M is a smooth family of
tangent vectors v(x) € T,,M parameterized by the points x of the
manifold.

Locally a vector field is written in the form:

V=v,(X)0x, + -+ v,(x)0y, , Oy = aa , = (1.11.2)
Where v, , ..., v,, are smooth functions.
The derivative f = vf = > v; % along the vector field

determines an operation on the ring of smooth functions which is R-
linear and satisfies the Leibnitz rule:

v(fg) = f(wg) + gf) - (1.11.3)
Any such operation ( i.e. linear and satisfying the Leibnitz rule) is
called derivation .

3- The phase curve of a vector field visacurvey:I1 - M (Ic R
Is an open interval ) which is tangent to the field at any point .
Finding phase curves is equivalent to solving ODE

7 =v(r )y = G20, e, ¥a (), v = (010G, o, (D), =2 - (1.11.4)

According to the main of ODE , for every initial point x € M there
exists a unique phase curve passing through this point ( and defined
for small values of t ) . The phase curve through the point x is
denoted by:t — glx.

If M is compact then the phase curve extends to the whole range
R of values of ¢t . In general, this is not always possible . If
every phase curve is defined for all values of ¢t then these curves
define the phase flow, a one-parameter family of diffeomorphisms:

gt:-M->M ,teR — (1.11.5)
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Theorem 1.11.2

1- The flows gf, , g5 commute for all ¢, s iff the commutator [u, v] of
the fields u , v vanishes identically on.

2- For any fields u, v, initial point x € M , and small values t , s
one has

v’ e gut°gyegux =x—tsluv]+--,
Where the dots denote the terms of higher orderint,s .
Corollary 1.11.3

Let &, , ..., &, be acollection of vector fields which are linearly
independent in a neighborhood of some point on an n-dimensional
manifold. The following properties are equivalent:

(i) there exists a coordinate system (xg, ..., x,) such that & = ai- ;

(ii) the fields &; commute pairwise ,[&; ,&;] = 0.
Theorem 1.11.4

Let M c R¥ be smooth m-manifold and X € Vect(M) be a smooth
vector field on M. Fix a point p, € M . Then the following holds.

(1) There is an open interval I < R containing O and a smooth curve
y:1 — M satisfying the equation:

@ =x(y@®) , v =po — (1.11.6)
For everyt € I.

(i) Ify,: I, - M and y, : I, - Mare two solutions of (1.11.6) on
open intervals I, and I, containing O, then y, (t) = y,(t) for every
tel,nl, .

Definition(The Flow of a Vector Field)1.11.5

Let M < R¥ be a smooth m-manifold and X € Vect(M) be a
smooth vector field on M . For p, € M the maximal existence

interval of p, is the open interval
I(pg) i= U {I I c Ris an open interval containing 0 }
Po) = and there is a solution x:1 - M of (1.11.6)

By theorem (1.11.4) equation (1.11.6) has a solution y: I1(py) — M.
The flow of X is the map:

@:D—->M
Defined by
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D ={(t,p,)|po € M ,t € I(py)}
And

?(t,po) ==y(t) , where y:I(py) — M is the unique solution of
(1.11.6).

Theoreml1.11.6

Let M c RK be a smooth m-manifold and X € Vect(M) be a
smooth vector fieldon M . Let @ : D - M be the flow of X.

Then the following holds:
(1) D is an open subset of R X M .
(ithemap @ : D - M is smooth .
(iii) Let po € M ands € I(py) - Then

1(9(s,p0)) =1(po) — s — (1.11.7)
And for every t € R withs + t € I(py), we have

O(s + t,po) = B(¢,0(s,p0)) — (1.11.8)
The Lie Bracket 1.11.7

Let M < R¥ and N < R? be smooth m-manifolds and X € Vect(M)
be smooth vector field on M . If : N — M is a diffeomorphism ,the
pullback of X under yis the vector field on N defined by :

W X)) (@:=dp(@Q "' X(¥(@) - (1.11.9)
forgqe N.If @:M — N is adiffeomorphism then the pushforward
of X under vy is the vector field on N defined by :

(@.X)(q) ==do@ "(@NX(@ '(q)) — (1.11.10)
Forge N .
Definition 1.11.8

Let M c RK be a smooth manifold and X ,Y € Vect(M) be a
smooth vector fields on M . the Lie bracket of X and Y is the vector
field [X,Y] € Vect(M) defined by :

(X, Y](p):=dX(@)Y () —dY(P)X(p) — (1.11.11)
Lemma 1.12.9

Let M < RK and N < R? be a smooth manifolds . Let X,Y, Z be
smooth vector field on M and let v:N—->M be a
diffeomorphism . Then
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Y*[X,Y] = [ X, Y*Y] -  (1.11.12)
[X, Y]+ [V, X]=0 - (1.11.13)
[X,[v,Zz]]| + [v.[Z,X]1] + |2, [X,Y]] =0 - (1.11.14)
The last equation is called the Jacobi identity.
Definition 1.11.10

A Lie algebra is a real vector space g equipped with skew
symmetric bilinear map g x g — g: (¢ ,1) — [&,n] that satisfies the
Jacobi identity.

Remark 1.11.11
There is a linear map

R™*™M — Vect(R™) : & — X¢
Which assigns to a matrix & € gl(m, R) the linear vector field
Xg: R™ — R™ given by X¢(x) := &x for x € R™. This map
preserves the Lie bracket, i.e. [X¢, X, | = X[z, . hence is a Lie
algebra homomorphism .

1.12 Tensors
Definition(Tensors and Tensor Products)1.12.1

1- Let V,,...,V,., and W be real vector spaces .

A mapping T:V; X ..XxV,, > W is called a multilinear mapping
if:

T(Vl, ...,AVL' + ,U\Ifi, VT-) =

AT (vy, e, Vi oo, Vi) + uT(Vq, oo, ¥y, e, vy) , VI — (1.12.1)
and for all A4, u € R i.e. f is linear in each variable v; separately .

- Now consider the special case that W = R ,then T becomes a
multilinear function, or form , and a generalization of linear
functions .

- Ifin addition V; = --- =V, =V , then

T:VxX..XV->1R
Is a multi-linear function onV. And is called a covariant r-tensor
onV.

The number of copies r is called the rank of T'. The space of
covariant r-tensors on V' is denoted by T" (V) , which clearly is real
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vector space using the multi-linearity property in equation (1.12.1).
- In particular we have that T°(V) = R, TY(V) = V*and T2(V) is
the space of bilinear forms on V. If we consider the case V; = --- =
V. =V*, then

T:V*X .. xV* >R

Is a multi-linear function on V*,and is called a contra-variant r-
tensor on V . The space of contravariant r-tensors on V is denoted
by T,-(V). Here we have that T,(V) =R, and T, (V) =V** = V.

- Since multi-linear functions on V can be multiplied, i.e. given
vector spaces V,W and tensors T € T" (V) and S € T*(W), the
multilinear function

Ry, ...,V Wq, ..., Wwo) =T (vq, ..., v,.)S (W4, ..., W)
is well defined and is a multi-linear functionon V" x WS .

This brings us to the following definition. Let T € T"(V),and
SeTs(W), then

TRS: V" x W3 - R
IS given by
T®S(v1, ...,vr » Wl, ""WS) - T(vl, ...,UT)S(Wl, ""WS) .

This product is called the tensor product. By taking V = W, TQ®S is
a covariant (r + s)-tensor on V , which is a element of the space
T™S(WV) and@:T"(V) X TS(V) > T"5(V) .

2- The tensor product of V and W is the real vector space of
(finite) linear combinations

VW = {17v;®@w; : 17 € R} = [{”i‘g’wj}u‘]
Where v;Qw;(v*,w*) = v*(v,)w*(w;) , using the identification
vi(v*):=v"(v), and wj(w*): = W*(Wj), with (v, w*) e V* X W™,
- To get a feeling of what the tensor product of two vector spaces

represents consider the tensor product of the dual spaces V* and
W*. We obtain the real vector space of (finite) linear combinations

VW™ :={1;;0'Q0’/ : 1;; e R} = [{6i®af}l_j]
Where 8'Qo’ (v,w) = 8t (v)o’/ (w) forany (v,w) eV x W .

One can show that V*®W ™ is isomorphic to space of bilinear
maps from V xW to R . In particular elements v*®@w™ all lie in
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V*@W*, but not all elements in V*QW ™ are of this form . The
isomorphism is easily seen as follows. Let v = §;v; and w = n;w; ,
then for a given bilinear form b it holds that b(v,w) =

&n,;b(v; ,w;) . By definition of dual basis we have that &;n; =
6'(v)o’/(w) = 8'®ac’ (v, w) , which shows the isomorphism by
setting A;; = b(v; ,w;) .

- In the case V*"®W the tensor represent linear maps from

V to W. Indeed , from the previous we know that elements in
V*@W represent bilinear maps from VQW ™ to R . For an element
b € V*®W this means that (v,.):W* - R, and thus b(v,.) €
wWH*=w.

Examples 1.12.2

1- The cross product on R3 is an example of a multilinear (bilinear)
function mapping notto R to R3 . Let x, y € R3, then

T(x,y) =xxy€eR3
which clearly is a bilinear function on R3 .

2- The last property can easily be seen by the following example.
LetV=R?,and T,S € T'(R?) , given by

T(v) =v, +v,and S(w) = w; —w, , then
T®S(1,1,1,0)=2*+0=5SQxT7(1,1,1,0)
which shows that ® is not commutative in general .

3- consider vectors a € V and b* € W ,then a*®(b*)™* can be
identified with a matrix , i.e.

a @b (v,.)) =a"(W)(b")*(.) = a*(v)b . For example Let
a*(v) = a,v, +a,v, + azv; and

a,b,vy +a,b,v, +azb,vz\
a,b,v; + a,b,v, + a3b2v3) o

v
(albl ab, aj bl) v;
a;b, azb, asb, Vs '

Av=a*(v)b = (

Symbolically we can write

o _(aiby azb, a3b1)
A_a®b_(a1b2 a,b, azb,
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which shows how a vector and convector can be ‘tensored’ to
become a matrix. Note that it also holds that A = (a.b™)* = b.a".

4- The inner product on a vector space V is an example of a
covariant 2-tensor . This is also an example of a symmetric tensor.

5- The determinant of n-vectorsin R™ is an example of
covariant n-tensor on R™ . The determinant is skew symmetric ,
and an example of an alternating tensor .

Lemma 1.12.3

LetT eT"(V),S,S'eTS(V)andR € TH(V) , then
() (TR®S)R®R = TR(SK®R) (associative) ,
(INTR(S +S') =TS + TRS' (distributive) ,
(i) TR®S +# SRT (hon-commutative).

The tensor product is also defined for contra-variant tensors and
mixed tensors .

Theorem 1.12.4

Let {v,,...,v,} be a basis for V, and let {81, ..., 8™} be the dual basis
for V* . Then the set

B={0"®..®0":1<iy,..,i, <n}
Is a basis for the n” — dimensional vector space T" (V) .
proof :compute
T, 1,0°®.Q0" (v, ..., v;)=T;, ; 01 (v;)..07(v;)

1-ly

=T, .8/ . 5}: =T

i1..i79), J1edr
= T(vj1 , ...,vjr)

which shows by using the multi-linearity of tensors that 7" can
be expanded in the basis B as follows

T=T; ;0"Q..006"
whereT;, ; = T(v;, ,...,v;_ ),the components of the tensor T.
Lemma 1.12.5
We have that
() VW and WV are isomorphic .
(1) (URV)YQW and UK (VW) are isomorphic .
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with the notion of tensor product of vector spaces at hand we now
conclude that the above describe tensor spaces T" (V) and T,.(V) are
given as follows :

TT (V) =V*'®..0V* , T.(N=VQR..QV .

r times r times

By considering tensor products of VV's and VV*'s we obtain the tensor
space of mixed tensor:

TS, (V) =V"®.0V" @ VR ...QV - (1.12.2)
r times s times
Elements in this space are called (7, s)-mixed tensorson V —r
copies of V* , and s copies of V. Of course the tensor product
described above is defined in general for tensor T € TZ (V) , and

T €T (V):
:TI(V)XTL (V) - TIHL (V) - (1.12.3)
Noticel.12.6

If f:V — W is a linear mapping between vector spaces and T is an
covariant tensor on W we can define concept of pullback of T .
LeTeT"(W) ,then f*T € T" (V) is defined as follows:

Ty, .,v) =T(f(Wy), ... f(1)) - (1.12.4)
and f*: T"(W) = T" (V) is a linear mapping .
Indeed, f*"(T+S)=Tof+Sof=f"T+f*S,and
AT = AT o f = Af™T . If we represent f by a matrix A with respect
to bases {v;} and {w;} for V and W respectively, then the matrix for
the linear ™ is given by:
AR ..RQA"

T times
with respect to the bases {9 ® ...®6%} and {0/'® ... ®c’"} for
T (W) and T" (V) respectively.
Remark 1.12.7
The direct sum

(@]
T*(V)= & T"(V)
r=20
Consisting of finite sums of covariant tensors is called the covariant
tensor algebra of V with multiplication given by the tensor product
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® . Similarly , one defines the contra-variant tensor algebra

(0.0]
T.(V) = & T,.(V)
r=20
For mixed tensor we have
(00]
TW)= & TJV)
r,s=20

which is called the tensor algebra of mixed tensor of V . Clearly ,
T*(V) and T, (V) subalgebras of T(V) .

Definition(Symmetric and Alternating Tensors)1.12.8
1-A covariant r-tensor T on a vector space V is called symmetric
if:

T(v1 yoes Uiy, U, ...,vr) = T(v1 s Ujy e, U, ...,vr)

for any pair of indices i < j . The set of symmetric covariant r-
tensors on V is denoted by X" (V) < T" (V) , which is a (vector)
subspace of T" (V) .

- If a € S, is a permutation, then define

aT(vl B ...,vr) = T(va(l) ) ...,va(r))
where a({1,...,r}) = {a(1),...,a(r)} . From this notation we have
that for two permutationsa,b € S,., °( 2T) = P2T.Define

1
SymT = ;Zaesr °T

It is straightforward to see that for any tensorT € T" (V),

Sym T is a symmetric . Moreover a tensor T is symmetric if and
only if SymT = T. For that reason Sym T is called (tensor)
symmetrization.

2- A covariant r-tensor T on a vector space V is called alternating
if:
T(v1 y ooy Uiy, Uj ...,vr) = —T(v1 v Ujy e, Vg, ...,v,,)

for any pair of indices i < j . The set of alternating covariant r-
tensors on V is denoted by A" (V) <« T" (V) , which is a (vector)
subspace of T" (V) .

- As before we define
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1
Alt T == Faes, (=12 °T

where (—1)2 is +1 for even permutations , and —1 for odd
permutations . We say that Alt T is the alternating projection of a
tensor T, and Alt T is of course a alternating tensor.

Examples 1.12.9

1- Let T,T' € T?(R?) be defined as follows: T(x,y) = x,y,, and

T'(x,y) = x,y, - Clearly, T is not symmetric and T’ . We have that
SymT(x,y) = ;TC6y) + 3T,

1 1
= 5x1J’2 + 53’1952

Which clearly is symmetric . If we do the same thing for T’ we
obtain:

4 1 4 1 4
SymT'(x,y) =T (x,y) +5T' (¥, %)

1 1 ,
=zX1)1 + >Y1X1 = T (x,y)

Showing that operation Sym applied to symmetric tensors produces
the same tensor again .

Using symmetrization we can define the symmetric product.
LetSelX"(V)and T € X°(V) be symmetric tensor , then
S.T =Sym (SQT)

The symmetric product of symmetric tensors is commutative which
follows directly from the definition:

S.T(Vy, ., Vpys) =
1
m2a65T+s S(va(l) LD va(r))T(va(r+1) LY va(r+s))
2- Consider the 2-tensors T(x) = x; + x5, ,and (y) =y, .

NoOwWSKT (x,y) = x1y, + x,y,andT RS (x,y) = x,y; + X,V
which clearly gives that SQT # T®S . Now compute

1 1 1 1
Sym (S®T)(x,y) = > X1Y2 + >X2Y2 + >Y1X2 + >X2Y2
1 1
= ZX1Y2 + >X2Y1 + x,y, = 5. T(x,y).
Similarly
1 1 1 1
Sym (T®S)(x,y) = >X2Y1 + >X2Y2 + >Y2X1 + >X2Y2
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1 1
=SX1Y2 T SX2y1 +X2Y2 = T.S(x,y)
Which givesthat S.T =T.S .

3-Let T, T' € T?(IR?) be defined as follows : T(x,y) = x;v, , and
T'(x,y) = x,y, — x5y, . Clearly , T is not alternating and
T'(x,y) = —T'(y,x) is alternating . We have that

Alt T(x,y) = %T(x, V) — %T(y, x)

1 1 1,
= ZX1Y2 —3Y1X2 = ET (x,¥)
which clearly is alternating . If we do the same thing for T’ we
obtain:
Alt T (x,y) = %T’(x,y) — %T’(y,x)

1 1 1 1 ,

=ZX1Y2 —5X2¥V1 — ZV1X2 + > Y2X1 = T (x,y)
showing that operation Alt applied to alternating tensors produces
the same tensor again .Notice that T’ (x,y) = det(x,y)

This brings us the fundamental product of alternating tensors
called the wedge product. Let S e A" (V) and T € aA®*(V) be
symmetric tensors , then

(r+s

SAT = r!s!)!Alt(S®T)
The wedge product of alternating tensors is anti-commutative
which follows directly from the definition :
SAT(vq, e, Vpys) =
1
T 2aes s (DS (Vaq) s s Va@) )T (Pagr+1) » -+ Vagr+s))
In special case of the wedge of two co-vectors 8, w € V*gives
ONw = 0Qw — w6
In particular we have that :
(i) (TAS)AR = TA(SAR);
(I (TH+THINS=TNS+T'N\S ;
(1) TAS = (—1)"SAT forT e A"(V)and S € A*(V) ;
(iv) TAT =0,
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Lemma 1.12.10

Let {v,, ..., v,} be a basis for V and let {81, ..., 8™} be the dual basis
for V* . Then the set

By ={01..0":1<i; <--<i, <n}
IS a basis for the (sub)space X" (V) of symmetric r-tensors .
Moreover , dimX" (V) = (" + 77: - 1) = fodr D!

ri(n—1)!
Remarkl1l.12.11
SAT = Alt(SQT)

Which is in accordance with the definition of the symmetric product.
This definition is usually called the alt convention for the wedge
product , and our definition is usually referred to as the determinant
convention. For computational purpose the determinant convention
IS more appropriate.

- If{e], ..., e} is the standard dual basis for (R™)* , then for
vectors a, , ...,a,, € R™ |

det(aq,...,a,) =eiN..Nep(a,,...,a,)
Using the multi-linearity the more general statement reads

BIA..AB™*(ay,...,a,) = det (Bi(aj)) — (1.12.5)
where (3¢ are co-vector. The alternating tensor det = e A ... Ae}, is
called the determinant function on R™ .

If f:V — W is a linear map between vector spaces then the pullback
f*T € A" (V) of any alternating tensor T € A" (W) is given via the
relation:

" T(vy,...,v.) = T(f(vl), ...,f(v,,)) L fAT(W) = AT (V).
In particular f*(TAS) = (f*"TOAf*(S) . As a special case we have
thatif f:V — V , linear , and dimV = n , then

T =det(f) T

For any alternating tensor Te A™(V). This can be seen as follows.
By multilinearity we verify the above relation for the vectors {e;}.
We have that

f*T(el Y "'le‘n) = T(f(el)l "'Jf(en))
=T(41,.,fn) =cdet(fy, ..., fn) = cdet(f)
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where we use the fact that A™ (V) = R . On the other hand
det(f)T(eq,...,e,) =det(f)c.det(eq,...,e,)
= cdet(f)

Lemma 1.12.12

Let {81, ...,0m} be a basis for V* then the set
B, ={09N..NO":1<i; <--<i,<n}

is a basis for A (V) , and dim A" (V) = —=

dim A" (V) =0 for r > n.

Proof : From Theorem (1-12-4) we know that any alternating tensor
T € A" (V) can be written as

T=T;. ;0'®..Q6/.
We have that Alt T =T , and so
T=T, ;Alt(6*® ..®677) =2T; ; 671\ .. N\OTr

r!

o= In particular

In the expansion the terms with j, = j, are zero since 87xA\87¢ = 0.
If we order the indices in increasing order we obtain

T=4—T; 0%\ N\O
which show that B, spans A" (V) .
Linear independence can be proved as follows.
Let 0=21;, ;60%A..A6" and thus
Aiy i, = 0N NOT (v, ...,v; ) = 0, which proves linear
independence.

It is immediately clear that B, consists of (Z’) elements.

Lemma 1.12.13
Some of the basic properties can be listed as follows :

(i) Sym and Alt are projections on T" (V) , i.e. Sym? = Sym and
Alt? = Alt ;

(i) T is symmetricifandonly if SymT =T ,and T is
alternating ifand only if Alte T =T ;

(iii) Sym(T"(V)) = Z7(V), and Alt(TT(V)) = A" (V) ;
(iv) Symo Alt = Alt o Sym =0 ,i.e.if T € A" (V) , then
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SymT =0,andif Te X"(V) ,then AltT =0 ;
(V) let f:V - W then Sym and Alt commute with
f T (W) >T"(V) ,i.e. Symof*=f"oSym and
Alto f* = f* o Alt .
Definition(Tensor Bundles and Tensor Fields)1.12.14
Generalizations of tangent spaces and cotangent spaces are
given by tensor spaces
T"(T,M) , Ts(Tp,M) and TI(T,M)
where T"(T,M) = T,.(T;M) . As before we can introduce the tensor
bundles:

T™M = UyenT" (T,M) —  (1.12.6)
TsM = UpenTs(TpM) - (1.12.7)
TIM = Upen TS (T,M) - (1.12.8)

Equation (1.12.6) is called the covariant r-tensor bundle
on M, the equation (1.12.7) is called the contra-variant

s-tensor bundle on M, the equation (1.12.8) is called the mixed
(1, s)-tensor bundle on M.

Lemma 1.12.15
A covariant tensor field o is smooth at p € U if and only if

(i) The coordinate functions o; |, ; : U — R are smooth, or
equivalently if and only if .

(i1) For smooth vector fields X, , ..., X,- defined on any open set ¢ M
, then the function (X, , ..., X,): U — R, given by

o0(X1, -, X)) = 0p,(X1(P), ..., X (P))
Is smooth.

The same equivalences hold for contra-variant and mixed tensor
fields.
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Lemma 1.12.16

Let f:N —>M , g:M — P be smooth mappings , and let
heC®WM) ,c0e F"(M),and Tt € F"(N) , then :

N fF"(M) - F"(N) is linear ;

(ii) f*(ho) =(f e h)f"0 ;

(i) f(o®1) = f"oRf "1 ;

(iv) f*o is a smooth covariant tensor field ;

VM @ef)=f"eg";

(vi) idyyo =0 ;
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Chapter Two

Calculus on Manifolds
2-1 Differential Forms:

Definition (Permutation Group)2.1.1

1- A group is a set G with an associative binary operation, - : G X G — G with
identity, called the multiplication, such that each element has an inverse. That is,
the following conditions are satisfied

1. for any three elements g, h, k € G , the associativity law holds :
(gh)k = g(hk);
2. there exists an identity element e € G such that forany g € G, ge = eg = g;
3. each element g € G has an inverse g~1, such that gg™* = g 1g = e.
2- Let X be a set . A transformation of the set X is a bijective map
g:X-X.

3- The set of all transformations of a set X forms a group Aut(X), with
composition of maps as group multiplication.

4- Any subgroup of Aut(X) is a transformation group of the set X.
5- The transformations of a finite set X are called permutations .

6- The group S,, of permutations of the set Z,, = {1, ..., p} is called the symmetric
group of order p.

Theorem 2.1.2

The order of the symmetric group S,, is |S,| = p! .
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Remarks 2.1.3
1- Any subgroup of S, is called a permutation group.

2- A permutation ¢: Z,, — Z,, can be represented by
( 1 . p )
e1) - o)
3- The identity permutation is
4- The inverse ¢ ~': Z,, = Z,, is represented by

(fp(ll) <P;P)>

5- The product of permutations is then defined in an obvious manner .

6- An elementary permutation is a permutation that exchanges the order of only
two elements.

7- Every permutation can be realized by an even number of elementary
permutations is called an even permutation.

8- A permutation can be realized by an odd number of elementary permutations is
called an odd permutation.

Proposition 2.1.4

1- The parity of a permutation does not depend on the representation of a
permutation by a product of the elementary ones .

2- That is , each representation of an even permutation has even number of
elementary permutations, and similarly for odd permutations .

3- The sign of a permutation , denoted by sign(¢) ( or simply (—1)%), is defined
by :
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. +1,if @ is even
= (=1)? =
sign(e) = (-1) {_1 ,if @ is odd

Definition (Permutations of Tensors) 2.1.5

1- Let S, be the symmetric group of order p. Then every permutation ¢ € s,
defines a map:

Q: Tp—>Tp

Which assigns to every tensor T of type (0, p) a new tensor ¢(T), called a
permutation of the tensor T, of type (0, p) by : V vy, ... v,,

P(M(v1, ) =T(Vpayr Vo) — (2.1.1)

2- Let (iy, ..., I,) be a p — tuple of integers. Then a permutation ¢: Z, - Z,
defines an action

(p(il, ey lp) = (i(p(l)J . l(p(p)) - (212)

3- The components of the tensor ¢ (T) are obtained by the action of the
permutation ¢ on the indices of the tensor T

<p(T)i1,...,ip = Ti(p(l),...,i(p(p) - (213)
4- The symmetrization of the tensor T of the type (0, p) is defined by
Sym(T) = ~ % pes, ¢(T) > (214)

5- The symmetrization is also denoted by parenthesis. The components of the
symmetrized tensor Sym(T) are given by
1
T(ilr---'ip) = ;Z(pesp Ti(p(l),...i(p(p) - (215)

6- The anti-symmetrization of the tensor T of the type (0,p) is defined by

Alt(T) = izq’esp sign()e(T) - (2.1.6)
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7- The anti-symmetrization is also denoted by square brackets. The components of
the anti-symmetrized tensor Alt(T) are given by

1 ,
T ip) = 5 Zges, SO i) iy = (217

Examples 2.1.6

1- Atensor T of type (0,p) is called symmetric if for any permutation ¢ € S, :
p(T)=T

2- A tensor T of type (0,p) is called anti-symmetric if for any permutation ¢ € S,
@(T) = sign(e)T

3- An anti-symmetric tensor of type (0,p) is called a p-form .

Remarks 2.1.6

1- permutation , symmetrization , anti-symmetrization of tensors of type (p,0) .

2- completely symmetric and completely anti-symmetric tensor of type (p,0) .

3- An anti-symmetric tensor of type (p,0) is called a p-vector .

Definition ( Alternating Tensors ) 2.1.7

- Let (iy, ..., 1) and (jy, ..., j,) be two p — tuples of integers

1<1iy.,ip,j1, - Jp < n.The generalized Kronecker symbol is defined by :

L 1if (il, s ip)is an even permutation of (jy, ..., jp)
1...
jl__,j;) =3-1if (il, e) ip)is an odd permutation of (jy, .., jp)

0 otherwise

- One can easily check that

iy lp
i1..lp 6]:1 . 6]73
0. " =det] : .
J1-Jp Sip 51p
19}, ]



i

- Thus, the Kronecker symbols 6;11];’ are the components of the tensors
plAlt (IQ ... QI)
p

Of type (p, p) , which are anti-symmetric separately in upper indices and the lower
indices .

- Thus, the anti-symmetrization can also be written as

1 ey
by ip] = p1 Ojgedip J1dp

T
Notation 2.1.8

Obviously, the Kronecker symbols vanish for p > n

6;11;;’ =0 ifp>n

Theorem 2.1.9

Forany p,q € N,1 < p,q < n, there holds

]1]plllq (n—q)l ]1]p

Corollary 2.1.10

Forany g € N,1 < q < n we have

i1---iq (n—q)l

In particular

igoin
0.1 =nl
ll...ln
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Lemma 2.1.11
There holds

5lllpjljr klkr _ r' Slllpklkr
ll...lpml...mr ]1]7- ' ll...lpml...m-r

o Let(iy,...,i,)be ann — tuple of integers 1 < iy, ...i, <n.The
completely anti-symmetric ( Alternating ) Levi-Civita symbols are defined
by

—_ gl.n iq.nip — iq...in
311...1n_ i1..0n » € _51...71

So that
1if(iy, ..., in)is an even permutation of (1, ..., n)
gh-tn = €iy.in, = V—1if(iy, ..., 1) is an odd permutation of (1, ..., n)
0 otherwies

Theorem 2.1.12
There holds the identity

i1edne, | — : iy in
gh-tng; Z(pESnSLgnQp)Sj(p(l) "'6j<p(n)

_ iy in
=n! 6[].1 "'5jn]

_ aiqein
J1-Jn

The contraction of this identity over k indices gives

Iqedpn—fMq. Mo . — I - | Iy In—k
€ & jmmy.my, = k(0 k).6[j1 "'6jn-k]

1 §laein-k
k! 6]1---]n—k

In particular

mq.

.My — |
€ Eml ..My n:

- It is easy to see that there holds also
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i i
511 ln pg]l Jpliedn—p — (n p)lgfl Jpl1-in-p
n-p

- The set of all n x n real matrices is denoted by Mat(n, R).

- The determinant is a map det: Mat(n, R) — R that assigns to each matrix
A = (A}) areal number detA defined by

detA = ¥ s, Sign(@) Ay gy — Ay
Theorem 2.1.13

1- The determinant of the product of matrices is equal to the product of the
determinants:

det(AB) = detAdetB
2- The determinants of a matrix A and of its transpose A are equal:
detA = detAT

3- The determinant of the inverse A~1 of an invertible matrix A is equal to the
inverse of the determinant of A :

detA™! = (detA)™?!
4- A matrix is invertible if and only if its determinant is non-zero.
- The determinant of a matrix A = (A}) can be written as:

detA = eh-!mA; LA}

— J1 Jn
=&, .. ]nA Ay

ln

N S P J1 Jn
1-ln J
E Ejl ]nA LA
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Definition(Differential Forms)2.1.14

A special class of covariant tensor bundles and associated bundle
sections are the so-called alternating tensor bundles .

Let A" (T,M) < T"(T,M) be the space alternating tensors on
T,M . We have that a basis for a” (T, M) is given by
{dxilA LANAdxtr i1 < 1,0, ly < m}
and A" (T,M) = —2“_ . The associated tensor bundles of
ri(m—-r)!
alternating covariant tensors is denoted by A” M . Smooth sections in
A" M are called differential r-forms, and the space of smooth

sections is denoted by I'"'(M) c F" (M) .
In particular T°(M) = C* (M)andl'*(M) = F*(M).

In terms of components a differential r-form , or r-form for short , is
given by :
oi, i, dxN L Adx'T
and the components o;__; are smooth functions . An r-form
o acts on vector fields X, , ..., X,- as follows :

0(X1 )0 Xr) = Taes, (—1)%0;, i dx; (Xacy) --dxi (Xag)
= ZaEST(_l)ao-il...irX‘;l(l) X;T(r) .
Remark 2.1.15

An important notion that comes up in studying differential forms is
the notion contracting an r-form . Given an r-form

o € I'"(M) and a vector field X € F" (M) , then
ixo=0(X,.,...,.) - (2.1.8)
is called the contraction with X , and is a differential

(r — 1)-form on . Another notation for this isiyo = X _o.
Contraction is a linear mapping

ix: I"(M) > T""1(M) - (2.1.9)
Contraction is also linear in X, i.e. for vector fields X, Y it holds that

iX—l—YO' - iXO' + iyo- » lAXo- - /‘l lXO'
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Lemma 2.1.16

Let c e I'" (M) and X € F(M) a smooth vector field , then

(i) ixo € T~ (M) (smooth(r-1)-form);

(i) ix cix =0

(iii) iy i1s an anti-derivation, i.e. forc e I'"'(M)andw € I'* (M)
ix(ocA\w) = (ixo)\w + (—1)"oA\(ixw)

A direct consequence of (iii) is that 0 = o, A ... Ao, where

o; ETt(M) = F*(M) , then

ixo=(—1""1o;(X)oN ... N\G;A ... \o,, — (2.1.10)
where the hat indicates that o; is to be omitted , and we use the
summation convention.

Examples 2.1.17

1- Let M= R3 and o = dx/\dz Then the vector fields
X1 - X + X + Xl 92

and
X2 - X + X + XZ 52

We have that
o(X;,X,) =Xix3 —Xx3x3 .

2-Let o = xzdxl/\dx3 be a 2-form on R3 , and

X =x%2— Fy + X3 a_ + (x4 + xz)— a given vector field on

o 2 0 3

31 +Y 35, +Y 37

(ixo)(Y) =0(X,Y) =dx1(X)dx3(Y) — dx1(Y)dx3(X)
—_— x1 Y3 - (xl + xz)Yl

Afy =Y1?

Is an arbitrary vector fields then

which gives that
ixo = xidx3 — (x; + x,)dx?

3- Let 0 = dx*Adx? A\dx3 be a 3-form on R3 , and X the vector
field as given in the previous example . By linearity

iXO' - ino_ =+ iXZO_ =+ ix30_
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E) B
where X, = xfa—xl , X, = x3 s

o
and X3 = (x4 +x2)a—x3 :

This composition is chosen so that X is decomposed in
Vector fields in the basis directions. Now

ix,0 = dx'(X)dx*Ndx? = x7dx*N\dx>

ix,0 = —dx*(Xy)dx'Ndx? = —xzdx*Ndx?

ix,0 = dx3(X3)dx"Ndx? = (x1 + xz)dx*Ndx?
which gives

ixo = xidx? Ndx3 — x3dx*Adx3 + (x; + x3)dxTAdx?

4- Consider o = dx/Ady on R? , and mapping f given by

x =rcos(f) and y = rsin(8) . The map f the identity mapping
that mapsR2in Cartesian coordinates to IR? in polar
coordinates(consider the chart U = {(r,0):r > 0,0 <0 < 2m} ).

As before we can compute the pullback of o to R?with polar
coordinates:

o =dxN\dy = d(rcos(0))N\d(rsin(6))
= (cos(O) dr — rsin(8)dBO)A(sin(8) dr + rcos(6)dO)
= rcos?(0)drA\dO — rsin?(0)dOANdr
= rdr/\do.
Remark 2.1.18

For completeness we recall that for a smooth mapping f: N - M, the
pullback of a r-form o is given by

(fo)pX1, .0 Xy) = frop iy (X1 5 oo, X3) = 05 o) (iX 15 oy 2 X3

We recall that for a mapping h: M — R , then pushforward , or
differential of h dh, = h, € T;M .

oh
0xi

In coordinates dh, = dx"| , and thus the mapping
p

p — dh, isasmooth section in A*(M),and therefore a differential
oh
axi
If f: N — M is a mapping between m-dimensional manifolds with
chart (U, @) , and (V, ) respectively ,and f(U) c V .

Set x= @ (p),and y = Y (q) , then

1-form , with component g; =

(in local coordinates).
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fr(ody*A..Ndy™) = (oo f)det(Jf|y)dx A ... Adx™ — (2.1.11)
This can be proved as follows . From definition of the wedge
product and lemma 1.12.16 it follows that f*(dyA ... Ady™) =
frdy*A...Af*dy™ , and
frdy) = Ldxi = dFiwhere F = o fandf = o f o
Now

fr{dy*A...A\Ady™) = f*dy*A .. Af*dy™
=dFIN\...\dF™
and furthermore , using eq(1.12.5)

) d a \ _ i (2_)) = oF;
AFA . NAF™ (52, . 57— = det (d’” (ax,-)) = det (axj)

Which proves the above claim.
As a consequence of this a change of coordinatesf =y o ¢~ yields

frAy*A...Ady™) =det(Jf|)dx A ...Adx™ — (2.1.12)
Remark 2.1.19
If we define

(o]
rM)= & I'Mm)
r=0
which is an associative , anti-commutative graded algebra , then
f*:T(N) - I'(M) is a algebra homomorphism.
Definition (Pullback of A differential Form)2.1.20

k -
. 17 =+
Letn € Q™ (N). For vectors v vy € T,M define

(f*n)(P)(Up ...,Uk) = nf(p)(Tpvlf e I vk)

then the map f*n:p — (f*n)(p) is a differential form on M. f*n is called the
pullback of n by f.
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Proposition 2.1.21

With f: M — N smooth map and n; ,17, € Q(N) we have
frmAnz) = f'nNfn,

Remark 2.1.22

Notice the space Qj,(U) is just the space of smooth functions C*(U) and so
unfortunately we have several notations for the same set:

C*(U) = Cy(U) = Fp (U) = Qp (V).

All that follows and much of what we have done so far works well for Q,,(U)
whether U = M or not and will also respect restriction map. Thus we will simply
write Q,, instead of Q,,(U)or Q, (M) and X,, instead of X(U) so forth. In fact,
the exterior derivative dcommutes with restrictions and so is really presheaf map.

The algebra of smooth differential forms Q(U) is an example of a Z graded
algebra over the ring C*(U) and is also a graded vector space over R. We have for
eachU c M

1) the direct sum decomposition
QW) = QN (B (W)L (V)DQ ...
Where Q¥ (U) = 0if k < 0 or if k > dim (U);
2) The exterior product is a graded product
alB € QY (U) for a € QX(U) and B € Q' (V)
3) graded commutative:

alB = (—D*BAa for a € QX(U) and B € Q'(U).
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Definition (Exterior p — Forms) 2.1.23
- In particular
Ao =R and A, =T, =E"
- In other words, a 0-form is a smooth function, and a 1-form is a covector filed.

- The components of the p — form «a are
i, .0, = (e, - €;)
Definition ( Exterior Product) 2.1.24

1- Since the tensor product of two skew-symmetric tensors is not a skew-
symmetric tensor is define the algebra of anti-symmetric tensors we need to define
the anti-symmetric tensor product is called the exterior ( or wedge ) product .

2- If a is an p-form and £ is an g-form then the exterior product of a and f is an
(p + q) — form a/p defined by :

a/\ﬁ=%Alt(a®ﬂ) S (2.1.13)

- In components

(@B, .ipg = (I;T:!)!“[il...ipﬁip+1...ip+q] - (2.1.14)
3-Leta € Ay, beap— form . Then
p = deg (a)
Is called the degree (or rank ) of « .
Theorem 2.1.25
The exterior product has the following properties
(aNB)Ny = aA(BAy) ( associativity )

alB = (—1)de8@dee B)p Ay (‘anticommutativity )
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(a+ BNy = alAy + fAy  (distributivity )
2-2 The Lie Derivative :

Definition ( Flows on Manifolds) 2.2.1

A local flow is a smooth mapf: N —» M, (t,m) — ft(m) , where \V is a
balanced neighborhood of {0} x M in R x M , such that

@) f°lm) =m,vyme M .

(b) FE(fS(m)) = fr*S(m)for all s,t € R, m € M such that
(s,m),(s+t,m),(t,f(m)) eN

When V' = R X M, f is called a flow.

Definition 2.2.2

Let f: V' —» M Dbe alocal flow on M . The infinitesimal generator of f is the vector
field X on M defined by

XP)=X@) =5| @), vpeM - (221

dx t=

Definition 2.2.3

The Lie derivative of the vector field Y with respect to the vector field X is the
vector field LY defined at a point x by

. 1
(LyY), = lim;_, p (Y¢t(x) — <pt*Yx) - (2.2.2)

Remark 2.2.4

Notice that the equation (2.2.2) can be written as

. 1
(ny)x = hmt—>0 T (Qo—t*Y(pt(x) - Yx)

Or

d
(LXY)X = E ((p_t*Y(Pt(x)) |t=0
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Proposition 2.2.5
LY =[X,Y]
Proof

We compute in local coordinates

i d i
L1 = (P-eYoum) |

= % [(go_t*))i ij(fpt(x))]ltzo

_ 4 )i
_dt((p_t)jtz

YI(x) + 8} Y (9, (x))
0 dat t=0
V() +-5X
= [X, Y]
We notice that in particular LyX =0 .

Definition ( Lie Derivative of Forms) 2.2.6

1- Let f be a function ( 0-form ) on M . Then the Lie derivative of f with respect
to X is a function Ly f defined by

(Lxf)x = = (@if)x

t=0
=2l - @23)

2- Let a be a 1-form on M. The Lie derivative of a with respect to X is a 1-form
Lya defined by

. 1 *
(Lxa), = lim;_ T ( PtAp,(x) — Ax )
ad .
- L (pia), S (224
t—

3-Letabeap — formon M . The Lie derivative of a with respect to X
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Isap — form Lya defined by
. 1,
(Lya), = lim,, T ( Py, (x) — Ax )

d *
=L (p;a); > (225)

Proposition 2.2.7
The Lie derivative of a function f with respect to a vector field X is equal to
Lyf = X(f) - (2.2.6)
We notice that in local coordinates
Lyf = X'0;f - (2.2.7)
Proposition 2.2.8
The Lie derivative of a p — form a with respect to a vector field X is given by
(Lx@)i,..i, = X 0ja, i, + @iy, 0, X + o+ @y, gy, j0i X
Definition (Lie Derivative of Tensors) 2.2.9

Let T be a tensor field of type (p, q) on M . The Lie derivative of T with respect
to X is atensor field Ly T of type (p, q) defined by

(LxT)y = lim4 - (‘P tTo. ) — T, )

d *
=L (@iT)s > (228)

t=0

Proposition 2.2.10

The Lie derivative of a tensor field T of type (p, q) with respect to a vector field
X is given in local coordinates by

(LXT)k1 k” XJaT k”+T kpa X+ +T lk"]aqXJ
q-
_ ke kpa xki — ... — Ra-Fe- 1]ak Xk
l1.. lq l1.. lq 12
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Theorem 2.2.11

For any two tensor T and R and a vector field X the Leibnitz rule holds
Ly(TQR) =(LxT) @ R+T Q (LxR)

Theorem 2.2.12

Letabeap — form,B be aq — form and X be a vector field on M . Then the
Leibnitz rule holds

Ly(aAB) = (Lxa)AB + a\(Lxp)

Theorem 2.2.13

For any 1-form w and vector fields X and Y the Leibnitz rule holds
Ly(w(Y)) = (Lxw)(Y) + w(LxY)

Theorem 2.2.14

Let X and Y3, ..., Y, be vector fields on a manifold M and a € A, be a

p-form . Then

Ly (@(Yy, %)) = Ux@) (Y o, Yp) + B0y @Yy o, LYy o, V)

Theorem 2.2.15

Let X and Y be any two vector fields and ¢ € R . Then

1-Lyiy = Lx + Ly

2- L.y =cLy

3-LyY = —L,X

4- [LX :LY] = L[X Y]
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2-3 Exterior Derivative:

From now on, if not specified otherwise , we will denote the derivatives by :

6i=i

axt
Definition ( Exterior Derivative ) 2.3.1

1- The Exterior derivative of a O-form ( that is, a function ) f is a 1-form df
defined by : for any vector VV

dNw) =v() - (231
- In local coordinates
df = 6jfdxj - (23.2)

2- The Exterior derivative of a 1-form ( that is , a covector ) A is a 2-form dA
defined by : for any vectors V ,W

dAWV, W) =V(AW)) - Ww(A(WV)) - A([Vv,W]) - (2.3.3)
- In local coordinates
dA = - (3;4; — 8;A;)dx' Adx - (2.34)
3- Let a be a p-form
a=a; ;,dx"A ... Adx' - (2.3.5)
The Exterior derivative of a is a (p+1)-form da defined by

1 . .
da = ;dail._.ipdxll/\ . Ndx'p

1
= o ailaiz...ipﬂ

dx“Adx2A ... AdxP+1 - (2.3.6)
- In components
([AX)iyi,.ip,, = @+ D0 s, iy,
=X (-DF e, - (23.7)
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Theorem 2.3.2

The exterior derivative is a linear map
d:N\p = Npiq

Theorem 2.3.3

Let a € A, be ap-formand {v,, ...,v,,} be a collection of (p + 1) vectors . Then

(da)(Vp ---;Vp+1) = 22:1(_1)1(_1"1((0‘("1» v V-1 Vet 1 ---Vp+1)) -

+1 k- k-
£=1 Zi“:f(_l)l” Ya([vi Vil Vi, oo Vis Vigt) o) Vet Vi1, s Vpi1)

Theorem 2.3.4

Forany p — form

Theorem 2.3.5

The exterior derivative d : A = A is an anti-derivation on the exterior algebra .

Thatis, forany p — forma € A, andany q — form f € A, there holds
d(aAB) = (da)A\B + (=1)Pa/(dp)

2-4 Covariant Derivatives:

Definition ( Covariant Derivative ) 2.4.1

The covariant derivative V of a vector field Y in the direction of a vector field X is
a vector field VyY that is uniquely defined by the following properties

1- Vf1X1+f2X2Y = f1vx1 + fzvx2
2' VX(Yl + Yz) = VXY1 + VXYZ

3-Vx(fY) = fUxY + (Xf)Y
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Note that a linear combination of covariant derivatives is also a covariant
derivative.

Definition 2.4.2

Let F: R® — R® be a vector field , let v,, € T,R* , then the covariant derivative of F
with respect to v,, is :

V,F = %F(p + tv)(0) > (24.1)

Definition 2.4.3

A vector field Y in (M,V) alongacurve y issaidto be parallelif  V,Y =
0,vt.If VyY =0,VX,thenY issaid to be parallel . This is equivalent to

Y;YTSO, +0;Y =0 ViVk.

Definition 2.4.4
Acurvey on (M, V) is a geodesic if V,, )y (t) = 0 forall t.
Definition 2.4.5

Let (M, V) be a manifold with a certain coordinate system &. If the vector fields

{6i = a%'} are parallel, we say that ¢ is an affine coordinate system (with respect to
V) (this is equivalent to the requirement that V5. d; = 0, Vi, j or Fl-’j =0,Vi,j, k).

If an affine coordinate system exists for (M , V) we say that V (or M with respect
toV ) is flat.

2-5 Grassman Algebra for Differential Forms (Exterior Algebra):

Definition ( Grassman Algebra A) 2.5.1

The exterior algebra A ( or Grassmann algebra ) is the set of all forms of all
degrees , that is

N=N®D..0BA, - (25.1)
- The dimension of the exterior algebra is
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n

dimA\ = ¥7_ (p

)=2" - (252)
- A basis of the space A, is
oiA..No? , 1< < <i,<n > (253)
An p-form a can be represented in one of the following ways
a = ail_"l-pai1® .. Qa'r
=2q, ; a1\ .. Aot
p! lalp
= Diyssiy ocil__.l-pail/\.../\aip - (25.4)

- The exterior product of a p-form a and a g-form £ can be represented as

a/\ﬁ=ia

.. R, ) i1 ip+q
plql [ll"'lpﬁlp+1"'lp+q]o- /\ "'/\0-

Theorem 2.5.2

Leto/ €N, 1<j<nanda’ € \;,1<j <n,be two collections of n 1-
forms releated by a linear transformation

a/ =Yt A o/ , 1<j<n
Then
aiA ... \a™ = detA}alA . N\o™
Theorem 2.5.3

Leta/ € A; =E*,1<j <p,beacollections of p1-forms andv; €E, 1 <i<
p , be a collection of p vectors . Let

Then

((Xl/\ .../\ap)(Vl, ...,Vp) = detA]l
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Theorem 2.5.4

A collections of p 1-forms a/ € A; = E*,1 < j < p is linearly dependent if and
only if

alA..NaP =0
Corollary 2.5.5

Letx! = x!(%X), i = 1,...,n be alocal diffeomorphism . Then
dxA ... Adx™ = det (;—m) d%A ... AdEP
2-6 Integration Theory on Manifolds:

One-dimensional Integrals 2.6.1

A one-dimensional manifold C is described by a single coordinate t . Consider an
interval on the manifold bounded by t = a and t = b. There are two possible
orientations of this manifold , fromt =a tot =borfromt=btot=a.

Suppose for the sake of definiteness that the manifold has the first orientation .

Then the differential form f(t)dt has the integral

[, fmadt=[Z)fodt S 60

If s is another coordinate , then t is related to s by t = g(s) . Futhermore ,
there are numbers p , q such that a = g(p)and b = g(q) .

The differential form is thus f(t)dt = f(g(s))g(s)ds . The end points of the
manifold are s = p and s = q . Thus

fC f()dt = f:::f(g(s)) g(s)ds - (2.6.2)
The value of the integral thus does not depend on which coordinate is used .

Notice that this calculation depends on the fact that % = g(s) is non-zero .
However we could also consider a smooth function u on the manifold that is not a
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coordinate . Several points on the manifold could give the same value of
d .
u,and d—? could be zero at various places .

However we can express u = h(s) and 2—: = h(s) and define an integral

o f@du=[_"f(h())h(s)ds - (263)

Thus the differential form f(u)du also has a well-defined integral on the manifold
, even though u is not a coordinate .

Integration on Manifolds 2.6.2

Next look at the two dimensional case . Say that we have a coordinate system x ,y
in a two-dimensional oriented manifold . Consider a region R bounded by curves
x=a,x=Db,and by y =c, y =d . Suppoes that the orientation is such that
one goes around the region in the order a, b then c,d then b ,a thend ,c . Then
the differential form f(x, y)dxdy has integral

fo FGoyydxdy = [F[[) fCoy)dx]dy = ][ Feoy)dy]dx — (264

The limits are taken by going around the region in the order given by the
orientation , first a, b then ¢, d. We could also have taken b, a then d, ¢ and
obtained the same result .

Notice , by the way , that we could also define an integral with dydx in place of
dxdy . This would be

[y faydydx = [ [[¢ Feydy|dx = [C[f; fxy)dx]dy - (265)

The limits are taken by going around the region in the order given by the
orientation , first c,d then b, a. We could also have taken d , ¢ then a, b and
obtained the same result . This result is precisely the negative of the previous
result. This is consistent with the fact that dydx = —dxdy .

These formula have generalizations . Say that the region is given letting
go from ato b and y from h(x) to k(x) . Alternatively , it might

be given by letting y go from ¢ to d and x fromp(y) to q(y) .
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This is a more general region than a rectangle , but the same kind of formula
applies :

k(x)

fo Feoyydxdy = [ [[2) £ yydx| dy = [ [fns) fxp)dy|dx - (266)

There is yet one more generalization , to the case where the differential form is
f(u,v)dudv, but u,v do not form a coordinate system .

Thus , for instance , the 1 — form du might be a multiple of dv at a certain
point , so that dudv would be zero at the point . However we can define the
integral by using the customary change of variable formula :

ou ov Jov ou

Jo Fav)dudy = [, fuv) (5ro0— 5220 dxdy = (26.7)

. ou ou ov v . .
In fact , since du = adx + Edy and dv = adx + @dy , this is just saying

that the same differential form has the same integral .

In fact , we could interpret this integral directly as a limit of sums involving only
the u, v increments . partition the manifold by curves of constant x and constant

y.

This divides the manifold into small regions that look something like
parallelograms . Then we could write this sum as

Jo fwv)dudv = ¥ f(u,v)(AuAv, — Av,Au,) - (2.6.8)

Here the sum is over the parallelograms . The quantity Au, is the increment in u
from x to x + Ax , keeping y fixed , along one side of the parallelogram . The
quantity Av,, is the increment in v from y to y + Ay, keeping y fixed , along one
side of the parallelogram. The other quantities are defined similarly . The u, v
value is evaluated somewhere inside the parallelogram . The minus sign seems a
bit surprising , until one realizes that going around the oriented boundary of the
parallelogram the proper orientation makes a change from x to x + Ax followed by
a change from y to y + Ay, or a change from y to y + Ay followed by a change
from x + Ax to x .So both terms have the form AuAv, where the changes are now
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taken along two sides in the proper orientation , first the change in u, then the
changeinv.

The Fundamental Theorem 2.6.3

The fundamental theorem of calculus says that for every scalar function s we have

fc ds = s(Q) — s(P) -  (2.6.9)
Here C is an oriented path from point P to point Q.
Notice that the result does not depend on the choice of path.
This is because ds is an exact form.

As an example , we can take a path in space.
ds ds ds
Then ds = adx +£dy +£dZ , SO

SEL 2R B2 > (26.10)

ds 0s s
fc ds—fc adx+5dy+£dz—fc (adt dy dt ' dzdt

By the chain rule this is just
[, ds={, %dt = 5(Q) — s(P) > (2611

Green's Theorem 2.6.4

The next integral theorem is Green's theorem .it say that

aq dp

Je (5 — 5) dxdy = [, pdx + qdy - (2.6.12)

Here R is an oriented region in two dimensional space , and dR is the curve that is
its oriented boundary . Notice that this theorem may be stated in the succinct form

Jp da= [, a - (2.6.13)

The proof of Green's theorem just amounts to applying the fundamental theorem
of calculus to each term.
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Thus for the second term one applies the fundamental theorem of calculus in the
x variable for fixed y.

o sedxdy = [ |f qdx|dy = [7[a(c}) — a(c;)]dy ~ (2614
This is
[fa(c)dy + [{a(c;)dy = [,,ady > (26.15)

The other term is handled similarly , except that the fundamental theorem of
calculus is applied with respect to the x variable for fixed y.

Then such regions can be pieced together to give the general Green's theorem.

Stokes's Theorem 2.6.5

The most common version of Stokes's theorem says that for a oriented two
dimensional surface S in athree dimensional manifold with oriented boundary
curve dS we have

or  0dq op or aqg op B
fS (E - 5) dydz + (_z - _x) dzdx + (a — 5) dxdy =
J,s(pdx + qdy + rdz) - (2.6.16)

Again this has the simple form
Jg da= [, a - (2.6.17)

This theorem reduces to Green's theorem. The idea is to take coordinates u , v on
the surface S and apply Green's theorem in the u , v coordinates.

In the theorem the left hand side is obtained by taking the form

pdx + qdy + rdz and applying d to it. The key observation is that when the result
of this is expressed in the u , v coordinates, it is the same as if the form pdx +

qdy + rdz were first expressed in the u , v coordinates and then d were applied to
it. In this latter form Green's theorem applies directly.

Here is the calculation. To make it simple, consider only the pdx term.
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Then taking d gives
d(pdx) = (£ dx +2Z Py + 22 2 dz) dx = S dzdx — Z—zdxdy > (2.6.18)

In u, v coordinates this is

Apa) = [ (225 - 2282 (2 _29] 4, (2619

There are four terms in all.

Now we do it in the other. In u , v coordinates we have
pdx = pg—zdu+p3—idv - (2.6.20)
Taking d of this gives

(p s p ) = [2 (%) - 2 (p2) duts > 2621

The miracle is that the second partial derivatives cancel.

So in this version

d(p du+pa ) [Z—Z‘;—i—g—zg—ﬂdudv - (2.6.22)

Now we can express Z—Z and 3—5 by the chain rule. This gives at total of six
terms. But two of them cancel, so we get the same result as before.

Gauss's Theorem 2.6.6

Let W be an oriented three dimensional region, and let dW be the oriented surface
that forms its boundary.

Then Gauss's theorem states that
fy e+ 5 + %) dxdydz = [, adydz + bdzdx + cdxdy - (2.6.23)
Again this has the form

Jydo= [, 0 - (2.6.24)
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Where now o is a 2-form.

The proof of Gauss's theorem is similar to the proof of Green's theorem.
The generalized Stokes's Theorem 2.6.7
The generalized Stokes's theorem says that

J, do = [, - (2.6.25)

Here wis a(k — 1) — form,and dw is a k — form. Furthermore, Q is a k-
dimensional region , and 91 is its (k-1)-dimensional oriented boundary.

The forms may be expressed in arbitrary coordinate systems.
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Chapter Three

Clifford Kahler Manifolds

3-1 Complex Manifolds:

Some Complex Linear Algebra 3.1.1

The set of all n — tuples of complex C™ numbers is a complex vector space and
by choice of a basis, every complex vector space of finite dimension (over C) is
linearly isomorphic to C* for some.

Now multiplication by i := vV—1 is a complex linear map C* — C™ and since C" is
also a real vector space R?™ under the identification

(et + iyl L xt +iy™) = (L yl L x™ y™)

We obtain multiplication by i as a real linear map J, : R2™ —» R?" given by the
matrix

Conversely, if V is a real vector space of dimension 2n and there is a map

J : V > V with J? = —1 then we can define the structure of a complex vector
space on V by defining the scalar multiplication by complex numbers via the
formula

(x+iy)v=xv+yJv forveV - (3.1.1)

Denote this complex vector space by V;. Now if ey, ..., e, is a basis for V; (over C)
then we claim that ey, ..., e, Jeq, ..., J e, is a basis for V for R.

We only need to show that ey, ..., e, /e, ..., J e, span. For thislet v € V and then

for some complex numbers ¢ = a' + ib’ we have
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Ycle;=Y(al +ib))e; =Y ale; + X blJe; - (3.1.2)

Next we consider the complexification of V which is V¢ := CQV. Now any real
basis {f]} of V is also a basis for V¢ iff we identify f; with 1&f;.

Furthermore, the linearmap J : V — V extends to a complex linear map
] V¢ > V¢ and still satisfies J2 = —1. Thus this extension has eigen values

iand —i.Let V1 be the i eigenspace and V%! be the - i eigen space. Of course
we must have Ve = V0@V %1, The reader may check that the set of vectors
{e, —iJeq, ...,e, —iJe,} span V10 while {e; +ijey, ..., e, +iJe,} span V1.

Lemma 3.1.2

There is a natural complex linear isomorphism V, = V10 given by e; — e; — iJe;.
Furthermore, the conjugation map on Vg interchanges the spaces V10 and V1,

Let us apply these considerations to the simple case of the complex plane C.
The realification is R? and the map | is

x 0 —1\ /X
(y) — (1 0 )(y)

If we identify the tangent space of R?" at 0 with R?" itself then
o 92
axtly aytl,

instance {%| }

0
2

. . . . d
is a basis for R2. This is clear any way since J —| = —| . Now the
dxlyg ayl,

} is basis for R*™. A complex basis for C* = (R?",],) is for
1<isn

0
dx

. . d d
. A complex basis for R]Z =Cise = —| and so —| yi
dx 0 dx 0

1<i<n 0

0

e . . . - . d
complexification of R? is RZ which has basis consisting of e; — iJe; = P

5}

ia|
0 0z

yig O.
More generally, we see that if C" is reified to R?™ which is then complexified to

RZ" :== CQR?" then a basis for RZ" is given by
?
e )
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and e; +iJe; = E|0 + 15|0.These are usually denoted by £|O and

0

0

0 T oz1

0

0, o aon




Where

5]
azt

0

0 o axi

0

0 T axi

. 0
0 ayio

. 0 d
—i— and 2—
0 aytly, 0zt

Now if we consider the tangent bundle U X R?" of an open set U c R?" then we

. a 0 .
have the vector fields 3l oyt We can complexify the tangent bundle of U x R?"

toget U X ]R{(%n and then following the ideas above we have that the fields

9 — 2n
o oy also span each tangent space T,U = {p} X Rg".

On the other hand, so do the fields {i 9 9 g }

a9z1’ " azn’ 9z’ T gzn

Now if R?™ had a complex vector space structure, say C* = (R?",/,), then J,
defines a bundle map Jo: T,U — T, U given by (p,v) — (p,/ov) This can be
extended to a complex bundle map J,: TUcs = CQTU —» TU; = CQTU and we
get a bundle decomposition

CRTU = THOUST* U

0

0 0,1
, e, —SpansT > U.
9z1 azn P

o 9 1,0 ;
Where 5,17 13, Spans T*"U at each point and

d : . .
Now the symbols Py etc., already have a meaning a differential operators.

Let us now that this view is at least consistent with what we have done above. For
a smooth complex valued function f: U ¢ C* — C we have forp = (24, ..., Z,,) €

U
9 f_li _; 9 f
aztl, ) axtly ayip
=12 w ia|u o w—iZ] v
) axtly ayip axtly 6yip
1( ou ov if du ov
=2\aal, Yoyl ) T2\ oyl " ax (3.1.3)
P Yip Yip p
And
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a| )
+1— f
ay‘p

1 6
_2 ax
_1(o
T2\ ox
_ 1 u
2\ oxi

Definition 3.1.3

azl

a .
1U+1; 1V
p p

ou
P>-+ (5_7 4-523

A function f: U c C" - C s called holomorphic if

ov
p Oy

) - (3.1.4)
p

0

—f=0 (all i)

On U. A function f is called antiholomorphic if

0

—f=0 (all i)

Definition 3.1.4

A map f: U c C* - C™ given by functions fi, ..., f,, is called holomorphic (resp.
antiholomorphic) if each component function f;, ..., f,,, is holomorphic ( resp.
antiholomorphic ).

Now if f: U € C* — Cis holomorphic then by definition % f = 0forall
P

p € U and so we have the Cauchy-Riemann equations

ou ov .
priadew (Cauchy-Riemann)
ov ou

= - (3.1.5)

And from this we see that for holomorphic f

O _ou ;0 9, (3.1.6)

0zt ox! ox! ox!t
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Which means that as derivations on the sheaf O of locally defined holomorphic

: d d :
functions on C", the operators pyi and Soiare equal. This corresponds to the

complex isomorphism TY°U = TU , J, which comes from the isomorphism in
lemma??. In fact, if one looks at a function f: R?™ — C as a differentiable map of
real manifolds then with J, given the isomorphism R?™ = C", out map f is
holomorphic iff

TfoJo=JooTf

Or in other words

o ou o ou
ox1 oy? \ 0 -1 oxt oy? \ 0 -1
v 9v 1 0 =|0v v 1 0
axl oyl / ax1  oay? /
This last matrix equation is just the Cauchy-Riemann equations again.
Definition (Complex Structure)3.1.5

A manifold M is said to be an almost complex manifold if there is a smooth bundle
map J:TM — TM, called an almost complex structure, having the property that

Definition 3.1.6

A complex manifold M is a manifold modelled on C" for some n, together with an
atlas for M such that the transition functions are all holomorphic maps. The
charts from this atlas are called holomorphic charts. We also use the phrase
‘“holomorphic coordinates .

Lemma 3.1.7

Let Y: U — C" be a holomorphic chart with p € U. Then writingy =
(z'..,z") and z" = x* + iy* we have that the map J,,: T,M — T,,M defined
by
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L2 —2
paxip_ayip
P —
payip_ axip

Is well defined independent of the choice of coordinates.

The maps J, combine to give a bundle map J: TM — TM and so an almost
complex structure on M called the almost complex structure induced by the
holomorphic atlas.

Definition 3.1.8

An almost complex structure J on M is said to be integrable if there it has a
holomorphic atlas giving the map J as the induced almost complex structure. That
is if there is an family of admissible charts 1,: U, = R?" such that after
identifying R?™ with C" the charts form a holomorphic atlas with J the induced
almost complex structure. In this case, we call /] a complex structure.

Complex Tangent Structures 3.1.9

Let 7, (C) denote the algebra germs of complex valued smooth functions at p on
a complex n — manifld M thought of as a smooth real 2n-manifold with real
tangent bundle TM. Let Der, (F) be the space of derivations this algebra. It is not

hard to see that this space is isomorphic to the complexified tangent space
T,M¢ = CRT,M.

The (complex) algebra of germs of holomorphic functions at a point p in a
complex manifold is denoted O, and the set of derivations of this algebra
denoted Der, (0). We also have the algebra of germs of antiholomorphic

functions at p which is O, and also Der, (0).

If 1 : U > C"is a holomorphic chart then writing = (2%, ..., z™) and
z¥ = x* + iy* we have the differential operators at p € U:

(4, 54l

9
p’az‘i
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(now transferred to the manifold). To be pedantic about it, we now denote the
coordinates on C" by w; = u; + iv; and then

9 fi= ofept

z'lp ow' ly(p)
0 aferp~t

=S| f =

Z'p owt ly(p)

Thought of derivations these span Der, (F) but we have also seen that they span
the complexified tangent space at p. In fact, we have the following:

T,M¢ = spang {i g p} = Der,(F)

p azl|p ! 5

={ve Der,(F):vf =0 forallf € 619}

)

T,M%! = spang {—

ozt

= {v € Der,(F):vf =0 forall f € Op}

and of course

a a
T,M = spang {ﬁ ) a_yi| p}

The reader should go back and check that the above statements are consistent
: o . a d .
with our definitions as long as we view the il £| p hot only as the algebraic
p
objects constructed above but also as derivations. Also, the definitions of
T,M"° and T,M%* are independent of the holomorphic coordinates since we

also have

T,M*° = ker{],: T,M - T,M}
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The Holomorphic Tangent Map 3.1.10

We leave it to the reader to verify that the construction that we have at each
tangent space globalize to give natural vector bundles TM¢, TM1° and TM%1 (all
with M as base space).

Let M and N be complex manifolds and let f: M — N be a smooth map.
The tangent map extend to a map of the complexified bundles Tf: TM¢ — T Nc.

Now TMy = TMY°@®TM! and similarly TM; = TNY°@®TNOL.if f is
holomorphic then Tf (T,M*°) c T, N*°. In fact since it is easily verified that
Tf(T,M°) c Tr N *° equivalent to the Cauchy-Riemann equations being

satisfied by the local representative on F in any holomorphic chart we obtain the
following.

Proposition 3.1.11
Tf(T,M"°) C T;,yN*? if and only if f is a holomorphic map.

The map given by the restriction T, f: TyM™® — T;,, )N is called the
holomorphic tangent map at p. Of course, these maps concatenate to give a
bundle map.

Dual Spaces 3.1.12

Let M, ] be complex manifold. The dual of T,M¢ is Ty M¢ = CQT, M. Now the
map J has a dual bundle map J*: T*M¢ — T*M¢ which must also satisfy

J* o J* = —1and so we have the at each p € M the decomposition by eigen
spaces

TyM¢ = Ty MY @T; MO

Corresponding to the eigen values +i.
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Definition 3.1.13

The space Ty M™? is called the space of holomorphic co-vectors at p while T, M%*

is the space of antiholomorphic co-vector at p.

We now choose a holomorphic chart y: U — C" at p. Writing Y =
(z4, ...,z") and z* = x* + iy* we have the 1-forms

dz* = dx* + idy*
And
dz¥ = dx* — idy*
Equivalently, the point wise definitions are dzk|p = dx"|p + idy"|p and
dz"k|p = dxk|p - idyk|p. Notice that we have the expected relations:

i () = e iy (- i2.0)

=28 +-6F = &f
dz¥ (%) = (dx* +idy") (%% + i%aiyi)
= %5} —%5} =0
And similarly
d7*(-%) = 6F and dz* (- = 6.

Let us check the action of J* on these forms:
s(d kY (20 — 1% (Avk 4 i vk (2
J(dz") () = J* (dx* +idy") (537)
_ k 4 iq0ky (1.9
= (dx* +idy )(] azi)

= i(dx* + idy*) %
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And
J*(dz¥) (52) = @z (] =)
i () -

— a2k (L)

Thus we conclude that dzk|p € T;Ml'o. A similar calculation shows that

dz‘k|p € TyM%" and in fact
T,M"° = span {dzk|p: k=1, ...,n}
TyM%! = span {dz'k|p:k =1, ...,n}

And {dzllp y oy dz™y ,dZ, o, dz'"lp} is a basis for T, Mc.

Remark 3.1.14

If we don't specify base points then we are talking about fields (over some open

set) which form a basis for each fiber separately. These are called frame fields

(e.g. % , %) or co-frame fields (e. g.dz*, dz¥).

Definition (Almost Complex Manifolds) 3.1.15

An almost complex structure on a differentiable manifold X is a differentiable
endomorphism on the tangent bundle.

[: TgX - TgX with 12 = —id

A differentiable manifold with some fixed almost complex structure is called an
almost complex manifold.

Almost complex manifolds must be even dimensional.
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Definition (Complex Manifolds) 3.1.16

Let M be configuration manifold of real dimension m . A tensor field Jon TM is
called an almost complex structure on TM if at every point p of M, J is
endomorphism of the tangent space T,,(TM) such that J* = —1

A manifold TM with fixed almost complex structure J is called almost complex
manifold.

Assume that (x;) be coordinates of M and (x; ,y;) be a real coordinate system on a

: : d ]
neighborhood U of any point p of TM. Also , let us to be {(a_xi)p ) (a_yi)p} and

{(dxi)p : (dyi)p} to natural bases over R of tangent space T,,(TM) and cotangent
space T, (TM) of TM , respectively.

Let TM be an almost complex manifold with fixed almost complex structure J.
The manifold TM is called complex manifold if there exists an open covering
{U} of TM satisfying the following condition : There is a local coordinate system
(x; ,y;) on each U, such that

@ @) -

For each pointof U . Let z; = x; +1iy;, i = V-1, be a complex local coordinate
system on a neighborhood U of any point p of TM .

We define the vector fields% and % by:
&), =1 -6} ), =)

+i(5)

p Vp

} - (3.1.8)

And the dual co-vector fields :
(dzi)p = (dxi)p + i(dyi)p ,dzt = (dxi)p — i(dyi)p - (3.1.9)

Which represent bases of the tangent space T, (TM) and cotangent space
T, (TM) of TM , respectively.
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Then the endomorphism J is shown as :
J (%) = 1£ , ] (%) = —iaiz_i > (3.1.10)
The dual endomorphism J* of the cotangent space T, (TM) at any point p of
manifold TM satisfies J*> = —1 and is defined by
J*(dz) = idz; , J*(dz) = —idz; - (3.1.11)
3-2 Clifford Algebra:

Recall that C#,5 denotes the Clifford algebra with three generators {e, , e, , e3}. It
Is a real unital associative 8-dimensional algebra for which there exists a special
basis (ey,e;,e,,€3,€4,€5,6¢,€7 ) such that

epe; =eey=¢ , 1=01,..7,

el =—ey, e2=¢y,i=1,..,6,

eiej+ejei=0 ’ i¢j,i,j=1,2,...,6,l.+j:/:7,
eej = eje; , i=01,..7, i#j,i+j=7,
e1e, =€, , e,63 = €5 , €,63 = €.

For our comfort , we denote O = C#,5 and name its elements octons . The before
introduced basis B, = (ey, ey, €3, €3, €4, €5, €4, €-) 1S called the canonical (or
natural ) basis of O .

The center of O is Z(0) = Re, + Re; .

It must be remarked that Z(0) =~ Dwhere D denotes the real (associative and
commutative) algebra of the so-called double numbers.

A new basis B, = (Ey, Ey, E,, E5, E4, Es, Eg, E-), defined by

1 1 1 1
Eo =5(30 +e;),E =5(91 —eg), E; = _5(92 +e5), E3 =5(93 —ey),

1 1 L !
E, =§(€o —e;),Es = 5(61 + eg), Eg = 5(82 —es), k7 =5(e3 +ea),
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Is associated with the canonical basis B, ; it is named the adapted basis
corresponding to B,. . The multiplication table for , in the adapted basis B, is :

E,E;=EE,=E;, i€e{123} , E,E,=E ,E,=E, , a € {5,6,7},
E?=-E,, i€ef{1,2,3} , El=-E, ,a€{5,6,7},
ELE] == —E]El == Ek ) EaEﬁ = _EBE(Z = Ey )

Where (i,j,k) and (a,B,y) are cyclic permutations of {1,2,3} and {5,6,7},
respectively. Consequently , O can be naturally identified with HEGH .

Thus , the conjugation in H induces a conjugation in O defined by :
O 3 a=apey +a,e +aze, +aze; +age, +ases + ageg + aye; -
i C_l = a0€0 - alel - a262 - a3€3 - a4€4 - a585 - a6€6 + a7€7 E 0.

Since (@) = aand a.b = b.a, it results that this conjugation is an anti-involution
. Moreover,

aa = (X_oa?)e, + (apa; — ajas + a,as — asa,)e; €D - (3.2.1)
So that the following two quadratic forms h, , h,: O — R arise naturally
hi(a) =Y/_,a? , hy(a) = apga, — a;as + a,as —aza, , Va €O0.

h, is a positive defined quadratic form , while h, is nonsingular one having the
signature (4, 4).

The linear group preserving both these quadratic forms is isomorphic to 0 (4, R) X
0(4,R).

The presence of a natural conjugation on O suggests the possibility to define an
(quasi-) inner product on it. Actually, (3.2.1) claims to consider a structure of
D — module on M. Such a structure arise naturally since every element a =
apeo + a,e; + -+ aye; € M has the form

a = (apeyg + ase;)ey + (ajeq — ages)e; + (azeq + ase;)e; +

(azey — ase;)es — (3.2.2)
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We define now the following bilinear D — form on the D — module O by

Ox053(ab)—{ab)€eD,
(a,b)y=>(a.b+b.a)€D, Vabeo - (3.23)

Since itis a D — bilinear symmetric D — form satisfying the condition
(a,a) =0 a=0
It will be called a quasi-inner product.

The set G, consisting in all regular elements of O is a group. It is the product of
two subgroups , namely G, = 0(1).D*, where

0(1) ={a € Ola.a = ey} and D" is the set of all invertible elements from
Z(0) =D.0(1) and D* are normal subgroup of G, with

0(1) N D* - {ieo ) ie7}.

The D — module O™ can be endowed with an quasi-inner product defined by
1 _ _
(pr CI) = Ezzil(pl qi + qlpl) ,fOT all

p = (01,02 Pm)q4 = (1, Gz -, @) EO™ . > (3.2.4)

As it is usual , we define the group Op(m) as being the consisting in all matrices
o € M,,(0) such that (op,oq) = (p,q), for all p,q € O™.

It is easily to prove that O(1) can be identified , via an isomorphism , with Op(1).

The LIE algebra O~ associated by means of the usual bracket to the associative
algebra O is isomorphic to su(2)®su(2)dD".

It prove that GL,,(O) can be isomorphically identified with a subgroup of (8n,R),
namely

GL,(0) ={T € GL(8n,R)|TF, = F,T ,i =12, ..,6};

Here F;(i = 1,2, ...,6) is the matrix of linear transformation O™ —» O™ , q =
(91,92, -, qn) = qe; = (q1€i,q2€;, ..., qne; ) Where e; is an element of canonical
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basis of C#,5 in an admissible frame of O™ . The Lie algebra gl,,(0)of GL,(O)
can be isomorphically identified with a subalgebra of (8n,R) , namely

gl,(0) ={0 € gl(8n,R)| OF;, = F;0, i = 1,2,...,6}.

On the other hand, the Lie algebra g of Op,.GL,(O) can be isomorphically
identified with a subalgebra of gl(8n,R), namely

r OF, — F,0 = dF, + eF; — bF, — cFs , \
OF, — F,0 = —dF, + fF; + aF, — cF,,
OF, — F,0 = —eF, — fF, + aFs + bF,,
OF, — F,0 = bF, — aF, + fFs — eF,,
OF; — F.0 = cF, — aF; — fF, + dF,,
\ OF, — F,6 = cF, — bF; + eF, — dFs , J

g=10€gl(8n,R)

3-3 Almost Clifford Structures:

Let (M3, Q) be an almost Clifford manifold. The tensor fields ( J,) and
(Ji )witha € {1,2,...,6} defining canonical basis of Q on coordinate
neighborhoods U , U’, respectively , are related on U n U’ by:

Ja = X5=1Sanp - (3.3.1)

Where [S,,] belongsto asubgroup of SO(6) isomorphic with  SO(3) X
S0(3).

The structural group of (M3, Q) is G = GL(n, 0).Sp(1) where GL(n, O) is the
real representation of the linear group of square non-degenerate matrices of order n
with entries octons; it can be identified with a subgroup of GL(8n,R).

In this section we consider the situation when there exists three compatible (
almost ) complex structures I; , I, , Iy suchthat I, # 1, , Iy # I3 ,1[; # I} o
I, forall (j,k,?) € S3 (here S; denote the symmetric group with three elements
) which are globally defined on M. We can always choose a basis H = (J,) ,a =
1,2,...6suchthatl, =], ,1, = a1J; + ayJ, + a3J; + a,J, + asJs + agfe ,
I3 = byJ; + byJy + b3J3 + baJs + bsJs + beJs, Where ¥2_ a7 =1, ¥o_, b7 =1
and a,ag —a,as +aza, =0, bybg — bybs + bsb, = 0. Then we have
(I ,I,) =a,,({I;,1I3) = by ,{l,,I3) = a;b; + -+ agbg . We are interested in the
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globally defined angle functions a, ,b; : M — [—1, 1] given by
a;(p) = (I, 1)), by (p) = (I, I3)(p) , respectively.

Remark 3.3.1

(1) Ifa,(p) = 1 thenl, = +I, atp and I, , I, commute at p; conversely , if
a, # 0 and I, , I, commute at p ,then necessarily a, + 1and I, = *1,.

(2) The anti-commutator {/, ,I,} = %(1112 + I, 1,) satisfies the following identity

{l, , I} = —a;id + (ay — as + ag) /7.

Therefore a, (p) = 0and ag = —ay + as if and only if I; and I, anti-commute
in p, or equivalently, I, = a,(J, + AJ3) + a,(J, + AJs + (A — 1)]¢). Similar result
holds regarding the anti-commutator {I, , I5}. Actually , the smooth functions
a;,b; : M —» [—1,1] measure the angles of I, with I, and I5 respectively.

(3) The commutator of two endomorphisms P, , P, is defined by [P, P,] =
~(PLP; — P,P).
By a straightforward computation we get:
(11, 12] = —a4); — as]s + axJ, + as)s
[11,13] = —b4J; — bs]s + bzJs + a3)s
[, 11, L] = —a2/a = asfs — au)s — as/s
[l 111, 1] = =baJ, = bsJs = baJs — bs]s

They belong to Q@ and therefore , at each point where I; # +1, ,1; # +I5, we can
fined Lo =gl L]+ aylly L]+ azly o [I, L]+ ayly o [I;, 1]
I3 = ,31[11 L]+ B (1 »13] + B3l © I, I] + Baly © [11, 1]

Future , we get
Ja=hio]y, Js=hLo]s, Je=]2°]3, J;=11°]s - (3.3.3)

Conversely , given the complex structures I, , I, , I; as before we consider J; =
I, and define ], and J; by formula (3.3.2) with appropriately locally defined

- (3.3.2)
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functions «; ,B;,i=1,2,3,4;then/,,J,,J5 are two by two anti-commuting and
JE=J3 =3 = -1d

We recall some definitions and results on the relation between hyper-complex
and Clifford structures.

Let H = (J,) be an almost hyper-complex structure on M. Recall that the
Nijenhuis tensor N(A4 , B) of two endomorphisms A, B is defined by

N(A,B)(X,Y) = N(AX,BY) — AN(BX,Y) — BN(X, AY) + N(BX, AY) —
BN(AX,Y) — AN(X,BY) + (AB + BA)[X, Y]

for any vector fields X and Y. We denote N,;,, = N(J,,J,)for a,b = 1,2, ..., 6.
Let us define the structure tensor N of H by
N = 22:1 Naq
and the structure 1 — forms a, (a = 1,2,...,6 ) by
a,(X) = ﬁtrace(Y = JoN(X,Y)).

Setting NyY = N(X,Y) we get

Ny = ¥o=1JaNxJaY -  (3.34)
It must be remarked that

Yo=1a,JX) = 0.

The Nijenhuis tensor of an almost complex structure J is of particular importance
because , by the Newlander-Niremberg Theorem, N(J,J) = 0 is a necessary and
sufficient condition for the integrability of J.

Taking into account that the ordered triples (J1,/,./4),U1./3,)s),
(J2,J3,]e) and (J4 ,Js ,Js) Qenerate subalgebras of O isomorphic to the real
algebra of quaternions and by using the well known results of K. YANO &M.
AKO on the integrability of the almost quaternionic manifolds we get following
result.
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Proposition 3.3.2
Let (M, Q) be an almost Clifford manifold. Then

a) if two of the six Nijenhuis tensor fields N;; , N5, , Ny , Ny, Ny4, N4 Vanish
then the others vanish , too;

b) if two of the six Nijenhuis tensor fields Ny, , N33, Nss , Ny3, N;s, N3 vanish,
then the others vanish, too;

c) if two of the six Nijenhuis tensor fields N,, , N33, Ngg , No3 , Nog , N3g Vanish ,
then the others vanish, too;

d) if two of the six Nijenhuis tensor fields Ny, , Nsc , Ngg , Nas , Nug , Nsg Vanish
then the others vanish , too.

Then we can prove the Theorem.
Theorem 3.3.3
IfN11 =N22 = N33 = 0, then NU =0 fOT‘l,] € {1,2,,6}

This result can be improved relative to some three vanishing tensor fields
N, pthat are not belong to one of the four series a) , b) , c) , d).

Theorem 3.3.4

In order that there exists in an almost Clifford manifold a symmetric affine
connection such that VJ; = VJ, = VJ; = 0, it is necessary and sufficient that
Ny; = Np; = N33 = 0.

Following the argumentation used in, one obtains that the structure tensor T2of a
Clifford structure Q which is locally generated by H = (J,) is given by

T =N+ X5-10(a®Ja) -~ (3.3.5)

Where 9 denotes the (SPENCER's) operator of alternation. Obviously, T2 depends
only on Q . Furthermore, T2 = 0 if and only if Q is a Clifford structure, i.e. there is
a torsionless connection preserving Q.

89



Proposition 3.3.5

The almost Clifford structure Q on M8" is a Clifford structure if and only if in a
neighborhood of any point there exists a local admissible basis H = (J,) such that

NX,Y) = Xo-1(aa(X)]a(Y) — aa(N)]a(X)) - (3.3.6)

This result was used in proving of the main result of this Note.

Theorem 3.3.6

Let Q be an almost Clifford structure on Mg, . If there exist three compatible
complex structure I , I, , Is such that I; # +1, ,1; # tI;

I; # Iy oI, for all (j,k,?) € S3 (here Sydenote the symmetric group with three
elements), then Q is a Clifford structure.

3-4 Almost Cliffordian Manifolds:

Let M be a real smooth manifold of dimension , and let assume that there is a

6 — dimensional vector bundle V consisting of tensors of type(1,1) over M such
that in any coordinate neighborhood U of M, there exists a local basis

(F, ,F,,...,Fy) of V whose elements behave under the usual composition like the
similar labeled elements of the natural basis of the Clifford algebra C#,5 .

Such a local basis (F; , F,, ..., Fg) is called a canonical basis of the bundle in U
. Then the bundle V' is called an almost Cliffordinan structure on M and (M, V) is
called an almost Cliffordian manifold. Thus, any almost Cliffordian manifold is
necessarily of dimension m = 8n.

An almost Cliffordian structure on M is given by reduction of the structural group
of the principal frame bundle of M to Op(n).Op(1). That is why the tensor fields
(F, ,F,, ..., Fg) can be defined only locally. In the almost Cliffordian manifold
(M, V) we take the intersecting coordinate neighborhood

Uand U’ and let (F, ,F,, ...,Fg) and (F},F,, ..., Fg) be the canonical local bases
of Vin U and U’ respectively. Then Fj, F,, ..., F are linear combinations of

F,F,, ..., Foon U N U'that is

F/=%%,s;F , i=1,2,..6, - (3.4.1)
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Where s;; (i,j = 1,2, ...,6) are functions defined on U n U’

The coefficients s;; appearing in (3.4.1) form an element s U U’ = (s;;) of a

proper subgroup, of dimension 6, of the special orthogonal group SO(6).
Consequently, any almost Cliffordian manifold is orientable.

If there exists on (M, V)a global basis (Fy, F,, ..., Fg), then (M, V) is called an
almost Clifford manifold; the basis (Fy, F5, ..., Fg) is named a global canonical
basis for V.

Example 3.4.1

The Clifford module O™ is naturally identified with R8™. It supplies the simplest
example of Clifford manifold. Indeed, if we consider the Cartesian coordinate map
with the coordinates (X1, X5, ..., Xp) Xng1) Xna2s woor Xom » oo Xgpa1s - Xgn), then the
standard almost Clifford structure on R®" is defined by means of the three anti-
commuting operators J, , J, , /s defined by:

a 0 0 _ d 0 _ 0
Xi Xn+i Xi Xon+i Xi X3n+i
0 5] 0 d 0 d
Xn+i Xi Xn+i Xan+i Xn+i Xsn+i
0 _ 5] 0 _ 0 d _ 0
1 0Xan+i 0Xansi 2 0Xan+i ox; ' 0X2n+i OxXen+i
0 _ 0 d _ d d _ d
1 0X3n+i OXsn+i ’ 2 0X3n+i 0xXen+i 3 0X3n+i ax;
a _ 5] a 0 d 0
Xan+i Xan+i Xan+i Xn+i Xan+i Xn+i
0 _ a 5] _ d d 0
Xsn+i X3n+i Xsn+i X7n+i Xsn+i Xn+i
d _ d 5] . d 5] . d
N1 = - )2 ==, J3 = "
0Xen+i 0X7n+i 0Xen+i 0X3n+i 0Xen+i 0Xan+i
d _ 0 d . 5] d . a
J1 = = -, 2 - = -, J3 - = = -
0X7n+i 0Xen+i 0X7n+i 0X5n+i 0X7n+i 0Xan+i
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Example 3.4.2

The tangent bundle of any quaternionic-like manifold endowed with a linear
connection can be naturally endowed with an almost Cliffordian structure.

3-5 Connection on Almost Cliffordian Manifolds:

An almost Cliffordian connection on the almost Cliffordian manifold (M, V) is a
linear connection on M which preserves by parallel transport the vector bundle V.
This means that if @ is a cross-section (local or global) of the bundle V, then V, ®
Is also a cross-section (local or global, respectively) of V', X being an arbitrary
vector field of M.

Proposition 3.5.1

The linear connection V on the almost Cliffordian manifold (M, V) is an almost
Cliffordian connection on M if and only if the covariant derivatives of the local
canonical base are expressed as follows

(Vi =mQ); + 15QJ3 — 1,8/, — 135

VI, = —14®J1 + 16®J3 + 1:1QJs — 11386

Vi3 = 1n5QJ1 —16®J, + 1185 +1,Q)6 -~ (35.1)
V], =128J1 —11®J2 + 16®Js — N5/ o
Vs =13QJ1 = 11®J3 — 16®J4s + 1,86

\ V]e =138/, —12.Q]5 + 15/, — 14,Q)Js

Where n, ,1,, ..., ¢ are locally 1-forms defined on the dimension of J,, /,, ..., Je.

A

Letn,,n,,...,ne be the 1-forms defined by the connection V with respect to the
canonical base /4, /5, ..., J¢. Then using the relations (3.4.1) we get the following
change formulae

=3 sy +ds ,» a=12,..,6

Where A, are linear combinations of s,;, and ds,,.
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Definition (Clifford Hermitian Manifolds) 3.5.2

The triple (M, g, V), where (M, V) is an almost Cliffordian manifold endowed
with the Riemannian structure g, is called an almost Cliffordian Hermitian
manifold or a metric Cliffordian manifold if for any canonical basis

J1,J2, -, Je 0f V in coordinate neighborhood U , the identities

hold. Since each J;(i = 1,2, ...,6) is almost Hermitian with respect to g, putting
&,(X,Y)=9(,X,Y), VX, YeX(M), i=12,..6 - (3.52)

One gets 6 local 2-forms on U. However, by means of (3.4.1), it results that the 4-
form

Q=D AP+ Dy AD, + Dy A Dy + Dy A D, + P A D + P A Dg - (3.5.3)
is globally define on M.

By using (3.4.1) we easily see that

A=]1QJ1 +28): +J3®J3 + Ju®Js + Js®Js + [6®Js — (3.54)
is also a global tensor field of type(2,2) on M.

If the Levi-Civita-connection V= V9 on (M, g, V) preserves the vector bundle V
by parallel transport, then (M, g, V) is called a Clif ford — Kdhler manifold.
Consequently, for any Clif ford — Kdhler manifold , the formulae (3.5.1) hold
(with V= V9).

Actually, a Riemannian manifold is a Clifford- K dhler manifold if and only if
its holonomy group is a subgroup is a subgroup of Op(n).Op(1). Then , one can
prove the formulae

VQ=0,VA=0 >  (35.5)

Conversely, if one of the equations (3.5.5) hold then (M, g, V) is a Clif ford —
Kdhler manifold. Thus we get the following result.
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Theorem 3.5.3

An almost Clifford Hermitian manifold is a Clif ford — Kdhler manifold if and
only if either V2 =0 or VA=0.

3-6 Some Formulae

Let (M,V,g) bea Clif ford — Kdhler manifold withdim M = 8n. Ina
coordinate neighborhood (U, x™) of M we denote by gi; the components of g and

k
by]j the components of J* ,with k = 1,2, ...,6 ( here and in what follows we shall
i

put the label of any element of a local basis in V above it , i.e. (J1,J?,... J®)isa
canonical local basis of VV in U) . Then formulae (3.5.1) become

h h h h h
(O = g g =g -

h h h h h
VIZ = —nib a8l w0t =0l
h h h h h
VPt =3l =nSIE il +nif )
4h 2710 1,20 615N 5760 - (361
VI =nili =m0l —njl;
h h h h h
VIiP =0l =it =8l +ntl?

h h h h h
(VIS =03 -0 40l —np

Where nj- are the components of n* (i = 1,2, ...,6)in (U, x™).

Using Ricci formula, form (3.6.1) one gets:

h 1S s 11 _ 4 ;2h 5 3h 2 j4h 3 s5h
rKkjs]i = KyjiJs =wili +owpi)i —wkili — ol

h j2S s 12h _ 4 1h 6 y3h 1 pah 3 j6h
KijJi — KijiJs = —wyli togl)i +oili — oyl
s h h h h h
KMJ3 —KS.J3 = —w2 . Jb —wb.J? +wi P + w28
) kjsti k]r]s kjJi kjJi kjJi kj I.h N (3.6.2)

h 74 s 4l _ 2 1h 1 j2h 6 5N 5 16
KijsJi — KijiJs = wij)i  —wijli +oi)i — wgjli
h 155 s yjsh _ 3 ;1h 1 y3h 6 jah 4 r6h
KiisJi — Kijis = wijli —wijli —wgli + wijl;

h 165 s j6h _ 3 12h 2 r3h 4 j4h 4 y5h
\ Kijs)i — Kiji°g = wijli — wijli +wkili — wgli
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Where K,f}js are the components of the curvature tensor K of the Clifford-
Kdhler manifold (M,V, g)and w?, w?, ..., w® are defined by

(w! =dn' +n2An° +n3A\n°
w? =dn* + n*Ant + n°An?
) w3 =dn® +n°Ant + n°An?
w* = dn* + n*An? + n5An®
w® =dn® +ntAn3 + n°An*
\w® = dn® +n?An3 + n*An®

- (3.6.3)

And

0l = —wl ok = %w{‘jdxi/\dxj L k=12,..,6 - (3.6.4)

Thus ', i = 1,2, ...,6, are local 2-forms defined on U.

From (3.6.2) we get

(KX, V)] = 0*X,Y)]? + 0 (X, V)]? — 0?(X,Y)]* — 03 (X, V))°
[KX,Y),J?] = —0* (X, V)" + 0® (X, V)]? + o' (X, V)]* — (X, V)]°
[K(X,Y), 3] = —0> X, V)] — w® (X, V)] + ' (X, V)] + w?(X, V)"

[K(X,Y),]*] = 0?*(X,V)]' — ' (X,V)]? + 0®(X,Y)]> — w*(X,Y)]°
[K(X,Y),)°] = 0®*(X,V)]' = ' (X,V)]? — 0®(X,V)]* + w* (X, V)"
\[K(X,Y),J%] = 03X, Y)]? — 02X, V)3 + 0°(X,Y)]* — w*(X,YV)]°

-

(3.6.5)

In a coordinate neighborhood (U, x) , X and Y being arbitrary vector fields in M.
In another coordinate neighborhood (U, x"") we get

(KX =0 X Y]+ 0 XY -0 X)) - (X, V)]
[K'(X,7),]%] = 0" X, V)] + 0 °XV)]° + 0" (X, V)] — 0 (X, V)]'°
[K'(X,7),)°%] = -0 X, V)] —w®X, V)2 + 0" (X, V)] + 0? (X, Y)]"°
[K'(X,Y),)"*] = X, V)] — 0 (X, V)2 + (X, V)]"° — 0> (X,Y))'°
[K'(X,Y),)°] = 0 X, V)]" = (X, V)]° — X, V)" + 0 (X,Y))'°
L[K' (X, 7)) = 0 (X, 7)) =0 (X, V)P + 0 X)) — 0™ (X, Y))"°

- (3.6.6)
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Where (J'%, )%, ..., ]'®) form a canonical local basis of V in U’.

Since Sy, = (s45) € SO(6,R), by means of (3.4.1) we find in UNU’
W' = spwt + spwt o+ s, i=12,..6 - (3.67)

Using (3.6.7) we see that the local 4-form

% = w'Aw! + w?Aw? + 03 A2 + w*Aw* + W Aw® + WP Aw® (3.6.8)

Determines in M a global 4-form , which is denoted also by X. This Z is, in some
sense, the curvature tensor of a linear connection defined in the bundle VV by means
of (3.5.1).

Now, using (3.6.3) we can prove.

Lemma 3.6.1
Let (M,V, g) be a Clifford-K dhler 8n-dimensional real manifold.

A necessary and sufficient condition for the 4-form X to vanish on M, is that in
each coordinate neighborhood U to exist a canonical local basis (J, /2, ...,J®) of V
satisfying

Vii=0 i=12,..6
I.e., that the bundle V be locally parallelizable.

Assuming that a Clifford-K dhler manifold satisfies the conditions stated in
Lemma 3.6.1 we see that the functions s;; appearing in (3.4.1) are constantin a
connected component of U N U’ , U and U’ being coordinate neighborhoods, if we
take (J1,/2,...,J®) such that Vj' = 0, i = 1,2,...,6 ineach U.

In a Clifford-kdhler manifold with M a simply connected manifold and the bundle
V is locally paralelizable, then V has a canonical global basis.

Transvecting the 6 equations of (3.6.2) by J} , =],§igtu (i=12,..,6)and
changing indices, we find respectively
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1.1
(—Kijes)i Ti + Kijin = wgJin + 05 + wiifh + o i

— Ky jits); + Kijin = wiilin + oplin + wiilin + 030k
Kk]tsjts 53 + Ky jin = (‘)Iij]ish + wl?j]i6h + wiilin + il
Kk]ts]t4 st Kyjin = Wil + wiilin + opli + ol
Kk]tS]tS oy Kijin = wk]]lh + C‘)k]]m + wk]]m + wiilin

t6s6 —
\" Kk]ts] S + Kk]lh wk]]lh + (‘)k]]m + wk]]lh + (‘)k]]Lh

t2 52

- (3.6.9)

Where Ky jin = Kij;gsn and Jk = iskgsh (k =1,2,...,6) are the components of
®* defined by (3.5.2).

Transvecting the second equation (3.6.9) with J 1 g® ];h we get
Kk]ts]2t Zslllh + Kk]lhjllh kj]lh]llh + k]]lh]llh + kj]lhjllh + k]]lhjllh

But

t. »s h t S t i t
—Kjes)? T5 9%15 = Kjes? 9%y = —Kijesl? 9°F)y = —Kijeslp 9°
S ts
Kijeslp 9% = Kijes) "
So that
ih 1 ih
ZKkjihjl = 8771(1),1(] = (1)]%] = kaﬁhjl

Similarly we obtain

1 ih
wij = EKkﬁh]Sl s=1.2,..,6. - (3.6.10)

Using (3.6.10) and identity Ky ¢, + Kjekn + Kexjn = 0, One gets
KusnJ©' = —nwl, i=12..6. - (3.6.11)

On the other hand, taking into account of (3.6.11) and transvecting successively
(3.6.9) with g¥ it results:
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_ 1 j18 2 725 3 73S 4 745 5 t55
(Kin = —2nwisli — wislih, — Wil — OksJn — Wislh
— 1 18 2 25 3 35 4 745 6 165
Kin = =5 — 2nwis/iy — Wislpy — WpsJy — Wgsly
_ 1 715 2 125 3 y35 5 755 6 765
Kin = —wisJn — Wislh — 2nwygfy — wisJn — wggly 3.6.12
K., = —l J1° 2 125 _ 904 148 5 155 665(")
kn = ~WpsJh — WisJy — 2nwysJy — WpsJy — Wiy
_ 1 715 3 135 4 745 5 7155 6 765
Kin = —wisJp — WisJr, — WisJy — 2nwps)p, — wislp
_ 2 7258 3 y35 4 745 5 755 6 765
\Kin = —Wislh — WisJn — Wil — WisJp — 2nwgg/p

Here, Ky, = Kijing’"* are the components of the Ricci tensor S of (M,V, g).

From these equations it follows that

Kepn = —2(n+2wkJs' i=12,..,6. - (3.6.13)

Formulae (3.6.13) give

i 1 ] .
wkh=kas];§l i=12,..,6 - (3.6.14)

Substituting (3.6.14) in (3.6.9) we get

1

2 3 4 5
2(m+2) i T T+ Tin ) Jin)
1

1 3 4 6

2(m+2) P I T TG T+ T
2 5 6

sz U T H TS T 4 T T+ 5T
1 2 5 6

ztrn U T T TR T TR TS

5. ¢5 3 4 6
~KijesJ{ T+ Kjin = 503 U5 T+ 15 T+ 5 T+ 15 T6)

6 <6 1 3 4 5
L —Kyjesli Jn + Kijin = 2mi2) j]ih +Ji T 5 T+ Jin)

141
(—Kyjes)t i + Kijin =
2 o2
—Kyjes){ i+ Kijin =
3 63
Kk]ts]t Rt Kk]lh

. (3.6.15)
Kk]ts]t ot + Kk]lh

Since wt (i = 1,2,...,6 ) are all skew-symmetric, using (3.6.15) we find
Kts]tl ' = Ky i=12..,6 — (3.6.16)

Using (3.6.3) we get the identities
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(dw! = n*Aw? + n°Aw® — n?Aw* — 3 Aw?
dw? = —n*Aw® + n°Aw?® + ' Aw* — PP Aw®
dw?®* = —n°Aw® — n°Aw? + n*Aw® + N*Aw®

do* = n? Aw! — n*Aw? + n°Aw® — ° Aw®
dw® = n°Aw! — n*Aw?® — n°Aw* + n*Aw®

\ dw® = 3 Aw? — n?Aw? + n°Aw?* — n*Aw®

A

- (3.6.17)

(3.6.1) gives
5
Vie(KioJi ") = (VKo )JE + Kjs (i + ns® = ndss* = nis®);
Taking into account that (V,K;s)J§" + (V,K;s)J5' = 0, one gets

1,61
ViKij = (VieKe)JP T

The following identity holds:
ViKij = (ViKe)JE JSP p=12,..6 - (3.6.18)
3-7 Some Theorems:

Lemma 3.7.1
For any Clifford-K dhler manifold (M,V, g) the Ricci tensor is parallel.

Proof. By means of formulae (3.5.1) and (3.6.14) and the first identity (3.6.17) it
follows

(VeKi)IP* + (VK )2 + (ViKi)J? =0, p=12,..,6 — (3.7.1)
Transvecting (3.5.1) with ],%i one gets

5,11 S.11 5.1
(eKis)IE Tn + (ViKis)i Ji + (ViKe)]j Ja =0,
18 1t 1t718
_Vkth+(ijts)]k n + (VeKis)n Jj =0.
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Substituting in this equation (V,-Kts)],llt],%s = V; Ky, (which is a consequence of
(3.6.18)), one obtains

t qs
~ViKijn + ViKin = —=(VeKie)Jn T -

If we substitute in this equation VK, = (Vtha)],ib]SZa which is obtained in a
similar way as (3.6.18), then we find

b
ViKin — ViKin = (V Kp)JE T2 T

Similarly, we get

b b
ViKyp — Vi Ky = —(V, Kp)J2 T 1a ~(VeKp)Ji TR za

Combining the last two equations gives

4b 1a 1b za

(VKoL T2 T = (VoK) JZTE T = (VeKpdJE T T = (3.7.2)

In particular, one gets

zb 4‘1 4b 1‘1

(VeKpadlic ] = (VeKpa)Jic

Form which, by transvecting with ]r 1] 5 it follows

a

~(VeKpa)IE T8 TE" = (VeKuadIE T2 - (373)
Thus, by combining (3.7.2) and (3.7.3) it follows

(VKo T2 T

=0,
Which implies
V.Kp, =0 - (3.7.4)

Lemma 3.7.1 allow us to prove.
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Theorem 3.7.2
Any Clifford-Kdhler manifold is an Einstein space.
Theorem 3.7.3

The restricted holonomy group of a Clifford-K dhler manifold 8m-dimensional
manifold is a subgroup of Op(m) if and only if the Ricci tensor vanishes
identically.

Proof. From (3.6.10) and (3.6.14) we get

4i4m

S
= s K} P=12,.6 - (3.7.5)

ih
KyjinJ?

If Ricci tensor vanish identically, then we obtain for successive covariant
derivatives of the curvature tensor the identities

Kkjihfpm =0, p=12..6
pih
(VoKyjin)/P =0, p=12,..,6,
(Vs . VoK )P =0, p=12,..6, = (3.7.6)

Therefore, by Ambrose-Singer theorem, the restricted holonomy group of
(M, g,V) is asubgroup of Op(m).

Conversely, if the restricted holonomy group is a subgroup of Op(m), then (3.7.6)
hold and hence K;; = 0 (by taking account of (3.7.4)).

Taking into account of Lemma (3.6.1), we have:
Theorem 3.7.4

For a Clifford-Kdhler manifold (M,V, g) the bundle V is locally paralelizable if
and only if the Ricci tensor vanishes identically.
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3-8 Clifford Kahler Manifolds:

Let M be a real smooth manifold of dimension m. Suppose that there is a 6-
dimensional vector bundle V consisting of F; (i = 1,2, ...,6) tensors of type (1,1)
over M. Such a local basis {F;, F,, ..., Fs} is named a canonical local basis of the
bundle V in a neighborhood U of M. Then V is called an almost Clifford structure
in M. The pair (M, V)is named an almost Clifford manifold with V. Thus, an
almost Clifford manifold M is of dimension m = 8n. If there exists on (M, V) a
global basis {F;, F,, ..., F¢}, then (M, V) is called an almost Clifford manifold; the
basis {F;, F,, ..., F¢ } is said to be a global basis for V.

An almost Clifford connection on the almost Clifford manifold (M, V) is a linear
connection V on M which preserves by parallel transport the vector bundle V. This
means that if @ is a cross-section (local-global) of the bundle V. Then V,® is also
a cross-section (local-global, respectively) of V', X being an arbitrary vector field
of M.

If for any canonical basis {J;},i = 1,6 of V in a coordinate neighborhood
U, the identities

gUX,J;¥) =g(X,Y), vX,Y € y(M),i =1,2,...6 — (3.8.1)

Hold, the triple (M, g, V) is called an almost Clifford Hermitian manifold or metric
Clifford manifold denoting by IV an almost Clifford structure IV and by g a
Riemannian metric and by (g, V) an almost Clifford metric structure.

Since each J;(i = 1,2, ...,6) is almost Hermitian structure with respect to g,
setting

o,X,Y)=9g(UXY) i=12,...6 - (382
For any vector fields X and Y , we see that @; are 6-local 2-forms.

If the Levi-Civita connection V= V9 on (M, g, V) preserves the vector bundle VV
by parallel transport, then (M, g, V) is named a Clifford Kdhler manifold, and an
almost Clifford structure @; of M is said to be a Clifford Kdhler structure.
Suppose that let
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{Xi ) Xptir Xon+i» X3n+i » Xan+i » Xsnti» Xen+i» Xon4it L =

be a real coordinate system on (M, V). Then we denote by

g g d

0

0

0

0

0

{a_xl "0xngi

0Xan+i

)
0X3n+i

)
0Xan+i

) )
0Xsn+i

0Xen+i

)
0X7n+i

1,n

5

- (3.8.3)

{dx;, dxpii, dXop i QX 4is AXan i AXsptiy AXgnpi AX7p 4}

The natural bases over R of the tangent space T(M) and the cotangent space

T*(M) of M, respectively.

By structure {J; ,/,,/3,/4,Js ,J¢} the following expressions are given

0 0 0 0 0 0
J1 (_) = , J2 (_) = , I3 (_) = ,
0x; 0Xn+i 0x; 0Xan+i 0x; 0X3n+i
0 0 0 0 0 0
](a )=_T ]Z(a -)=_a : ]3(6 -)=_a :
Xn+i Xi Xn+i Xan+i Xn+i Xsn+i
] 0 0
]1(6 ) P (a =" 3 (a -)=_a :
Xon+i Xan+i Xon+i Xi Xon+i Xen+i
] 0 0 0
]1(6- ) P ]Z(a )=a ]3(6 -)=_a_
Xi+3n Xsn+i X3n+i Xen+i X3n+i Xi
)= o) =i 1 (e) =5 (384
]1 (ax4-n+i axZn+L ]2 OX4n+i axnﬂ 0Xqn+i OX7n+i ( e )
] 5] 0 ]
]1(0 -): P J2 (a ) 3 ]3(6 -):a -
Xsn+i X3n+i X5n+i X7n+i X5n+i Xn+i
0 ] 5] ] ] 0
]1(0 -):a ]Z(a -):_a : ]3(6 -):a :
Xen+i X7n+i Xen+i X3n+i Xen+i Xon+i
0 0 0 0 0 0
hGio) = i) = () =~
0X7n+i 0Xen+i 0X7n+i 0Xs5n+i 0X7n+i 0Xan+i
0 0 0 0 0
Ja(50) = Js(55) = 52— Jo(5-) =
ox; O0X4n+i dx; O0Xs5n+i dx; 0Xen+i
] _ ] ] _ ] 0 _ 0
]4 a . - a . ]5 a . - a . ]6 a . - a .
Xn+i Xon+i Xn+i X3n+i Xn+i X7n+i
0 0 0 0 0 0
]4( .)_ . ]5( .)=_ . ]6( .)=_ .
O0X2n+i OXn+i OX2n+i 0X7n+i 0X2n+i 0X3n+i
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(ax + ) ()X
3n+i n+i
( )
ax4n+i axl
(ax + ) ()X
5n+i 6n+i
(ax + ) ()X
6n+i 5n+i
]4 (ax ) ax
Tn+i 3n+i

5] )_ d
0X3n+i OXn+i
s (r) = 55
5 0Xan+i O0Xen+i
0 _ 0
Js o) = " om
X5n+i Xi
s (ro) =
5 O0Xen+i 0X4n+i
s (o) = 5
5 OX7n+i 0Xon+i

(ax3n+l) B a7"2n+l

(ax4n+l) B ax5n+l
(ax5n+l) ax4n+l

d . d
Jo\o—) =~ 3.
Xen+i Xi

d _ 0
]6 P )T Fl .
X7n+i Xn+i

A canonical local basis {J1 ,J5 ,J3 ,J2 ,J= ,J¢} of V* of the cotangent space T*(M)
of manifold M satisfies the following condition:

Jif=pt=t == =0 =1, - (385)

Being
Ji(dx;) = dxpy; J2(dx;) = dxony Ja(dx;) = dxspy
Ji(dxny) = —dx; J2(dxny) = —dxXany J3(dXny) = —dXspy
Ji(Axn4i) = dxanyi J2(dxone) = —dx;  J3(dX2n4i) = —dXena
Ji(dxzn4i) = dxspy;  Jo(dxsngi) = dXenyy  J3(dX3p4) = —dx
Ji(@X4n1i) = —dXopti J2(dXansd) = dXpyy J3(dXansi) = dX7nyg
Ji(dXsnyi) = —dxspyi J3(AXspei) = —dxyny J3(dxspei) = dxpy
Ji(@Xen+i) = dxX7pyi J2(AXen4i) = —dXzne;  J3(dXgn4i) = dXonyi
Ji(dx7n41) = —dxensi J2(dX7n4i) = AXsnyy J3(dX7n40) = —dXany

Ja(dx;) = dxanyi Js(dx;) = dxsni Jo(dx;) = dxeny
Jaldxny) = —dxony;  Js(dxnyi) = —dxzpy; Jo(dXpy) = —dxzny
Ja(dxansi) = dxnyi Js(dxonei) = —dX7ny; Jo(dXon4i) = —dXzpy,
Ja(Axzn4i) = —dx7pyy Js(dXspei) = Xy Jo(dX3p40) = dXonyi
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Ja(dxsnyi) = —dx; Js(@X4nei) = AXenyi J6(dXanyi) = dXsnyy
Ja(Axspyi) = dXenyi Js(dXsny) = —dx;  Jo(dxsnyi) = —dxanyi
Ja(@Xenti) = —dXspyi  Js(dXenyi) = —dXanyi Jo(dXenii) = —dx;
Ja(dx7n4i) = dXzpq, Js(dx7n4i) = dXony, Je(@xX7pn4i) = dxpy

- (3.8.6)
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Chapter Four

Lagrangian Dynamical Systems on Clifford Kahler Manifolds
4-1 Lagrangian Mechanics:

In this section, we introduce Euler-Lagrange equations for quantum and classical
mechanics by means of canonical local basis {J;},i = 1,6 of Von Clifford Kdhler
manifold (M, V). We say that the Euler-Lagrange equations using basis {/;, /-, J3}
of V on (R®", V) are introduce. In this study, we obtain that they are the same as
the obtained by operators J; ,/, ,J5 of V on Clifford Kdhler manifold (M, V).

If we express them, they are respectively:

First:
d (0L aL d oL oL
) a0 ) S0
at \0dx; OXn+i Ot \0xXn+i dx; 0X2n+i aX4n+1
d JL JdL d oL d
)+ 0 )t =0 () -
Ot \0xX3n+i OXsn+i Ot \0Xan+i 0Xon+i Ot \0X5n+i ax3n+l
] JL JL d oL oL
) st =0 ) -t o
Ot \0Xen+i OX7n+i Ot \0X7n+i OXen+i
Second:

0 (0L JL d oL oL d JaL oL
) st s 02 o
at axl ax2n+i at axn+i a.X4n+i at ax2n+i axl

i( oL )+ oL :0,1( oL )+ oL =O’i( oL )_ oL =0,

Ot \0x3n+i OXen+i 0t \0x4n+i 0Xn+i 0t \0xXs5n+i OX7n+i

d oL oL d oL oL
260 ) o
Ot \0Xgn+i 0X3n+i 0t \0Xx7n+i 0X5n+i

Third:

d (0L oL d oL oL d oL oL
5 * 7 = 05 ) e = 0w () e = O
dt \0x; 0X3n+i 0t \0xp4i O0Xs5n+i 0t \0x2n+i O0Xen+i
d oL oL d oL oL d oL oL
() =0 ) =0 ) =0
0t \0x3n+i 0x; Ot \0X4n+i 0X7n+i 0t \0Xs5n+i 0Xn+i
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d JdL JdL a oL JaL
L) =0 Sot) =
Ot \0Xgn+i 0X2n+i Ot \0X7n+i 0X4n+i

Here, only we derive Euler-Lagrange equations using operators J, , Js,Js of V on
Clifford Kdhler manifold (M, V).

Fourth, let take a local basis component on Clifford K dhler manifold (M, V),

and {X; , Xn1i s Xon+i» Xan+i» Xan+i » Xsnti» Xenti» X7ntid L = 1,m be its
coordinate functions.

Let semisparay be the vector field ¢ defined by:

E Xl Xn+l 0 X2n+i d + X3’rl+i d +X4n+i 0
OXn+i 0X2n+i 0X3n+i O0X4n+i
+X5n+l + X6n+l + X7n+l 9 - (4 1 1)
a9‘55n+1 ax6n+1 OX7n+i

Where
i — n+i — - 2n+i — o 3n+i — o an+i _—_

X' =x, X" =%Xpqi, X = Xon+i X = X3n4i X = Xan+i
Sn+i — o en+i — n+i —

X = Xspti, X = Xen+i X = X7n+i-

This equation (4.1.1) can be written concise manner

0

0Xan+i

§ =Xl o XMt - (4.12)

And the dot indicates the derivative with respect to time t. The vector fields
determined by

;i 0 i 0 ;0
— — Xl Xn+l + X2n+l _X3n+l
]4(5) 6x4 +i 0Xan+i 0Xn+i 0X7n+i
_X4-TL+l + X5TL+l d X6n+l + X7n+l d (4_ 1 3)
0x; OXen+i axSn+L X3n+i

Is named Liouvile vector field on Clifford Kdhler manifold (M, V).

The maps explained by T, P: M — R such that:
_1 2 w2 .2 .2 .2 .2 .2 .2
T = -my(&7 + %54 + Xgpas + Xngy + Xy + Xpgi + Xngi + %)
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1 7 .
T_Emi a= Oxan+l ’ P_migh

Are said to be the kinetic energy and the potential energy of the system,
respectively. Here m; , g and h stand for mass of a mechanical system having m
particles, the gravity acceleration and distance to the origin of a mechanical
system on Clifford Kdhler manifold (M, V), respectively.

Then L: M — R is a map that satisfies the conditions:
i) L =T — P is a Lagrangian function.
ii) the function given by EL]4 =V, (L) — L, is energy function.
The operator i;, induced by J, and defined by:
i, w(Xy, Xy, 0, Xp) = Xl 0 Xy, o, JuXi o, X)) -  (4.14)

Is called vertical derivation, where w € A"M , X; € X' (M). The vertical
differentiation d;, is determined by:

d;, =i, . d]| =i,d—di, - (415)

Where d is the usual exterior derivation. We saw that the closed Clifford Kdhler

form is the closed 2-form given by Cbi“ = —dd,;, L such that

a a a d
] —.dxn+l' + __dx2n+i - de?)nﬂ' -
Xn+i X7n+i

Determined by operator:
d,:F(M) - A'M - (4.1.6)

Then

o = ——%L Gy Ndx; +

0Xj0X4n+i

dxiNdxy i — ———dxjAdXzn.;

ox axzrl+1 dx axn+L
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azL azL azL

+ m de/\dX3n+i + m de/\dX4n+i — 5%;9%6mei dxjAdx5n+i
+ % dxiNdxenyi — ﬁ dxiNdx7p4; — axnjxcm“ dxp 4 jN\dX;
+ denﬂ/\dxnﬂ - 6xnszaan+i AxpyjNdXony  +
T Gt Ay + 5 o A = 5
a5’Cn+ajzal;fsn+i dxn+j/\dx6n+i aJ’Cn+(’j'26l9lc3n+i dxn+j/\dx7n+i
- dem jNdx;  + dew iNdxy
— ﬁd%nﬂ/\d’cmﬂ + ﬁdxmﬂ-/\dx%”
+ #j-axidxz“ iNdX gy axan;LxWri AXyn4 jNAX 504
+ dehwj/\d)%nﬂ' - axan;Lme dx2n+j/\dx7n+i
B Wd’%nﬂ/\d’ci + Wd-’%nﬂ/\dxnﬁ
- ﬁdx&lﬂ./\dxzn“ + a9‘311-?1'26L9C7n+i dx3n+j/\dx3n+i
+ %_:axidx3n+j/\dx4n+i axgnszaLxan dx3n+j/\dx5n+i
+ W dx3n+j/\dx6n+i — W dx3n+]-/\dx7n+l-
- e drt MY+ e i A
e A M+ 5 X A

109

dxn+j/\dx5n+i



02%L

T mdx4n+j/\dx4n+i
* ax4nszaLXSn+i dx4n+f/\dx6n+i -
B axsnszgme dx5n+j/\dxi +
B axsrj-j';xnﬂ dx5n+j/\dx2n+i +
+ %Jjaxidxwﬂ/\dxzmﬂ
+ axSan-z;xm_,_i dx5n+j/\dx6n+i -
- g
B axsn(-a:'gxnﬂ dx6n+j/\dx2n+i T
+ axei:axi AXen+jNAXan i
+de6"+i/\dx6n+i -
B a95711-?]'2‘9Lx4n+i AX7n+iN\dX; +
= o WM+
+ %_:.axidx7n+j/\dx4n+i
T a9C7n—i(?j'2‘3LxSn+i dx7n+j/\dx6n+i -

Let ¢ be the second order differential equation by determined Eq(1) and given by

Eq(4.1.1) and

— AXsnt iNAXcy 4
0Xan+j0Xen+i n+j 5n+i
6x4nf jZaLx3n i AXan+jNAX7n 4
3x5nfj26Lx2n+i dXsp4 jNAXp g
6x5nfj26Lx7n+i dx5n+j/\dx3n+i
axsnszaLxMH dXsn+j\NAXsn 4
axsnszaLxmﬂ dX5n4jNAX7n i
W dXen+jN\AXp
axenf ]-ZaLx7n+i dXen+jNAX3n i
W dx6n+j/\dx5n+i
m dx6n+j/\dx7n+i
axmszaLxZnH dX7p4 jNAXp 4
ax7nfj26Lx7n+i AdX7n4jNAX3p i
W dX7p4 jNd X574
ax7nszaLx3n+i AX7n+jNAX7n 4
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. Ja i 9%L Jj i i j
g d;* =—-X 8/ dx +X—d i+ X 8 dxpy; —
&L axjaxzmﬂ 0xj0X4n+i ax]ax2n+l nt
. aZL azL
X" ———dx; — X! 5 dx + X2 ——dx; +
0xj0X2n+i Xj ax](')xn+l Zn+i 0xj0Xn+i J
(L ) gy — X 4 X 8] dx i —
6xj6x7n+i l 3n+i 6xjax7n+i J anaxi l n+i
X4-n+i 0%L dx Xi 0°L 5]dx +X5n+i 9%L dx +
0x;jox; J 0xj0Xen+i i snl 0xj0Xen+i J
1 azL ] . azL . aZL .
8/ dx gy — X dx; — X' ————6)dx 4 +
0xj0xsn; b oMt 0x0Xsnti ) 0x;003mgg LT
i L g yni 0L gmbig. gy 0L g 4
0Xj0X3n+i J 0Xn+j0Xan+i ntt l 0Xn4+j0X4n+i nJ
0Xn+j0X2n+i ntt L 0Xn+j0X2n+i nJ
' 0°L n+j ; 9L
nH S dxy, .  + XM dx,.:. +
0Xn+j0Xn+i nti Zntt 0Xn4+j0Xnyi nJ
i 92L n+j ; 0%L
nti St dxsny — X Xy +
OXn+j0X7n+i n+i 3ntt OXn+j0X7n+i nt
: 02%L n+j ; %L
Xn+l — 5 dx _ X4n+l dx .
Oxpyjox; MFL n+i 0xn4jOX; n+j
j 0°L n+ ; 9L
ok 5™ dx + Xxontt dx.,.: +
0Xn4+j0Xen+i nti St 0Xn+j0Xen+i nJ
j 0°L n+j ; 9L
n+i 5 de R xonti dx.... —
0Xn4+j0Xsn+i nti onti 0Xn4+j0Xs5n4i ntJ
n+i 0L 5n+jdx n Y7t 9%L dox
0Xn+j0X3n+i ntt mtt 0Xn+j0X3n+i n+J
X2n+i 0%L 6.2n+]d + i 0%L dx n
0X2n+j0Xan+i 2n+i 0X2n+j0X4n+i 2n+)
j 0°L 2n+j ; 9L
X2n+l _ 5 dx. .. — Xn+l — dx o
0X2n+j0%2n+i 2n+i FXn 0x2n+j0%X2n+i Znt
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x2n+i d2L 52n+j

on+i AXan+i

0X2n+j0Xn+i
; 2

X2n+z a—L
0X2n+j0X7n+i

92L

X2n+i
0X2n+j0X;

2n+j
62n+i AXgn+i

2
x2n+i 9°L

0X2n+j0Xen+i
2
xwm+i_ 0L
0X2n+j0X5n+i
2
xn+i_ 0L
0X2n+j0X3n4i
2
x3n+i__ 0L
0X3n+j0Xan+i
2
x3n+i__ 0L
0X3n+j0X2n+i
2
x3n+i_ L
0X3n+j0Xn+i
2
ysn+i_ 0L
0X3n+j0X7n+i

%L

X3n+i
0X3n4;0X;

3n+j
Fo) J

3n+i Wan+i

2
x3n+i 0°L

0X3n+j0Xen+i
2
yon+i_ 0L
0X3n+j0Xsn+i
2
i 0L
0X3n+jO0X3n+i
2
xan+ti_ 0L
0Xan+jO0Xan+i

+
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x2n+i 0°L dxy i +
0Xzn+j0Xn+i n+j

x3n+i axznfj;me dx2n+j +

yAn+ axj:axi dXn 4 j

X5n+i ax2nfj2;x5n+i dx2n+j +

xon+i axznszaLxan AXopyj —

xm axanjZ;xMH dx2n+j -

i ﬁ dx3n+j +
x axanf;LxZnH dx3n+j -
x2n+i 0%L -

0x3n+j0Xn+i n+j
xem ax3nfj2;x7n+i dX3p+j +
yAn+ ax:;iaxi dX3n4
xem ax3nfj26Lx6n+i dX3p+j +
xem 6x3nfj26Lx5n+i dx3n+j -
X7n+i ax3nfj2;x3n+i dx3n+j —
i W dx; +



2 .
X4—n+i 0°L 64n+-]
0Xan+j0Xan+i

X4—n+i 0L 64n+j

0Xan+j0Xn+i
i 9°L an+j
X4-n+l s 64n+i]dx3n+l
0Xan+j0X7n+i
; 0%L an+j
X4—n+l — 5 dx
ax4n+jaxl 4An+i an+i
i 9°L an+j
X4n+l . gs 64.n+i]dx5n+l
0Xan+j0Xen+i
i 9L an+j
X4n+l 64n+i]dx6n+l
0Xan+j0Xsn+i
] 9L 4n+j
X4n+l 54n+l]dx7n+l +
0Xan+j0X3n+i
2 .
5n+i 0°L Sntj 5.
X dx DXt 657’l+l dxl
sn+j0Xan+i
2 .
5n+i 0°L Sn+j ]
X OXer s 0o v 55n+i dxn‘H
sn+j0X2n+i

X5n+i 0°L 65n+j

0Xsn+j0Xnti
2 ,
5n+i 0°L 5n+j
X F) P . 55n+i dX3pn4i —
Xsn+j0X7n+i

X5n+i 0L 55n+j

0X5n+j0X;
X5n+i W 5§:I{dX5n+L
ySn+i W Sert dixgn i
5N+ W 655::{dx7n+1 +

5n+i dx2n+l' +

Xn+i 0°L dx o
0X4n+j0X2n+i antj

i L gy
0X4n+j0Xn+i antJ

X3n+i L dx 4+
0X4n+j0X7n+i anty

62

X4—n+i
0X4n+j0X;

dx4n+j

2
X57’l+i a—L dx4 . 4
0X4n+j0Xen+i nt
; d%L
X6n+l — —  dx o
0Xan+j0Xsn+i ant
X7n+i 0L

dx . —
0Xan+j0X3n+i ant

xi— Tt gy +
0X5n+j0Xan+i St

; 0°L
Xn+l dx .
0X5n+j0X2n+i nJ

xenti__ 0L dxsp,; +
0X5n+j0Xn+i ntJ
; 0%L
X3n+l I dx 4+
0X5n+j0X7n+i St
. 0%L
X4n+l —dx .
Oxsnyj0x; Ot
; 0%L
X5n+1 dx 4
0X5n+j0Xen+i Snt)
; 0°L
X6n+l dx o
0X5n+j0X5n+i Snt)
X7n+i 0%L

dx . —
0Xs5n+j0X3n+i Snt)



oo —sildn 4 X e+
6n+j0Xan+i 6n+j0Xan+i

X6n+i W 66677;:{an+1 - Xn+i W dx6n+j -

X6n+i ﬁ 62;;:{61)6271_}_1' + X2n+i W dx6n+j +

X6"+iﬁ5662:ijdx3n+i - XBnHWd’%nﬂ +

X6n+i az—l‘ 667‘L+j X4n+i L

AXgn+i
0Xen+j0xi ont

, 2L 6n+j Sn+i %L
xont+i O dxe, 4+ XM — — — dx 4
ax6n+]‘ax6n+i 6n+i Sn+i ax6n+jax6n+i ont
- 9L 6n+j j 9%L
X6n+l %) Jdx . X6n+l dx R
6x6n+j6x5n+i 6Mm+1 on+i ax6n+jax5n+i on+t
; 9L 6n+j ; 9L
X6n+l %) Jdx S X7n+l dx R
- 7
ax6n+ja.X3n+i 6Mm+1 n+i ax6n+jax3n+i on+t
; 9%L 7n+j ] %L
X ————§ 0 dx; t X —dxmyy
0X7n+j0Xan+i 0X7n+j0Xan+i
L) T+ ;0L
g 57" g xnti %L gy
ax7n+]‘axZn+i m+i n+t ax7n+jax2n+i 7n+]
; 9°L 7n+j i 9°L
X7n+l 6 J dx . + X2n+l —dx . +
ax7n+]‘axn+i n+i 2n+i ax7n+jaxn+i 7n+]
. 9% Tn+j ;0L
X7 2§ g, — X dx, o+
0X7n+j0X7n+i 7nti 3n+i 0X7n+j0X7n+i )

;. 92L 7n+j ;071
X7n+l—6 ) dx . _ X4n+l—dx
4
6x7n+j6xl- n+t nti ax7n+]axi ]
;9% T sn+i__ 0°L
xmmHi_ Ok sty o+ XS Ay +
0X7n+j0Xen+i Tn+i TSN 0X7n+j0Xen+i m+j
; 9L 7n+j j 9%L
X7n+l—5 Y dx . X6n+l—dx .
0X7n+j0Xsn+i 7n4i rontl 0X7n+j0X5n+i Tt
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X7n+i 0°L 67n+j 0°L

n+i
n+i X

dx7n+i + dx7n+j

0X7n+j0X3n+i 0X7n+j0X3n+i

Since the closed Clifford Kdhler form CD{‘* on (M,V) is the symplectic structure, it
holds

EZAL V] (L) L = Xl Xn+l oL X2n+l oL X3n+i oL

ax4n+l 0Xan+i OXn+i OX7n+i

X4—n+l +X5n+l g X6n+l + X7n+l 0 —L

0x OXen+i a955n+l 0X3n+i

And thus

dEl],4 — XLde_ n+iidx.+xzn+iidx._

anaX4n+i J axjaxan- ] axjaan- J

. 0%L 0°L . 9%L
X3n+l dx: — X4n+l dx _|_X5n+l dx: — en+i dx

0Xj0X7n+i J ax]axl 0Xj0Xen+i ] 0Xj0X5n+i J

; 02%L ; 02%L ; 02%L
+ X7 ———dx; + X dxpy — X dxny; +

0Xj0X3n+i 0Xn4+j0Xan+i 0Xn+j0X2n+i

0%L 0%L
0Xn+j0Xn+i

9%L

X2n+i _ X3n+i
6xn+jaxl-

an+i
dxn+j dxn_l_j - X dxn+j +

0Xn+j0X7n+i

X5n+i 0°L _ X6n+i 0°L 0°L

n+i
dxn+] dxn+j + X dxn_l_j

0Xn+j0Xen+i 0Xn4+j0Xs5n+4i 0Xn+j0X3n+i

02%L %L %L

Yty — K™

X2n+i
0X2n+j0Xan+i

dx2n+j + dx2n+j

0Xan+j0X2n+i 0X2n+j0Xn4i

2L

0X2n+j0Xen+i

9L
0Xon+j0X;

02%L

_X3n+i
0X2n+j0X7n+i

_ X4n+i X5n+i

dx2n+j dx2n+j + dx2n+j

9%L
0X2n+j0X5n+i

_ Xn+i 0°L

; ; 9L ; 9L
6n+ n+i l
—X°nri Axony; + X —————dXypyj + X AX3p4;

0Xon+j0X3n+i 0X3n+j0Xan+i
d T —
x3n+j x3n+j

0X3n+j0X2n+i 0X3n+j0Xn+i

9%L
0X3n+j0X;

, 92L X
3n+i An+i
X AX3n 4 X dxszpe; +

0X3n+j0X7n+i

2L

0X3n+j0X5n+i

2
X5n+i 0°L X6n+i

dx3n+j dx3n+j +

0X3n+j0Xen+i
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02%L

X7n+i 0X3n+j0X3n+i dx3n+j

Xn+i a3541‘11'261;52n+i dx4n+j

X3n+i ax41‘tszaLx7n+i dX4n+j
X5n+i axszjZaLxan dX4n+j
X7n+i a95471-?]'26Lx3n+i dx4n+j
Xn+i axsnf;;xzrlﬂ dx5n+j
X3n+i a95571-|(:)]'26L9’C7n+i dx5n+j
X5n+i axSnszaLxGnH dx5n+j
X7n+i axSnszaLxan dx5n+j
Xn+i axenszallenH dx6n+j
X3n+i axenszaLx7n+i dx6n+j

X5n+i axsnszal‘xsnﬂ dx6n+j

X7n+i a9C6nf]'2(;J95311+l' dx6n+j
Xn+i ax7n-|(:,j26LxZn+i dX7n+j
X3n+i ax7n-|(:)j2(;lx7n+i dx7n+j

+ X

+ X2n+i

%L

AXgny i
0X4n+j0Xan+i antJ

%L

dx R
OX4n+j0Xn+i antj

92L

X4—n+i
0X4n+j0x;

dx4n+j +

2
X6n+i 0°L

AXgnsi +
0X4n+j0Xsn+i antJ

i d%L
+ X —2E g,
ax5n+j6x4n+i

9L
0X5n+0Xn+i

+ X2n+l dx5n+] _

92L

X4-Tl+i
0Xs5n+j0X;

dx5n+j +

x6n+i 0L d +
x5n+j

0X5n+j0Xsn+i

; 9L
l
+ AXen 4

O0Xen+j0Xan+i

4+ x2n+ 0°L d _
x6n+j

0Xen+j0Xn+i

d2L

X4n+i
0Xen+j0X;

dx6n+j +

2
X6n+i 0°L

AXgnyi +
0Xen+j0Xsn+i ont

0X7n+j0X4n+i nJ

%L

+ X2n+l dx7n+j _

0X7n+j0Xn+i

9%L
0X7n+j0X;

X4n+l dx7n+j +
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X5n+i %L dx S X6n+i %L dx 4+
0X7n+j0Xen+i mtJ 0X7n+j0Xsn+i mt
; 9°L oL oL oL
Xt — ——dx,, i ——dxj — ——dX,; dx
0X7n+j0X3n+i mtJ ox;j ] O0Xn+j n+J X2n+j Znt
oL oL oL oL oL
dx ———dXypyj ———dx - dx - dx
ax3n+] 3n+] ax4n+j 4n+] ax5n+] 5n+] ax6n+] 6n+] ax7n+1 7n+]
By means of Eq(1), we calculate the following expressions
;. 0%L ' ;. 0%L ' ;. 0%L j
—xi 2t _5ldx; + X' 8l dxpe — X' 22— 6l dxyny; +
axj6x4n+i anaXZn_H' axjaxm_i
;  0°L j i 0%L j ; 0%L '

e 5dxg,,; + X! 8l dxypy; — X' ——06 dxc,p; +
axjax7n+i i 3n+i ax]'aXi i An+i axjax6n+i i 5n+i
X2t 5T gy — XI5 iy — XL 5™ gy

0xj0xsnei on+t 0xj0x3n4i * T 0xn+jOxami "L '
: %L n+j +i %L n+j
+ X" ——— 5 dx,y — X" ————6 dXonyi
OXp+jO0xomei "H nt 0xp4jOxny; TH an+t
: %L n+j +i 9% n+j
+ X" ————8 dxsny; + X" ———6,  dxXn
0Xp4jO0x7mei HL 3N OxpyjOx; TH an
: 02%L n+j ; %L n+j
— X" ————§ dxspy; + XV —————6  dxenai
axn+jax6n+i n+i 5n+l axn+j6x5n+i n+t 6n+i
;0% n+j - 0°L 2n+j
n+i J L 2n+i n-rj .
S e Onti AX7n+i X )i AXi
n+j0X3n+i 2n+j0Xan+i
i 92L 2n+j 2n+i 9%L 2n+j
+ Xt & dxy — XM ———— 6 dx
0X2n+j0Xon+i U 0X2n4j0Xn4i Zn+i ant
i 92L 2n+j on+i  0%L 2n+j
+ X — 5 dXgpg + X ———6, A
Oxgn4j0xyng 2N 3N 0xppyjOx; 2mHL AT
; 9°L 2n+j j 0%L 2n+j
=X ———— 5 dxg X ——— 6, dx
0X2n+j0Xen+j 2nti Sntt 0Xan+j0Xsn+i 2n+i on+i
; 9°L 2n+j - 92L 3n+j
_ 2n+i nrj L 3n+i nrj
X X34 0x Oznri AX7nei X 0X3n4j0X O3ni A%
n+jO0X3n+i 3n+j0X4n+i

+ x3n+i 0°L 5371"‘] — x3n+i 0%L 53n+j

3n+i dxn+i

0X3n+j0X2n+i
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; 9L 3n+j ;_ 0°L '
4 x3n+i 53n+i]dx3n+i 4 x3n+i 5371"']

0X3n+j0X7n+i

, 2 . 2 .

_ y3n+i 0°L 3n+j 3n+i 0°L 3n+j
X Sortl dxtspyy + X3 ——¢

X3n+j0X5n+i

0X3n+j0Xen+i

— x3n+i L&%nﬂ d%L

4n+i
snei AX7nei — X

0X3n+j0X3n+i 0Xan+j0Xan+i

_ X4—n+i %L 64n+j

+X4-n+i %L 64n+j
0X4n+j0Xn+i

An+i dxn+i

0Xan+j0X2n+i

+X4-Tl+i 0L 64n+j + X4Tl+i 0°L 64n+j

TAXqp i d
0X4n+j0X7n+i an+i 3ntl 0X4n+jOX; an+i anti
; 2L an+j j 9%L An+j
_xanti T2 gt gy g xinti_ T2 s gy
0X4n+i0Xen+i anti St 0X4n+i0Xsn+i anti on+i
. 2 , 2 ,
_y4n+i 0°L an+j Sn+i 0°L Sn+j
X 0%Xams i0X .64n+i dx7n+i X P) 9 .65n+i d [
n+jo0X3n+i Xsn+jO0X4n+i

X5n+i L 65n+j

+X5n+i %L 55n+j
0Xs5n+j0Xn+4i

5n+i AXpyi —

0X5n+j0X2n+i

+X5n+i %L 65n+j + X5’n+i %L 65n+j

o b SO T AX g4
0X5n+j0X7n+i Snti Snti 0Xs5n+j0X; snti anti
_X5n+iL65n+fdx ] +X5n+iL55n+jdx
0X5n+j0Xen+i Snti Smtt 0X5n+j0X5n+i Sn+i onti
— x5n+i %L 55n+jdx . x6nti %L 56n+jdx
0X5n+j0X3n+i sn+i Tt 0Xen+j0Xan+i 6n+i t
. 2 : 2 .
en+i___ 0L  c6n+j _ yén+i 0°L 6n+j
+X S gy — X225 g, s

0Xen+j0X2n+i O0Xen+j0Xn+i

+ xoenti %L 667’L+j + xoenti %L 66n+j

S A X T AX gyt
0X6n+j0X7n+i 6n+i St O0Xen+;0X; on+i anti
—x6n+i %L 56n+jdx .} xonti %L 56n+jdx

0Xen+j0Xen+i on+i Sn+l 0Xen+j0Xs5n+i 6n+i nti

. 2 . 2 ,

_y6n+i 0°L 6n+j 7n+i 0°L mn+j

X e Oen+i AX7mi = X 0y X,
n+j0X3n+i X7n+jO0Xan+i
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; %L Tn+i
n+i J

0X7n+j0X2n+i

; 92L 7n+j ;. 0%L 7n+j
n+i nrj ) n+i nrj )
X 0X7n+j0X7n+i Orm+i anti + X O7n+i AXan+i

_X7n+i %L 67n+j

; %L T+ i
n+i nrj
n+i + X 9

dx5n+i

0X7n+j0Xen+i 0X7n+j0X5n+i

- 2L Tn+j oL oL
_xTm L T g+ edy + 2 dxy, +

0X7n+j0X3n+i 7nti ox;j O0Xn4j
JdL JaL oL oL
AXopyi + ——dX34 i + ——dXypy i + ——dx +
0X2n+j nt) 0X3n+j 3ntJ OX4n+j antj O0Xsn+j Snt)
JdL oL
——dxgpy i +—dx 0
ax6n+j 6n+j ax7n+j n+i

If a curve determined by a: R = M is taken to be an integral curve of &, then we
found equation as follows:

;i 0%L ; 9L ; 9L
— Xty — XM T gy — X2 Ty
0xj0X4n+i OXn+j0Xan+i 0X2n+j0%Xan+i
3n+i %L L y4n+i 9%L L y5n+i %L
X dx; — X dx; — X dx;
0X3n+j0Xan+i 0X4n+j0Xan+i 0X5n+j0Xan+i
; 9L ; 9L ; 0%L
—X6n+l dx] —X7n+l dx] +Xl dxn_,_j
O0Xen+j0Xan+i 0X7n+j0Xan+i 0xj0Xon+i
pxnti L gy gy OL gy OL g,
0Xn+j0Xon+i n+j 0X2n+j0X2n+i nt 0X3n+j0X2n+i n+
; 92L Sn+i 92L 6n+i 92L
+Xx4ntt dx,.; + X"t dx, . ; + X"t dx,.;
0X4n+j0X2n+i nt 0Xs5n+j0X2n+i nt O0Xen+j0X2n+i n+
i a%L . 0%L ; %L
+ X 7nt dx,,;i — X'———dxyn,,.; — X" AXop o i
Ox7n4j0%omei Oxj0xny;  2TH OxnajOxpai 2
i d%L i 9%L ; %L
_X2n+l dx - X3n+l dx . X4n+l dx .
0X2n+j0Xn+4i nt 0X3n+j0Xn+i Znt O0Xan+j0Xn+i Znt
i d%L i 9L ; %L
_X5TL+l dx L X6n+l dx L X7n+1 dx .
0X5n+j0Xn+4i nt 0Xen+j0Xn+i Znt 0X7n+j0Xn+i Znt
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9°L
0Xj0X7n+i

+X¢ dxzn.; + X+t

+ X3n+i 0°L

0X3n+j0X7n+i

X5n+i %L d +
x3n+j

O0X5n+j0X7n+i

2
X7n+i 0°L

0X7n+j0X7n+i

0%L
0X2n+4j0X;

+X27’l+i dx4n+j + X3Tl+i

+X5Tl+i 0°L

dx _+X6n+i
Oxsnejox;  TH]

_Xi az—L dx J— Xn+i
0Xj0Xen+i Snt)

2
X3n+i 0°L

AXsny
0X3n+j0X6n+i Sn+)

2
5n+i 9°L
X dx5n+j -

0X5n+j0Xen+i

X7n+i 0°L d + Xl'
x5n+j

0X7n+j0Xen+i

+ X2n+i 0°L dx6 .
0X2n+j0Xsn+i ntJ

+ X4-Tl+i aZL d
x6n+j

0Xan+j0Xsn+i

+ X6TL+i 0°L dx6 .
0Xen+j0Xsn+i nJ

2
i 0°L

—  dx ,
0xj0xzne; T

2
X2n+i 0°L dx7 .
0Xon+j0X3n+i ntJ

2L

0Xn+j0X7n+i

dx3n+j + X4TL+I,

0X3n+j0X;

0Xen+j0Xi

d%L

0Xn+j0Xen+i

0Xj0X5n+i

; d%L
2n+i
dx3n+j +X dx3n+j

0X2n+j0X7n+i

%L
dxszn+i +
0X4n+j0X7n+i 3n+)

X6n+i %L d +
x3n+j

0Xen+j0X7n+i

9%L
6xn+j6xi

%L

n+i
ox,0m AXgn+j + X AX4n+j

9L
0X4n+jO0xi

02%L

an+i
dx4n+j +X dx4n+j

9L
0X7n+j0X;

d%L

n+i
dx4n+j +X dx4n+j

dxe, ,: — X2+t L dxe .
5n+j 5n+j

0X2n+j0Xen+i

; %L
An+i
X dx5n+j

0Xan+j0Xen+i

X6n+i %L dx5 .
0Xen+j0Xen+i nJ

9°L n+i 9°L
dx6n+j +X dx6n+j

0Xn+j0Xsn+i

+ X3n+i 0L dx6 .
0X3n+j0X5n+i nJ

+ X5Tl+i aZL d
x6n+j

0X5n+j0X5n+i

+ X7n+i 0L dx6 .
0X7n+j0Xsn+i nJ

; 9%L
n+i
dx7n+j

0Xn+j0X3n+i

2
X3n+i 0°L dx7 .
0X3n+j0X3n+i n+J
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2L %L

_ X4-n+i _ X5n+i

dx7n+j dx7n+j

O0Xan+j0X3n+i 0X5n+j0X30+i

92L oL
dx7n+j + 6_x] dx]

en+i 0°L n+i
- X dx'7n+j - X

0Xen+j0X3n+i 0X7n+j0X3n+i

0
+ _den+] +

OXn+j

oL oL
T danj +
+J

AXgn+i
0x3n 0X4n+j antj

JaL
O Gy +
ax2n+j 2n+]

oL JaL JaL
AXspyi + ——dXgpyei +——dxX7,4; =0 - (4.1.7
5n+j ax6n+j 6n+j ax7n+j n+j ( )

+

0Xs5n+j

Or

2 2 2 2
0°L + X'Yl+l 0°L + X2n+i 0°L + X3Tl+i 0°L
0xj0X4n+i 0Xn+j0Xan+i 0X2n+j0Xan+i 0X3n+j0X4n+i

—[Xi

9L i 9L i 9L
+ X5n+l + X6Tl+l +

0X4n+j0%Xan+i 0X5n+j0Xan+i 0X6n+j0Xan+i

+ X4-Tl+l

. 2
X7"+la—L] dx; + Ldx

0X7n+j0Xan+i J ox;j J

d%L i 9L i %L ; %L
+ X'Yl+l + X2n+l + X37’l+l +

X
0xj0X2n+i 0Xn+j0X2n+i 0X2n+j0X2n+i 0X3n+j0X2n+i
. ; 9L

+ X5n+l + X6n+l +

0X4n+j0X2n+i 0Xs5n+j0X2n+i 0Xen+j0X2n+i

X4-n+i 0L 0°L

9%L oL
]dxn+j + a_dxn+j

X7Tl+i
0X7n+j0X2n+i Xn+j

_[Xi 0L + Xn+i 0L +X2n+i 0°L +X3n+i 0°L

0xj0xXn+i 0xn+j0Xn+i 0X2n+j0Xn+i 0X3n+j0Xn+i

+ X57’l+l + X67’l+i 0°L +

0X4n+j0Xn+i 0Xs5n+j0Xn+i 0Xen+j0Xn+i

9%L 02L

+ X4Tl+i

%L oL
————\dxznsj + ——dXos

X7n+i
0X2n+j

0X7n+j0Xn+i

d2L %L 2L 02%L

_l_[— + XTL+i + X2n+i + X3Tl+i

0Xj0X7n+i 0Xn+j0X7n+i 0Xon+j0X7n+i 0X3n+j0X7n+i

+ X5Tl+i + X6Tl+i 0°L +

0Xan+j0X7n+i 0X5n+j0X7n+i 0Xen+j0X7n+i

2L %L

+ X4-TL+i
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X7n+i %L ] dX3 .
OX7n+j0X7n+i ntJ

0%L
6xn+j6xi

9%L
axjaxi

n+i

+[X*

9°L
0X4n+j0X;

X4n+i S5n+i

+

2L

X7n+i
0X7n+j0X;

02%L

0xj0Xen+i

_[Xl + Xn+i

+ X4n+i 0°L

0Xan+j0Xen+i

; 9%L
n+i
X ] dx5n+j

0X7n+j0Xen+i

d%L
0Xj0X5n+i

+[X + X

+ X4-Tl+i 0°L

0Xan+j0Xsn+i

+ X7Tl+i 0°L

0X7n+j0Xs5n+i

9L
0xj0X3n+i

_[Xl + Xn+i

+ X4-Tl+i 0°L

0Xan+j0X3n+i

+ X7TL+i 0%L

0X7n+j0X3n+i

+ X

0X5n+j0X;
] dx4n+j +

2L

0Xn+j0Xen+i

+ X5n+i

%L

0Xn+j0Xsn+i

+ X5n+i

] dx6n+j +

%L

0Xn+j0X3n+i

+ X5n+i

] dx7n+j +

oL

——dX3p4 i
9X3n+j 3n+

+

d%L
0Xan+j0X;

2n+i

+ X3Tl+i

2 2
0°L 6n+i 0°L

+

oL

——dX4pny i
ax4n+j 4-n+]

+ X2n+i azL

0X2n+j0Xen+i

02%L

0X5n+j0Xen+i

oL

——dX5p 4
O0Xsn+j St

_|_

+ X2n+i 0%L

0X2n+j0Xsn+i

02%L

0X5n+j0X5n+i

+ X2n+i 0%L

0X2n+j0X3n+i

%L
+

0X5n+j0X3n+i

oL
——dx7,4; =0
6x7n+j n+j

In this equation can be concise manner

9%L
d

_ 27 OXan+i
a=
OXan+j0Xan+i

oL

= dxpy —

7 an+i
dx ) a=OX
n+j

oL 7 an+i
Xj + a—x]dx] + ZazoX

9L oL
AXonsi +
0Xan+j0Xn+i nt) ox
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+ X3Tl+i

+ X6Tl+i

+ X3Tl+i

+ X6Tl+i

+ X3Tl+i

X6n+i

02%L

0x3n+j0x;

+

OXen+j0x;

02%L

0X3n+j0X6n+i

d2L
_|_

0Xen+j0Xen+i

9L
0X3n+j0X5n+i
9L

0Xen+j0Xsn+i

9L
0X3n+j0X3n+i
9L

0Xen+j0X3n+i

0%L
dxn+j +

O0Xan+j0Xon+i

2ty +
2n+j

+



7 Xan+i 0L d d Xan+i 0°L
a=0 x3n+] +— x3n+] + Z =0

0Xan+j0X7n+i 9x3n 0Xan+jOx; dx4n+j
+ axinﬂ dx4n+] - Zl:OXanHdeSrHj + %ﬂdXSrH] +
671=0Xan+iﬁdx6n+j + %ﬂdxmﬂ
leoxan”ﬁdxmﬂ bordiy =0 - (418)

Then we find the equations

d (0L aL 0 aL aL d aL aL
51 Yo =0 5t en) T = O 5t () T = 0
at 6xi aX4n+i ot axn+i ax2n+i ot i axn+i

0X2n+i
d JL JdL d JaL JaL d JaL JaL
(o) ~ 5 = 5 (Fe) 3 = O () e = O
Ot \0xX3n+i 0X7n+i Ot \0Xan+i 0x; Ot \0xXs5n+i O0Xen+i
d oL oL 0 aL aL
> (52=—) - =0,2(-2)+ =0. - (4.1.9)
Ot \0Xxen+i OXs5n+i Ot \0x7n+i 0X3n+i

Such that the equations expressed in Eq(4.1.9) are named Euler-Lagrange
equations structured on Clifford Kdhler manifold (M, V) by means of CD{‘* and in

the case, the triple (M, CD{“, §) is said to be a mechanical system on Clifford
Kdhler manifold (M, V).

Fifth, we obtain Euler-Lagrange equations for quantum and classical mechanics
by means of (13{5 on Clifford Kdhler manifold (M, V).

Let /5 be another local basis component on the Clifford Kdhler manifold(M, V).

Let & take as in Eq(4.1.1). in the case, the vector field defined by

;0 d ;0
— — Xl Xn+l _X2n+l _|_X3n+l + X4n+l.
]5(5) axs +i 0X3n+i ax7n+1 OXn+i OXen+i
sn+i 0 6m+i 7n+i 6
— xsnti L xenti_9 4 x N (4.1.10)
dx; ax4n+1 a952n+1

Is Liouville vector field on Clifford K dhler manifold (M, V).

123



The function given by EL]5 = V), (L) — L is energy function.
Then the operator i;_ induced by J5 and defined by
Xy, Xy, o, Xp) = Yo 0(Xy, o J5 X, o, Xp) - (4111
Is vertical derivation, where w € A"M , X; € X (M).
The vertical differentiation d;_ is determined by
dj, = i, d] = i), d — dij, > (41.12)

Taking into consideration Jz , the closed Clifford Kdhler form is the closed 2-form
given by CI){5 = —dd,_L such that

0 0 0 0 0
d, = dx; ———dx,.; — AXopyi +——dAX2p i + ——dX4p .
Js OXs5n+i l 9X3n+i nt OX7n+i Zntt OXn+i 3ntl OXen+i At
— L dxgpyi — Xy + Xy > (4113)
ox; OX4n+i 0X2n+i
And given by operator
. 1
d,: F(M) - A'M - (4.1.14)
Then
0°L 0%L 0°L
O = —— = dx;Adx; + ———dx; Adx,y; + dx; AdXyn
L ax]'ax5n+l' J t anGX3n+i J n+i axjaxmﬂ- J 2n+i
0°L 0%L 0°L
— dxi\Ndx3,,; — ————dx;\Ndx4,,.; ——dx;\dxc, . ;
6xjaxn+l~ ]/\ 3n+i anax6n+i ]/\ an+i + axjaxi ]/\ Sn+i
0°L 0°L 0%L
+——dx;Ndx;,.; —————dx;\NdxX7,,.; — dx., . \dx;
0Xj0Xan+i ]/\ bntt 0xj0X2n+i ]/\ Tt 0Xn+j0X5n+i n+]/\ l
0%L %L
——dx, i N\dx, ., dx, . Ndxy, ;-
T 0Xn+j0X3n+i n+]/\ nHt T 0Xn+j0X7n+i n+]/\ Zntt
0%L %L
—————dx, . iNdX2p 1 dx, . i NdX4, i
axn+jaxn+i n+]/\ 3n+i axn+jax6n+i n+]/\ An+i
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+ %]'Laxidxn+j/\dx5n+i + 3xn+fj';i4n+i Axpny jNdXgnai
B axn+fj-i')l;52n+idxn+f/\dx7n+i - Wd%nﬂ/\d?ﬁ
b e A+ X AdXgns
B de2n+j/\dx3n+i B aXanjzaL’%nH dx2n+j/\dx4n+i
+ iy s 5 dtgny Ao
= e o M = G din A
W dx3n+j/\dxn+i + ax3nfj26Lx7n+i dx3n+j/\dx2n+i
- ax3n(-3|-j'gxn+i dx3p+jNAdX3pn4; — ax3nszaLx6n+i AX3n+NAX4n 4
+ axgi:axidx3”+f/\dx5"+i + ax3nfj2;x4n+idx3n+j/\dx6n+i
- de3n+j/\dx7n+i_ denﬂ/\dn
+ ax4nfj2;x3n+i dx4n+j/\dxn+i + axmfj;me dx4n+j/\dx2n+i
o axmigxn“ dx4n+j/\dx3n+i - ax4nszaLx6n+i dx4n+j/\dx4n+i
+ #&mdxétnﬂ/\dxsm + axmf;;xm Xy A DXt
- 6x4nfj2;x2n+i AX4n4 jNAX 74y — desﬁ JACES
axsnf,-zaLx3n+i AXsp4+j\dXp i + axsnsz;me AXsn+j\AX 2040
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02%L 02%L

_de5n+j/\dx3n+i P o AXsp 4 jANAX g7
+ ﬁdx5n+j/\dx5n+i + 6x5nfj26Lx4n+i AX5p4 jN\NAXgn 4
- deSTHj/\dwai a 6x6nfj2;x5n+i dx6n+j/\dxi

+ e My + 5 gy Ao
e @Xn At — 5 g A
+ ﬁ:}axidxmﬂ/\dxmﬂ + axanJ_Z;xMH AXeny jNd X6y
- Wd%nﬂ/\d%nﬂ - ﬁdﬁcmﬂ-/\dxi

axmsz;xgnﬂ AX7n+jNdX 4 + afojZ;xMH AX7n4jN\NAX 204

- ﬁdx7n+j/\dx3n+i - ax7nszaLx6n+i dx7n+j/\dx4n+i
+ %dxmﬂ/\dxsm + axmfj;xm %7y i N X
o ﬁdxmﬂ/\dxmﬂ-

Let ¢ be the second order differential equation by determined Eq(1) and given by
Eq(4.1.1) and

. Is i 9%L j i 9%L i %L j
ig®° = —X'—6/dx; + X! ———dx; + X' ——— 6/ dx,y; —
$L 0xj0xsnei Lt 0Xj0xsnsi ) 0xj0x3n4i * et
. 92%L . 92L i i 0%L

n+i i ] _y2n+i_ 9% L

X P -dx; + X py -0; dxXopyi — X Py - dX;
XjOX3n+i XjOX7n+i XjOX7n+i

T N SN VY P

0xj0xXn4i l 3n+i 0xj0xn4i J 0xj0Xen+i L Ant
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9%L
axjaxi

02%L

X4-n+i
0Xj0Xen+i

i 0%L 9°L

(S-jdx L X6n+i
axjax4n+i i 6n+i

02%L 02%L

0xj0Xon+i

n+i n+i

9%L 5n+j

n+i

Xn+l dxn+i _ Xn+l

0Xn+j0X3n+i

n+i 0°L 5n+j

n+i dx2n+i

OXn+j0X7n+i

92L
0Xn+j0Xn+i

n+i 5n+j

n+i

. 2 ;
n+i 0°L 5”‘*‘]
0Xn+j0Xen+i ntt

%L n+j
- st
axn+]-axi

__y5n+i
n+i X

n+i
X dx5n+i

en+i 0°L n+i

0Xn+j0Xan+i

X 92%L .
X7n+l dxn+j _ X2n+l
0Xn+j0X2n+i

9%L 2n+j
5 ]

2n+i
+ X 2n+i

0Xon+j0X3n+i

9%L 2n+j

2n+i
+ X 2n+i

)

0Xon+j0X7n+i

— x2n+i %L 52n+j

2n+i dX3n+i

0Xon+j0Xn+i

9%L 2n+j

_ 2n+i
X 2n+i

)

0Xon+j0Xen+i

9%L 62n+j
0X2n+j0X;

2n+i
+ X 2n+i

dx5n+i

0Xj0Xan+i

0Xn4+j0X5n+4i

_ X27’l+i

3n+i
dx3n+i + X

dx4n+i + X4n+i

6xn+j6xl-

0X2n+j0X5n+i

n+i
dxn+i - X

dx2n+i -

dx4n+i +

J 5n+i
) gy — X5 DL

dx; — X

]

n+j
6n+i

%L
0Xn+j0X3n+i
%L
%L
%L

%L

0Xn+j0X2n+i

%L

)

X2n+i

+ X3n+i

0X2n+j0Xn+4i

X4n+i

X5n+i

0Xan+j0X;
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dxi +Xl

0Xn4+j0Xnyi

0Xn+j0Xen+i

dxn+j + Xn+i

2n+j
2n+i

0X2n+j0X3n+i

0Xon+j0X7n+i

0X2n+j0Xen+i

0%L
dx;
axjaxl- ]

+
;. 0%L '
e §/dxypy; +
ax]'ax2n+i l n+i
0%L

dxn+j +

0Xn+j0Xsn+i

dxn+j +

dxn+j -

dx +

n+j

%L n+j
5 ]

0Xn4+j0X4n+i ntt

6n+j

n+i dx77’l+i +

. 2
dxl"l'Xl oL

0X2n+j0X5n+i
9L
dx2n+j

%L
dx2n+j

9%L
dx2n+j

9%L
dx2n+j

%L
dx2n+j



; 9L 2n+j 6n+i 9%L
+ X2t 8, . dx xeontt dXyny i
0X2n+j0Xan+i 2n+i ontt 0X2n+j0Xan+i anty
; 2L 2n+j Tn+i %L
- Xt ——4 dx + X7 AXopny i
0Xon+j0X2n+i 2nti Tmt 0X2n+j0X2n+i Znt
; 9L 3n+j ; 9L
— oy T g3y 4 X dxX3ny; +
0X3n+j0Xs5n+i 0X3n+j0X5n+i
X3n+i 9°L 63n+jdx o Xn+i 0%L dx 4+
0X3n+j0X3n+i 3n+i n+t 0X3n+j0X3n+i 3n+)
' 9°L 3n+j on4i 9%L
X3Tl+l—6 ) dx . — X n+i dx .
0X3n+j0X7n+i 3n+i 2ntt 0X3n+j0X7n+i sn+J
; 9°L 3n+j 3n4i 9°L
— Xx3n#t 8a idxszpy; + X3 dxsp 4
aX3n+jaxn+i 3n+i 3n+i ax3n+jaxn+i 3n+]
- 9L 3n+j ; 9L
— X3n+l—6 J dx .+ X4-n+l dx .
4
0X3n+j0Xen+i 3n+i e 0X3n+j0Xen+i 3nt
2 . 2
3n+i_ 0°L 3n+j sn+i_ 0L
+ X Onp i dXspyi — X X3n4i
0x3nj0x; ML Sn+i 0X3n+j0X; 3n+J
- 9°L 3n+j 6n+i 9%L
+ X3 ——— 5. dxgn — X AX3n4 i
0X3n+j0Xan+i 3n+i on+ti 0X3n+j0Xan+i 3nt
; 9°L 3n+j ; 9L
— X3t — 5 dx,  + X7 AxX3p,.
0x3n4j0xonei STFL T+t 0X3n+j0X2n+i 3n+J
, 2L an+j ' %L
4n+i nrj . i .
X =i dx; + X o dXypy,
4n+jO0Xsn+i 4n+jO0Xsn+i
; 9°L 4n+j +i 92L
4 oxan+i_ 9L gintig, o g dXy, i
0Xan+j0X3n+i anti e 0Xan+j0X3n+i nJ
; 9°L 4n+j on+i 9%L
+ X4n+l 6 : de i X n+i dx4 i
0Xan+j0X7n+i anti nt 0Xan+j0X7n+i nJ
; 2L 4n+j ;0%
— Xttt 5 X, + X3 AX4p. i
4
0Xan+j0Xn+i Anti 3n+t 0Xan+j0Xn+i n+J
; 2L 4n+j j %L
— XAt 5 dxy, .+ XA AX4p .
4 4
0Xan+j0Xen+i anti nt 0Xan+j0Xen+i nJ
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02%L

j 2
. ant) sn+i__ 9°L
OX4n+j0X; 4n+i 5n+i 0Xans 0% 4n+j
J 9L 4n+j 6n+i 0%L
+ Xt —— 57 A, — XM dx _
0xamsj0Xgny AL TOMAL OXams 0%y AN
J 9L 4n+j Tn+i 0%L
— Xt — —— 5" dx .4 x7nti dx _
0Xans4jOxpnyy AL TTIFL OXams 0%amas AN
2 ) 5
_ ySn+i 0°L Sn+j 5 ; 821 |
X dx 0x . 65n+i dxl + X dx O ' dx5n+]
5n+j 5n+i sn+j 5n+i
Loxsni_ 0L sSmbjg o yenti_ 07 dxo .
0Xsn4j0xanyy oML TIHL OXsn+j0X3n+i n+j
2 . "
5n+i 0°L 5n+) onti 92L
0X5n+j0X7n+i 5n+i n+i 0Xsm+j0X7nti 5n+j
. 92%L 5n+j 3 . 32L
_X5n+l—5 dx ._|_XTl+l dx ]
0Xs5n+j0Xn+i Sn+i 3n+i 0Xsn4j0Xn4i 5n+j
j %L Sn+j . 921
- X5n+l—6 7 dx . X4Tl+l dx ]
4
0X5n+j0Xen+i 5n+i n+i 0Xsn+j0Xenti 5n+j
2 . 5
sn+i_ 0°L 5n+j cnii  02L
+ X — 6, idxe, i — X Yoo
0X5n+j0X; 5n+i 5n+i X5+ 0% 5n+j
2 . )
5n+i 0°L 5n+) enti 92L
+X —4 Jdx — X dx .
0Xs5n+j0Xan+i Sn+i on+i 0Xsn+j0Xan+i 5n+j
' %L 5n+j , 9L
— Xt — 52" dx .4 X7nt dx _
7
0X5n+j0X2n+i 5n+i n+i OXsm4j0X2nti 5n+j
[ 0°L 6n+j ; 2L
B X6n+l 56Tl+i]dxi + Xl dx6n+j
O0Xen+jO0X5n+i 0Xen+j0Xsn+i
' 9L 6n+j +i d%L
+ X6n+l 5 -dx . Xn A dx .
OXen+j0X3n+i 6n+i '+t 0%Xen+j0X3n+i 6n+j
] 0L 6n+j i 921
+ Xt ———§ ' dx, . — X2n+i dx _
OX6n+j0X7n+i 6n+i n+i 0%Xen+j0X i 6n+j
j_ 0°L 6n+j .92
—X6n+l—5 ‘dx .+ X3n+1 dx _
0Xgn+j0Xn+i en+i TINH 0Xen+j0Xnyi 6n+j
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— xont W 6667711:l'jdx4n+i + X4n* ax6nfj26Lx6n+i dXen+
+ xon %6662:{ AXsnii — xon ax:lzaxi dXen+j
+xon ﬁ 6667711:ijdx6n+i — xon+t axanf;aLme dX6n+
—xent W 666::{dx7n+i + X7 axmsz;xznﬂ dXen+
X7n+iL57"+_fdx_ + Xt 9%L dxo .-
0X7n+j0X5n+i 7n+l l 0X7n+j0X5n+i mtJ
+ x7nti ﬁ 577::{'dxn+i — xn+i ax7nfj26Lx3n+i dx7n+j
+ X7 ﬁ 8ymii Aamyi — X211 axmsz;,%ﬂ dx7ns
— X ax7nigxn+i 577::{(136371” +xem ax7ni]‘;xn+i dx7n+j
— X7 W 6771111Iijdx4n+i + XA ax7nfj2;x6n+i dX7n+
+ x7n+i %_:-Ebci 5777711:{'dx5n+l _ x5nt axj:a& AX7n 4
X By~ X
— X7 W 6771111:ijdx7n+i + X7 axmf;;xm dX7n+

Since the closed Clifford Kdhler form dDis on M is the symplectic structure.

i OL i OL i 0L i 0L
E]s =V, (L) =L = Xt — YNt — x2n+i 4 x3n+i +
L ]5( ) O0Xs5n+i 0X3n+i 0X7n+i OXn+i
X4n+i oL _ X5n+ia_L _ X6n+i oL + X7n+i oL — L
O0Xen+i dx; 0X4n+i O0X2n+i

And thus
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; 9%L ;%L . 92%L
dE)s = x! dx; — Xni dx; — X2+ dx; +
L 0xj0Xsnii I 0xj0xX3nei I 0Xj0X7nei I
X3n+i 0°L dx: + X4—n+i 0%L dx X5n+i 0°L dx
6xj6xn+i J axj6x6n+i J axjaxi J
; 9%L ;%L ; 0%L
Xt ————dx; + Xt dx; + X' dx,.; —
0Xj0X4nti I 0xj0xXonei I 0xn4j0xsnsi
; 0°L ; 0%L ; 0°L
Xn+l—dx . _X2n+l—dx . _I_X3n+l—dx .
0Xn+j0X3n+i nt 0Xn+j0X7n+i ntj 0Xn+j0Xn+i nt

; 9L ;. 0°L ; 9L
4n+i 5n+i 6n+i
+X Axpej— X -dXp,;— X -AXpyj

X4 j0%enti 0xn4jOX; 0Xn+j0X4n+i

+X7n+i axnjziz,m dxn+j + Xi axznszal‘xsnﬂ dx2n+j B Xn+i 6X2nijOLX3n+i dx2n+j
—xe ﬁ dx2n+j + X axzn(ij'gxnn dx2n+j +xi axznsz‘;dxenﬂ dx2n+j -

xen! axzizaxi dxonyj — X W Az + X770 ﬁ Az
e Bome )~ X g = X G dany)
+X3n+i 6x3n(j_j-gxn+i dx3n+j + X a9C3nj-jjzaLxsn+i dx3n+j =X ax;:jaxi dx3n+j
—xent! 6x3nfj26Lx4n+i dx3n+j + X7 6x3nfj26Lx2n+i dx3n+j +X! 6X4nfj26Lxsn+i dx4n+j
—xn 6x4nfj26Lx3n+i dx4n+j — X W dX4n+j + X ax4nij'gxn+i dx4n+j *
xAnti ax4nf].zaLx6n+i dx4n+j — x5n+i ﬁdxéln_l_j — xonti de‘m_l_j
L7+ axwsz;‘xz“i dXgnij+ X axsnszaLxan dxsnij — X axsnszaLx3n+i AX5n 4 j
B X2n+i axSnsz‘;'me dx5n+j + X3n+i axsj—j'gxnﬂ dx5n+j + X4n+i a355114(-3]'2;956n+i dx5n+j B
Xxon+t —ax:::axi dx5n+j — xontt W dx5n+j + X7 W dx5n+]'
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%L 92%L

OXen+j0X3n+i

i 0°L n+i
X —2 dxg, - X

_ X2n+l
OXen+j0Xsn+i

dx6n+j dx6n+j

0Xen+j0X7n+i

9%L
0Xen+j0x;

0°L 0L _ X5n+i

+X3Tl+i dx6n+j + X4-Tl+i

dx6n+j dx6n+j

0Xen+j0Xn+i 0Xen+j0Xen+i

i 0°L ; 0°L ; 0°L
_X6n+l X7n+l dx6n+j + Xl

dx6n+j + dx7n+j

0Xen+j0Xan+i 0Xen+j0X2n+i 0X7n+j0Xsn+i

i 0%L i 92L i d%L
n+i 2n+i 3n+i
X dx7n j X dx7n j + X dx7n j +

0X7n+j0X3n+i 0X7n+j0X7n4i 0X7n+j0%n4i

0°L 0°L
0X7n+j0X;

02%L

X4n+i
0X7n+j0X6n+i

_ X5n+i _ X6n+i

dX7p+j dX7p+ ] AX7n+j

0X7n+j0Xan+i

92L oL oL oL
—dx . — —dx; — ——dx,.; — —dx
n+j 0 j . n+j OXan+j 2n+j

+X7n+i

0X7n+j0X2n+i

oL oL oL oL oL

dx3n+j —d Xan+j a—dx5n+j —d Xen+j —d X7n+j

0X3n+j 0X4n+j X5n+j O0Xen+j X7+ j

By means of Eq(1), we calculate the following expressions

2
L sda + X 2t § dxy + X e

0xj0Xs5n+i 0xj0X3n+i 0Xj0X7n+i

—X 5]dx2n+l

. 2 , 2
Xt o—— o 6]d 3n+l_Xla—L6]d 4n+l+Xl

6x]6xn+l 6xj6x6n+l

6]dx5n+l +

6x]6xl

' . 0%L j ; 9%L n+j
8 dxgnsi — X' ————68dxyppi — X ——— 65 dx; +
[ rentt 0xj0Xonyi © 7n+i OXn+j0Xs5n+i i S

2
i 0°L
0xj0X4n+i

i 2L n+j P 92%L n+j P 2L n+j
X5 dxyy + X ————6 dxypy — XV —— 6 dx
0xn1j0X3n4i n+t ek 0xn4j0X7n4i nt ek 0xn4j0Xn4i ni 3n+i

; 02%L +i - 92L +i
_oxmti__OL gntigy oqoxmei _OE_gntigy oy

0Xn+j0Xen+i ntt 0Xn4+j0Xx; ntt
. azL n+ . azL +'
n+i 5 ]d n+i nrj
— 5" dxg s — X ——— "y —
0Xn+j0Xan+i ntt 0Xn+j0X2n+i nti

; 02%L n+i : %L 2n+ i
Xt — —— 5"y + XM —————— 5 dx,

0X2n+j0X5n+i 2n+t 0X2n+j0X3n+i 2n+i
2 . 2 .
2n+i 0°L 2n+j _ y2n+i 0°L 2n+j _
X o Oy DXong — X =05y A3y
2n+j n+i 2n+j n+i



- 9L 2n+j on+i 9°L 2n+j
X2t — — = 5 dx,y + XM ——— 8 d X,
Oxzn4jOxens; 2NHL T AMFL OxgnyjOx; 2N TSMAL
- 9L 2n+j on+i 0%L 2n+j
X2t — —— 5 dxg g — XM ———— 57 dx
0Xon+j0X4n+i 2n+i ontt 0X2n+j0X2n+i 2n+i i
; 9L 3n+j ; 9°L 3n+j
_ y3n+i nrj ) 3n+i nrj )
X Oxams 0% O3pydx; + X e ore Oanti AXn+i +
jOX5n+i 3n+jO0X3n+i
- 9L 3n+j 3In+i 0%L 3n+j
X3t — —— 5 dxy, — XMt ——§ dx
0X3n+j0X7n+i 3n+i ant 0X3n4j0Xn 4 3n+i 3nt
i 9L 3n+j i 0%L 3n+j
X3t — —— 5 dx e + X3 ——— 6 dxe e +
0%X3p4j0Xeny; ST AL Dxan4jOx; Ml TSTAL
; 2L 3n+j 3 i 0°L 3n+j
Xttt — —— 5 dxg,; — X3 ——— 5 dx
0X3n+j0X4n+i 3n+i nti 0X3n+j0X2n+i 3n+i ntt
; a%L 4n+j - 0%L 4n+j
_y4n+i_ 9L J . n+i_ 9L oant)
X 0Xan+i0Xsn4i 64n+i dxl + X dx DX 1 64-n+i dx’fl‘l‘l
jO9Xs5n+i an+jOX3n+i
; 0%L 4n+j i 0%L 4n+j
Xt 9L i gy — XLl st gy
0X4n+j0X7n4i an+i ToZnE 0X4n+j0Xnyi an+i 3N
: 92L An+j . 0L an+j
Xttt — —— 5 dxyy e + X ———6, i dxc,, +
0Xan+j0Xen+i Anti antt 0X4n+j0x; anti Sn+i
; 0%L 4n+j i 9%L 4n+j
) G AL B ST P D e AL S N L
0Xan+j0Xan+i Anti nti 0X4n+j0X2n+i Anti ntt
2 . 2 .
_ ysn+i__ 0L o5ntj sn+i O L o5n+j
X 0X5p4 10X .65n+i dxi + X dx Ox .65n+i dxn‘l‘i +
jO9Xs5n+i sn+j0X3n+i
; 02%L 5n+j 5 i 0°L 5n+j
A SN X PP L B Y SNL
Oxsn4jOX7myy OTHL 2N x5 j0xnyy SMHL T 3N
; 02%L 5n+j 5 i 0%L 5n+j
Xt — —— 52" dx e + XV ——— 682" dxe s +
Oxsnsj0Xane; ST AN x5y j0x; OTFL T TSMAL
; 0%L 5n+j Sn+i 9°L 5n+j
Xt ——— 5 dxgp — X —— 62 dx
0X5n+j0X4n+i Sn+i onti 0X5n+j0X2n+i Sn+i ntt
; 92L 6n+j ; 9%L 6n+j
_ yébn+i nrj ) 6n+i nrj )
n+joXsn+i 6n+jO0X3n+i
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X6n+i 0L 56n+j

0Xen+j0X7n+i on+i dx2n+i B 0Xen+j0Xn+i on+i dx3n+l
X6"+iﬁ5§;‘j{ AXgnsi + X6"+iﬁ5§;‘j{ dXsnsi +
xomt Wfﬁﬁzj dxensi — X axemi%m Sens! AxXrmsi
— x7n+i %L 67n+.jdx- 4+ x7n+i 0L 67n+.jdx -

OX7n+j0Xsn+i 7n+t l 0X7n+j0X3n+i 7+t L

x7n+i ax—7nfj26Lx7n+i 6;:::{(1X2n+l — X7nti ax7nijgxn+i 6;::11 dx3n+l
x7m+t ax7nszaLx6n+i 67777:ijdx4n+i + X7 6x7iz+];6xi 5773:{(1)(5”” +
X7n+i ax7nszaLx4n+i 6777711:ljdx6n+1 - X7n+i axmf;sznH 677::{dx7n+i +
:—;dx] +%dxn+] + #i-pjdxzn-kj +%i+jdx3n+j +%i+jdx4n+j +
%ﬁﬂ,dxwwj + %dx6n+j + #iﬂ,dx7n+j =0

If a curve determined by a: R — M is taken to be an integral curve of &, then we
found equation as follows:

. 0%L i 9L i 9L
—XI 2t gy —xmti—TE gy —xnt T gy
0xj0xsnyi ) 0Xn4j0Xsnei I 0Xon4j0%xsnyi )
; 9%L i 9L i 9L
X3Tl+l dx: — X4n+l dx: — X5n+l — dx. —
0X3n+j0X5n+i J 0X4n+j0Xs5n+i J 0X5n+j0X5n+i J
; 9%L ; 9L . 02%L
xontt dx; — X7 dx; + X* dxXpsj +
0Xen+j0Xsn+i 0X7n+j0X5n+i 0xj0X3n+i
i %L ; 9%L ; %L
n+i d 2n+i 3n+i
——ax -+ X dx i+ X dx P+
0Xn+j0X3n+i n+J 0X2n+j0X3n+i n+J 0X3n+j0X3n+i nJ
xamri_ L g pxsnti_ 0L g pyenvi_ L gy
0Xan+j0X3n+i n+J 0X5n+j0X3n+i n+J 0Xen+j0X3n+i nJ
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2 2 2
Tn+i 0°L i_ 0°L n+i__ 9°L
X dxn+j + X dx2n+J + X dx2n+J +
0X7n+j0X3n+i 0Xj0X7n+i 0Xn+j0X7n+i
X2n+i 9%L dx + X37’l+i 9%L dx + X4—Tl+i 9%L dx +
0X2n+j0X7n+i ntj 0X3n+j0X7n+i nt) 0X4n+j0X7n+i nt)
X5n+i azL dx + X6n+i azL dx + X7n+i azL dx +
0X504j0X7n4 2n+) 0Xen+jOX7n+i 2n+ 0X74jOX7n+i n+
il g oy L g gk L g
axjaxn+i 3ntj axn+jaxn+1 3nt) ax2n+jaxn+1 3nt)
; 9°L ; d%L 9L
X3n+l dx L X4—n+L dx _X5n+l dx
0X3n+j0Xn+i 3nt) 0X4n+j0Xn+i 3ntJ 0X5n+j0Xn+i 3n+
i d%L ; 9%L ;. 0%L
_X6n+l—dx __X7n+l—dx = X —dx L
4
0Xen+j0Xn+i 3nt 0X7n+j0Xn+i 3nt 0xj0Xen+i nt
i 9%L i 9%L i %L
n+i d 2n+i 3n+i
x4_ i X dX4_ i X dX4 i
0Xn+j0Xen+i nJ 0X2n+j0Xen+i n 0X3n+j0Xen+i nJ
—X4"+ia—2de4 ._)(5n+ia—2de4 - )(6n+i6—2de4 -
0% 4n+j0Xen+i ntJ 0X5n+j0Xen+i ntJ O0Xen+j0%en+i nJ
; 9°L ;. 0%L ;. 0%L
X" — ——  dxyni + X ——dxe,,; + X" dxspei +
6x7n+j6x6n+i ant] axjaxi Sn+j 6xn+j6xi Sn+j
X2n+i %L dx +X3‘rl+i %L dx +X4n+i 0L dx +
0X2n+j0X; Snt) 0X3n+j0%; Snt) 0X4n+j0X; Snt)
X57’l+i 0L dx +X6Tl+i 0L dx +X77’l+i 0°L dx +
O0Xs5n+j0X; Snt) OXen+j0x; Snt) 0X7n+j0X; Snt)
;. 0%L ; 9L ; 9L
b———dxg,y; + X" dxg,. i + X271 dxensi +
0xj0X4n+i ontJ 0Xn+j0Xan+i ontJ 0X2n+j0Xan+i ontJ
X3n+i %L dx + X4n+i %L dx + X5n+i %L dx +
0X3n+j0Xan+i entJ 0Xan+j0Xan+i en+tJ 0X5n+j0Xan+i en+tJ
; d%L i 9L . 0%L
xentt dxg,.; + X7 AXgpsi — X' ———dX7p 4 —
Oxen+j0Xansi  OTH 0%7n4j0Xansi Ot 0xj0xzne; T
i d%L ; 9L i %L
n+i d 2n+i 3n+i
Xomsi —X Axopei — X AX7pyi
0Xn+j0X2n+i mt 0X2n+j0X2n+i mt 0X3n+j0X2n+i mt
X4-n+i 0°L dx _ X5n+i 0°L dx _ X61’l+i oL dx
0X4n+j0Xon+i nt) X5+ j0Xon+i ) 0Xen+jO0X2n+i nt)
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02%L oL oL
dx7n+j + a_x] —_dx2n+j +

X7n+i
0X2n+j

dxj + ——dxyy; +

0X7n+j0X2n+i 0Xn+j

JaL
O dxgns; +
ax6n+j 6Tl+]

oL oL oL
L dxgp; + —— A dxsp,; +
0X3n+j 3ntJ 0X4n+j O0Xs5n+j Sn+t)

2 ;=0 N (4.1.15)

0X7n+j

Or

_[Xl 0°L + X‘n+i 0L X2n+i 0L + X3n+i 0%L +
0xj0X5n+i 0Xn+j0Xsn+ti 0Xon+j0Xsn+i 0X3n+j0Xs5n+i

i 9L i 9L i 9L
X4Tl+l + X5n+l + X6Tl+l +
0X4n+j0X5n+i 0X5n+j0X5n+i 0X6n+j0X5n+i

92L oL

n+i , -
X ] dx; + ox;

0X7n+j0Xs5n+i

L + X'Yl+l 0°L + X2n+i 9°L + X3Tl+i a—zL +
0xj0X3n+i 0Xn+j0X3n+i 0X2n+j0X3n+i 0X3n+j0X3n+i

+[X*

2 2 2
X4-n+i 0°L + X5n+i 0°L +X6n+i 0°L +
0X4n+j0X3n+i 0X5n+j0X3n+i 0X6n+j0X3n+i

9%L oL
]dxn+j + _dxn+j

X7Tl+i
O0Xn+j

0X7n+j0X3n+i

L + X'fl+l 0°L + X2n+i 0°L + X3Tl+i a—zL +
0xj0X7n+i 0Xn+j0X7n+i 0X2n+j0X7n+i 0x3n+j0X7n+i

+[X¢

9%L ; 0%L ; 0%L
+ X5n+l + X6n+l +

X4-n+i
0X4n+j0X7n+i 0X5n+j0X7n+i O0Xen+j0X7n+i

92L oL
— | dx2n+j + a—dx

X7n+i
X2n+j

2n+j
0X7n+j0X7n+i J

;. 0%L i 9%L ; d%L ; 9%L

_[Xl—+Xn+l—+X2n+L—_|_X3n+l—_|_
0xj0Xn+i 0Xn+j0Xn4i 0X2n+j0Xn+i 0X3n+j0Xn+i

X4—n+i 0°L + X5n+i 0%L + X6n+i 0%L +
0Xan+j0Xn+i 0X5n+j0Xn+i 0Xen+j0Xn+i

9%L oL
]dx3n+j + —dx3n+j

X7n+i
0X3n+j

0X7n+j0Xn+4i
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+ Xn+i + X2n+i + X3Tl+i a—zL +

0xj0Xen+i 0Xn+j0Xen+i 0X2n+j0Xen+i 0X3n+j0Xen+i

02%L 2L 02%L

—[Xi

X4-n+i 0°L + X5n+i 0°L + X6n+i 0L

0X4n+j0Xen+i 0Xs5n+j0Xen+i 0xj0Xen+i

02%L 0

X7Tl+i ] dx4n+j + p

L
e (E

0X7n+j0Xen+i Xan+j

2L d2L %L 02%L 02%L

_l_[Xl + Xn+i + X2n+i + X3Tl+i + X4—Tl+i

+X57’l+i 0L + X6Tl+i 0L + X7Tl+i

0Xs5n+j0X; 0Xen+jOxi 0X7n+j0X;

%L oL
— " JdXsp4; + ——— X5y
] 5n+j 3X5n+j 5n+j

_l_ Xn+i _l_ X2n+i + X3Tl+i a—ZL +

0Xj0Xan+i 0Xn+j0Xan+i 0X2n+j0Xan+i 0X3n+j0Xan+i

02%L %L 02%L

+[X

_l_ X5n+i _|_ X6Tl+i 0L +

0Xan+j0Xan+i 0X5n+j0Xan+i 0Xen+j0Xan+i

X4n+i 0%L 0%L

%L oL
———— ] dxgnsj + 3——dXens;

X7n+i
0Xen+j

0X7n+j0Xan+i
. . , 92L
+ Xn+l + X2n+l + X3Tl+l +

0Xj0Xon+i 0Xn+j0X2n+i 0X2n+j0X2n+i 0X3n+j0X2n+i

02%L %L 92%L

—[Xi

+ X5n+i + X6n+i 0°L +

0Xan+j0X2n+i 0X5n+j0X2n+i 0Xen+j0X2n+i

X4—n+i 0%L 0°L

%L oL

X7n+i ]dx7n+] + a

-dxX7p4j =0

0X7n+j0X2n+i X7n+j

In this equation can be concise manner

; 9%L oL ; 0%L
7 an+i 7 an+i
— Za=0 X O — dx] + a—x]dx] + Za:OX

OXan+j0Xsn+i

dxn+j +

O0Xan+j0X3n+i

oL 7 an+i
iy + Thoo X

O0Xn+j 0Xan+j0X7n+i

9%L oL
e Qanej + 5 — dtan

Xon+j

9%L oL 7 an+i 9%L
dx3n+j +— dx3n+j — Ya=0X

0X3n+j

27 0Xan+i
a=

0Xan+j0Xn+i 0Xan+j0Xen+i

oL 9%L oL
— ————dXsp; + ——dxspy; +
. 5n+j ax5n+j 5n+j

+ dx4n+j + ZZ_:O Xan+i

0X4n+j

axjaxi 6xn+j6xi 6x2n+j6xl- ax3n+jaxi ax4n+]-6xi

dx4n+j



7 Xan+i de 4 6_de N7 Xan+i %L dx .
a=0 0Xan+j0Xan+i ont OXen+j ont a=0 0Xan+j0X2n+i mt]
oL _
O ;=0 5 (4.1.16)
7n+j
Then we find the equations
0 (0L JdL d JaL oL d JaL JaL
7o) o = 0 5t ) " =0 5 () " = O
dt \0x; O0Xsn+i 0t \0xp4i 0X3n+i 0t \0x2n+i O0X7n+i
3} JaL oL d aL aL d oL oL
Ot \0x3n+i OXn+i Ot \0X4n+i OXen+i Ot \O0Xsn+i dx;
d JL JdL d oL oL
_( )_ =o,—( )+ =0 - (4.1.17)
Ot \0Xen+i OXan+i Ot \0X7n+i 0Xon+i

Such that the equations expressed in Eq(4.1.17) are named Euler-Lagrange
equations structured on Clifford Kdhler manifold (M, V) by means of Cbis in the
case, the triple (M, CI){S, &) is called a mechanical system on Clifford Kdhler
manifold (M, V).

Sixth, we present Euler-Lagrange equations for quantum and classical

mechanics by means of CIDZ6 on Clifford Kdhler manifold (M, V).

Let /4 be a local basis on Clifford Kdhler manifold (M, V).

Let semispray ¢ give as in Eq(4.1.1). So, Liouville vector field on Clifford Kdhler
manifold (M, V) is the vector field defined by

_ _yi_ 0 _yn+i_9 _ yon+i_ 0 3n+i_ 0
VJG B ]6(5) =X OXen+i X OX7n+i X 0X3n+i +X 0Xon+i +
4an+i_ O __y5n+i d __yé6n+i i Tn+i 9
X OXsn+i X 0Xan+i X ox; +X OXn+i - (4.1.18)
The function given by EL]6 =V}, (L) — L is energy function.
The function i;_induced by /¢ and given by
i]6w(X1'X2""’XT') = ?le(Xl""']6Xi""'XT) - (4‘.1.19)
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Is said to be vertical derivation, where w € A"M , X; € X (M). The vertical
differentiation d;_is determined by

We say the closed Kdhler form is the closed 2-form given by Cbi6 = —dd,_L such
that

6 O0Xen+i X7n+i X3n+i 0Xon+i Xsn+i

And
: F(M) » A'M - (4.1.21)

Then

2 2
¢#::——Jli—d%Ad% '_j___d%Ad%H1 _ﬁl;_d%Ath”_

0xj0Xen+i 0xj0X7n+i 0xj0X3n+i

9L
0xj0Xon+i

dxiNdxzp i — dxiNdxgn4; + dxj\dxsp; +

dx axSn+L ox ax4n+l

%L

0Xn+j0Xen+i

dxiNdxenii — 7 dxjNdX7p4; —

6x]6xl dx axnﬂ

02L 02L 02L
oty jADX s + 5ty jA DX = 5y jA Xy —

0Xn4j0X7n4i 0xn4j0X3n4i 0Xn1j0X2n+i

92L 92L 02L
dxn+j/\dx4n+i + —dxn+j/\dx5n+i + mdxn+j/\dx6n+i -

0xn1j0Xsn4i 0Xn1j0xgn+i

02L 2L 02L
AXpy [ NAX7ny — ————dXopy jAdX; + —————dXn Ay +

0Xn+j0Xn4 0X2n+j0Xen+i 0Xan+j0X7n+i

9%L 9%L
dx2n+j/\dx2n+i - dx2n+j/\dx3n+i -

0X2n+j0X3n+i 0X2n+j0X2n+i

92L 92L
dx2n+j/\dx4n+i + dx2n+j/\dx5n+i +

0X2n+j0X5n+i 0X2n+j0Xan+i
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azL azL

xzns 0%; dx2n+j/\dx6n+i 0X2n+j0Xn+i dx2n+j/\dx7n+i —
a9C3nszallx6n+i dx3n+j/\dxi + ax3nfj26Lx7n+i dx3n+j/\dxn+i +
a353ni’zaszn+i dx3n+j/\dx2n+i B 3x3nszaLx2n+i dx3n+j/\dx3n+i B
S Xy A + e dts A +
Xy A — 5o sy A -
ax4nszaLx6n+i dx4-n+j/\dxi + 6x4nfj2¢;lx7n+i dx4n+j/\dxn+i +
dezmﬂ/\dxmﬂ' - ax4nfj26Lx2n+i AX4n+jNAX3p 4 —
de‘m-ﬁ/\dx‘m“ T ax4nfj26Lxm+i dx4n+j/\dx5n+i +
axjjjaxi dx4n+j/\dx6n+i B 6x4:;gxn+i dx4n+j/\dx7n+i B
S s Ay 45— ity A+
Wd%nﬂ/\d%nﬂ - Wd%nﬂ/\d%nﬂ‘ -
axSnsz;xSnH dx5n+j/\dx4n+i + a95511-(31'2;954n+i dx5n+j/\dx5n+i +
St s Aot = 5 s A -
S Ao+ G gy A +
axenszaLxan dx6n+j/\dx2n+i - axsnszaLXZnH dx6n+j/\dx3n+i B
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azL azL

dx6n+j/\dx4n+i + dx6n+j/\dx5n+i +

0X6n+j0Xsn+i 0Xen+j0Xan+i

o Qgn jAdonst = G Aoy Ay
ax7nfj2;x6n+i dx7n+j/\dxi T a9571:)]2;957n+i dx7n+j/\dxn+i +
a9C7nszaLx3n+i dx7n+j/\dx2n+i B a95711-?}'2;95211“' dX7n+j/\dx3n+i B
6x7nszaLx5n+i dx7n+f/\dx4n+i + 6x7nfj26Lx4n+i dx7n+j/\dx5n+i +
ax::axi AX7ny jNAX gy — ax7nigxn+i AX7n 4 jNDX 774

Let £ be the second order differential equation by determined Eq(1) and given by
Eq(4.1.1) and

2 ., 2
_ L gy i L

0xj0xensi ) 0xj0X7n+i

0%L
0xj0Xen+i

il = —x! 87 dx; + X' 8l dxy i —

S, .. —xen+i L g
i 2n+i 6xj6x3n+i j

9%L
0xj0X3n+i

. 2
n+i_ 0°L
0Xj0X7n+i

J ;  0%L ;. 0°L j
8] dxzn + X3 ———dx; — X' ———— 6/ dxyny; +

0xj0xom4i ) 0Xxj0X5n+i

2
i 0°L
0Xj0Xan+i

9L
0xj0Xan+i

, aZL ) azL
X4n+l—dxj +Xl
0Xj0Xan+i

J . _y5n+i
0xj0Xs5n+i 61’ dx5n+l X

1 2 2 ,
5,: dx6n+l- —X n l—dx] — Xl —61' dx7n+i +

axjaxi axjaxn+i

9%L
6xj6xi

Xi

i azL : azL +7 . aZL
X7n+l—dxj — Xn+1—6n+_]dxi + X
0xj0Xn+i 0Xn+j0Xen+i nrt

dxn+j +

0Xn+j0Xen+i

xnti____ 7 = 6n+i]dxn+i — xnti
0Xn+j0X7n4i

dxn+j +

0Xn4j0X7n+i

n+i ] 2n+i
Opyi AXonsi — X dXp4j -

0Xn+j0X3n+i 0Xn+j0X3n+i
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; 9°L n+j 3n4i 9°L
XM ——§ " dxg,y; + X ———dx, i —
0Xn+j0X2n+i ntt 3n+i 0Xn+j0X2n+i nJ
PR Lo VR C L L R
0Xn+j0Xsn+i n+t anti 0Xn+j0Xsn+ti nJ
n+i %L 6n+-jdx5 . x5n+i %L dx. . +
0Xn+j0Xan+i n+t nt 0Xn+j0X4n+i ntJ
xn+i %L 5n+-jdx ] xon+i %L dx.. . : -
6xn+j6xi n+i 6n+i 6xn+j6xi n+J
Xn+i L 5n+jdx .4 X7n+i %L dx
OXn+j0Xn+i n+t Tt OXn+j0Xn4i nt
i 9°L 2n+j i 9L
xanri 9§27 gy 4 X dXpnej +
0X2n+j0Xen+i 0X2n+j0Xen+i
i 9°L 2n+j i 9°L
xamtt — —— 5 dx,; — X dXonsi +
0X2n+j0X7n+i 2n+t o 0X2n+j0X7n+i Znt
i 9°L 2n+j on+i 92L
X2n+l—6 Jdx . —  x?2n+i dx L
axZn+ja.X'3n+i 2n+i anti ax2n+jax3n+i ant
; 9L 2n+j ] 9%L
X2n+l _ 5 ) dx .4 X3n+l dx .
0Xon+j0X2n+i 2n+l 3n+i 0X2n+j0X2n+i ntj
. 9% 2n+j ;0L
X2y, XA dxynyj +
0Xon+j0X5n+i 2n+l an+i 0Xon+j0X5n+i 2nt)
i 9°L 2n+j Sn+i 92L
Xt — — =5 dxe, — XM AXopnyi +
0X2n+j0Xan+i 2n+i Sn+l 0X2n+j0Xan+i 2nt)
; 0%L 2n+j ;. 0%L
X2n+l—6 ) dx . _ X6n+l dx R
0X2n+j0X; 2n+i on+i 0Xon+j0X; ant
. 9% 2n+j ;0%
Xttt ——— 5 dx . + X7 dxXop. i —
2
0Xon+j0Xn+i 2nti n+t 0X2n+j0Xn+4i ntJ
; 9L 3n+j j %L
3n+i nrj . i .
X P 05, dx; + X P -dX3n4j T
3n+j0Xen+i 3n+j0Xen+i
; 9L 3n+j j 9%L
X3t ——— 5 dx,,; — X dX3pyi +
0X3n+j0X7n4i 3n+i e 0X3n+j0X7n+i 3n+
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; 9°L 3n+j on4i 9L
X3n+1 ) Jdx - X n+i dx L
0X3n+j0X3n+i 3n+i Zn+t 0X3n+j0X3n+i 3nt
; 9°L 3n+j 3In4i 9°L
X3ttt — —— 5 dxg . + X3 AX3pyi —
0X3n+j0X2n+i 3n+i 3ntt 0X3n+j0X2n+i 3nt
- 9°L 3n+j an+i 9°L
Xttt — —— 5 dxy, . + XA dX3pyi +
0X3n+j0X5n0+ 3n+i anti 0X3n+j0X5n+i sn+J
; 9L 3n+j Sn+i 9%L
xsnti 8y i dXsyy; — XM dxsn.i +
0X3n+j0X4n+i 3n+i SNt 0X3n+j0Xan+i 3nt
. 92L 3n+j j_ 0%L
3n+i nrj o 6n+i )
X Sy Oamet WXensi X Sy Xamt)
] J
- 9L 3n+j ; 9L
X3n+l %) Jdx .+ X7n+l dx L
0X3n+j0Xn+i 3n+i ntt 0X3n+j0Xn+i 3nt
; 9°L an+j ] %L
xtnri 9§t gy 4 X AX4ny; +
0Xan+j0Xen+i 0Xan+j0Xen+i
; 9°L an+j - 9°L
Xttt ——— 5 dx,; — X' AXgnei +
OXan+j0X7n+i Anti e 0Xan+j0X7n+i ant
; 92L 4n+j j %L
X4—n+l _ 5 dx X2n+l dx L
2 4
0Xan+j0X3n+i Anti o 0Xan+j0X3n+i nJ
; 9°L an+j ] 9%L
X4—n+l ) dx + X3n+l dx L
ax4n+]‘ax2n+i an+i 3n+l ax4n+jax2n+i 4n+]
; 9°L 4n+j ] 9%L
x4t Sy, XA dxXgnyj +
4 4
0Xan+j0Xsn+i Anti o 0X4n+j0Xsn+i nJ
; 92L 4n+j 5n+i %L
xmtt———§ dx Xont AXgnyi +
0Xan+j0Xan+i Anti Sn+i 0Xan+j0Xan+i ant)
;. 0%L an+j ; 0%L
X4n+l—5 Y dx . X6n+l dx R
OxgnsjOx; AmtiTTENAL Oxansjox;  TF]
. 9%L 4n+j ;_ 0%L
Xttt ——— 5 dx . + X7 AX4p. i —
4
0X4n+j0Xn+4i Anti mtt 0X4n+j0Xn+i nJ
5n+i 0°L 5n+j i %L
X Osneidx; + X Axspyj +
0X5n+j0Xen+i 0X5n+j0Xen+i
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X ngssﬁf dxp; — X" axsnsz;me dxsnsj +
XS”“W‘S;;::{C{’CMH — X axsnfjf’Lxan AXspyj —
xS W%SZI{CZQC%H 4+ x3nti axsnszasznH dXsnyj —
xsni Wsé’;‘j{ Atyns; + XH axSnf,-zaLxsm dxsny; +
X W‘S;’ﬂf dxspe; — X5 axsnsz;xmﬂ dxsnsj +
xont ﬁ@gﬂd%nﬂ —  xon ax;j:axi dXsn+
xsmH ﬁ 55::{dx7n+i + X7 6x5nilf;xn+l dx5n+j
yon+i 5’2—L56"+!’dx. + Xt L AXgnei +
0xen4j0xenei ONFTL T 0Xen+j0Xen+i nrJ
xent W5663:ijdxn+i — X axsnszaLx7n+i AXgnyj T
xont Wé‘g::{denﬂ xenst axenszaLxan dx6n+j o
x6nt+i W 666::gdx3n+i + x3nti axsnszasznH dx6n+j —
xon+i W@‘:{ Xy + X4+ axsnfj;xm dXens; +
xonti W‘Sg::{dxsmi — Xx5nH ax6nfj26Lx4n+i AXenyj +
xeonst %523:&195611% —  xen* axsi:axi dXen+j
xon+i W 66617:Igdx7n+i + X7nti 6x6nigxn+i dx6n+j -
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92%L

X7n+iﬁ6;ﬁrijdxi + X E—T— Ax7nej +
X7n+iﬁ57¢:ijdxn+i — X ax7nfj2;x7n+i dX7nyj +
X7n+iﬁ577::{dx2n+i — X ax7nfj26Lx3n+i AX7nyj —
X7n+iﬁ577::ifdx3n+i 4+ x3n+ axmszaLme dXynyj —
X7n+iﬁ6;::{ dXgny; + X*H axmsz;xSM dX7nej +
X7n+iﬁ577::ijdx5n+i — XxonH 6x7nfj2;x4n+i dx7n4j +
X 7"”%;%5773:{ AXen+i xen ax:i:axi Dlrnsj ~
X7t ﬁ Symii Wi + X7 axmif;xn“ dx7ns

Since the closed Clifford Kdhler form d>i6 on M is the symplectic structure.

ELfe V](L) = xi2- Xn+ia_L_

a9C6n+1 0X7n+i 0X3n+i 0Xan+i

JaL

X2n+i oL

X3n+i

Jx4n+i % oL X5n+ia_L_X6n+l 4 X7t oL —-L - (41.22)

OXsn+i OX4n+i ox; 0Xn+i
And thus
;0L ;. 0%L ;. 0%L
dE}® = X' ———dx; — X" ———dx; — X2 _———dx; +
0xj0Xen+i 0xj0X7n+i 0xj0X3n+i
3n+i %L 4n+i %L 5n+i %L
X3 g XAy — X5y, —
0x;0X2n+i 0x;0Xs5n+i 0X4n+j0Xen+i
xontt L gy y xnri L gy g xi TL gy
ax]axl 0Xj0xn4i J 0Xn+j0Xen+i n+j
i 9%L ; 9L ; d%L
Xn+l—dx L X2n+l—dx 4 X3n+1 dx .
0Xn+j0X7n+i nt O0Xn+j0X3n+i nJ 0Xn+j0X2n+i nt
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_|_X4-n+i 0%L dx.. .. — X5n+i 0°L dx.. .. — X6n+i 0L dx. . +
0Xn+j0Xsn+ti ntJ 0Xn+j0Xan+i nJ 0xn4j0x; ntJ
; 9L ; d%L i 9L
X7mtt dx,.; + X dx,ne; — X" dxynsi —
0Xn+j0Xn+i ntJ 0Xon+j0Xen+i 2n+ 0X2n+j0X7n+i 2t
X2n+i %L dx o+ X3n+i %L dx 4 X4—n+i %L dx L
0X2n+j0X3n+i nt 0X2n+j0X2n+i nt 0Xn+j0X5n+i nty
X5n+i 9%L dxz L X6n+i %L dxz 4 X7n+i %L dxz
0X2n+j0Xan+i n+ 0X2n+j0X; nt 0X2n+j0Xn+i nt
- 9L ; 9L ; 9L
b dxg, — X" dxz,,; — X?"H dX3pnsi +
0X3n+j0Xen+i 3nt 0X3n+j0X7n+i 3nt 0X3n+j0X3n+i 3nt
x3n+i %L dx + x4n+i %L dx — x5nti %L dx —
0X3n+j0X2n+i 3n+ 0X3n+j0X5n+i 3n+ 0X3n+j0Xan+i 3n+
; 0%L ; 9L ; 9L
X —— dxg, i + XM ————dxg, + X AXynsi —
0x3n+j0X; 3nt) 0X3n+j0Xn+i 3ntJ 0X4n+j0Xen+i ant)
; 9L ; 9°L ; 9L
Xn+l dx L X2n+l dx S+ X3n+1—dx .
0X4n+j0X7n+4i antj 0X4n+j0X3n+i anty 0X4n+j0X2n+i ant)
2 2 2
an+i 0°L Sn+i o°L en+i_ O0°L
+X —————dXpyei — X —————dXpyi — X ———dX4p4 i
0X4n+j0Xsn+i antj 0X4n+j0Xan+i antj 0X4n+j0X; antj
2 2 2
Tn+i__ 9°L i o°L n+i 0L
+X AxXgnei +X AXspyei — X AXspyi —
0X4n+j0Xn+i antj 0X5n+j0Xen+i Snt) 0X5n+j0X7n+i St
X2n+i %L dx5 o+ X3n+i %L dXS o+ X4-n+i %L dxs L
0X5n+j0X3n+i ntJ 0X5n+j0X2n+i ntJ 0X5n+j0Xsn+i nJ
; 9L ; 0%L ; 9L
X5n+l dx . _X6n+l dx 4 X7n+l dx
0X5n+j0Xan+i Sn+) 0X5n+j0X; Sn+) 0X5n+j0Xn+i Snt)

; 9L ; 9L ; 9L
F————dxg,,; — X" dxg,,; — X*"H AXgnsi +
0Xen+j0Xen+i on+tJ 0Xen+j0X7n+i ent 0Xen+j0X3n+i ont

X3k OL g o xtmri L gy oy T g
Oxen+j0%an+i en+J Oxen+j0xsn+i nt Oxen+j0%an+i nt
;. 0%L ; 9%L ; d%L
xontt dxgny; + X dxgn.i + X! Ax i —
0Xen+j0X; 6ntJ 0Xen+j0Xn+i ontJ 0X7n+j0X6n+i mtJ
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; %L ; 92L ; 92L
Xn+l dx7n+j _ X2n+l —dx7n+j + X3n+l

AxX 4 i
0X7n+j0X3n+i mt)

0X7n+j0X7n+i 0X7n+j0X2n+i

0°L _ X5n+i 0°L _ X6n+i 0°L

+X4—Tl+i dx .
mt] 0X7n+j0x;

AXopyi AXypy i
0X7n+j0X5n+i mtJ 0X7n+j0X4n+i mt

; 9L oL oL oL
m+i__ 7 ]y — — i L
X AX7n4 ox; dx; AxXpyj T AXonyj

0X7n+j0Xn 4 Oxn4j

oL oL oL JaL JaL
dx % dx — % dxen.; — —2—dx — % dx .
3n+j 0% an 4 4n+j Xsn+ 5n+j Xen+ 6n+j 9xm 4 n+j

0X3n+j

By means of Eq(1), we calculate the following expressions.

. 2
XL ST, + X 2 5T dx,, + X

axjax6n+1 0xj0X7n+i

5]d Xon+i —

aX]ax3n+1

. aZ . ; 62
il ST g — X ot dtes + X 8T gy +

0xj0X2n+i a9Cja3’55n+1 ax]ax4-‘n+l

i . 0%L i ; 9%L n+j
8ldxgni — Xt ———6dx,; — XM ———— 5" dx;
. en+i ax,-axnﬂ i n+i axn+jax6n+i n+i L +

Xi

; 02%L n+j i d%L n+j i 9L n+j
X ———§ Hdxpy + X" ————68 dxony — X" —————68 dxsny —
0xn1j0X7n4i n+t ek 0xn4j0X3n4i nt ek 0xn1j0Xon4i n+i 3n+l

i 9L n+j i 9%L n+j ;  0%L n+j
XM ———— 6§ dxgmy + X" ———— 6 dxgp i + XM ———6dx -
OxpyjOxsnyy MHLT AL Oy jOXgmy; LT O Oty j0x; ML TOMAL

i d2%L n+j i 9°L 2n+ 92L 2n+j
L S ey — XPH e §ZMH g x2S 52yt
0xXn4j0Xn4i 0X2n+j0Xen+i 0%Xan+j0X7n4i

i 9°L 2n+j i 9L 2n+j
X2n+l 5 ]dx2n+i _ X2n+l S ]

i 'dx3n+i -
0X2n+j0X3n+i anti 0X2n+j0X2n+i 2n+i

n+i 9°L 2n+j n+i 9%L 2n+j

Xt ——— § Tdx C+ Xtt——§ ‘dx ; +
n 4an n n

0Xon+j0Xsn+i 2n+t i 0Xon+j0Xan+i Zn+i St

X2n+i %L 62n+j _

; 9L 2n+j
J dx . X2TL+l e 5
6x2n+]-6xi 2n+i 6n+i

0Xon+j0Xn+i

; %L 3n+ : %L 3N+ j
X3n+t 5 n ]d + X3TL+l 5 nrj

0X3n+j0Xen+i 3n+i 0X3n+j0X7n+i
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i 9°L 3n+j ; 0°L 3n+j
3n+i nrj o 3n+i nrj
X dx .0x , 63n+i dxzn‘H X dx dx i 63n+1 dx3n+l
3n+j0X3n+i 3n+jo0X2n+i
i 0%L 3n+ij , 921 3n+i
xonri__ 9L g3y, o+ xomH_ 0L 3ty o+
0X3n+j0X5n+i 0X3n+j0X4n+i

X3n+i 0%L 5371‘*‘] X3n+i 92L 63n+j

dx6n+i -

0x3p4j0x; SMHL 0X3n+j0Xn+i
i 0%L An+j . 2L an+i
X4"+‘—54n+i]dxl- + X4"+l—64n+ijdxn+i +
0X4n+j0Xen+i 0X4n+j0X7n+i
i 0%L An+j , 2L anti
X4-n+l 64n+i]dx2n+i _ X4n+l 64n+i]dx3n+1
i 9%L an+j . 92L At
a9 gty o4 xAnr T s g
0X4n+j0X5n+i 0X4n+j0Xan+i

xA4nti 0°L 54n+j xA4nti 0%L 54n+j

dx6n+i -

a.X4n+jaXi 4n+i ax4n+jaxn+i anti
X$“*————————6&H{dxi—k XSWH————————6&dean +
0Xs5n+j0Xen+i 0X5n+j0X7n+i
i 0%L 5n+j , 2L Sn4 i
A O 5 g — XS
0X5n+j0X3n+i 0X5n+j0X2n+i
; %L 5n+j 5 i 0°L 5n+j
Xt — —— 52" dxg e + X ———— 5 A +
4
Oxsn+j0xsne; O nt OXsnyj0Xgne; DL TSN

X5n+i 0%L 6'5n+j X5n+i 0%L 65n+j

dx6n+i -

0X5n+j0X; Sn+i 0Xs5n+j0Xn+i Sn+i
i 0%L 6n+ij , 92L 6nti
Xom+ 2§ gy, 4 x5 gy L+
0Xen+j0Xen+i 0X6n+j0X7n+i
i 0%L 6n+ij , 2L 6nti
X6n+1 66n+i]dx2n+i _ X6n+l 56n+11dx371+l
ax6n+]‘ax3n+i ax6n+jax2n+i
i 0%L 6n+i , 2L 6Nt i
X6n+1 66n+i]dx4n+i + X6n+l 56n+11dx5n+l +
ax6n+]‘ax5n+i ax6n+jax4n+i

X6n+i 0°L 66n+j

2 .
X6n+i 6—L 56n+]
6n+i
0Xen+j0Xi

dx . —
on+i 0Xen+j0Xn+i
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X7n+ia—2L57n+-jdx- 4+ x7n+i %L 57n+_jdx o+
OX7n+j0Xen+i LT 0X7n4jOX gy /THL L
x7nt ax7nszaLx3n+i 5777711:ijdx2n+i - X7n+i_ax7nfj2;x2n+i 577:11:ijdx3n+i -
X7"+iﬁ5%‘j{ AXgni + X7 W&Zﬂ{ dXsnsi +
X7+ ﬁ 5 gy — XTMH ﬁ 6 ma A + 5 d
%dxnﬂ + %dxmﬂ + %I;H,dxsnﬂ + %ﬁlﬂ,dxzmﬂ + %ﬁﬂ,d%nﬂ
+%I;+jdx6n+j + #iﬂ.dxmﬂ' =0

If a curve determined by a: R = M is taken to be an integral curve of &, then we

found equation as follows:

. 0%L ; d%L ; %L
X — i _Xn+l—dxj _X2n+L dx]- _
0xj0Xen+i 0Xn+j0Xen+i 0X2n+j0X6n+i
X3n+i 0L dx: — X4-n+i 0L dx: — X5n+i 0°L dx: —
0X3n+j0Xen+i J 0X4n+j0Xen+i J 0X5n+j0Xen+i J
; 9%L ; 9%L . 0%L
X6n+la 3 'de—X7n+la P dX]+Xla P 'dxn+j+
Xen+j0Xen+i X7n+j0Xen+i XjOX7n+i
; 9%L ; d%L ; 9L
n+i d 2n+i 3n+i
Xn+i +X dx,. +X AxX, i
O0Xn+j0X7n+i nt 0X2n+j0X7n+i nt 0X3n+j0X7n+i nt
X4-n+i 0L dx + X5n+i 0°L dx + X6n+i 0°L dx
0X4n+j0X7n+i nt 0X5n+j0X7n+i nt 0Xen+j0X7n+i nt
; 0%L . 0%L ; 0%L
X7ntt dx,.; + X' dxy, . + X" AXyp 4 i
2 2
0x7m4j0%yme; 0xj0X3n+i n+J 0Xn+j0X3n+i ntJ
; d%L i %L i %L
X2n+1 dx . +X3n+1 dx . +X4Tl+l dx .
0Xon+j0X3n4i nt 0X3n4j0X3n4 2n+) 0X4n+j0X3n4 Zn+
; d%L i %L i %L
X5n+1 dx 4 X6Tl+l dx 4 X7‘l’l+l dx L
0X5n+j0X3n+i n+ OXen+j0X3n+i n+ 0X7n+j0X3n+i nt
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92%L

0X2n+j0X2n+i

;. 0%L ; 9L ;
L n+i 2n+i
X' ———dxzpj — X" —————dx3p; — X

dx . —
0xj0X2n+i 0Xn+j0X2n+i 3n+J

X3n+i 9%L _ X4n+i 9%L _ X5n+i 9%L

dx3n+j dx3n+j -

dx3n+j

0%3n+j0X2n+i 0%4n+j0%X2n4i 0x5n+j0X2n+i

9%L 02%L ; 92%L

l
dtgnsj — X i gy

X6n+i
0xj0Xs5n+i

n+i
dx3n+j - X

0Xen+j0X2n+i 0X7n+j0X2n+i

2 2 2
n+i_ 0L — x2n+i 9°L _ x3n+i 0°L
0xn+j0Xsn4i

dx4n+j dx4n+j dx4n+j -

0Xan+j0Xsn+i 0X3n+j0Xsn+i

X4-n+i 9%L _ X5n+i 9%L _ X6n+i 9%L

dx4n+j dx4n+j dx4n+j -

0%4n+j0Xsn i 0x5n+j0Xsn4i 0Xen+j0Xsn+i

9%L

0Xn+j0Xan+i

d%L ; %L

x7nH dX4nsj + X'

dxspej + X dXsnej +

0X7n+j0Xs5n+i 0Xj0Xan+i

%L %L

2n+i 0L 3n+i
X —dx5n+j + X

dx . + X4-Tl+i
0X2n+j0%an+i Snt)

dx5n+j +

0x3n+j0X4n+i 0X4n+j0Xan+i

xonti 9L %L

. 2
X5n+l o°L
0Xen+j0Xan+i

0x5n+j0Xan+i

X7Tl+i dx5n+j +

dx5n+j + dx5n+j +

0X7n+j0Xan+i

%L
0X2n+j0X;

i 0L n+i 0L
X gy + X

dX X2n+l
dx;0x dxnyjox;  OMH) T

dx6n+j +

0%L
0Xs5n+j0X;

92L

0X4n+j0x;

9%L

X3n+i
0X3n+j0X;

In+i 5n+i

dx6n+j

a%L
0Xen+j0X;

92L . 92

AxXgpyi — X' ———dx7 4 —
6n+] axjaxn+i 7n+]

+X6Tl+i dx6n+j + X7Tl+i

0X7n+j0X;

; d%L ; 0%L ; 0%L
n+i _ X2n+l dx7n+j _ X3n+l

dx . —
0Xn+j0Xn+i mt)

dx7n+j

0X2n+j0Xn+i 0X3n+j0Xn+i

0°L _ X5n+i 0°L _ X6n+i 0°L

X4n+i dx .
7
0X5n+j0Xn+i nJ

dx7n+j dx7n+j

0Xan+j0Xn+i 0Xen+j0Xn+i

02%L oL oL oL
Xy + o dxy e dXyyj + Xy +

_X7n+i
ax] 6xn+] 6 2 +]

0X7n+j0Xn+4i

oL
0X3n+j

oL
= dxgpy; F——
6x5 n+j Snt) 0Xen+j

oL
Ay + 3

dx +
Xamt an+j

AXen+j +

oL

0X7n+j

dx7n4; =0 - (4.1.23)
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Or

—[XiL+Xn+i %L + x2nti %L + X3n+ia—2L
0xj0Xen+i O0Xn+j0Xen+i 0X2n+j0Xen+i 0X3n+j0X6n+i
4n+i %L 5n+i 0%L 6n+i %L
+X + X + Xont - 4
0X4n+j0Xen+i 0Xs5n+j0Xen+i 0Xen+j0Xen+i
; 9%L oL
X7 ldx + —dx;
0X7n+j0X6n+i 0x;j
+[XiL+Xn+i %L + x2nti %L + X3n+ia—2L
0Xj0X7n+i 0Xn+j0X7n+i 0X2n+j0X7n+i 0X3n+j0X7n+i
4n+i %L 5n+i %L 6n+i %L
+X + X +oxonH - 4
0Xan+j0X7n+i 0X5n+j0X7n+i 0X6n+j0X7n+i
; 9L oL
X7t dxn,,; + ——dx, i
0X7n+j0X7n+i ] nJ 0Xn+j ntJ
+[XiL + Xn+i 0L + X2n+i 0L + X3n+i 0%L
0xj0X3n+i 0Xn+j0X3n+i 0X2n+j0X3n+i 0X3n+j0X3n+i
4n+i %L Sn+i %L 6n+i %L
+X + X + xontt—— 4
0X4n+j0X3n+i 0X5n+j0X3n+i 0Xen+j0X3n+i
; 9°L oL
X' — —— Jdxypsi + ——dXony
%74 j0%ansi ] 2n+j Xonsj 2n+j
_[Xl %L +Xn+i %L + X2n+i %L + X3n+i %L
0xj0Xon+i 0Xn+j0Xon+i 0X2n+j0X2n+i 0X3n+j0X2n+i
; 9L ; 9°L ; 9L
+X4-Tl+l + X5n+l + X6n+l +
0X4n+j0X2n+i 0X5n+j0X2n+i 0Xen+j0X2n+i
; 9L oL
X'+ — —— Jdxg,e; + ——dX3,y;
0X7n+j0X2n+i ] 3N+ 0x3n+j st
_[Xl 0L + Xn+i 0L + X2n+i 0%L + X3n+i 0%L
0Xj0X5n+i O0Xn+j0Xs5n+i 0X2n+j0Xs5n+i 0X3n+j0Xs5n+i
4n+i %L 5n+i %L 6n+i %L
+X + X + XonH 2 - 4
0X4n+j0Xs5n+i 0Xs5n+j0X5n+i 0Xen+j0Xsn+i
; 9%L oL
Xt ——— Vdxg,.; + ——dx
ax7n+jax5n+i] antJ 0X4n+j anty



_|_[Xl 0%L X‘n+i 0L + X2n+i 0%L + X3n+i 0%L
0Xj0Xan+i 0Xn+j0Xan+i 0X2n+j0Xan+i 0X3n+j0Xan+i
%L 5n+i 6n+i %L

+ X +oxomH - 4

0Xan+j0Xan+i 0X5n+j0Xan+i 0Xen+j0Xan+i

+ X4-n+i 0%L

; 2L oL
n+i

OX7n+j0Xan+i

9°L 4y 9°L
anaxi 6xn+j6xi 6x2n+jaxi 6x3n+j6xl-

+[X?

+X4-Tl+i 0L + X5n+l 0L + X67’l+i 0L

0X4n+jO0X; 0Xs5n+j0X; 0Xen+jOX;
. 0%L oL
X't ——dx .+ —dx
ax7n+jaxi] 6Tl+] axe n+j 6Tl+]

_[Xl 0°L + Xn+i 0%L + X2n+i 0%L +X3n+i 0°L

0Xj0xXn+i 0Xn4+j0Xn4i 0Xan+j0Xn+i 0X3n+j0Xn+i
- 9L - 9L ; 9L
+X4n+l + X5n+l + X6n+l +
0Xan+j0Xn+i 0X5n+j0Xn4i 0Xen+j0Xn+i
; 9L oL
xni 9t gy o+ =2 dx =0
6x7n+j6xn+i] mt 0X7n+j mEj T

In this equation can be concise manner.

27 Xan+i %L dx: + oL dx +Z7 Xan+i %L dx
=0 0Xan+j0Xen+i J 0x;j J a=0 O0Xan+j0X7n+i nt
b2t dx,, N7 xanti YL gy o+ dx
axn+j n+j Za—O axan+jax3n+i 2n+] axz n+j 2n+]
i 9L oL i 9L
S WA (L T NSNS L R o Y G AX4nsj +
Z =0 axan+jaxzn+i 3ntj ax3n+j 3nt) Za—o axan+jaxsn+i ant)
———dX gy i T N0 X o°L AXspyi + ——dXgpii +
ax4n+] ntj =0 0Xan+j0Xan+i ntJ 0Xs5n+j ntj
2 2
7 Xan+i 0°L d oL 7 an+i 0°L
= ——ax .+ ——dx = X ———dx i
a=0 axan_l_]_axi 6n+j 0Xen 4 en+j = Zia=0 axan+]_axn+i n+j
oL
+— dxpy; = 0.
ax7n+j n+j
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Then we find the equations

0 (0L JaL d oL oL 0 JaL oL
7o) o = 0 () o = 0 ) " = O
ot \0x; OXen+i Ot \0xn+i OX7n+i Ot \0x2n+i 0X3n+i

6(6L )+ oL _Oa(aL )+ oL _OB(GL)_ oL =0,

0t \0x3n+i Oxonsi Ot \OXans Oxsnsi Ot \OXsnyi O0X4n+i
d JdL JdL a oL oL

_( )+_=0,_( )+ =0 > (4.1.24)
Ot \0Xgn+i dx; Ot \0X7n+i OXn+i

Thus equations obtained in Eq(4.1.24) infer Euler-Lagrange equations structured

by means of CI>£6 on Clifford K dhler manifold (M, V) and so, the triple (M, Cbiﬁ, &)
is called a mechanical system on Clifford Kdhler manifold (M, V).

4-2 Conclusion:

Form above, Lagrangian formalisms has intrinsically been described taking into
account a canonical local basis {J;},i = 1,6 of V on Clifford K ihler manifold
(M, V).

The paths of semispray ¢ on Clifford Kdhler manifold are the solutions Euler-
Lagrange equations raised in (4.1.9),(4.1.17) and (4.1.24) and also obtained by a
canonical local basis {J;},i = 1,6 of vector bundle V on Clifford K dhler manifold
(M, V). One may be shown that these equations are very important to explain the

rotational spatial mechanics problems.
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Chapter Five

Hamiltonian Dynamical Systems on Clifford Kahler
Manifolds

5-1 Hamilton Mechanics:

In this section, we obtain Hamilton equations and Hamilton mechanical system
for quantum and classical mechanics by means of a canonical local basis
Ui.J5.J3,J5.J5 ]} of V on Clifford Kdhler manifold (M, V). We saw that the
Hamilton equations using basis {J1 , /5 ,J3} of V on (R3,V). In this study, it is seen
that they are the same as the equations obtained by operators J; ,/5 ,J5 of V on
Clifford Kdhler manifold (M, V). If we redetermine them, they are respectively:

Fist:
dx; _ OH dxpn4i _ OH AXonyi 0H dX3nyi OH
dt axn+i ’ dt axl' ’ dt aX4n+i ! dt a.X5n+i,
dX4n+i _  OH dXsn+i . OH AXen+i _ oH AxX7n+i . OH
dt 0xXppyi =~ dt 0X3n4i =~ dt 0Xynyi = dt 0Xenti
Second:
dXi _ 0H dxn+i _ 0H deTL‘H: _ 0H dx3n+i _ 0H
dt B ax2n+i ! dt o aX4n+i ! dt o axl ! dt o ax6n+i’
AXan+i _ OH dXsn+i _  OH dXen+i _ OH AX7n+i _ OH
dt axn+i ’ dt aX7n+i ’ dt aX3n+i ! dt axSn+i.
Third:
dXi _ 0H dxn+i _ 0H deTL‘H: _ 0H dx3n+i _ 0H
dat 0X3n+i 'oode 0X5n+i ’ at 0Xgn+i ’ dt 6xl-'
AXan+i _ oH AXsn+i _ OH AXen+i _ oH dX7n4i _ _OH
dt o aX7n+i ’ dt o axn+l’ ’ dt o axZn+i ’ dt o 6x4,n+i.

Fourth, let (M, V) be a Clifford Kdhler manifold. Suppose that a component of
almost Clifford structure VV*, a Liouville form and a 1-form on Clifford Kdhler
manifold (M, V) are given by J; , A;: and w], , respectively.
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Putting
wfy = %(xidxi + Xt idXnyi T XoneidXonyi + X3n4idX3n 4
+x4n+idx4n+i + x5n+idx5n+i + x6n+idx6n+i + x7n+idx7n+i)
We have
A = Ja(w]y) = %(xidx4n+i — Xn+idXont+i + Xon+i@Xn4i — X3n4idX7n4i

—Xan+idX; + Xsp4idXensi — Xen+idXsn4i T X7n4idX3044)

It is known that if CDJZ is a closed Kdhler form on Clifford Kdhler manifold
(M, V), then @, is also a symplectic structure on Clifford Kdhler manifold(M, V).

Take into consideration that Hamilton vector field X associated with Hamilton
energy H is given by

X = Xli +X’n+i 0 + X2n+i d + X3n+i 0 + X4n+i 0 +
ox; OxXn+i 0X2n+i X3+ OX4n+i
yon+i_ 0 o yen+i_ 9 | y7n+i_ 0 > (5.1.1)
O0X5n+i O0Xen+i a9C7n+i. o
Then
dx6n+i/\dx5n+i - (5-1-2)

And
ix®); = @ (X) = X" dx gy — X dXn s + X3 Xy — X7 d Xy
+X4 X, — Xdx g, + X X, — X dxg,,; — (5.1.3)

Furthermore, the differential of Hamilton energy is obtained as follows:

0H 0H 0H H 0H
dH = —dx; + —dx,.; + ——dx,,.; + ——dX2,.; dx
0x; L + OXn+i n+t + 0Xon+i Zn+i + 0X3n+i 3n+i + O0Xan+i an+i
0H 0H 0H
+ Py dx5n+i + de6n+i + de7n+l - (5-1 4‘)
X5n+i Xen+i X7n+i
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According to Eq(2) if equaled Eq(5.1.3) and Eq(5.1.4), the Hamilton vector field is
calculated as follows:

OH 0 0H 0 0H 0 0H 0
X=- — + — + +
OXan+i 0X;  O0Xon4i 0Xnyi  OXn4i0Xopti  OXyn4i 0X3n4i
OH 0 0H 0 0H 0 0H 0
- + — - (5.1.5)

0x; 0x4n+i  OXen+i OXsn+i  OXsp+iOXen+i  0X3n+i 0X7n+i

Assume that a curve
a:R - M - (5.1.6)
Be an integral curve of the Hamilton vector field X, i.e.,
X(a(t))=a, teRr - (5.1.7)

In the local coordinates, it is found that

a(t) = (Xi, Xn+i» Xon+ir X3n+ir Xan+is Xsn+ir Xen+ir X7n+i) = (5.1.8)
And
. dx; 0 dxpe; O dx ) dx ;0
a(t) = 2% 9 | DEnii 4 LXanti 4 LXanti +
dt axl dt axn.H: dt ax2n+i dt a.X'3n+i

dx ;0 dx ;0 dx ;i 0 dx ;i 0

4n+i 5n+i 6n+i 7n+i - (519)
dt  0Xan+i dt  0Xsn4i dt  0Xen+i dt  0X7n4i

Thinking out Eq(5.1.7) if equaled Eq(5.1.5) and Eq(1.5.9), it follows:

dXi _ OH dxn+i _ OH dx2n+i _ OH dx3n+i _ OH
dt aX4_n+i ! dt ax2n+i ! dt axn+i ! dt ax7n+i !
AXan+i OH dXxsn4i OH AXen+i 0H AXon+i OH
A4n+i —_ , 5n+i — , 6n+i — , n+i — — - (5.1.10)
dt aXi dt ax6n+i dt ax5n+i dt aX3n+i

Hence, the equations obtained in Eq(5.1.10) are shown to be Hamilton equations
with respect to component J; of almost Clifford structure V* on Clifford Kdhler
manifold(M, V) , and then the triple (M, ®;. , X) is said to be a Hamilton

mechanical system on Clifford K dhler manifold(M, V).

156



Fifth, let (M, V) be a Clifford Kdhler manifold. Assume that an element of
almost Clifford structure IV*, a Liouville form and a 1-form on Clifford Kdhler
manifold (M, V) are determined by J5 , 4;; and w]s , respectively.

Setting
w5 = %(xidxi + Xp1iXnyi + Xon+idXon4i + Xan4idXzn 4
+x4n+idx4n+i + x5n+idx5n+i + x6n+idx6n+i + x7n+idx7n+i)
We have
Ay =Js(wf5) = %(xidx5n+i — Xn+iAX3n+i = Xon+idX7p4i T X3n4idXn4
FX4n+iAX6n+i = Xsn+idXi — Xen+idXanti + X7n4idXon4i)-

Assume that X is a Hamilton vector field related to Hamilton energy H and given
by Eq(5.1.1).

Taking into consideration
Q= —dAyz = dxp i Ndxzng + dXon g i ANdX7p 4 + dXspy Adx; +
AXgnsiNdXg4m1i - (5.1.11)
Then we find
ix®): = P (X) = XXy — X3 dXn s + X2 X0 — X7 d X4
+X5 iy — Xldxgny; + X i dxgn s — X dxgn, — (5.1.12)

According to Eq(2) if we equal Eq(5.1.4) and Eq(5.1.12) it follows

¥ = 0H 0 0H 0 OH d 0H d
O0Xsn+i 0Xi  0X3n4i0Xnyi  OXn4iO0X3nti  OX7n4i 0Xonti
OH d 0H 0 OH d 0H d
— — - (5.1.13)
OXen+i 0Xan+i  0Xi 0Xspti  OXanyi OXen+i  OXan+i OX7n+i

Taking Eq(5.1.7), Egs.(5.1.9) and (5.1.13) are equal, we obtain equations
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dXi _ OH dxn+i _ 0H dx2n+i _ OH dx3n+l' _ 0H

dt - 6x5n+i ! dt aX3n+i ! dt - aX7n+l’ ! dt - axn+i !
dXan+i 0H AXsn+i 0H  dxXxgn+i 0H AX7p+i 0H
4n+i —_ , 5n+i - 2 , 6n+i — , n+i e - (5.1.14)
dt ax6n+i dt aXi dt aX4n+l' dt ax2n+i

In the end, the equations found in Eq(5.1.14) are seen to be Hamilton equations
with respect to component J: of almost Clifford structure V* on Clifford Kdhler
manifold(M, V) , and then the triple (M, CD]; ,X) is named a Hamilton mechanical

system on Clifford Kdhler manifold(M, V).

Sixth, let (M, V) be Clifford Kdhler manifold. By Jg , 4;: and w]s, we denote

a component of almost Clifford structure VV*, a Liouville form and a 1-form on
Clifford K dhler manifold(M, V), respectively.

Let w/¢ be determined by
wle = %(xidxi + Xn4idXnti + Xon4iQXonei + X3n1idX3n 4
FXan+iQ%an+i + XsnidXsn4i + Xen+i@Xen+i + X7n+idX7041)
Then it yields
Az =Jg(w]g) = %(xidx6n+i — Xn+idX7n+i — Xon+iGX3n+i + Xan+idX2n4i
FXan+idXsn+i — Xsni@Xan+i = Xen+iAX; + X7p41dXp4;).

It is known that if ®- is a closed K dhler form on Clifford K dhler manifold(M, V)
, then @+ is also a symplectic structure on Clifford Kdhler manifold(M, V).

Take X. It is Hamilton vector field connected with Hamilton energy H and
given by Eq(5.1.1).

Considering
). = _dljg = dxXpiNdX7p4; + AXon i NAX3n 4 + AX5n 4 AdXgp 4 +
AXxensi/Ndx; - (5.1.15)

We calculate
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Ix P = Oy (X) = X" dxypyi — XXy + X2 gy — X3 d Xy
+X5n+idX4_n+i — X4n+idx5n+i + X6"+idxl- — Xidx6n+l- - (5116)

According to Eq(2) , Eqs(5.1.4) and (5.1.16) are equaled, Hamilton vector field is
found as follows:

X = OH 0 OH 0 0H d 0H d
OXen+i 0Xi  0X7n4i 0Xnyi  OX3n4i 0Xon+i  OXop4i OX3n4i
OH 0 0H d OH 0 0H 0
on - - (5.1.17)
OXsn+i 0Xan+i  O0Xan+iOXsnyi  0X; OXenyi  O0Xn4i OXyn4i
Considering Eq(5.1.7), we equal Eq(5.1.9) and Eq(5.1.17), it holds
dXi _ 0H dxn+i _ O0H deTH—i _ O0H dX3n+i _ OH
dt — Oxensi | At OXymyg | At Oxapyi | At OXapai
dXan+i _ _ _OH ’ dXsn+i _ _ OH , dXen+i _ OH ,dx7n+i _ __oH (5.1.18)
dt 6x5n+i dt GX4n+i dt axl dt axn+i

Finally, the equations calculated in Eq(5.1.18) are called to be Hamilton equations
with respect to component J; of almost Clifford structure V* on Clifford Kdhler
manifold(M, V) , and then the triple (M, D ,X) is said to be a Hamilton

mechanical system on Clifford K dhler manifold(M, V).
5-2 Conclusion

Hamilton formalisms has intrinsically been described with taking into account the
basis {J1,/5,/3.J4,J%,J¢} of almost Clifford structure V* on Clifford K dhler
manifold (M, V).

Hamilton models arise to be a very important tool since they present a simple
method to describe the model for dynamical systems. In solving problems in
classical mechanics, the rotational mechanical system will then be easily usable
model.

Since a new model for dynamic systems on subspaces and spaces is needed,
equations (5.1.10), (5.1.14) and (5.1.18) are only considered to be a first step t o
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realize how Clifford geometry has been used in understanding modeling and
solving problems in different physical fields.

For further research, the Hamilton vector fields and equations obtained here
are advised to deal with in problems of quantum and classical mechanics of
physics.
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List of Symbols:-

No Symbols Meaning

1 & Vector fields

2 o, Indicates the symplectic form

3 ™ Tangent bundle

4 M Manifold

5 E Euclidean space

6 Fy A derivation of the algebra

7 Der(F,) Set of all derivation on F,

8 T,f Tangent map (at p)

9 ['(M, TM) Set of all smooth vector fields on M
10 T Tensor

11 T (V) Covariant r-tensor on V

12 T..(V) Contra-variant r-tensor on V
13 T®S Tensor product

14 D Direct sum

15 SymT Symmetric tensor

16 () r-tensoron V

17 AltT Alternating tensor of symmetric
18 A Exterior (wedge) product
19 ) Kronecker delta
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20 F(©) Algebra germs

21 Ctos3 Clifford algebra

22 L:TM - R A regular Lagrangian function
23 E; Is the energy associated to L
24 H:T*Q - R A regular Hamilton function
25 F(M) The set of functions on M
26 X (M) The set of vector fields on M
27 AL (M) The set of 1-forms on M
28 T(M) The tangent space

29 T"(M) The cotangent space

30 d]l. i=1,6 Vertical differentiation
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